
vlab Environmental Programs
Reference Manual

Last updated: November 30, 2021

vlab was developed in the labs of Przemyslaw Prusinkiewicz at the University of Regina and the
University of Calgary, Canada

1

Contents

1 Introduction 2
1.1 Components of the system . 2
1.2 Usage in cpfg . 2
1.3 Usage in lpfg . 3
1.4 Flow of information . 4

2 The communication specification file 5

3 Environmental programs in vlab 6
3.1 Collisions . 6

3.1.1 Vigor - 2D (honda81) . 6
3.1.2 Vigor - 2D or 3D (ecosystem) . 7
3.1.3 Climbing (arvo) . 8

3.2 Light . 10
3.2.1 Direct light – 2D (clover) . 10
3.2.2 Direct light – 3D (chiba) . 12
3.2.3 Direct light – 3D (takenaka) . 14
3.2.4 Objects in a scene (QuasiMC) . 15

4 Creating new environmental programs 20
4.1 Data structures . 20
4.2 Library functions . 21
4.3 Example environmental programs . 23

4.3.1 Immediate answer environmental program . 23
4.3.2 Delayed answer environmental program . 23

5 Deprecated features 27
5.1 Point collisions (ulam) . 27
5.2 Forces (collisions) . 27
5.3 MonteCarlo environment program . 28
5.4 Distributed systems . 32

6 Credits 34

7 Document revision history 34

1 Introduction

For interaction between plants and their environment, both the cpfg and lpfg modeling programs
include predefined communication modules that send and receive information to/from an external
process simulating environmental factors. When in environmental mode, the modeling program:

• Spawns an external environmental program, and sets up the communication link between the
two processes.

• Performs an environmental step after each derivation step, that determines the state of the turtle
associated with each communication module in the string.

• Sends information to the environmental program as each communication module is encountered:

– The address (position in the string) of the module.

– The parameter values associated with the module.

– The state of the turtle associated with the module (optional).

– The type and parameters of the module following the communications module (optional).

• Receives results from the environmental process for each communication module. This includes:

– The address of the communication module that should receive the results.

– The parameters to be returned.

1.1 Components of the system

The functionality within cpfg and lpfg is complemented by the following external components:

• Purpose-built environmental programs, with an optional file of parameters. (See Section 3 for
the environmental programs included in vlab, and Section 4 for creating new environmental
programs).

• A communication specification file, filename.e, that defines how to run the environmental pro-
gram, what information should be sent, and how (Section 2).

• A set of “to” and “from” files, if the communication is through files (Section 2).

1.2 Usage in cpfg

Environmental mode is set in cpfg using the -e command line option, which also defines the commu-
nication file, filename.e. For example:

cpfg -m plant.map -e enviro.e plant.l plant.v plant.a

The communication module, ?E, is used within cpfg. It can have as many parameters as required,
where each parameter is a floating point number. For example, to send a value to the environmental
program, and take a different action depending on whether it returns 0 or 1:

See object:
CPFG-Sierpinski

axiom: ?E(VAL)

?E(c) : c==0 --> ...

?E(c) : c==1 --> ...

2

1 INTRODUCTION 3

The parameters are used to both send and receive information, and do not necessarily have the
same meaning in both directions. The number of parameters should equal the maximum needed in
either direction. For example, to send a value to the environment and produce results depending on
two returned parameters:

axiom: ?E(VAL,0)

?E(a,b) : a < 10 --> X(a)

?E(a,b) : a >= 10 --> X(a-b)

1.3 Usage in lpfg

Environmental mode is set in lpfg by the presence of an environmental file (with a .e extension) on
the command line. For example:

lpfg plant.map enviro.e plant.l plant.v plant.a

Note that, unlike cpfg, no command line option is required: the file is recognized by its extension.
Parameters are used to both send and receive information. However, modules in lpfg must have a

fixed number of parameters. Therefore, there are two predefined communication modules, E1 and E2,
for sending/receiving one and two floating point numbers respectively. For example, to send a single
value and receive a 0 or 1 in return:

See object:
LPFG-Sierpinskiaxiom: E1(VAL)

E1(c):

{
if (c==0) produce ...;

if (c==1) produce ...;

}

In addition, module EA20 has a single parameter that is an array of floating point numbers. The
array can be defined using the EA20Array type. For example, to send a value to the environment and
produce a module with different values depending on the first four parameters returned:

EA20Array ea = {VAL,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
module A(float,float);

axiom: EA20(ea);

EA20(x):

{
if (x[0] < 10)

produce A(x[1],x[3]) ;

else

produce A(x[2],x[3]) ;

}

See object:
LPFG-Sierpinski
-EA20

There is also a command line option associated with this array, -cleanEA20, that zeroes the array
before the next iteration. This is useful if the environmental program returns an arbitrary number of
values.

1 INTRODUCTION 4

1.4 Flow of information

An environmental program has one of two possible modes of operation in each step:

• Immediate answer - Results depend on local properties of the environment, not on informa-
tion related to other communication modules within the string. A response can be sent to the
modeling program immediately. This mode is suitable for simulations of static environments.

• Delayed answer - Results depend on information related to other communication modules within
the string, due to the propagation of information through the environment. The information from
all communication modules in the string is first sent to the environmental program (and stored
in internal data structures). Computations are then performed based on all the information,
and results are returned to the modeling program for each module. This tends to be the most
common mode: it is used for all the vlab environmental programs.

The communication follows a standard set of steps:

1. The modeling program reads the communication specification file, establishes the data structures
necessary for communication, starts the environmental process, and waits for confirmation from
it.

2. The environmental program reads the communication specification file, connects itself to the
data streams, sends a confirmation, and waits for the first transmission.

3. The modeling program receives the confirmation and starts the simulation.

4. After each derivation step, the modeling program performs an environmental step to process
the communication modules. The information from each communication module is sent to the
environmental program, with a final reserved end-of-transmission message after the last module.

5. The environmental program receives the information, and either sends an immediate answer
for each communication module, or waits until it receives the end-of-transmission message and
then send responses for all the modules. It terminates the transmission with a similar end-of-
transmission message, and waits for the next transmission.

6. The modeling program receives the data coming from the environment and sets the parameters
of the specified communication module accordingly. When the end-of-transmission message is
encountered, the environmental step is complete and the program continues, returning to Step
4.

2 The communication specification file

The communication specification file, used by both cpfg and lpfg to set up the environmental pro-
gram, is specified on the command line (Sections 1.2 and 1.3 respectively). It contains the following
commands:

Command Description
executable: commandline The complete command line required to spawn the environ-

mental program. This command is mandatory.
communication type: type The data transfer mechanism between the modeling program

and the environmental program, where type can be one of
files (see below), memory, or pipes. This command is
mandatory.

turtle position: format
turtle heading: format
turtle left: format
turtle up: format
turtle line width: format
turtle scale factor: format

Optional turtle parameters to be sent to the environment pro-
gram, and the associated C-like format string for each. See
examples below.

following module: flag If flag=yes, the module following the communication module
is sent. The default is no.

interpreted modules: list The list of modules that can follow a communication mod-
ule. See the QuasiMC environmental program (Section 3.2.4).
This feature works in cpfg only.

verbose: flag Verbose mode is switched on or off. The default is off.

There are always two data streams: one for sending information to the environmental program,
and another for receiving information from it. With the command communication type: files,
the modeling program creates two files:

.to fieldnnnn.0

.from fieldnnnn.0

where nnnn is a unique number (the modeling program’s process ID). Both are text files located on
the lab table that can be accessed for debugging.

To distinguish the values representing the turtle state in the above files, the format can include a
name, and can also limit the values to a specified number of decimal places. For example:

turtle position: P:%.3f %.3f

turtle heading: H:%.3f %.3f

will send the x and y coordinates of the turtle position and heading vectors, preceded by P: and H:

respectively. The letters are not mandatory.

5

3 Environmental programs in vlab

The following environmental programs are included in the vlab distribution. To create additional
environmental programs see Section 4.

3.1 Collisions

3.1.1 Vigor - 2D (honda81)

This program tests for collisions between disks of a fixed radius. If two disks collide, the one with the
lower vigor value is set to 0. This has been used to test for collisions between leaf clusters, for example.
It can also be used to test for point collisions, by assuming a small radius (e.g. 0.01).

The command line for the program is:

honda81 [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

See object:
LPFG-Fibonacci
Florets

The honda81 parameter file, eparamsfile, contains the following:

Parameter Description
radius: r The radius of each disk. All disks have the same radius; they differ only in vigor.
3d case: flag If on, each object is represented as a sphere and collision tests are performed in

three dimensions. The default is off.
verbose: flag Switch verbose mode on. The default is off.

The communications module can have one or two parameters, p1 and p2. On input the parameters
are:

p1 = vigor of the object, represented by a number between 0 and 1.
p2 = the index of a group. Collisions will be tested only between objects in the same group.
The default is 0.

On output the parameters are:

p1 = 0 if the object collides with another object with more vigor, and 1 otherwise.
p2 unchanged.

The environment stores all queries corresponding to communication modules in a linked list. After
all queries are inserted, the program computes the distance from a given object to other objects having
a higher or equal vigor. The object is tested only with objects in the same group. The response is 0
(lower vigor) or 1 (equal or higher vigor). If the vigor of a object is 1, it will always stop the growth
of other objects.

6

3 ENVIRONMENTAL PROGRAMS IN VLAB 7

3.1.2 Vigor - 2D or 3D (ecosystem)

This program tests for collisions between a set of objects. Internally, the objects are represented as
disks in 2D (or spheres in 3D) with a given radius. If two disks partially overlap, the one with the
lower radius (or the lower vigor, if using) is reported as colliding. This program was originally used to
simulate plants growing in a field.

The command line for the program is:

ecosystem [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

See object:
CPFG-
ecosystem

The ecosystem parameter file, eparamsfile, contains the following:

Parameter Description
grid size: x y z The size of a regular grid used for reducing the time necessary to determine

the colliding disks. The z value is optional; it is for use only with 3D case:

on.
vigor: flag If on, an additional parameter is sent with each communication module,

specifying the vigor of the plant. If two disks/spheres collide, the one with
the lower vigor is reported as colliding, even if its radius is larger. The default
is off.

3d case: flag If on, each object is represented as a sphere and collision tests are performed
in three dimensions. The default is off.

verbose: flag Switch verbose mode on. The default is off.

The communications module can have one or two parameters, p1 and p2. On input the parameters
are:

p1 = radius of the disk/sphere representing the object.
p2 = vigor of the plant. Used only when vigor: is set to on.

On output the parameters are:

p1 = 0 if the object collides with another object of bigger radius or vigor, and 1 otherwise.
p2 unchanged.

Each object is represented by a communication module with one parameter if the vigor is not used,
or two parameters if the vigor is used. All modules in a given simulation step are stored in a linked list.
After all modules are processed, a regular grid of grid size is created so that it tightly encompasses
all disks (or spheres) representing the objects. The grid is used to speed up the collision tests and is
rebuilt after each step. Each voxel of the grid contains a linked list of the disks (spheres) occupying
a portion of the voxel. For each disk, a check is done to see whether it intersects with any other disk
stored in the same voxels.

If a collision is found and vigor is off, the program returns 0 if the radius of the given disk is less
than or equal to the radius of the colliding disk. Otherwise, it returns 1.

If a collision is found and vigor is on, the program returns 0 if the vigor of the given disk is less
than the vigor of the colliding disk. If both vigors are equal, but the radius of the given disk is less
than or equal to the radius of the colliding disk, the program also returns 0. Otherwise, it returns 1.

3 ENVIRONMENTAL PROGRAMS IN VLAB 8

3.1.3 Climbing (arvo)

This program is used to simulate climbing around surfaces. For a given segment, it determines whether
the segment collides with a surface and, if it does, the program computes a new orientation for the
segment such that the collision is avoided and the segment’s tip keeps a given distance from the surface.
The algorithm is based on a paper by Arvo and Kirk [1].

The command line for the program is:

arvo [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following commands:

turtle position: %g %g %g

turtle heading: %g %g %g

turtle up: %g %g %g

following module: yes

The arvo parameter file, eparamsfile, contains the following:

Parameter Description
domain size: x y z The range (in world coordinates) of a regular grid used to store

objects for the intersection test.
position: x y z The position of the lower front left corner of the grid.
grid size: x y z The size of the grid in voxels.
surface distance: d The distance (a real value) from the surface that all segment end-

points will try to maintain.
max surface distance: it d The maximum distance between the surface and a segment end-

point. This is usually about 2 × surface distance.
tries for Q: n The number of randomly generated candidates for selecting a new

position Q for the segment’s tip.
tries for surface: n The number of tries (rays) traced in order to find the closest sur-

face.
obstacles: filename A file containing obstacles. See the background file description in

the cpfg manual for the format of this file.
add objects: flag If flag = on, objects specified by the symbol following the commu-

nication module ?E are added to the grid (and removed at the end
of each simulation step). The default is off. See below for the
recognized modules.

remove objects: flag If flag = on, objects are removed from the grid at the beginning of
each simulation step. The default is on.

seed: n The seed (an integer value) for the random number generator.
verbose: flag Switches verbose mode on or off. The default is off.

The x y z parameters can also be delimited by commas (,) or ‘x’.
The add objects parameter recognizes the following module types (located directly after the

communications module) when set on:

Module Description
S(r) A sphere with radius r.
C(r,h) A cylinder with radius r, and height h.
C(r1,r2,h) A cone with base radius r1, top radius r2, and height h.

3 ENVIRONMENTAL PROGRAMS IN VLAB 9

The communication module will have a differing numbers of parameters (pi) depending on the
action to be taken:

of pmtrs Description Input parameters Output parameters
0 Add the module following

the communication mod-
ule to the grid.

1 or 4 Check for intersection of
the segment with an ob-
ject. The communication
module MUST be fol-
lowed by a segment mod-
ule: F, f, G, or g.

p1-p4 ignored p1 = 1 if intersection, 0 other-
wise
p2-p4 = surface normal at in-
tersection point (optional).

7 Get a new segment
length, and new heading
and up vectors.

p1 = desired seg-
ment length
p2-p7 ignored

p1-p3 = new heading vector (of
unit length).
p3 = length of segment. 0 if
segment not found.
p5-p7 = new up vector (the
normal of the closest point on
the surface).

The program stores all incoming queries in a dynamically allocated array. Queries are answered
after the string is processed. For each point P a new point Q with the desired length (parameter p1 in
the 7 parameter case) is calculated, beginning on a line perpendicular to the up vector, and sweeping
from the heading direction +/- 180◦.

For each trial point Q, the closest surface is found (a number of rays are shot seeking the closest
intersection). If no intersection is found, a new point Q is generated. Otherwise, the new endpoint P
is taken, specified as the intersection of the trial ray with the closest surface plus the normal vector of
the intersection times the desired minimum distance from the surface. The program then returns the
new heading vector (P minus the turtle position, T), its length |P − T |, and the up vector (the
surface normal).

NOTE: In the case of 1 or 4 parameters, when only segment intersection is tested, the surface

distance parameter in eparamsfile influences the returned intersection. This can be used to keep the
object a small distance away from the surface to account for its width. The size of a voxel must be
bigger than this surface distance parameter.

3 ENVIRONMENTAL PROGRAMS IN VLAB 10

3.2 Light

3.2.1 Direct light – 2D (clover)

This program determines the amount of direct light coming from the top and reaching the apices of
plants (represented as points). The light can be obstructed by leaves, stored as disks in a high-resolution
grid.

The command line for the program is:

clover [-e commfile.e] eparamsfile

See object:
CPFG-Clover

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

The clover parameter file, eparamsfile, contains the following:

Parameter Description
grid range: x y The range (in world coordinates) of a regular 2-dimensional grid used

to store the leaves.
grid position: x y The position of the lower front left corner of the grid.
grid size: x y The size of the grid in voxels.
transmittance: t Transmittance of leaves. A value in the range [0,1].
input image: imagefile The name of an image file used to specify the light intensities coming

from the top. Only the green channel of the image is used.
remove old leaves: flag If set to yes, all leaves are removed from the grid after each simulation

step. The default is no.
z is up: flag If set to no, the y coordinate is considered as up, and the program uses

the x and z coordinates of each point. The default is yes, with the x
and y coordinates used to specify the location of leaves and queries.

verbose: flag Switch verbose mode on. The default is off.

The communication module can have either one or two parameters, depending on the action re-
quired:

of pmtrs Description Input parameters Output parameters
1 Calculate the light inten-

sity reaching the point.
p1 ignored p1 = light intensity

2 Perform one of the follow-
ing actions:
0 - query the light reach-
ing the point
1 - add a leaf
2 - remove a leaf

p1 = type of action
(0, 1, or 2)
p2 = leaf area for
actions 1 and 2; ig-
nored for action 0

p1 = light intensity when action
= 0; otherwise not changed
p2 not changed

Note that the communication module with one parameter is the same as the module with two param-
eters where the input values are p1 = p2 = 0.

The program stores communication modules querying the light in a linked list. A high-resolution
grid (usually 2000×2000) is used to store leaf information if the module action is to add or remove
a leaf. Each voxel of the grid contains information about the number of leaves obstructing it, where
each leaf is represented as a disk with the specified area. Thus for a given leaf, the values in all voxels
which are covered by the disk representing it are incremented by one. Similarly, if a leaf is removed

3 ENVIRONMENTAL PROGRAMS IN VLAB 11

from the grid, the values in the corresponding voxels are decreased by one.
In addition to the number of leaves obstructing the voxel, the voxel also contains the initial intensity

of light. This intensity defaults to 1, but can also be specified with an image file (using input image

in the parameter file). In that case, the green channel of the image specifies the intensity at each voxel.
Note that the resolution of the grid need not match the resolution of the input image.

After the grid is updated, all queries stored in the linked list, are processed. For each query, a
corresponding voxel is determined. The initial intensity associated with the voxel is multiplied by a
factor tn, where t is the transmittance value and n is the number of leaves obstructing the voxel.
The resulting intensity is returned in the communication module.

3 ENVIRONMENTAL PROGRAMS IN VLAB 12

3.2.2 Direct light – 3D (chiba)

This program determines the amount of direct light reaching spheres. It is based on a paper by Chiba
et. al. [2]. The spheres can be seen as an approximation of objects such as leaf clusters.

The command line for the program is:

chiba [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

The chiba parameter file, eparamsfile, contains the following:

Parameter Description
grid size: x y z The size of the grid in voxels. (The grid range in world

coordinates is determined according to the location of the
spheres so that the grid tightly encloses them.)

number of samples: s The number of samples for the light sphere. The closest
number higher than 8 × k4 is used, where k is an integer.
Generally 128 works well.

lower to upper ratio: u The ratio of the lower and upper hemisphere intensities. The
number should be in the range 0.0 to 1.0. The default is 0.7.

use CIE formula: flag If no, all light sources in the same hemisphere have the same
intensity. If yes, the light intensity of sources in the upper
hemisphere is determined by the standard CIE formula for
an overcast sky [3] (based on the direction towards the light
source). The default is no.

source direction: x y z intensity A light source with the given intensity. This command takes
precedence over the previous three commands. After all
sources are defined, their intensities are normalized such that
their sum is 1. The direction is also normalized.

transmittance: t The transmittance of the spheres. This is a floating point
number between 0 and 1. The default is 0.6.

radius: r The default radius for spheres whose radius is not explicitly
given. The default is 25.

beam radius: r The radius of the beam of rays from each sphere. The radius
is expressed as a fraction of the current sphere’s radius (i.e.
r is a number between 0 and 1). The default is 0.

estimate intersection area: flag If on, the intersection function projects the sphere onto a
plane perpendicular to the ray. See the explanation below.
The default is off.

verbose: flag Switch verbose mode on. The default is off.

The communication module can have one or four parameters. On input, only the first parameter
is used: p1 = the radius of the sphere. If p1 = 0, the value of radius from the parameter file is used.

On output, the parameters are:

p1 = percentage of light perceived by the centre of the sphere (a number between 0 and 1)
p2 - p4 = the brightest direction (of unit length)

The program stores the incoming communication modules in a dynamically allocated array. It then
build a regular grid (generally 64× 64× 64) to speed up ray casting.

3 ENVIRONMENTAL PROGRAMS IN VLAB 13

The amount of incoming light is computed for each module by shooting rays from the center of
each sphere. In the case of a sky hemisphere, the number of rays is set to the number of samples

parameter. When a fixed number of light sources is specified, the number of rays is set to this number.
Each intersected sphere reduces the perceived light intensity.

If the communication module has 4 parameters, the brightest direction is calculated as the sum of
all sample rays multiplied by their intensities.

When estimate intersection area is set to off, the ray is tested against a sphere with radius
equal to the intersected sphere radius, r, plus the beam radius to obtain the length, l, of the line segment
inside the sphere. The intensity associated with the ray is multiplied (reduced) by pow(t, l/2×r), where
t is the transmittance value. Unfortunately, this formula is not ideal since it does not account for
the beam radius which, in itself, is a fixed value that may not work well with variable-sized spheres.

A better approach, when the spheres vary widely in size, is to set estimate intersection area

to on. The function will then project the spheres onto a plane perpendicular to the ray, and calculate
the intersection area of disks on the plane. It will return a ratio of this area to the area of the sphere
from whose center the ray is traced.

3 ENVIRONMENTAL PROGRAMS IN VLAB 14

3.2.3 Direct light – 3D (takenaka)

This program determines the amount of direct light reaching spheres, reduced by a maintenance cost.
It is based on a paper by Takenaka [4]. Like chiba, the spheres can be seen an approximation of objects
such as leaf clusters.

The command line for the program is:

takenaka [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

The takenaka parameter file, eparamsfile, contains the following:

Parameter Description
grid size: x y z The size of the grid in voxels. (The grid range in world coordinates

is determined by the location of the spheres so that the grid tightly
encloses them.)

parameter: s The sparsity of matter (e.g. leaf distribution) on the sphere. If the
radius of the sphere without any matter is r, then the radius of the
entire sphere is r · s. The default is 1.5.

transmittance: t The transmittance of the spheres. This is a floating point number be-
tween 0 and 1. The default is 0.1.

efficiency: e A multiplicative parameter influencing the resulting light product. The
default is 0.015.

source: x y z intensity A light source with the specified intensity. After all sources are defined,
their intensities are normalized such that their sum is 1.

beam radius: r The radius of the beam of rays from each sphere. The radius is expressed
as a fraction of the current sphere’s radius (i.e. r is a number between
0 and 1). The default is 0.

verbose: flag Switch verbose mode on. The default is off.

The communication module has four parameters. On input, the parameters are:

p1 = the sphere area
p2 = the maintenance cost

On output, the parameters are:

p1 = the sphere area (unchanged)
p2 = the product of photosynthesis, after the maintenance cost is subtracted

The program stores all incoming communication modules in a dynamically allocated array. It then
builds a grid to speed up ray casting.

The amount of incoming light for each sphere is computed by shooting a beam of rays from the
sphere centre towards each light source. Each intersected sphere reduces the perceived light intensity.
The weight of the final product is computed according to the values in the appendix to the paper.

3 ENVIRONMENTAL PROGRAMS IN VLAB 15

3.2.4 Objects in a scene (QuasiMC)

The program computes light distribution within a scene, such as a plant canopy. It is based on the the
MonteCarlo program (Section 5.3) but uses a randomized quasi-Monte Carlo (RQMC) method rather
than a Monte Carlo method. RQMC estimation has been shown to reduce the error and computational
effort of Monte Carlo estimation for plant-light simulations [5]. See the QuasiMC User’s Manual for
more detailed information on this program.

The command line for the program is:

QuasiMC [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

turtle heading: %g %g %g

turtle up: %g %g %g

turtle head: %g %g %g

following module: yes

interpreted modules: M1 M2 ...

where M1,M2 ... are user-defined modules that may follow the communications module.
The QuasiMC parameter file, eparamsfile, can be divided into several sections:

Pre-tracing commands

Parameter Description
return type: k1, k2, ..., ks The return type for each of s wavelengths (see spectrum samples):

F = absorbed flux (default)
D = absorbed flux density
U = incident irradiance of upper surface
L = incident irradiance of lower surface
H = number of intersections per ray.

grid size: x y z The size of the grid in voxels. Used to speed up intersection testing.
The default is 1× 1.

remove objects: flag If yes, all objects are removed after each simulation step. This is the
default. If set to no, the modeling program should not send modules
that have already been sent.

number of runs: n The number of randomizations to perform on the QMC point set.
This value should be ≥ 5 for a good estimate of the variance between
objects. The default is 1.

sampling method: name The name of the RQCM sampling method to be used:
monte carlo - fast, high variance, number of rays not restricted
sobol - slow, low variance, number of rays not restricted
korobov - fast, low variance, number of rays restricted
poly-korobov - fast, low variance, number of rays very restricted

number of rays: n The number of rays to trace through the scene, where n is an integer
greater than 1. For korobov and poly-korobov methods, the value
n must be a power of 2 such that 128 ≤ n ≤ 1048576 or 1024 ≤ n ≤
65536, respectively.

surface: filename sdiv The name of a surface file, and the number of subdivisions, sdiv, to
perform on the Bézier patches that describe the surface. There may
be several surface commands that will be assigned an id sequentially
starting with 0.

3 ENVIRONMENTAL PROGRAMS IN VLAB 16

Parameter Description
verbose: level The level of output, used for debugging:

0 = no output
1 = output some scene information
2 = level 1, plus the debug window, with objects shaded according
to return type (the default)
3 = level 2, plus the path each ray takes.

visualization:

lflag bflag wflag
rb gb bb rs gs bs

The content of the debug window when verbose is set to 2 or 3.
lflag = show the light source(s)
bflag = show the bounding box
wflag = show in wireframe mode
rb gb bb = RGB values of the background color
rs gs bs = RGB values of a shaded object
The default is yes no no 0 0 0 1 1 1

return variance: flag If yes, the individual object variance is written to a file. See the file
naming convention below. The default is no.

cylinder sides: n The level of detail used to generate a triangulated cylinder (represent-
ing an internode). The value must be in the range 3 ≤ n ≤ 128. For
smooth connections between cylinders, use a power of 2. The default
is 4.

When return variance is set to yes, a file is created using the following naming convention:

<sampling method><simulation step> . <number of runs>.<0 or 1>

The last extension is 1 if one ray per spectrum is set to yes (see below). Otherwise, it is 0.

Generating rays

Parameter Description
light source: x y z weight A directional light source approximating a very distant light such

as the sun. Several light sources can be specified, by including
several of these commands. Their weights should sum to 1. The
default light source is (0.0, -1.0, 0.0) with weight = 1.0.

spectrum samples: s The number of wavelengths for which light distribution should be
computed. This command must precede the source spectrum

command, and all commands defining materials. The default is 1,
and the maximum is 20.

source spectrum: λ1 w1

λ2 w2 ... λs ws

The size of the wavelength (λ) and weight (w) for each of the
s wavelengths. The current implementation does not use the λ
values, but they must be specified. The weight can be thought of
as the initial energy of the ray.

one ray per spectrum: flag If yes (the default), only one ray is used to carry information for
all wavelengths. The main advantage of this is speed and vari-
ance reduction. Otherwise, if no, a separate ray is used for each
wavelength.

rays from objects: flag If yes (the default), rays will be generated from virtual sensors
that are represented by a rhombus (the P(a, b) module). For any
other module, the absorbed irradiance will not be returned. The
default is no.

3 ENVIRONMENTAL PROGRAMS IN VLAB 17

Tracing rays

Parameter Description
maximum depth: n The limit on the number of hits a ray can make before it is termi-

nated. If the value is set to -1, there is no limit on the depth and the
Russian roulette command must be specified. The default is 5.

Russian roulette: t p The parameters of the Russian roulette method for terminating rays.
If a ray’s radiant energy drops below the threshold t, it is terminated
with probability p. Otherwise, the energy of the ray is increased to
make up for rays that have been terminated. The values must satisfy
0 ≤ t and p < 1. The defaults are t = p = 0.

ignore direct light: flag If yes, light hitting objects directly from a light source is ignored.
This is useful for observing the effect of indirect light only. The
default is no.

Materials

Parameter Description
local light model: type The type of BRDF/BTDF used in the light simulation can be either

modified Phong or Lambertian.
leaf material (top)

: r1 nr1 t1 nt1 n1
: r2 nr1 t2 nt1 n2

...
: rs nrs ts nts ns

The properties of the default material. Five values are specified for
each of s wavelengths (spectrum samples). The properties are:
r: reflectance, in the range [0,1]
nr: reflectance scattering exponent, in the range [0,∞]
t: transmittance, in the range [0,1]
nt: transmittance scattering exponent, in the range [0,∞]
n: refractive index (not used)
where 0 ≤ r+ t ≤ 1. This command has not default value. It must
be specified.

leaf material (bottom)

: r1 nr1 t1 nt1 n1
: r2 nr1 t2 nt1 n2

...
: rs nrs ts nts ns

The default material associated with the bottom side of an object.
This command should be specified even if the values are the same
as leaf material (top).

material

: r1 nr1 t1 nt1 n1
: r2 nr1 t2 nt1 n2

...
: rs nrs ts nts ns

Additional materials can be specified using this command. The
materials are identified by their order, starting with 2 (leaf
material (top) is index 0 and leaf material (bottom) is in-
dex 1).

material parameter: p The parameter in the module that is the material index. This
command only applies to modules other than T or P.

Sky model

Parameter Description
location: x y The geographic location to use for the simulation, where x is the lati-

tude, and y is the longitude. The range of values for each parameter is:
-90 ≤ x ≤ 90, where values below zero are in the southern hemisphere,
and -180 ≤ y ≤ 180, where values below zero are in the west.

3 ENVIRONMENTAL PROGRAMS IN VLAB 18

Parameter Description
weather: c t A simple description of the weather over the growth period, where c

represents clouds, and t is the turbidity in the atmosphere. The values
are:
c = 0: an overcast day
c = 1: a clear day
t = 1: pure air
t = 4: clear
t = 64: fog
The defaults are c = 1 and t = 2.45.

growth period: hs he The time period over a day for which sampling occurs, where hs is the
starting hour and he is the ending hour. Both values must be between
0 and 23.

julian day: d The day of the year that the sky is sampled. The value must be between
1 and 365.

On input The program always receives the communication module and the following module. The
communication module has s parameters, one for each wavelength, where s is defined by spectrum

samples.
The following module can be one of:

Module Description
T(a, b,mt,mb) An isosceles triangle, where b is the height in the direction of the turtle heading

vector, and the length of the edge perpendicular to the heading vector is 2a.
The parameters mt and mb are the index to the material for the top and bottom
of the object. They are optional: the default materials, leaf material (top)

and leaf material (bottom) will be used if they are not included.
U(l1, l2, h, β) A triangle, where h is the height in the direction of the turtle heading vector, β

is the angle between the heading vector and the base of the triangle, and l1 and
l2 are the lengths of the left and right sides respectively, of the base intersected
by the heading vector.

P(a, b,mt,mb) A rhombus with a diagonal in the direction of the heading vector of length b,
and a perpendicular diagonal of length 2a. The parameters mt and mb are the
index to the material for the top and bottom of the object. They are optional:
the default materials, leaf material (top) and leaf material (bottom)

will be used if they are not included.
S(id, scale) A predefined Bézier surface identified by id, that is uniformly scaled by the

factor scale. The id is associated with the sequential list of files specified by
the surface command in eparamfile. Note this id may not be the same as the
surface id specified in the modeling program’s view file.

I(r, l) An internode, where r is its radius and l is its length.
Q(n, x, y, z) Override the number of rays (n) and grid size (x, y, z) specified in eparam-

file in the next light simulation step. Useful for changing the accuracy of path
tracing as a simulation proceeds and the number of objects increases or de-
creases.

J(d, c, t) Override the julian day and weather specified in eparamfile in the next light
simulation step, where d is the day of the year, and c and t are defined as in
the weather command.

3 ENVIRONMENTAL PROGRAMS IN VLAB 19

Module Description
<user-defined> A module with a corresponding homomorphism in cpfg that gives the vertices

of a polygon representing an object. The interpretation symbol must be speci-
fied using the interpreted modules command in commfile.e. The parameter
specifying its material properties is identified using the material parameter

command.

On output The s parameters of the communication module are set to the absorbed/incident radiant
energy of the object for each wavelength. The values are normalized such that the flux density of a
flat surface perpendicular to the direction of the incoming light is 1W ·m−2.

4 Creating new environmental programs

New environmental programs can be created using the communication library, comm. It is included
in both the modeling program and the environmental process to facilitate the exchange of information
between the model and the environment.

4.1 Data structures

There are two data structures used in the communication library: one to hold the turtle state in-
formation, and a second to hold the parameters of the communication module and/or the module
immediately following it.

The turtle state information is received in the structure CTURTLE. It contains each turtle parameter
together with the number of actual values received. Thus if a particular turtle parameter is not listed
in the communication specification file (Section 2), its corresponding count (nameC), is set to 0.

struct CTURTLE {
float position[3];

int positionC; /* number of values sent for position */

float heading[3];

int headingC; /* number of values sent for heading */

float left[3];

int leftC; /* number of values sent for left */

float up[3];

int upC; /* number of values sent for up */

float line_width;

int line_widthC; /* number of values sent for width */

float scale_factor;

int scale_factorC; /* number of values sent for scale */

};
typedef struct CTURTLE CTURTLE;

The module parameters are stored in a module type structure:

#define CMAXPARAMS 20 /* max. number of module parameters */

#define CMAXSYMBOLLEN 4 /* max. length of a module name */

struct module_type {
char symbol[CMAXSYMBOLLEN+1]; /* module name */

int num_params; /* number of parameters */

struct param_type {
float value; /* parameter value */

char set; /* 1, if modified */

} params[CMAXPARAMS];

};
typedef struct module_type Cmodule_type;

Both structures are defined in the library header file, comm lib.h.

20

4 CREATING NEW ENVIRONMENTAL PROGRAMS 21

4.2 Library functions

Both modes The following functions are used in both Immediate and Delayed mode (Section 1.4).

void CSInitialize(int *argc, char ***argv)
Initialize the communication and parse the options. This should be the first call in
the function main(). The parameters are the same as function main(), specifying the
number of command line options (argc) and an array for storing these options (argv).
Since the communication library may add more options to the command line, the
function may update the values of argc and argv.

void CTerminate(void)
End the communication. This should be the last call in the function main().

Immediate Answer mode If the parameters of a communication module can be modified imme-
diately, the following function is used:

void CSMainLoop(int (*Answer) (Cmodule type *, CTURTLE *))
The parameter is a mapping function Answer(). The mapping function modifies the
parameters of the communication module, stored in a two-dimensional array (pointed
to by the first parameter), which also includes the module following the communication
module, if required. The second parameter of the function contains the received turtle
parameters.

See object:
CPFG-Celtic
Knot

When CSMainLoop() is used, the communication is fully controlled by the modeling program. This
function only returns when it receives a message to terminate the program. At that point, local data
structures can be cleared, and the CTerminate() function called. See the example in Section 4.3.1.

Delayed Answer mode When the incoming communication module cannot be answered immedi-
ately, the following functions must be called in this specific order:

int CSBeginTransmission(void)
Start transmission (of all communication modules in the string). The process waits
for the modeling program to perform a simulation step and to send the first commu-
nication module. The function always returns a value of 1.

int CSGetData(int *master, unsigned long *module id, Cmodule type *two modules,
CTURTLE *turtle)
Obtain a communication module and possibly the following module (if the second
module is not present, its name is an empty string, i.e. two modules[1].symbol[0]
is equal to 0). The parameter module id is a unique identification number for the
communication module, the pointer two modules points to a two-dimensional array
containing the communication module and the following module, and the pointer
turtle points to the turtle structure (note that only some of the turtle parameters may
be sent, depending on the specification file). The parameter master can be ignored.

The function returns 0 when there is no other module (at the end of the environmental
pass). In this case, module id is set to the number of the current simulation step.

int CSGetString(int *master, char *str, int length)
Read a string str, with maximum length length. The master parameter can be ig-
nored. If defined in the communication specification file, selected modules can be
interpreted during an environmental step and the polygons representing the modules
(or their homomorphic image) sent as a set of strings following the communication
module. This function is used in a loop after each call to CSGetData() to retrieve
any strings that may have been sent. It is recommended to always include a loop of

4 CREATING NEW ENVIRONMENTAL PROGRAMS 22

calls to this function (see examples below) since any strings not read will interrupt
the communication.

The function returns 0 when there are no more strings.

void CSSendData(int master, unsigned long module id,Cmodule type *comm module)
Return the modified communication module to the modeling program. The original
module id must be specified. The parameter master should always be 0.

int CSEndTransmission(void)
End transmission (after all modified communication modules have been returned).
The function returns 1 when the process is requested to terminate. In this case, the
communication loop should be exited, the process should free its data structures, and
call CTerminate() above.

The Delayed Answer functions should be used in a MainLoop() function, with the following general
form.

void MainLoop(void)

{
Cmodule_type two_modules[2];

int master, current_step;

unsigned long module_id;

CTURTLE turtle;

char str[2048];

for (;;) {
CSBeginTransmission();

while (CSGetData(&master, &module_id, two_modules, &turtle)) {
StoreQuery(module_id, two_modules, &turtle)

/* store queries, with their module_id*/

while (CSGetString(&master, str, sizeof(str))) {
ProcessGraphics(str);

/* process the graphical representation of the

module following the communication module */

}
}
DetermineResponse(); /* determine the answers*/

SendBackResponse();

/* return modified communication modules using

CSSendData(master, module_id, &two_modules[0]); */

if(CSEndTransmission())

break;

}
}

where StoreQuery(), ProcessGraphics(), DetermineResponse(), and SendBackResponse() are de-
fined based on the data structures chosen for storing and processing the incoming communication
modules.

4 CREATING NEW ENVIRONMENTAL PROGRAMS 23

4.3 Example environmental programs

4.3.1 Immediate answer environmental program

This example illustrates Immediate Answer mode, where the response to each communication module
can be returned immediately. Thus the program uses the CSMainLoop() function.

In this example, the Answer() function determines the distance from the current turtle position
to the point (0,0,0). Therefore, the communication specification file, commfile.c, should include the
command:

turtle position: %g %g %g

If the turtle position is greater than the first parameter of the communication module, the parameter
is set to 1. Otherwise it is set to 0.

#include <stdio.h>

#include "comm_lib.h"

int Answer(Cmodule_type *two_modules, CTURTLE *turtle)

{
static float zero[3]=0,0,0;

if (turtle->positionC < 3) {
fprintf(stderr,"Turtle position not set!\n");
return 0;

}
if (two_modules[0].num_params >= 1) {

two_modules[0].params[0].set = 1; /* parameter modified */

two_modules[0].params[0].value = Distance(turtle.position,zero)

> two_modules[0].params[0].value ? 1 : 0;

}
return 1;

}

void main(int argc, char **argv)

{
CSInitialize(&argc, &argv);

CSMainLoop(Answer);

CTerminate();

}

4.3.2 Delayed answer environmental program

This example illustrates Delayed Answer mode, when incoming communication modules must be stored
before determining the return parameters for all modules. Each incoming module is stored in a one-
dimensional array of fixed size. This program detects collisions between modules, based on the turtle
position of each. Therefore, the communication specification file, commfile.c, should include the
command:

turtle position: %g %g %g

The coordinates of the each point are compared with the coordinates of all other points. If there is
another point with the same coordinates, the program returns the value 0. Otherwise, there is no
reply.

4 CREATING NEW ENVIRONMENTAL PROGRAMS 24

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "comm_lib.h"

#define EPSILON 0.001 /* precision of comparisons */

#define MAXQUERIES 1000 /* maximum number of queries */

struct item_type {
float position[2];

float query;

unsigned long id;

int master;

} queries[MAXQUERIES]; /* queries */

int num_queries; /* actual number of stored queries */

/**/

void StoreQuery(int master, unsigned long module_id,

Cmodule_type *comm_symbol, CTURTLE *tu)

{
if (tu->positionC < 2) {

/* do not write to stdout, because it is used for pipes */

fprintf(stderr,"environment: turtle position missing.\n");
return;

}
if (num_queries >= MAXQUERIES) {

fprintf(stderr, "environment: too many queries!\n");
return;

}
queries[num_queries].position[0] = tu->position[0];

queries[num_queries].position[1] = tu->position[1];

queries[num_queries].query = comm_symbol->num_params >= 1;

/* answer only if ?E has one or more parameters */

queries[num_queries].master = master;

queries[num_queries].id = module_id;

num_queries++;

}

/**/

void DetermineResponse(void)

{
int i, j;

Cmodule_type comm_symbol;

comm_symbol.num_params = 1;

comm_symbol.params[0].set = 1;

comm_symbol.params[0].value = 0; /* report only collisions */

for (i=0; i< num_queries; i++) /* for all queries */

if(queries[i].query) { /* don?t answer if no parameter */

for (j=0; j<num_queries; j++)

if (i!=j)

4 CREATING NEW ENVIRONMENTAL PROGRAMS 25

if (fabs(queries[i].position[0]

- queries[j].position[0]) < EPSILON &&

fabs(queries[i].position[1]

- queries[j].position[1] < EPSILON) {
CSSendData(queries[i].master,queries[i].id,

&comm_symbol);

break;

}
}

}

/**/

void MainLoop(void)

{ /* controls the loop of data exchange */

Cmodule_type two_modules[2];

unsigned long module_id;

int master;

CTURTLE turtle;

/* infinite loop - until message ?exit? comes */

for(;;) {
CSBeginTransmission();

num_queries = 0;

while (CSGetData(&master,&module_id,two_modules,&turtle))

StoreQuery(master, module_id, two_modules, &turtle);

DetermineResponse();

/* EndTransmission returns 1 when the process is

requested to exit */

if (CSEndTransmission())

break;

}
}

/**/

int main(int argc, char **argv)

{
/* initialize the communication as the very first thing */

CSInitialize(&argc, &argv);

MainLoop();

CTerminate(); /* should be the last function called */

return 1;

}

This environmental program will create a Sierpinski triangle (Figure 1) with a cpfg model that
contains the following axiom and production:

axiom: ?E(0)

?E(c) : c==0 --> [F?E(0)]-(60)/(180)[F?E(0)]

4 CREATING NEW ENVIRONMENTAL PROGRAMS 26

Figure 1: Sierpinski triangle generated after 1, 2, 3, 4, 5, 6, and 32 steps.

The end point of a segment is represented by module ?E with one parameter. This parameter is
initialized to 0 and, if the point collides with another point, the environment sets it to 1. If the point
does not collide, the parameter remains 0, and the production creates two new branch segments.

5 Deprecated features

5.1 Point collisions (ulam)

This program has been replaced by honda81 (Section 3.1.1). It determined whether a point in a given
set of two-dimensional points occupies the same place as other points – i.e. the program determines
collisions in a discrete grid of points.

The command line for the program is:

ulam [-e commfile.e]

The communication specification file, commfile.e, used by the modeling program should include the
following command:

turtle position: %g %g %g

Note that this program does not have a parameter file.
The communications module has a single parameter that is ignored on input. On output the

parameter has the value 0, if there is a collision, and 1 if not.
The program stores all queries, representing two dimensional points in a linked list. After all points

are inserted, it computes the distance from a given point to each other point. The response is 0 if
there is a collision, and 1 if not.

5.2 Forces (collisions)

This program has not been ported to the Mac iOS. It tested for collisions between balls of a given
radius. If two balls collide, the program returned the force the colliding ball initiates. The program
was used in simulations of dynamic systems such as a cluster of cherries.

The command line for the program is:

collisions [-e commfile.e] eparamsfile

The communication specification file, commfile.e, used by the modeling program should include the
following commands:

turtle position: %g %g %g

The collisions parameter file, eparamsfile, contains only two parameters:

Parameter Description
radius: r The default radius of a ball.
verbose: flag Switch verbose mode on. The default is off.

The communications module can have two or three parameters, p1, p2, and p3. On input the
parameters are:

p1 = the radius of the ball. If 0, the value of radius is used.
p2 - p3 are ignored.

On output the parameters are the force acting on the colliding ball.
The program stores all balls corresponding to communication modules in a linked list. After all

queries are inserted, the program computes the distance from a given ball to all other balls. If there
is a colliding ball, the force acting on the tested ball t is computed as:

~Ft =
∑
i∈B

2 · (ct − ci)
(
|ct − ci|
rt + ri

− 1

)
where B is the set of balls colliding with ball t, and c and r denotes the center and radius of a ball,
respectively.

27

5 DEPRECATED FEATURES 28

5.3 MonteCarlo environment program

This program was developed to determine the amount of light reaching objects in a scene, using a path
tracing algorithm based on Monte Carlo techniques. It has been superceded by QuasiMC (Section
3.2.4). See [6] for more details on this program.

As light reaches an object (in the form of rays), the program determines whether the light is
absorbed, reflected, or transmitted through the object, based on the surface parameters associated
with the object.

The command line for the program is:

MonteCarlo [-e commfile.e] eparamsfile

The communication specification file, commfile.e, should include the following command:

turtle position: %g %g %g

turtle heading: %g %g %g

turtle up: %g %g %g

turtle head: %g %g %g

following module: yes

The MonteCarlo parameter file, eparamsfile, can be divided into several sections:

Specifying the grid

Parameter Description
domain size: x y z The range (in world coordinates) of a regular grid used to store objects

to speed up the intersection test.
position: x y z The position of the lower front left corner of the grid.
grid size: x y z The size of the grid in voxels.
remove objects: flag If off or no, the objects are not removed from the grid after each simula-

tion step. The default is on or yes.
obstacles: filename A file containing additional objects to be added to the grid (see the

background file description in the cpfg manual). There can be only one
obstacles command.

Controlling generation of initial rays

Parameter Description
light source: x y z weight A light source. Several light sources can be specified by including

several of these commands. The initial rays are generated based
on the weight associated with each source.

sky file: filename The file defining the intensities coming from all directions of a
sky hemisphere. The file contains n × m numbers defining the
intensity of the sky from different directions specified by two angles,
θ and ψ, where θ ∈ [0, π/2] and ψ ∈ [−π, π]. This command takes
precedence over the light source command. If neither command
is specified, all initial rays come from the top.

ray density: n The number of initial rays generated per unit area. The value of
n should be changed if the scene is scaled up or down.

5 DEPRECATED FEATURES 29

Parameter Description
stratified sampling: flag If on or yes, and neither light source or sky file are specified,

the rays coming from the top will be generated using stratified
sampling, which provides a better distribution of rays.

spectrum samples: s The number of wavelengths for which light distribution should be
computed. This command must precede the source spectrum

command, and all commands defining materials.
source spectrum: λ1 w1

λ2 w2 ... λs ws

The wavelengths (currently not used) and weight for each of the s
spectrum samples. The weight distribution is the same for all light
sources.

one ray per spectrum: flag If no (the default), light intensities reaching the objects for different
wavelengths are computed separately, one set of initial rays for
each wavelength. If yes, each ray carries the information about all
wavelengths and the light intensities are determined after one set
of initial rays is traced. See below for more details.

rays from objects: flag If no (the default), rays are initiated from the light sources, or from
the sky hemisphere. If yes, rays are traced backwards, from the
objects towards the light source. This can be more efficient for a
small number of objects. See below for more details.

Tracing a ray

Parameter Description
periodic canopy: flag If on or yes, the rays which leave the scene are transformed to the

opposite side of the scene and tracing continues. This simulates
an infinite canopy with periodically repeating sets of objects. The
default is off/no.

maximum depth: d The number of hits (intersection of a ray with an object) for each
ray. If set to -1, there is no limit. The default is 3. Note that it is
better to set this limit high (e.g. 10) and use the Russian roulette

command.
Russian roulette: t p An optional method for determining the termination of rays. After

each hit, the ray’s intensity is compared with the threshold intensity
t. If it is below t, the ray is terminated with probability p. The
intensity of rays which are not terminated is increased by 1/(1− p).
Both t and p are numbers between 0 and 1.

reflectance model: type There are three ways to generate reflected rays: blinn, phong, or
parcinopy. The default is parcinopy.

no direct light: flag If yes or on, direct light will not be included in the amount of light
reaching an object. This is useful for comparing the effect of reflected
and transmitted light only. The default is no/off.

5 DEPRECATED FEATURES 30

Materials

Parameter Description
leaf material (top): r nr t nt n ... The parameters of the default material. A set of 5

parameters must be included for each of s wavelengths:
r = reflectance (0-1)
nr = reflectance scattering exponent (0-∞)
t = transmittance (0-1)
nt = transmitance scattering exponent (0-∞)
n = refractive index (ignored, but must be present)

leaf material (bottom): r nr t nt n ... If included, the material parameters for the bottom
side of each surface. Otherwise, the top is used for
both sides. This is referenced as material index 2.

material: r nr t nt n Additional materials. There may be multiple
material commands. These materials are referenced
by their position in the file, beginning with index 3.
(Index 1 is leaf material (top), and index 2 is leaf
material (bottom).)

material parameter: n In the case where polygons representing the module
following the communication module are sent from the
modeling program, n indicates which parameter of the
module specifies the material index of the object. If
n=0 (the default), the leaf material (top) values
are used.

Miscellaneous commands

Parameter Description
seed: i The seed for the random number generator, where i is an integer.
number of runs: n The number of times the computation of light reaching objects is performed.

Used to determine the precision of the algorithm for a given ray density. The
default is 1. See the output parameters for details.

version: v If v > 1, the first parameter of the communication module specifies the
number of rays shot from each object when rays from objects is set to
yes. The default is 1.

verbose: flag Switch verbose mode on. The default is off.

On input This program always receives the communication module and the following module. All
parameters of the communication module are ignored, unless the rays from object command is yes,
and the version command is set to a number greater than 1, in which case the first parameter specify
the number of rays per unit area that should be shot from the object for each wavelength.

The following module can be one of:

Module Description
P(a, b,mf,mb) A parallelogram with one diagonal in the direction of the turtle heading

vector and length 2a, and the second diagonal in the direction of the left
vector with length b. The turtle position defines one vertex of the polygon.
The remaining parameters are optional but, if present, specify the index of
the material for the front (mf) and back (mb) of the object.

5 DEPRECATED FEATURES 31

Module Description
T(a, b,mf,mb) A triangle with one edge in the direction of the turtle left vector and length

a. The midpoint of this edge corresponds to the turtle position. The third
vertex of the triangle is on an axis corresponding to the turtle heading vector
at distance b from the turtle position. The remaining parameters are optional
but, if present, specify the index of the material for the front (mf) and back
(mb) of the object.

L(I1, I2, ...Is) The current intensities for different wavelengths emitted from all light
sources. The parameters specify the intensities in the order given in the
source spectrum command.

< Otherwise > A set of polygons representing the module. To define a complex object,
homomorphism productions can specify the geometry of the module and all
the polygons representing the module are transferred, and are considered a
single object. The material indices can be specified by the parameters of the
module following the communication module (see the material parameter

command). This option takes precedence over modules P and T. If polygons
are received for module P or T, they are used to define the object.

On output The parameters of the communication module are set depending on the number of

runs: n:

• n = 1: The first s return parameters are set to the amount of light reaching the object for each
wavelength (defined by spectrum samples: s).

• n > 1: The first 2 return parameters are set to the mean and standard deviation of the ratio
of the amount of light reaching the object for the first two wavelengths, computed after n runs.
The next 2s parameters are the mean and standard deviation of the amount of light reaching
the object for each of wavelength (defined by spectrum samples: s).

The program receives information for all communication modules and the geometry of the modules
that follow. These modules can be seen as leaves, stems, the ground, or objects around a plant, and
are interpreted as a set of polygons. After all scene polygons are input, they are stored in a regular
grid to speed up the algorithm.

The computation of light distribution starts by generating initial rays representing light of a spec-
ified intensity emitted from the light sources. Each initial ray is then traced in the grid. If the ray
intersects an object, the light carried by the ray is either absorbed by the object, reflected by the
surface, or transmitted through it. The fate of the ray depends on the material parameters specified
in eparamfile.

Each material is defined by four parameters, controlling the probability of tracing a reflected ray,
its scattering coefficient (affecting the direction of the reflected ray), the probability of tracing a
transmitted ray, and its scattering coefficient.

Reflected or transmitted rays are traced further until the ray depth (equal to the number of hits on
the ray’s path) reaches the maximum depth, or its intensity is below the threshold set by the Russian

roulette command. After all initial rays have been traced, parameters storing the light flux absorbed
by an object are returned.

5 DEPRECATED FEATURES 32

5.4 Distributed systems

The communications library includes a number of functions that were designed to allow communication
between multiple plant models and environmental programs, using a single drawing window. This
functionality was originally designed for cpfg, but has not been tested on newer operating systems. It
required the cpfg command line argument -C, and communication type: sockets, which have both
been deprecated as well.

The -C command line argument in cpfg was followed by a single string defining master and slave
processes, and the sockets used:

Option Description
-c,socket,machine; The socket number and machine name to which confirmation of successful

execution should be sent. The program monitors the socket for a possible
request to terminate.

-m:commfile.e,socket; A master process, sending data in the .e files to the specified socket, and
expecting the reply on socket number socket+ 1. There may be multiple -m

options.
-s:commfile.e,socket A slave process, expecting the data defined in commfile.e, from the speci-

fied socket. It processes the incoming data and responds back through socket
number socket + 1. If there are multiple slave connections, the data is pro-
cessed in the order given.

Note that the executable and communication type commands in the communications file, comm-
file.e, are ignored.

The following functions still exist in the communications library, in addition to the functions defined
for creating a new environmental program (Section 4). Note that the master parameter in some of the
functions in Section 4 would not be ignored when developing a distributed system of programs.

void CInitialize(char *program, char *commandstr)
Initialize communication, where program is the name of the process and is used to
distinguish messages from different processes, and commandstr is the string following
the -C command line option.

int CShouldTerminate(void)
Return 1 when an end-of-transmission character is sent from a control process.

int CSGetNumberOfMasters(void)
Return the number of connections to a master specified on the command line.

int CSSendString(int master, char *item)
Send a string to the specified master.

int CSSendBinaryData(int master, char *item, int size, int n)
Send binary data to the specified master. The function returns 0 if the data is not
sent.

int CMBeginTransmission(void)
Initialize connections to all slave processes for a single data exchange. The function
always returns 1.

int CMEndTransmission(int step)
Terminate the data sent by the master in a single data exchange. The step parameter
is the current simulation step, which is returned as the module id parameter from the
CSGetData function (Section 4.2). This function always returns 1.

int CMTerminate(void)
Terminate all slave processes. The function returns 1 if all processes are successfully
terminated.

5 DEPRECATED FEATURES 33

int CMGetNumberOfSlaves(void)
Return the number of slave process communicating with the master.

int CMSendString(int slave, char *item)
Send a string to the specified slave process.

int CMGetString(int slave, char *str, int length)
Receive a string from the specified slave process. Returns 0 if no string is received.

int CMSendBinaryData(int slave, char *item, into size, int n)
Send binary data to the specified slave process, where n is the number of items.

int CMGetBinaryData(int slave, char *item, into size, int n)
Receive a string from the specified slave process, where n is the number of items.
Returns 0 if no data is received.

int CMSendCommSymbol(int slave, unsigned long module id,
Cmodule type *two modules, CTURTLE *turtle)
Send the communications module and the following module to the specified slave
process. The function returns 1 if the second module should be graphically interpreted
and the resulting set of triangles transferred to the slave. This function is used within
cpfg.

int CMGetCommunicationModule(int slave, unsigned long module id,
Cmodule type *comm module)
Receive a communication module from the specified slave process. The function re-
turns 0 if there are no more modules from the slave.

6 Credits

Environmental programs were designed for Open L-systems, the thesis work of Radomı́r Měch [6], and
described in [7]. The QuasiMC program was developed by Mikolaj Cieslak and described in [5].

7 Document revision history

Date Description By
1997 Open L-systems incorporated into the cpfg manual Radomı́r Měch
1998 User Manual for Environmental programs Radomı́r Měch
2008 QuasiMC User Manual Mikolaj Cieslak
2021 Consolidation of the concepts and programs in the above doc-

umentation into a single manual that applies to both cpfg and
lpfg.

Lynn Mercer
Mikolaj Cieslak

References

[1] J. Arvo and D. Kirk. Modeling plants with environment-sensitive automata. In Proceedings of
Ausgraph ’88, pages 27–33, 1988.

[2] N. Chiba, S. Ohkawa, K. Muraoka, and M. Miura. Visual simulation of bothanical trees based on
virtual heliotropism and dormancy break. The Journal of Visualization and Comupter Animation,
5:3–15, 1994.

[3] CIE Technical Committee 4.2. Standardization of luminance distribution on clear skies. Technical
report, Commission International de l’Eclairaze, Paris, 1973.

[4] A. Takenaka. A simulation model of tree architecture development based on growth response to
local light environment. Journal of Plant Research, 107:321–330, 1994.

[5] Mikolaj Cieslak, Christiane Lemieux, Jim Hanan, and Przemyslaw Prusinkiewicz. Quasi-monte
carlo simulation of the light environment of plants. Functional Plant Biology, 35(10):837–849,
2008.

[6] Radomı́r Měch. Modeling and Simulation of Interaction of Plants with the Environment using
L-systems and Their Extensions. Phd thesis, University of Calgary, 1997.

[7] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual models of plants interacting with their
environment. In Computer Graphics, pages 397–410. Proceedings of SIGGRAPH ’96, 1996.

34

