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Abstract

We introduce a class of biologically-motivated algorithms for gen-
erating leaf venation patterns. These algorithms simulate the in-
terplay between three processes: (1) development of veins towards
hormone (auxin) sources embedded in the leaf blade; (2) modifica-
tion of the hormone source distribution by the proximity of veins;
and (3) modification of both the vein pattern and source distribu-
tion by leaf growth. These processes are formulated in terms of
iterative geometric operations on sets of points that represent vein
nodes and auxin sources. In addition, a vein connection graph is
maintained to determine vein widths. The effective implementation
of the algorithms relies on the use of space subdivision (Voronoi
diagrams) and time coherence between iteration steps. Depending
on the specification details and parameters used, the algorithms can
simulate many types of venation patterns, both open (tree-like) and
closed (with loops). Applications of the presented algorithms in-
clude texture and detailed structure generation for image synthesis
purposes, and modeling of morphogenetic processes in support of
biological research.
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1 Introduction

Simulation-based visual modeling of patterns found in living or-
ganisms has a long history, bridging biology, theoretical studies of
morphogenesis, and computer graphics [Prusinkiewicz 1994]. Pre-
vious models include reaction-diffusion models of animal coat pat-
terns [Turk 1991] and sea shell pigmentation [Fowler et al. 1992],
clonal mosaic models of animal coat patterns [Walter et al. 1998],
diffusion-limited aggregation models of lichens [Desbenoit et al.
2004], and physically-based models of bark textures [Lefebvre and
Neyret 2002; Federl and Prusinkiewicz 2004]. In this paper, we fo-
cus on the modeling of venation patterns in leaves. Together with
spiral phyllotaxis and the branching structures of tree architecture,
venation patterns are among the most admirable aspects of the nat-
ural beauty of plants. Yet, in comparison, venation patterns and
their development are poorly understood [Dengler and Kang 2001].
This makes the visual modeling of venation patterns a particularly
challenging problem. As a step towards its solution, we propose a
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Figure 1: Terms pertinent to the description of leaf shapes.
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Figure 2: A sample leaf (a) and the results of its: (b) marginal
growth, (c) uniform isotropic (isogonic) growth, (d) uniform
anisotropic growth, and (e) non-uniform anisotropic growth.

model inspired by the current theories of hormonal control of vein
morphogenesis. The model generates visually realistic venation
patterns, reproduces in part their natural diversity, and captures the
close relation between venation and shapes of leaves. In image syn-
thesis applications, this model offers a useful alternative to scanned
textures when leaf specimens are not readily available, leaves are
not flat (and therefore are difficult to scan), a large number of leaf
models with different yet related venations is needed, leaf devel-
opment is animated, or when the topology of the leaf venation is
needed. The model can also be used as a stepping stone to study
and visualize leaf venation patterns for biological purposes. In this
context, realistic visualization plays a critical role as an element of
model evaluation and validation [Prusinkiewicz 1998], since cur-
rent objective measures for comparing complex venation patterns
with reality only capture a limited set of features [Bohn et al. 2002].

2 Background and related work

2.1 Leaf shape description.

Venation patterns are strongly correlated with leaf shapes [Dengler
and Kang 2001] and thus must be considered in that context. A use-
ful summary of the terminology for describing leaf shape is given
by Judd et al. [1999]. A typical leaf consists of a leaf blade (lam-
ina), attached by a petiole (stalk) to the stem (Figure 1). Simple
leaves have a single, connected blade. A simple leaf is called entire
if its margin (edge) forms a smooth arc, toothed if the margin has
small protrusions, and lobed if the margin is significantly indented,
dividing the blade into distinguishable lobes. Lobed leaves are fur-
ther categorized as dissected, with the indentation approximately
perpendicular to the leaf axis, and digitate, with the lobes orga-
nized radially (like fingers on the hand). In contrast to the simple
leaves, compound leaves have blades partitioned into separate sub-
units called leaflets. In this paper we do not consider compound
leaves, assuming that their venation can be modeled at the level of
individual leaflets.



2.2 Mathematical description of leaf growth.

The development of venation patterns is correlated with the growth
of leaf blades. Growth can be characterized by the growth ten-
sor field [Hejnowicz and Romberger 1984], which specifies the
magnitude of the expansion of infinitesimal surface regions in var-
ious directions, and may include a possible rotation of each re-
gion. The growth tensor is a generalization of the relative ele-
mentary rate of growth (RERG), which is defined as the rate at
which an infinitesimal distance ∆s, measured in the direction of
a line l at a point p of a growing object, increases over time.
This rate is normalized with respect to the distance ∆s, yielding
RERGl(p) = (1/∆s)(d∆s/dt) [Hejnowicz and Romberger 1984].
Growth is marginal if it is concentrated on the border and diffuse
if it is spread throughout the surface [Roth-Nebelsick et al. 2001].
Diffuse growth is called isotropic if expansion is equal in all direc-
tions, and anisotropic otherwise. Furthermore, growth is uniform
if the growth tensor is the same at all points of the surface, and
non-uniform if it is not. A uniform isotropic growth is called isogo-
nic [Coen et al. 2004]. These variations are illustrated in Figure 2.

There are two approaches for modeling leaf growth. The first
approach is to specify the progression of leaf shape over time.
Marginal growth was first simulated in this way by Scholten and
Lindenmayer [1981]; diffuse growth can be described in terms of
warping and morphing of graphical objects [Prusinkiewicz et al.
1993; Gomes et al. 1999]. The second approach is to specify the
growth tensor field, either explicitly or as a result of a physically-
based expansion model [Rolland et al. 2003; Wang et al. 2004].
Neither approach provides a generally convenient method for spec-
ifying arbitrary growth. Consequently, in our implementation we
have focused on simple special cases.

2.3 Venation patterns

We describe leaf venation pat-
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Figure 3: Some terms perti-
nent to the description of vena-
tion patterns.

terns using the terminology of
Hickey [1979] and its simpli-
fication by Judd et al. [1999].
A fundamental notion is that
of vein order. Generally, the
first-order veins are the widest
veins originating at the leaf
base (the point of attachment
to the petiole), and finer veins
and veinlets have progressively
higher orders (Figure 3). Vena-
tion patterns are correlated with
the taxonomic groups of plants
and with the shapes of leaves.
Leaves of monocotyledons (e.g., grasses) usually have approxi-
mately parallel primary (first-order) veins, which is consistent with
the highly elongated leaf shape and wide leaf base. Dicotyledons
with simple entire leaves often have pinnate venation, characterized
by a single primary vein (the midvein) that originates at the base and
extends towards the leaf tip. Dicotyledons with digitate leaves typi-
cally have actinodromous venation, in which three or more primary
veins diverge radially from a single point. Primary veins support se-
quences of secondary (lateral) veins, which may branch further into
higher-order veins. The secondary veins and their descendants may
be free-ending, which produces an open, tree-like venation pattern,
or they may connect (anastomose), forming loops characteristic of a
closed pattern. Tertiary and higher-order veins usually link the sec-
ondaries, forming a ladder-like (percurrent) or netlike (reticulate)
pattern (Figure 3).

2.4 Mechanism of vein pattern development

The most widely accepted theory of vein pattern formation is the
canalization hypothesis [Sachs 1981]. According to this hypothe-
sis, vein development is controlled by a signal that propagates in the
leaf blade and causes vein differentiation. At least part of this sig-
nal is the plant hormone auxin [Sieburth 1999; Sachs 2003]. Auxin
originates in the leaf blade and flows toward existing veins, which
transport it to the leaf base. During this flow, auxin is canalized
into narrow paths, in a manner analogous to water carving riverbeds
in soft terrain [Sachs 2003]. These paths gradually differentiate
into new vein segments. Experimental evidence suggests that auxin
sources may be discrete [Aloni et al. 2003].

2.5 Models of vein pattern development

The first computational model of venation patterns was a four-
substance reaction-diffusion model proposed by Meinhardt [1976].
This model postulates that auxin is produced everywhere in the leaf
blade and diffuses towards veins, which remove the auxin from the
system. The resulting gradient of auxin concentration directs dif-
ferentiation of new veins towards the regions where vein density
is low. This model generates branching networks with occasional
anastomoses, but these networks are not visually similar to real ve-
nation patterns.

The canalization hypothesis was the basis of a computational model
developed by Mitchison [1980]. This model is particularly attrac-
tive due to its consistency with the putative molecular mechanisms
of active auxin transport [Rolland-Lagan et al. 2004]. Mitchison
assumed that the transport parameters depend on the flux itself.
The resulting feedback loop between transport parameters and flux
leads to the formation of high-flux canals between sources of auxin
and sinks (the existing veins) distributed throughout the leaf blade;
these high-flux canals become new veins. Mitchison’s model op-
erates at the scale of individual veins, but offers valuable insights
for constructing models of whole patterns. We reimplemented this
model and observed that it tends to create a canal between a source
and the vein node that is closest to it. This observation is directly
related to Gottlieb’s model, discussed next, and it is also the corner-
stone of our model.

While Mitchison’s model simulates the transport processes leading
to vein formation, the general model of angiogenesis (vasculature
formation) proposed by Gottlieb [1993] directly simulates the out-
come of these processes: the insertion of new veins. The model
is consistent with the mechanism of vein development depicted in
Figure 4. The venation pattern is embedded in a growing medium.
Growth increases the distance between the existing veins, allowing
new sources of an auxin-like signal to be inserted in the resulting
empty spaces. New veins are formed by connecting these sources
to the closest older veins, or — in the case of anastomoses — to
all veins within some distance range. The expression of the algo-
rithm in simple geometric terms allowed Gottlieb to generate com-
plex patterns, approximating diverse vascular systems in animals
and plants. Nevertheless, the realism of these patterns is limited
by several simplifying assumptions. Positions of auxin sources are
constrained to the grid, which results in a visible regularity in the
layout of vein endings. Growth is simulated by doubling the (linear)
grid size in every simulation step, which precludes continuous sim-
ulation of growth. Vein segments are straight, and segments double
in length in each growth step, which yields artificial-looking long
straight lines running through the pattern. Unnatural sharp angles
may form between anastomosing veins.

Leaf growth also plays an essential role in the biomechanical model
of vein pattern formation proposed by Couder et al. [2002]. This
model exploits a hypothetical analogy between vein pattern forma-



tion and fracture propagation in a stretched material. Although
the authors used physical experiments to test their model, the
same analogy could underly computer simulations, for example
based on the fracture-simulation software described in [Federl and
Prusinkiewicz 2004].

An algorithm aiming specifically at generating vein patterns for the
synthesis of realistic leaf images was proposed recently by Rod-
kaew et al. [2002]. At the beginning of that algorithm, a set of
particles is distributed over the leaf blade. These particles move to-
wards a sink placed at the base of the leaf; in their motion they are
attracted towards each other and merge if a threshold distance be-
tween particles has been reached. The venation pattern is formed by
the particle trajectories. Some of the generated patterns suggest the
appearance of primary and secondary veins in leaves with open ve-
nation. However, the conceptual framework and the resulting gen-
erating procedure have not been related to the current biological
understanding of vein morphogenesis. Consequently, it is difficult
to improve the results by incorporating biological knowledge.

An additional inspiration for our model was the work of
Roberts [2001], who introduced a variant of diffusion-limited ag-
gregation for pattern synthesis purposes. Figure 10 in [Roberts
2001] resembles vein patterns near leaf margins.

3 Generation of open venation patterns

We assume that leaf
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Figure 4: Hypothetical causal relations
underlying vein pattern development.

venation patterns de-
velop in a feedback
process, coupled with
leaf growth, in which
discrete auxin sources
direct the development
of veins, and the veins
reciprocally affect the
placement of sources
(Figure 4). While dif-
ferent parts of this process have been described in the biological
literature and included in previous models (Section 2.5), the only
explicit reference to the feedback loop between source placement
and vein development was made by Gottlieb [1993]. Like Got-
tlieb’s, our model is expressed in geometric terms and uses proxim-
ity criteria to determine new vein locations. However, our algorithm
operates in continuous space, and does not rely on the simplifying
assumptions introduced by Gottlieb. As a result, venation patterns
generated with our algorithm are very different from those created
using previous methods. Below we describe the version of the al-
gorithm that generates open venation patterns. The modifications
that extend it to closed patterns are presented in Section 4.

3.1 Preliminaries

The input to the algorithm consists of: (1) the initial state (the ini-
tial shape of the leaf and the placement of the “seed” vein node or
nodes), (2) functions and/or parameters characterizing leaf growth,
and (3) parameters characterizing the interplay between the auxin
sources and vein development.

Auxin sources are represented by a set S of points s embedded in
the leaf blade.

Open venation is represented by a tree graph G = 〈V,E〉. The nodes
v ∈ V of this graph represent small segments of veins, which we
refer to as vein nodes, and are also embedded in the leaf blade. Ad-
jacent nodes are connected by edges e ∈ E ⊂V ×V . The edges are
oriented from the base of the venation to its extremities. Connec-
tions between vein nodes play a key role when determining vein
width (Section 3.5).
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Figure 5: Example of the simulation of a non-uniform anisotropic
growth. Leaf growth from shape (a) to shape (b) is specified by
two functions that control growth rates in the horizontal (c) and
vertical (d) direction according to the formulas RERGx = 1+gx and
RERGy = 1+gy, respectively. The arguments to both functions are
the initial vertical positions of the points within the growing leaf
blade. The functions have been specified using a graphical editor.

3.2 The initial state of the model

The initial leaf shape is specified interactively by the user, as a para-
metric curve that defines the leaf contour. In the case of toothed
leaves, protrusions are introduced algorithmically, by summing tri-
angular waveforms of different amplitudes and frequencies. The
initial venation graph usually has a single vein node, which coin-
cides with the attachment point of the blade to the petiole. In the
case of leaves with parallel venation, the initial graph includes sev-
eral isolated nodes, positioned along the leaf base. In all cases,
positions of the initial points are specified by the user.

3.3 The simulation loop

Our algorithm consists of simulating within an iterative loop the
three processes shown in Figure 4: leaf blade growth, the placement
of auxin sources, and the addition of new vein nodes.

Leaf blade growth. Given the initial leaf shape at time t0 and the
growth description, the leaf growth model must be able to deter-
mine leaf shape at any time t1 > t0 and, for any material point p
embedded in the leaf blade at time t1 ≥ t0, find the position of that
point at any time t2 > t1. We implemented three methods to model
leaf growth.

Marginal growth is modeled by scaling the leaf edge with respect
to the attachment point of the leaf to the petiole. We assume that the
scaling factor σ is a linear function of time, σt+∆t = σt +∆σ , where
∆σ ≥ 0 is a constant describing the increase of margin size per
simulation step. This model is not applicable to dissected leaves,
since in this case the scaling of the edge may gradually erode parts
of the leaf blade.

Uniform growth can be regarded as a scaling of the entire leaf, in-
cluding veins and auxin sources that exist at a time t, using the same
formula as above, σt+∆t = σt + ∆σ . For computational efficiency,
instead of scaling up the leaf, we scale down the unit distance λ

used while inserting and removing auxin sources: λt = λ0 ·σ0/σt .

Non-uniform anisotropic growth can be thought of as deforming
the initial leaf shape over time. We implemented a limited version
of this model, in which relative elementary rates of growth in the
horizontal and vertical direction are specified as user-defined func-
tions of the initial position of a point along the y axis (Figure 5, see
Appendix for details).

Auxin source placement. Auxin sources are assumed to emerge at
locations that are farther than a threshold birth distance bs from the
(set of all) other sources, and farther than a threshold birth distance
bv from the (set of all) vein nodes. We compute these points using a
version of the dart-throwing algorithm [Cook 1986; Mitchell 1987].
This algorithm consists of repeatedly generating points distributed
at random (with the uniform distribution) within a given domain,



then testing each new point s′ against all points already in the set. A
point that is sufficiently far from other points is accepted as a new
member of the set. In our application, we “throw darts” at every
iteration of the algorithm. The number of darts per step per unit
area of the leaf, denoted ρ , controls the regularity of the venation
pattern (Section 6).

In practice, computation of the set of auxin sources depends on
the assumed leaf growth kinetics. In the case of diffuse growth
(throughout the blade), the initial set is usually empty, and new
sources are added using dart throwing after each growth step. In
the case of marginal growth, new sources appear only on the mar-
gin. In this case, we precompute the set of sources in a square that
embeds the maximum leaf size, and include new sources as they
appear within the expanding leaf contour.

The sources continue to exist until they are removed due to the prox-
imity of veins that grow towards them. In the case of open venation
patterns, a source s is removed when there is at least one vein node
v closer to s than a threshold kill distance dk.

New vein node placement. Each source is assumed to influence the
vein node that is closest to it (if several vein nodes are at the same
distance from the source, one of them is picked at random). There
may be several sources which influence a single vein node v ∈ V :
we denote this set of sources by S(v). If S(v) is not empty, a new
vein node v′ will be created and attached to v by edge (v,v′). The
node v′ is positioned at a distance D from v, in the direction defined
as the average of the normalized vectors toward all the sources s ∈
S(v):

v′ = v+D
~n
‖~n‖

, where ~n = ∑
s∈S(v)

s− v
‖s− v‖

. (1)

3.4 Example

The execution of the algorithm for generating open venation pat-
terns is illustrated in Figure 6. We begin following it at the stage
when the vein system consists of three nodes (black disks with
white centers) and there are four auxin sources (red disks) (a). First,
each source is associated with the vein node that is closest to it (b,
red lines); this establishes the set of sources that influences each
node. The normalized vectors from each vein node to each source
that influences it are then found (c, black arrows). These vectors
are added and their sum normalized again (d, violet arrows), pro-
viding the basis for locating new vein nodes (d, violet circles). The
new nodes are incorporated into the venation, in this case extending
the midvein and initiating a lateral secondary vein (e). The neigh-
borhoods of sources (red circles) are now tested for the inclusion
of (the centers of) vein nodes (f). The neighborhoods of the two
leftmost sources have been penetrated by the veins, as indicated by
the bolder representation of the corresponding circles. The affected
sources are removed from the set of sources (g). The leaf then
grows (h); in this example we have assumed marginal growth, so
the existing sources and vein nodes are not moved. The candidate
new sources are now randomly placed within the expanded blade
(i). Their neighborhoods, indicated by dashed circles, are checked
for the inclusion of (the centers of) previously placed vein nodes
and sources. The only candidate source with an empty neighbor-
hood is incorporated into the set of sources (j) and the vein nodes
closest to these sources are identified (k). This is the beginning of
the next iteration of the algorithm execution, with stages (j) and (k)
corresponding to the stages (a) and (b) from the previous iteration.

Note that the top and the right source jointly influence the top vein
node in Figure 6b, but the same two sources influence different vein
nodes in Figure 6k. Such splits in the set of sources, which at some
stage influence the same vein node, but later affect different points,
are an essential feature of the algorithm: they lead to the emergence
of branches even if the set of sources is fixed.
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Figure 6: Illustration of the algorithm for generating open venation
patterns

3.5 Calculation of vein width

The final component of the algorithm is the calculation of vein
width. To this end, we employ Murray’s law [Murray 1926],
which states that the radii of vessels before and after a branching
point in a ramifying transport system satisfy the formula rn

parent =
rn

child1 + rn
child2. Although general applicability of Murray’s law to

leaf venation is a matter of discussion, the law has been supported
by tests on sunflower leaves [Roth-Nebelsick et al. 2001]. In the
original formulation of Murray’s law, n = 3; however, following
MacDonald’s [1983] observation of different values of this expo-
nent in natural branching systems, we treat it as a parameter of
the models. Calculation of vein width begins with the veinlets, as-
sumed to have the minimum width, and proceeds towards the base
of the leaf. In models that do not include a detailed pattern of ter-
tiary veins, we additionally increase the width of primary and sec-
ondary veins at each node, to approximate the influence of veinlets
that are not explicitly modeled.

4 Generation of closed venation patterns

In order to generate
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Figure 7: Illustration of the notion of
relative neighborhood.

closed venation pat-
terns, we modify the
previous algorithm so
that more than one
vein may grow toward
the same source. We
hypothesize that such
situations occur in
nature when several
veins are close to the
same source, yet are
relatively far from each

other, and we formalize this concept using the notion of relative
neighborhood [Toussaint 1980; Jaromczyk and Toussaint 1992;
Okabe et al. 1992]. Given a point set A, point v ∈ A is a relative
neighbor of a point s ∈ A if and only if for any point u ∈ V that is
closer to s than is v, v is closer to s than to u. Mathematically, point
v belongs to the relative neighborhood of s, denoted V (s), if and
only if

(∀u ∈V )‖v− s‖ < max{‖u− s‖,‖v−u‖} . (2)

This definition is illustrated in Figure 7. Points v, a and b are rel-
ative neighbors of s, with the relevant distances shown by lines;



points c, d, and e are not. Shaded areas illustrate the influence of
point v on the relative neighborhood of s. Area 1 (green) is the lo-
cus of points that are closer to s than is v; this area must be empty in
order for v to be a relative neighbor of s. Area 2 (pink) is the locus
of points that are closer to v than to s, and therefore are excluded
from V (s) by v.

The set S(v) of sources that influence vein node v consists of all
sources s such that v is a relative neighbor of s in the set As =
V ∪{s}:

S(v) = {s ∈ S|v ∈V (s)}. (3)

Directions of vein development are calculated from S(v) as in the
case of open venation patterns (Equation 1).

Veins growing towards the same source are unlikely to reach it at
the same time. Thus, to create anastomoses, the source must remain
active until it is reached by all veins that are growing towards it. We
achieve this by modifying the criterion for source removal. When
a vein node v is placed within the kill distance dk of the source s,
this source is not immediately removed; instead, the set V (s) of
all nodes influenced by s is tagged. In subsequent simulation steps,
these tags are passed by vein nodes to their descendants. The source
s is removed when all tagged veins have either reached s or left its
zone of influence.

The final modification concerns the calculation of vein width. In
our implementation, we assume that all child veins entering a vein
node contribute equally to the width of the parent nodes.

5 Implementation of the algorithms

The proposed algorithms involve repetitively testing for proximity
amongst potentially large sets of points: hundreds of auxin sources
against thousands of vein nodes. We can improve execution times
with space subdivision techniques, such as a grids [Bentley et al.
1980] or Voronoi diagrams [Preparata and Shamos 1985; Okabe
et al. 1992]. Our implementation makes use of Voronoi diagrams.

5.1 The algorithm for open patterns

Let c be the number of candidate auxin sources to be inserted, k
the number of existing sources, and n the number of vein nodes.
The straightforward algorithm for inserting new auxin sources tests
whether a candidate source is farther than the birth distances bs and
bv from any other source or vein node, respectively. Assuming that
the number of new sources is small compared to k+n, this requires
O(c(k + n)) distance calculations per iteration step. The algorithm
for vein development finds, for every source s, the closest vein node
v and thus requires O(kn) calculations. The algorithm for source
removal does not require additional distance calculations, since a
source can be removed as soon as it is found that its distance to the
closest vein is less than the kill distance kd .

To improve the running time, we use Voronoi diagrams of the
set S of auxin sources and the set V of vein nodes. These dia-
grams can be constructed “from scratch” each simulation step in
O(n logn + k logk) time [Okabe et al. 1992]. We improve on this
time by updating the diagrams incrementally from one iteration
step to the next [Okabe et al. 1992]. Given the Voronoi diagrams,
a candidate auxin source is accepted if it is farther than bs from
the nearest vertex of the set S, and farther than bv from the near-
est vertex of the set V . The calculation of the nearest neighbor in
the Voronoi diagram takes logarithmic time [Preparata and Shamos
1985], thus, for c candidate auxin sources, the insertion tests take
O(c(logn+ logk)) time. The search for the vein nodes that are near-
est to k sources require O(k logn) time. As in the straightforward
approach, removal of sources does not involve additional calcula-
tions.

5.2 The algorithm for closed patterns

The critical component of the algorithm for closed patterns is the
computation of relative neighborhoods of the sources. A straight-
forward algorithm for computing the relative neighborhood V (s)
of a source s is based directly on Equation 2. We suppose that
V (s) = V , then consider every node u ∈V and eliminate from V (s)
every node v that is excluded from the neighborhood of s by u. The
remaining set V (s) is the output of the algorithm. Unfortunately,
the time needed to find the relative neighborhood of a single source
using this algorithm is O(n2); for k sources it is O(kn2).

A significant speedup is possible due to two computational geom-
etry theorems: The relative neighborhood graph is a subset of the
Delaunay triangulation [Toussaint 1980], and the average degree of
a vertex in a Delaunay triangulation is 6 [Okabe et al. 1992]. From
the first theorem, it follows that the search for the relative neigh-
borhood V (s) of s can be limited to testing every node v adjacent to
s in the Delaunay graph of As = V ∪{s} (i.e., the Delaunay neigh-
borhood of s) against all points u in the set As. Points v that pass
the criterion of Equation 2 form the relative neighborhood. Since
the average number of Delaunay neighbors is a constant, this ap-
proach reduces the average time complexity of finding the relative
neighborhood of s to O(n); thus, finding the relative neighborhood
of every source can be performed in average time O(kn).

The above analysis is true assuming that the Voronoi diagram, and
thus the Delaunay graph, is given for each set As = V ∪ {s}. In
practice, we maintain the Voronoi diagram of the set of vein nodes
V as in the algorithm for open venation patterns, and compute the
Voronoi diagram for set As by inserting node s [Bowyer 1981; Wat-
son 1981]. The worst-case time for this operation is O(n), which
amounts to O(kn) for k sources.

A significant further acceleration is
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Figure 8: The Urquhart
neighborhood is only an
approximation: a excludes
v from the relative neigh-
borhood of s, although a is
not in the Delaunay neigh-
borhood of s.

possible, if the computation of rela-
tive neighborhoods is approximated
using Urquhart’s [1980] algorithm.
Instead of testing points in the De-
launay neighborhood of s against all
points in As, Urquhart’s algorithm
only tests these neighborhood points
against each other. Given the lim-
ited average degree of a vertex in a
Delaunay graph, this test can be per-
formed in constant average time. In
spite of the approximative character
of Urquhart’s algorithm (Figure 8),
the Urquhart neighborhood serves as

well as the relative neighborhood in selected computational mor-
phology applications [Andrade and de Figueiredo 2001]. In our
model, using the Urquhart approximation also gives qualitatively
similar results to those obtained with the actual relative neighbor-
hoods, while drastically reducing the simulation time (Section 6).

6 Results

The algorithms were implemented using the vv programming en-
vironment [Smith et al. 2003], which provides convenient opera-
tions for manipulating planar structures with dynamically changing
topology. Computations related to Voronoi diagrams and Delaunay
triangulations were preformed using the GNU Triangulated Surface
library [Popinet 2004].

In order to acquire an intuitive appreciation for the generated pat-
terns, we explored the parameter space of the algorithms by varying
one parameter while keeping other parameters constant. Two exam-
ples of this exploration are shown in Figure 9. Figures 9a–e show
the impact of the kill distance dk. As its value decreases, the den-



Figure 9: (a)–(e) The impact of the kill distance on venation patterns. From left to right, the kill distance is 40, 20, 10, 5, and 1. (f)–(h) The
impact of the number of sources inserted per step (parameter ρ from Section 3.3). From left to right: 0.00006, 0.0003 and 0.006 insertions
per unit leaf area per step. (i) A venation pattern generated in a leaf with slow marginal growth.

Figure 10: A photograph (left) and a rendered model of ginkgo
venation (right).

Figure 11: A photograph(left) and a rendered model of lady’s man-
tle venation (right).

sity of the venation pattern increases, higher-order veins emerge,
and eventually anastomose. Figures 9f–h illustrate the role of the
number of auxin sources that the dart-throwing algorithm attempts
to insert per iteration step. As one would expect, higher values of
this parameter result in a denser and more regular distribution of
the sources; the venation systems generated have smoother primary
and secondary veins, and more uniform tertiary veins.

Although more difficult to quantify, the shape and growth of a leaf
also have an essential impact on the resulting patterns. For exam-
ple, Figure 9i was generated using similar parameters to Figure 9b,
except that the leaf was growing slowly. As a result, all vein tips

closely followed the leaf margin, with the sources distributed along
different sections of the margin affecting individual veins. Similar
parameters underly the model of ginkgo leaf shown in Figure 10. In
this case the rounded, tangentially expanding leaf margin prompted
bifurcation of veins when the distance between their tips became
too large.

The leaves of lady’s mantle (Al-

Figure 12: A sweetgum leaf
model.

chemilla vulgaris, Figure 11) and
sweetgum (Liquidambar styraci-
flua, Figure 12) were modeled us-
ing relatively faster growth rates,
lower values of kill distance (cor-
responding to Figure 9c), and a
large number of inserted sources.
Note the actinodromous patterns,
adapted to the rounded or digitate
leaf blades.

Ginkgo, lady’s mantle, sweet-
gum, and Nankin cherry (Fig-
ure 16) leaves were modeled us-
ing open venation patterns. In contrast, the venation of the toothed
leaf shown in Figure 13a was generated with anastomoses. The
kill distance was low, consistent with Figure 9e. The number of
sources inserted per step was medium, as in Figure 9g, in order to
produce relatively smooth primary and secondary venation, and ir-
regular reticulate venation. Note the extension of the venation to
the lobe. A similar set of parameters, but for a different leaf shape,
was used to generate the venation pattern in the entire leaf shown in
Figure 13b. Note the sequences of tertiary veins growing towards
the margin in the basal part of the leaf. Such sequences are found
in many dicotyledonous leaves.

Figure 9h indicated that high density of inserted sources combined
with marginal leaf growth leads to smooth primary venation and a
ladder-like tertiary venation. Patterns sharing these features may
significantly depend on the leaf shape and the initial conditions of
the simulation. This is illustrated in Figure 14, in which an or-
chid leaf with a hierarchically organized system of primary and
secondary veins, and a grass leaf with parallel veins, were gener-
ated using similar parameter values. In the grass leaf model, a row



Figure 13: Left: A toothed leaf with a lobe. Right: Emergence of
sequences of tertiary veins off the bottom secondary veins.

Figure 14: An orchid leaf and a segment of a grass leaf. The differ-
ence in venation patterns is due primarily to different leaf shapes.

of initial vein nodes was located at the leaf base, instead of the usual
single node. In addition, the birth distance for placing new sources
was tuned to match the distance between veins. An application of
this pattern as a texture is illustrated in Figure 17.

All the venation models pre-

Figure 15: A reticulate ve-
nation pattern emerging in an
isogonically growing leaf.

sented so far were generated as-
suming marginal growth of the
leaf blade. In contrast, the pattern
shown in Figure 15 was generated
using isogonic diffuse growth.
Note the fine reticulate pattern
of tertiary venation, in contrast
to the percurrent patterns in Fig-
ure 14. An even finer reticulation
is present in the poplar leaf mod-
els shown in Figure 18. In addi-
tion to providing another exam-
ple of patterns generated with iso-
gonic leaf growth, these models
illustrate the difference between
patterns generated using correctly
calculated relative neighborhoods

and their Urquhart approximation. Although the layout of sec-
ondary veins is different, both patterns are similar in their general
character.

Figure 16: A Nankin cherry bough.

Figure 17: Grass leaves with venation patterns from Figure 14.

The purpose of the models discussed so far was to generate plau-
sible textures of mature leaves. Our algorithm can also simulate
the development of venation over time. Progression of leaf shapes
in the early stages of leaf development, when venation patterns
are laid out and differentiate, has been described for Arabidopsis
thaliana [Scarpella et al. 2004]. In these stages, growth is non-
uniform and anisotropic, with the leaf shape changing from narrow
to almost circular. A corresponding model of leaf blade growth is
shown in Figure 5, and the resulting simulation of vein pattern de-
velopment is presented in Figure 20 (left). As in nature, the veins



Figure 18: Two models of reticulate patterns of poplar leaves, compared to a photograph of a real leaf. The pattern on the left was generated
using relative neighborhoods in two hours; the pattern on the right was generated using the Urquhart approximation in two minutes.

Figure 19: A poplar branch. The leaves have textures similar to
those in Figure 18. The outlined area is shown magnified in the
inset.

Figure 20: Simulation of leaf development using non-uniform
anisotropic growth. Left: Development of second-order veins in
the early stages of growth. Right: Development of high-order veins
in later stages of development of another leaf.

develop in succession, from low to high order. Discrepancies be-
tween real and simulated patterns may be due to the approximate
character of the growth model, for which quantitative experimental
data are yet unavailable.

Figure 21: A model of trillium flower. Venation patterns are not
limited to leaves, but also include flower petals.

In order to test the potential of the generated patterns in realistic
image synthesis, we have included some of them as textures in plant
models. The results, obtained using the renderer Dali, are shown in
Figures 16, 17, 19, and 21.

Parameters used to generate the presented leaf patterns are collected
in Table 1.

7 Conclusions

We have proposed an algorithm for synthesizing leaf venation pat-
terns. The algorithm is based on the biologically plausible hypoth-
esis that venation results from an interplay between leaf growth,
placement of auxin sources, and the development of veins. An ef-
fective implementation of this algorithm represents an unexpected
application of computational geometry to a biological problem. Our
results suggest that the apparent complexity of leaf venation may
emerge from the iteration of a simple elemental mechanism.



Name Figure Algorithm dk bs Li Growth type L f ∆L ρ ×106

Param. search dk 9a–e closed — 10 270 marginal 1600 8 600
Param. search ρ 9f–h closed 1 10 270 marginal 1600 8 —
Slow marginal growth 9i open 40 1 4500 marginal 112,000 34 300
Ginkgo 10 open 100 1 10 marginal 50,000 15 300
Alchemilla 11 open 10 1 3200 marginal 4500 9 200
Sweetgum 12 open 1 1 1200 marginal 6700 7 200
Toothed margin 13 left closed 1 10 6600 marginal 26,000 40 10
Tertiary vein emergence 13 right closed 1 1 3500 marginal 24,000 60 20
Orchid 14 closed 1 10 6500 no growth 600
Reticulate pattern 15 closed 1 15 225 isogonic 4500 40.5 200
Nankin cherry 16 open 30 1 1100 marginal 5500 11 40
Grass 17 closed 1 30 13,000 no growth 100
Poplar 18, 19 closed 1 2 115 isogonic 3500 9 200
Developmental 20 closed 1 3 23 nonuniform 184 Fig. 5 5000
Trillium 21 closed 1 30 4500 no growth 100

Table 1: Values of parameters used to generate venation patterns presented in this paper. In all cases, the length of a vein segment is equal to
1. dk: kill distance; bs = bv: birth distance; Li: initial leaf length; L f : final leaf length; ∆L: length increase per step; ρ , number of darts per
unit area per step. Parameter n used to calculate vein width (Section 3.5) is 3 for the developmental model and 2 for all other models.

The resulting patterns are applicable to texture synthesis. In the
examples, we employed classical methods of texture and bump
mapping, but the availability of a leaf venation model opens the
door for more advanced techniques, such as the incorporation of
veins into a detailed geometric model of the leaf [Bloomenthal
1995], detailed simulation of light propagation in a leaf [Hanrahan
and Krueger 1993; Baranoski and Rokne 2002; Donner and Wann
Jensen 2005], and the use of fast rendering methods specialized for
leaves [Wang et al. 2005]. Further research problems include: ex-
tension of the range of generated patterns (in particular, generation
of brochidodromous patterns, characterized by regular, pronounced
loops of secondary veins), more accurate modeling of the highest-
order veinlets (such as the free-ending veinlets in closed venation
patterns), more accurate modeling of leaf growth and the result-
ing developmental patterns, and synthesis of venation patterns in
leaves with high positive or negative Gaussian curvature. In addi-
tion to visual inspection, the degree to which the resulting patterns
approximate those observed in nature could be evaluated using ob-
jective measures, such as those proposed by Bohn et al. [2002].
From a formal perspective, the average computational complexity
of the algorithms could be further analyzed, taking into account the
highly nonuniform distribution of vein nodes.

The wide range of patterns generated by the proposed model, and
the possibility of simulating the development of venation over time,
suggest that the model may reflect the algorithmic essence of vein
pattern formation in nature. It is therefore an interesting question
whether this model could be related even more closely to the current
data and hypotheses of molecular plant biology.

Finally, we observe that our model can be easily extended to three
dimensions. It would therefore be interesting to investigate its ap-
plicability to a wider range of vascularization processes in plants
and animals.
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A Implementation of nonuniform growth

As described in Section 3.3, given the position of a material leaf
point p at time t1 ≥ t0, we need to find the position of p at time
t2 > t1. We solve this problem under the simplifying assumption
that the relative elementary rates of growth in the x and y directions
depend only on y0, the y coordinate of p at the initial time t0. By
solving the equation dx/dt = x RERGx(y0), we find that a point
with horizontal coordinate x1 at time t1 will be displaced to x2 =
x1[RERGx(y0)](t2−t1) at time t2.

In the vertical direction the RERG value is no longer constant; thus,
we calculate the vertical coordinate y1 at t1, given the coordinate y0
at t0, as the integral:

y1 =
∫ y0

0
[RERGy(y)]t1−t0 dy (4)

In order to answer the general question of calculating the y dis-
placement between times t1 and t2, we first solve Equation 4 for y0,
given y1. For a material point with the known position y1 at time t1
this solution describes the position y0 that this point would have if
it already existed at time t0. Knowing this, we use Equation 4 again
to find y2, the y coordinate of the same material point at time t2.
These calculations are performed efficiently using a lookup table
with precomputed values of integral (4).
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