
Virtual Laboratory: an interactive software
environment for computer graphics
Pavol Federl and Przemyslaw Prusinkiewicz
Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4
e−mail: federl|pwp@cpsc.ucalgary.ca

Abstract
Many activities in computer graphics can be regarded as experiments on virtual objects or
models. In the process of experimentation the existing models are gradually improved and
new model categories emerge. The Virtual Laboratory (vlab) is a software environment
designed to support model development by facilitating the manipulation of models and
providing mechanisms for storing and retrieving large numbers (e.g., thousands) of them. The
models can be shared between users who work at different geographical locations over the
Internet. In the paper we first clarify the essential concept of the Virtual Laboratory by
describing its operation from a user's perspective. The modeling of plants serves as a sample
application. We then present the key elements of vlab design and implementation, discuss the
obtained results, and present their possible ramifications in the context of related ideas.

Reference
P. Federl and P. Prusinkiewicz: Virtual Laboratory: an Interactive Software Environment for Computer
Graphics. In Proceedings of Computer Graphics International 1999, pp. 93−100.



Virtual Laboratory:
an Interactive Software Environment for Computer Graphics

Pavol Federl and Przemyslaw Prusinkiewicz
Department of Computer Science

The University of Calgary
Calgary, Alberta, Canada T2N 1N4

federl@cpsc.ucalgary.ca pwp@cpsc.ucalgary.ca

Abstract

Many activities in computer graphics can be regarded as
experiments on virtual objects or models. In the process of
experimentation the existing models are gradually improved
and new model categories emerge. The Virtual Laboratory
(vlab) is a software environment designed to support model
development by facilitating the manipulation of models and
providing mechanisms for storing and retrieving large num-
bers (e.g., thousands) of them. The models can be shared
between users who work at different geographical locations
over the Internet. In the paper we first clarify the essen-
tial concept of the Virtual Laboratory by describing its op-
eration from a user’s perspective. The modeling of plants
serves as a sample application. We then present the key el-
ements of vlab design and implementation, discuss the ob-
tained results, and present their possible ramifications in
the context of related ideas.

Keywords: interactive graphics environment, software de-
sign, graphical browser, object, inheritance, hyperobject,
link, modeling, simulation.

1. Introduction

The Virtual Laboratory (vlab) is a software environment
that originated from the need to organize and facilitate sim-
ulated experiments in computer graphics. The experimen-
tation with visual models of natural phenomena is the focal
application, but vlab has also been used to support exper-
iments in fractal geometry and in physically-based model-
ing. In spite of differences in content, these activities share
many common characteristics:

• An individual model can be conceptualized as a logi-
cally connected set of data files and programs that op-
erate on these files.

• Model development and refinement is an incremental
process in which small changes are made and pro-
grams are rerun many times. Differences between
models are often small.

• The set (data base) of models grows continuously as
new models are being created. The number of files
included in this data base tends to be large (of the order
of one thousand in our data base to date).

• Programs associated with the models may exist in
many versions, and be invoked with a wide range of
options. Only some versions and options are appropri-
ate in the context of a specific object.

These characteristics make it difficult to organize work.
At the level of individual models, experimentation is a te-
dious process, in which potentially useful modifications and
improvements may be easily left unnoticed, or optimal pa-
rameters found and lost. Once the number of files produced
during the experimentation increases, it is difficult to keep
track of which files belong together, which programs and
program versions are to be applied to them, and how to re-
trieve specific files among hundreds of similar ones. These
problems are aggravated when models are revisited after
some time, or when they are shared by many people (for
example, in the context of collaborative work or computer-
assisted instruction). The objective of the Virtual Labora-
tory is to help organize the work better by extending the
rudimentary support offered by the underlying operating
system (UNIX and its versions, IRIX, SunOS and Linux,
in our current implementations).

The key to the organization of vlab is the observation that
a model can be conceptualized as an object in the object-
oriented programming sense, with files representing data
and programs representing methods. In this context, vlab
provides the following functionality:



File system organization

• Files constituting an object are grouped together for
easy retrieval and access.

• The information about programs, program versions,
and options applicable to specific objects is stored with
the objects. Consequently, it is easy to experiment fur-
ther on older objects or objects developed by others.

• New objects are easily created by the user and added to
the data base. To save storage space, objects are saved
incrementally, (i.e., only the files that differ from the
previous version are saved explicitly).

• Alternative arrangements of the same set of objects can
be created by the user as structures of hyperobjects
with pointers to the actual objects.

• Objects and hyperobjects may incorporate textual de-
scriptions, presenting features inherent in an object or
characterizing its occurrence in a particular hyperob-
ject structure.

Support for interaction

• For the purpose of experimentation, the objects are au-
tomatically transferred to a temporary location, where
they can be manipulated without fear that the original
objects will be inadvertently changed or lost.

• Any program associated with an object can be added
by the user to the object’s menu. This menu provides a
convenient method for initiating various tasks that con-
stitute an experiment, facilitates re-running programs
during incremental object development, and makes it
possible to call programs quickly and without mistakes
during interactive presentations.

• User-configurable control panels are included in the
vlab environment to facilitate the manipulation of ob-
ject parameters.

• A graphical browser makes it possible to visualize and
manipulate the data base of objects, navigate through
it, and access the objects.

• A hyperbrowser is provided to create and access struc-
tures of hyperobjects.

• The browser and hyperbrowser can be used to access
remote vlab data bases across the Internet.

In the next section we describe previous work that pro-
vided the foundation for the Virtual Laboratory system pre-
sented in this paper. We then clarify the concept of vlab

by describing its operation from a user’s perspective (Sec-
tion 3), and complement this description with a presenta-
tion of vlab design aspects less visible to the end-user (Sec-
tion 4). The obtained results are discussed in Section 5,
followed with conclusions in Section 6.

2. Previous work

Work on the Virtual Laboratory began in 1989, motivated
by the need to organize a fast-growing data base of exper-
iments related to plant modeling and fractal generation us-
ing L-systems [10]. The original concept and design were
introduced and related to previous research results by Mer-
cer, Prusinkiewicz and Hanan [7], and detailed in Mercer’s
M.Sc. thesis [6]. This work introduced several key elements
of vlab design that remained essential to the subsequent im-
plementations and extensions:

• Related data files were grouped into objects, complete
with a specification file detailing which tools (pro-
grams with options and argument files) apply to this
object.

• The objects were organized into a hierarchical data
base called the object-oriented file system (oofs), gov-
erned by the prototype-extension relation between ob-
jects introduced by Lieberman [4].

• To prevent unwanted modifications, the objects were
fetched from the data base to a temporary location
called the lab table for experimentation.

• The user could configure virtual control panels to ma-
nipulate chosen model parameters.

Mercer’s implementation included the first versions of
the browser for navigating through the data base, the ob-
ject manager for applying tools to objects, and the control
panel manager for creating control panels. The browser dis-
played only a limited view of the data base (current object
and its immediate extensions) and did not provide adequate
support for moving objects within the hierarchy. A proto-
type graphical browser that addressed these limitations was
developed in Tcl/Tk [9] by Lowe [5], using the tree widget
implemented by Brighton (see [3]) as the point of departure.
The underlying algorithm for visualizing tree structures was
described by Moen [8]. Direct experience and a usabil-
ity study performed by Lowe confirmed the convenience of
browsing and reorganizing the vlab data base using its tree
representation. Subsequently, Federl extended vlab with the
capabilities for creating and presenting alternative views of
the data base using the hyperbrowser, and for accessing re-
mote data bases over the Internet [1]. We find the resulting
system very useful in practical applications, which moti-
vates our presentation of its present version in this paper.



3. A user’s perspective of vlab

A sample screen of a Silicon Graphics workstation run-
ing vlab is shown in Color Plate 1. The windows on the
left side belong to the browser and the hyperbrowser. The
small windows along the top edge of the screen belong to
the object manager processes, and represent objects copied
to the lab table. The menu pulled down shows tools asso-
ciated with the object congo.demo. The central part of the
screen contains a window created by one of the tools, an
L-system-based plant modeling program. Another tool is a
control panel for manipulating model parameters, shown on
the right side of the screen.

3.1. The browser

Typically, the user enters vlab by invoking the browser,
which makes it possible to navigate through the objects in
the lab by following the hierarchy induced by the prototype-
extension relation (Section 4.1). Each object is represented
in the browser’s window by a folder symbol, an object
name, and an optional icon. Multiple folders represent ob-
jects that have extensions, whereas single folders represent
terminal nodes (leaves) of the hierarchy. Prototypes and ex-
tensions are connected by lines (Color Plate 1).

Since the number of objects in the data base may be
large, the user can focus on its parts by dynamically expand-
ing or contracting the tree representation of the hierarchy.
Initially, the browser presents the root and the first level of
objects. By clicking the name of an object the user causes
the browser to display its immediate extensions. This makes
it possible to expand a tree branch level-by-level. Alterna-
tively, the user can apply a menu option to expand an entire
subtree of extensions that originates from a selected object.
In a similar manner, parts of the tree that are no longer of
interest can be hidden from view.

In order to provide additional information about the ob-
jects, the user can display their icons, either individually
(toggle action of a mouse button) or for an entire subtree
(using a menu option).

In addition to browsing, the user can search for an object
given its name. When the matched object is found, the hier-
archy is automatically expanded and the browser’s view is
adjusted to include the object in the window.

The browser also makes it possible to reorganize the hi-
erarchy of objects by renaming and deleting them, as well
as cutting, copying and pasting to another location. Indi-
vidual objects can be dragged from the source location to a
destination with the mouse. Operations on entire subtrees
require proper menu selections. To facilitate transfers be-
tween distant locations in the graphical view of the data
base, the user may open several instances of the browser
and copy and paste objects between them.

Once an object of interest has been located, the user can
invoke it by clicking its file folder symbol or using a menu.
This calls the object manager program, discussed next.

3.2. The object manager

The first task of the object manager is to copy the files
constituting the chosen object from the data base to a tem-
porary location for the purpose of experimentation. Main-
taining the laboratory metaphor, we say that the object is
copied from the storage shelf to the lab table. Next, the
object manager creates a window with the object name and
icon. By clicking this icon, the user pulls down a menu of
tools, or programs associated with the object.

Let us consider the refinement of the plant model shown
in Color Plate 1 as a typical example of the user’s interaction
with a vlab object. The user calls a simulation program from
the object’s menu. Another menu item is used to invoke a
control panel manager. The panel acts as an editor of the
object’s data files [7]. Consequently, the current state of
the model is always reflected in these files (in addition to
the internal state of the active programs) and can be easily
saved. Once the modifications have been completed, the
user may apply an icon-making tool to capture a part of
the screen as the new object icon. The object on the lab
table can be saved either by overwriting the original object
in the data base, or by creating an extension to it. The new
extension is automatically added to the data base of objects
and appears in the browser’s window.

To serve as a general-purpose environment for simulated
graphics experiments, the tools associated with an object
and the files they operate on must be easily definable by
the user. To this end, each object contains a specification
file that lists the available menu items and defines the ac-
tion resulting from each item’s selection. For example, the
specification file for the congo.demo object in Color Plate 1
includes the following lines:

generate:
cpfg -s 300000 lilac.l lilac.v lilac.a

L-system:
panel:

panel panel.l | ped lilac.l
EDIT lilac.l

Menu items end with a colon and may be nested to cre-
ate a hierarchy of menus. The associated actions are spec-
ified using the syntax of UNIX commands. For instance,
the menu item generate will invoke the simulation pro-
gram cpfg with options -s 300000 and three input files
lilac.l, lilac.v and lilac.a. Similarly, the menu
sub-item panel associated with the item L-system will in-
voke the panel program. Its appearance on the screen will



be defined by the input file panel.l. The results of con-
trol manipulation will be passed to the program ped, which
will edit the corresponding parameters in the file lilac.l.
The user can easily define or redefine the menu items or the
operations associated with them by editing the specification
file and rereading the modified file into the object manager.

The specification file may also include references to
generic tools, illustrated in the example by the line EDIT
lilac.l. The (sub)menu and the associated action are
then defined in a system-wide file tools. For instance, EDIT
may be defined there as follows:

EDIT
edit:

jot

This indirect tool specification makes it possible to avoid
repetitive definition of frequently used menu items and
makes it easy to globally replace one tool by another (for
example, emacs or vi by jot) in all objects.

In addition to the user-definable items, the menu dis-
played by the object manager always includes a predefined
set of utilities, needed to:

• edit the specification file,

• save a portion of the screen as the object’s icon,

• save the object by overwriting its storage location or
by creating an extension to it,

• request the browser to highlight an object’s position in
the hierarchy (useful when there are several objects on
the lab table, and the user needs to verify their posi-
tions),

• open a UNIX shell on the object’s storage or lab table
location to facilitate operations not supported by vlab
(for example, construction of a new object prototype
from scratch).

• quit the object manager.

3.3. The hyperbrowser

An object in the data base may be of interest in several
contexts. For instance, the model shown in Color Plate 1
was developed as a part of a comparative study of lilac flow-
ers for horticultural purposes, but it may also serve as an
example of a particular branching architecture, an illustra-
tion of model construction according to field data, an in-
structional example of programming using L-systems, a re-
alistic model available for incorporation in complex scenes,
and the source of an image for a paper. A vlab program
called the hyperbrowser allows the user to create alternative

views of the object data base, reflecting conceptual associa-
tions between the objects rather than the default prototype-
extension relationships. The hyperbrowser is manifested on
the screen in a manner similar to the browser: as a window
displaying a hierarchy of objects. (To avoid confusion, the
user may customize the hyperbrowser differently than the
browser, for example by changing background color and
the icon size.) The objects are not added to this hierar-
chy automatically each time a new extension is created. In-
stead, they must be positioned explicitly by dragging from
the browser window, or from a another location in the hy-
perbrowser window. To highlight the role of a particular ob-
ject occurrence, the user may associate with it a textual file,
which can be edited or displayed using the hyperbrowser’s
menu. Thus, an object occurrence in the hyperbrowser hi-
erarchy can be thought of as a hyperobject consisting of a
link to a real object and a text file.

The hyperbrowser also makes it possible to sequentially
access objects with a common parent. This option is partic-
ularly useful when the Virtual Laboratory is used for inter-
active presentations.

3.4. Access to remote data bases

The Virtual Laboratory is not confined to individual ma-
chines and local file systems. The user may also invoke
browsers or hyperbrowsers on different data base hierar-
chies, on the same local area network or over the Inter-
net. Most operations available locally can be also performed
on remote data bases, provided that proper permissions are
given by their owners. For example, the user may browse a
remote data base of objects, experiment with a remote ob-
ject (which is transferred to the local lab table for fast exper-
imentation), or copy objects and object hierarchies between
various data bases. These transfer operations are performed
by dragging and dropping, or copying and pasting, between
browsers open on different data bases.

4. System design

In the previous section, we presented Virtual Laboratory
components from the end-user’s perspective. We will now
describe the design that combines these components into a
coherent system.

In order to see the reasoning behind some of the de-
sign decisions, let us complement the general objectives of
vlab given in Section 1 with the additional requirements that
guided the design.

• Individual vlab components should have clearly spec-
ified functions, so that they can be easily replaced by
improved or redesigned components without requiring
fundamental changes to the underlying data bases. An



analogy can be made with World Wide Web browsers,
which are being improved and extended without re-
quiring changes to the Web.

• To allow for incremental development of vlab, users
should be able to perform functions directly from
UNIX if they are not (yet) supported by vlab.

• The Virtual Laboratory should provide a convenient
framework for the use of a wide range of application
programs. Consequently, as few assumptions as pos-
sible should be made regarding the operation of these
programs.

The essential elements of vlab design are described be-
low.

4.1. The object-oriented file system

object1/

object1.1/

object 
specification 
file

data
file 1

data
file 2

data
file 3 ext/

object 
specification 
file

data
file 1

data
file 2

data
file 3 ext/

Figure 1. Structure of the object-oriented file system.
From [7].

A laboratory object is defined as a directory (with the
name corresponding to the object’s name) that contains:

• the data files that comprise a particular model,

• the specification file (Section 3.2),

• the object’s icon,

• the identification file, which holds the object’s identifi-
cation number (id) for linking with hyperobjects (Sec-
tion 4.2),

• an optional subdirectory of object extensions.

The objects are organized into an object oriented file sys-
tem (oofs), which constitutes the main data base of objects
or experiments. Its definition is compatible with the UNIX

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

specifications

tree.l

tree.v

panel.v

tree.ras

tree.map

ext/

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

specifications

tree.l

tree.v

panel.v

tree.ras

tree.map

ext/

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

specifications

tree.l

tree.v

panel.v

tree.ras

tree.map

ext/

�����������������
�����������������
�����������������

object2/

�������������������
�������������������
�������������������
�������������������

object2.1/

�������������������
�������������������
�������������������
�������������������

object2.1.1/

Figure 2. A prototype with a sequence of extensions.
Shaded areas indicate links. From [7].

file system to facilitate operations not supported directly by
vlab, such as construction of new prototypes from scratch
and construction of objects that share files with several other
objects. This data base can be represented by a hierarchy of
UNIX directories and files, as shown in Figure 1.

The path of subdirectories leading to an object estab-
lishes the inheritance structure of the lab. Inheritance is
based on the notion of specifying a new object in relation
to an existing parent object [4]. The old object is the pro-
totype and the new one is its extension. The extension con-
tains only those files that are different from the correspond-
ing files in the prototype. Files that remain the same are
inherited from the prototype using symbolic links. In other
words, an object in the data base contains those files that are
unique to the object, and links to files that are inherited from
its prototype (Figure 2). This approach saves space and al-
lows a single change in the prototype to propagate through
all extensions.

An object on the lab table differs from its data base
counterpart in two respects: the symbolic links are replaced
by actual files, and the extensions directory is not present.
When a new extension is created, the files on the lab table
are compared with those in the prototype object; those files
that differ from the prototype are saved, and links to the re-
maining files are established automatically.

A similar process is observed when an object is copied
from one location to another. The object is first copied to
a temporary location, then pasted to the new one. During
the paste operation, the browser compares the object’s files
with those in the new prototype, and replaces repeated files
by symbolic links. Thus, objects can be relocated without
introducing inconsistencies into the data base.

The browser supports two modes of the copy-and-paste
operation, called links stay and links move. In the first case,
the objects being copied retain their id numbers, and the
objects being pasted are assigned new numbers. In the sec-



ond case the situation is reversed: the original objects are
assigned new id numbers, while the old numbers are trans-
ferred to the pasted objects. The role of these modes will be
explained in the next section.

4.2. The hyperobject file system

Conceptual relations between objects are represented by
the structure of a hyperobject file system (hofs). Similarly
to the oofs, the hofs is a hierarchy of UNIX directories and
files grouped into fundamental units, hyperobjects. A hy-
perobject directory includes:

• The node file, containing the id of the corresponding
object and a list of hyperobject extensions. This list
specifies the order in which the extensions will be dis-
played by the hyperbrowser, which is important when
the objects are accessed sequentially (Section 3.3).

• A text file intended to contain a description of object
features pertinent to its specific occurrence in the hofs;

• A subdirectory of hyperobject extensions.

The node numbers introduce a level of indirection to ob-
ject references, which simplifies the maintenance of links
when the location of target objects in the oofs is changed.
Specifically, the two modes of copy-and-paste operation al-
low the users to decide whether links from the hyperobjects
should remain with the original objects, or transfer to the
pasted ones. Quick access to objects from hyperobjects is
made possible by an object reference table, which specifies
the path to each object given its id. This table is updated by
the browser in response to the user’s actions affecting the
object data base.

4.3. The vlab daemon

In order to operate in concert and present the user with a
consistent view of the vlab state, vlab processes must com-
municate with each other. For example, the creation of a
new object extension or the deletion of an object cause all
active browsers that display the affected part of the data base
to update their windows. The interprocess communication
is implemented using the vlab daemon (Figure 3). Each
process has a separate communication channel to the dae-
mon, implemented using sockets. A new process registers
with the daemon and indicates which message types it is in-
terested in receiving. The daemon transparently forwards
any message sent by an active vlab component to all inter-
ested receivers. The resulting star configuration simplifies
message routing compared to direct bilateral communica-
tion between pairs of processes. In addition to support for
communication, the daemon launches selected objects (i.e.
invokes the object manager) upon requests from a browser

vlab
daemon

browser 1 object 1

hbrowser object 3

browser 2 object 2

Figure 3. Communication between vlab system compo-
nents.

or a hyperbrowser. The daemon is invoked automatically
and thus remains invisible to the user.

4.4. The remote access server

Access to remote data bases is accomplished using
the remote access server, which runs as a daemon on
a remote machine, and performs operations on behalf of
the client browser. The underlying mechanism can be
viewed as a simplification of UNIX Remote Procedure
Calls (RPC) [11]. The format of messages exchanged be-
tween the browser and the remote access server has been op-
timized to reduce response times. For example, the browser
can ask the server for information regarding an entire sub-
hierarchy of objects in a single message, and this informa-
tion is also returned in a single message.

4.5. Vlab maintenance

In addition to the programs described so far, vlab in-
cludes utilities that check the integrity of the data base (oofs,
hofs, and the object reference table), and assist in its repairs.
Possible inconsistencies include symbolic links to nonex-
isting files in the oofs, incorrectly specified object location
in the object reference table, and reference to a nonexisting
object from a hyperobject. Typical sources of errors are sys-
tem or network connection failure during an operation, and
incorrect object manipulation by the user at the UNIX shell
level.

5. Implementation and results

The Virtual Laboratory has been developed on SGI ma-
chines using OpenGL and Motif libraries. It has been
ported to SUN workstations (under SunOS), and Linux.
The source (in C and C++) has approximately 45,000 lines
of code. Our local data base has approximately 1,000 ob-
jects comprising 10,000 files.



Table 1. Time needed to perform selected vlab operations
on a 150MHz/32MB SGI Indy R5000 workstation, using
local disk.

Operation Number of objects Timea [s]
Expand subtree 10 instantaneous

100 1
Show all icons 10 1
(60× 60 pixels) 100 7
Copyb 10 3

100 21
Pasteb 10 6

100 56
Drag and dropc 1 1
Get objectc 1 1
New extensionc 1 1
New linkd 1 instantaneous

aAverage from 5 measurements
bAverage object size: 25 KB
cObject size: 100 KB
dAny object size

The speed of vlab operation is determined primarily by
the access time to the oofs, thus it depends on whether
oofs is mounted locally or accessed over a network, and the
network’s speed. For orientation purposes, some measure-
ments describing vlab performance have been collected in
Table 1.

Vlab has been used to support an ongoing collabora-
tive research program in plant modeling and visualiza-
tion, which has now branched to several locations in North
America, Australia, and Europe. Approximately 15 people,
both computer scientists and biologists, have used versions
of vlab for up to eight years. Our collective experience is
summarized below.

5.1. Advantages

Vlab is an essential element of our software environment.
It makes it easy to experiment with the models, retrieve and
resume work initiated in the past, and organize the results
for publications and presentations.

The possibility of modifying objects without fear of los-
ing the original data, menu-driven access to the object tools,
and object manipulation with virtual control panels are the
keys to successful experimentation by novice and experi-
enced users alike. The flexible association of objects into
structures accessed using the hyperbrowser makes it possi-
ble to use vlab as an attractive vehicle for interactive presen-
tations. We also found hyperobject structures useful in the
conceptualization of the relationships between the objects,

although we do not yet have long-term experience with this
aspect. The remote-access capabilities have been essential
in collaborative work involving researchers at different lo-
cations. Remote access is also important to users who op-
erate on the same data base from different locations, for ex-
ample at work and at home. Finally, we have developed ob-
jects belonging to various domains, from the visualization
of algorithms to fractals and tilings and from cellular au-
tomata to physically-based models of mechanical systems,
which supports the claim to the versatility of vlab appli-
cations. For example, Color Plate 2 shows a physically-
based cloth model that was organized as a vlab object. In
this case, none of the domain-specific files or programs (the
simulation program, its data files, even the control panel)
is the same as for the plant models. Nevertheless, the gen-
eral functions provided by vlab — the access to the object
using the browser or the hyperbrowser, and the possibility
of manipulating it using the object manager — remain the
same.

The first implementation of vlab was created in 1990.
Since then, the original programs have been redesigned
and reimplemented, and new components and features have
been introduced. In spite of these changes, we were
able to maintain continuity of our data base over the past
eight years. This attests to the viability of the founda-
tions of the vlab design, in particular the concept of ob-
jects with associated specification files, organized into an
object-oriented file system with inheritance based on the
prototype-extensions relation. In summary, the Virtual Lab-
oratory meets the objectives stated in Section 1.

5.2. Limitations

Experience with vlab also brought to attention some lim-
itations of the present design. The most important is the lack
of support for hierarchical model construction. For exam-
ple, the user should be able to assemble a forest scene from
objects representing individual plants, which in turn would
be constructed from objects representing organs: leaves,
flowers, or fruits. Unfortunately, vlab does not currently
provide a mechanism for constructing objects that include
other objects as components, or inherit files from several
prototypes.

Vlab also does not produce visual cues indicating which
application program has been spawned by which object
manager. This may lead to confusion when the same tool
is applied to several objects lying on the lab table at the
same time.

Objects may contain files that differ drastically in size.
When objects are accessed remotely over a slow communi-
cation link, it would be convenient to exclude large files that
can be easily reconstructed locally, such as image files rep-
resenting the results of short simulations. At present, vlab



does not allow for a selective transfer of parts of objects.
In the case of a long simulation, it would be convenient

for the user to exit vlab with the simulation running in the
background, and resume vlab operation after some time,
with the object manager reopen automatically on the object
left on the lab table. This features is not yet provided.

5.3. Design alternatives

Our implementation of the object oriented file system
was significantly affected by the requirement that the ob-
jects should be easily accessible by the user directly from
the UNIX. As our confidence in vlab increases, this require-
ment is becoming less important, which opens the way for
alternative implementations of the oofs data base. Minor
modifications are:

• Inclusion of the object extension directories into the
prototype objects, without the intermediate ext direc-
tories shown in Figures 1 and 2. This would reduce the
length of object pathnames, whereas object directories
would contain a mixture of object files and extension
directories.

• Removal of all symbolic links. A file listed in a speci-
fication file but absent in the object directory would be
automatically inherited from the closest prototype that
has it. This would eliminate the proliferation of sym-
bolic links inherent in the current design of the oofs.
On the other hand, the user would be practically un-
able to access files making up an object without the
assistance of vlab.

A more drastic change stems from the realization that a
hierarchy of hyperobjects is similar to the UNIX directory
structure. Pursuing this analogy, we could design a vlab
data base in which all objects are placed in one UNIX di-
rectory, and are accessed exclusively through links from the
“directory structures” maintained by the browser and the
hyperbrowser. This would offer the following benefits:

• The browser and the hyperbrowser would access ob-
jects in a unified manner, which would simplify their
design.

• Changes in the inheritance structure would be imple-
mented by rearranging links to objects, and inserting or
deleting selected files as required by changes in object
prototypes. The positions of objects in the underlying
UNIX file system would remain intact. The objects
could be therefore identified directly by their UNIX
pathnames, eliminating the need for the object identi-
fication numbers and the object reference table.

6. A concluding remark

Our long experience with the consecutive incarnations
of vlab shows that it provides an effective and pleasant en-
vironment for organizing and conducting interactive exper-
iments with visual simulation models. Gentner and Niel-
son [2] envisioned that future computer users will focus on
manipulating huge numbers of complex information objects
while being connected to a network shared by other users
and computers. This is exactly what vlab makes it possible
to do.

7. Acknowledgments

We would like to thank Lynn Mercer for continuing dis-
cussions of the design directions being embedded in the
vlab, and for her comments on this paper. We would also
like to thank dedicated vlab users, Mark Hammel, Jim
Hanan and Radomı́r Měch, for comments that led to the
refinement of its design, and merciless testing.

This work has been sponsored by research, equipment,
and infrastructure grants as well as postgraduate fellowships
from the Natural Sciences and Engineering Research Coun-
cil of Canada, and a Killam Resident Fellowship.

References

[1] P. Federl. Design and implementation of Global Virtual Lab-
oratory — a network-accessible simulation environment.
Master’s thesis, University of Calgary, 1997.

[2] D. Gentner and J. Nielson. The Anti-Mac interface. Com-
munications of the ACM, 39(8):70–82, 1996.

[3] M. Harrison. Tcl/Tk tools. O’Reilly and Associates, 1997.
[4] H. Lieberman. Using prototypical objects to implement

shared behavior in object oriented systems. In Proceedings
of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 214–223, New
York, 1986. Association for Computing Machinery.

[5] E. M. Lowe. Extensions to the Virtual Laboratory. Master’s
thesis, University of Calgary, 1995.

[6] L. Mercer. The virtual laboratory. Master’s thesis, Univer-
sity of Regina, 1991.

[7] L. Mercer, P. Prusinkiewicz, and J. Hanan. The concept and
design of a virtual laboratory. In Proceedings of Graphics
Interface ’90, pages 149–155. CIPS, 1990.

[8] S. Moen. Drawing dynamic trees. IEEE Software, pages
21–28, July 1990.

[9] J. K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley,
1994.

[10] P. Prusinkiewicz and A. Lindenmayer. The algorithmic
beauty of plants. Springer-Verlag, New York, 1990. With
J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer,
and L. Mercer.

[11] W. R. Stevens. UNIX network programming. Prentice-Hall,
Englewood Cliffs, 1990.



Figure 4. A sample vlab screen

Figure 5. A physically-based experiment carried out in the vlab environment


