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Supplemental Model Description

1 Overview

To propose a plausible mechanism of vascular patterning in flower heads and
obtain insights regarding possible sources of pattern diversity, we reproduced
key features of the vascular patterns in Bellis, sunflower, and gerbera heads
using a parametrized dynamic computational model (Fig. SMD1). Inputs to
the final stage of this model, which outputs the vascular pattern (V-Model), are
a model of phyllotaxis (P-model) and a volumetric model of receptacle growth
that includes the receptacle interior (G-model). The P-model simulates the
dynamic patterning of bract and floret primordia, which the vascular strands
will reach. The G-model simulates the expansion of space within which the
vascular pattern emerges and deforms as the receptacle grows, using a sequence
of shape-dependent coordinate systems calculated by the H-model. Both the
P-model and the H-model rely on a data-driven model of receptacle contour
expansion (C-model).
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Figure SMD1: Data flow in the dynamic model of vascular patterning in heads.
Dashed lines indicate model components implemented as separate programs.
Bold font indicates data exchanged as files. Red arrows highlight the main
iteration loop.
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The simulation of vascular system development is preceded by preprocessing
steps. First, receptacle contours and active ring positions measured at discrete
time points during head development are interpolated by the C-model to de-
scribe the receptacle contour and the position of the active ring as continuous
functions of time (Sec. 2). Both of these functions are employed by the model
of phyllotaxis (P-model) to generate time-stamped initial primordia positions
on the growing receptacle (Sec. 3). In addition, the H-model uses a sequence of
receptacle contours output by the C-model to create a corresponding sequence
of the entire receptacle sections, including their interior (Sec. 4.2). The devel-
opment of the vascular system is then simulated iteratively, in a loop consisting
of two operations taking place over incrementally advancing time:

• Insertion of new vascular strands (V-model) (Sec. 5). Typically, these
strands are induced by the addition of new primordia and connect them
to the existing vasculature (initially, the procambial ring at the base of
the receptacle). Consistent with our observations, the gerbera model also
incorporates centripetally extending adaxial strands, which support floret
veins formed later.

• Receptacle growth (G-model) (Sec. 4.3). This operation entails incremen-
tal deformation of all strands embedded in the growing receptacle, as well
as the repositioning of primordia on the receptacle surface due to the
growth of the receptacle over a simulation step.

The simulation process is illustrated in Fig. SMD2.

a b c d e

Figure SMD2: Simulation process in a section of a head. (a) Initialization. A re-
ceptacle (green) and procambial ring (blue dots) are established. (b) Receptacle
growth. Initially no primordia or vascular strands are present. (c) Patterning.
New primordia (red) are positioned on the receptacle surface according to the
P-model, and strands (brown) connecting these primordia to the procambial
ring are established by the V-model. (d) Next growth step. Vascular strands
embedded in the receptacle are deformed, and primordium positions on the re-
ceptacle surface are adjusted by the G-model as the receptacle grows. (e) Result
of iterating steps (c) and (d) several times. As the simulation progresses, new
primordia emerge, giving rise to strands that connect these primordia to the
procambial ring or to the strands formed previously. Arrows indicate additional
adaxial strands specific to gerbera.
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2 The contour expansion model (C-model)

The C-model produces a continuous-time description of the expanding recepta-
cle contour by interpolating digitized profiles of receptacles scanned at different
stages of development (Fig. S9a,d,g). For each plant species, it is constructed
by following the steps described by Zhang et al. (2021):

1. Volumetric scanning of several (7–10) heads capturing head development
from an early stage to the stage at which all primordia and vascular strands
have been patterned;

2. Extraction of a virtual longitudinal section of each scan;

3. Manual tracing of the contour of each section, including positions of se-
lected primordia serving as landmarks, and the boundary of the phyllotac-
tic pattern defining the morphogenetically active zone;

4. Interpolation of these data.

3 The phyllotactic patterning model (P-model)

The P-model operates on the receptacle surface obtained by revolving the recep-
tacle contour around the head axis (Fig. S9b,e,h). To generate the phyllotactic
pattern in a gerbera head, we used the model described by Zhang et al. (2021),
augmented with the information on the fate of floret primordia (trans vs. disc)
(Fig. S19c). To generate the phyllotactic patterns in sunflower and Bellis heads
(Fig. S9f,i) we modified the gerbera model by using C-models of receptacle con-
tour expansion based on the sunflower and Bellis data, and sizes of primordia
estimated from measurements of sunflower and Bellis heads.

4 The receptacle model (H and G-models)

4.1 Overview

Our data consist of 3D scans of heads at different developmental stages, as
opposed to time-lapse images of the same developing head. With these data we
were able to identify primordia that served as landmarks for determining local
growth rates of the receptacle surface, but we were unable to identify internal
landmarks that would provide information on the local growth within the head.
Consequently, we approximated the growth of the receptacle interior on the
basis of the expansion of its surface.

We assume that the receptacle grows in a radially symmetric manner. It
is thus sufficient to simulate the growth of one half of a single longitudinal
cross-section only, since all sections grow the same way and can be obtained by
rotating a single (half-)cross-section around the head axis (Fig. S9a,b,d,e,g,h).
We conceptualize this cross-section as a (visco)elastic membrane attached to the
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section contour, although in our model it is defined in geometric rather than
physical terms. In each simulation step the contour expands as described by
the C-model, slightly deforming the membrane attached to it. This deformation
changes the positions of points embedded in the membrane — and thus in the
interior of the receptacle — including those representing the developing vascular
system.

Mathematically, our model of the receptacle interior growth (G-model) is
based on caging: the idea of smoothly deforming complex objects by embedding
them into a geometric structure — the cage — manipulated with a small number
of control points (Joshi et al., 2007). A historical predecessor to caging is the
transformation method proposed by Thompson (1942) to describe how organ-
isms change their shape during evolution or development. With that method,
the shape of interest was positioned in a Cartesian coordinate system and de-
formed through linear or non-linear transformations of this system. Instead, to
model the growth of the receptacle interior we employ harmonic coordinates:
a flexible generalization of barycentric coordinates allowing for an arbitrary
number of control points to be placed on the receptacle contour (Joshi et al.,
2007). As the control points move due to contour expansion, points with given
coordinates follow along, simulating the growth of the receptacle interior.

4.2 Calculation of harmonic coordinates (H-model)

Let Ω denote one half of the receptacle cross-section, and ∂Ω be the boundary
of Ω. We partition this boundary into segment Γ representing the contour, and
segment Γm that closes ∂Ω along the head axis (Fig. SMD3):
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Figure SMD3: Elements of a receptacle cross-section representation.

Assume that Γ is defined by a set of control points ci ∈ Γ, i = 1, ..., N . Some
of these points match landmarks such as bracts, and others may be inserted in-
between to ensure sufficiently precise contour representation. Following Joshi
et al. (2007), the position of an arbitrary point p ∈ Ω can be defined as the
affine combination (Goldman, 2002) of the control point positions,

p =
∑

i=1,...,N

wi(p)ci, (1)

in which weight fields (functions wi : Ω → [0, 1]) are solutions to Laplace’s
equation,

∇2wi = 0. (2)
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Each field wi, i = 1, . . . , N, is calculated assuming boundary conditions (BC):

(Dirichlet BC) wi(cj) = δi,j , j = 1, . . . , N, (3)

(Neumann BC) ∇wi(p) · n̂ = 0, p ∈ Γm, (4)

where δi,j is the Kronecker delta function:

δi,j =

{
1 if i = j,
0 if i 6= j.

(5)

Taking Equation 5 into account, boundary condition (3) specifies that weight
field wi evaluates to 1 at control point ci and to 0 at all remaining control
points. It also implies that weights w1(p), . . . , wN (p) of any point p ∈ Ω sum
to 1, as required by the definition of the affine combination of points. Boundary
condition (4) ensures that all points on the head axis Γm remain on the axis,
as a move across or away from the axis would violate the assumption of head
symmetry. The N -tuple of weights w1(p), . . . , wN (p) constitutes harmonic co-
ordinates of point p. They are sample values of the harmonic coordinate fields
w1, . . . , wN at point p.

We solve Laplace’s equation numerically for each contour in the developmen-
tal sequence produced by the C-model. To this end, we first (Delaunay) trian-
gulate the Ω domain using the Triangle library (Shewchuk, 1996). Laplace’s
equation is then discretized for this triangulation using the cotangent formula
(Crane et al. 2013, see also Ringham et al. 2021) implemented in the libigl

library (Jacobson et al., 2018). This discretization yields a system of linear
equations associated with the triangle vertices (Jacobson, 2013), which we solve
using the simplicial Cholesky factorization algorithm in the eigen library (Guen-
nebaud et al., 2010). This computation is repeated for all N different boundary
conditions (choices of control point ci at which the weight field is equal to 1),
yielding N weight fields w1, . . . , wN . The results are stored in the coordinate
fields file, on which the receptacle growth model (G-model) subsequently relies
(Fig. SMD1).

Three examples of weight fields wi are shown in Fig. SMD4. Weight values
for points p inside the triangles were calculated by linearly interpolating the
weights at the triangle vertices using barycentric coordinates (Anisimov et al.,
2016). Consistent with the membrane analogy, each control point ci affects
weights wi(p) of points p positioned close to it more strongly than weights of
points p positioned further away.

4.3 The receptacle growth model (G-model)

The input to the receptacle growth model is a sequence of M + 1 harmonic co-
ordinate fields wt

1, . . . , w
t
N representing snapshots of the receptacle development

at time steps t = 0, . . . ,M , where M is the number of simulation steps. We
decrease the simulated time interval between consecutive steps t as the recep-
tacle grows, because the geometry of larger receptacles changes faster than the
geometry of receptacles at the onset of their development.

5



Figure SMD4: Three examples of harmonic weight fields associated with recep-
tacle sections. The influence of the selected point ci (red) on field wi is the
highest (red) close to ci and decreases (white to blue) further away.

With these harmonic coordinate fields in place, the propagation (change of
position) of a point p ∈ Ωt resulting from the receptacle growth from stage t to
stage t+ 1 is modelled by expressing its position at time t, pt, using harmonic
coordinate values (weights) wt

i(p
t) associated with section Ωt, and using the

same values for the subsequent section Ωt+1 (Joshi et al., 2007):

pt+1 =
∑

ct+1
i ∈Ωt+1

wt
i(p

t)ct+1
i . (6)

As the control points move, point p will move in a “shape-aware” manner, i.e.,
its position will be most strongly affected by the contour points nearby.

Harmonic coordinates are well suited for both convex and concave control
cages, but large deformations from convex to concave configurations may repo-
sition some interior points p ∈ Ωt outside receptacle domain Ωt+1. With small
time steps, the changes in the receptacle shape between stages t and t + 1 are
also small, and we have rarely encountered this problem in practice. Neverthe-
less, we test for its occurrence, and if it happens, we project the misplaced point
to its nearest location in contour ∂Ωt+1.

5 The vascular patterning model (V-model)

5.1 Background

In constructing the vascular model we assumed that the basic processes of vas-
cular patterning in heads are similar to those analyzed in inflorescences of plants
not forming heads, such as Arabidopsis, tomato and Brachypodium (Reinhardt
et al., 2003; Bayer et al., 2009; O’Connor et al., 2014). In brief, as the meristem
grows, maxima of auxin concentration emerge in the active (peripheral) zone of
the epidermis through feedback between auxin transport and the positions of
PIN1 auxin efflux carriers. These maxima are sources of auxin flowing towards
previously formed vascular strands, acting as sinks. Following the canalization
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hypothesis (Sachs 1969, 1991), the flow of auxin is patterned into narrow streams
or canals, along which the vascular tissues differentiate. Experimental evidence
for the above processes has been supported by cell-level computational models,
which simulate the formation of auxin maxima in the epidermis (Smith et al.,
2006; Jönsson et al., 2006) and the formation of canals of auxin flow between
sources and sinks (Mitchison, 1980; Rolland-Lagan and Prusinkiewicz, 2005),
and integrate both processes (Bayer et al., 2009; O’Connor et al., 2014); see
(Cieslak et al., 2022) for a recent review).

Modeling large multicellular structures at the cellular level is a computa-
tionally daunting task. Consequently, models abstracting cell-level processes
into higher-level geometric constructs have been proposed to simulate vascular
patterning of entire plant organs (Cieslak et al., 2022). In the particle-based
model introduced for leaves by Rodkaew et al. (2002, 2003) and extended to
developing inflorescences by Owens et al. (2016), vascular strands originate at
the organ periphery, then extend towards the organ base by the addition of
short segments (“particles”) at the vein tips. With the space colonization algo-
rithm proposed by Runions et al. (2005), leaf veins also extend by the addition
of short segments, but patterning proceeds in the opposite direction: from the
leaf base towards its margin. These dynamics are simplified further in the re-
sistance minimization model proposed by Runions et al. (2017), in which entire
vein segments connecting auxin sources to the previously formed vasculature are
inserted in single simulation steps. Our model of vascular patterning in flower
heads is based primarily on the resistance minimization algorithm, which is well
suited to simulated experiments and refinements (Runions et al., 2017).

5.2 Vascular strand representation

We model vasculature as a directed graph 〈V, E〉 with vertices v ∈ V connected
by edges e ∈ E . The edges represent segments of vascular strands, and the
vertices represent points at which these segments meet. Some vertices may
represent branching or joint points of several strands, while others may represent
connecting points between short segments of a longer strand. The ground tissue
is not represented explicitly and is defined by the absence of vasculature. The
impact of receptacle growth on the shape of vascular strands is approximated by
expressing positions of all vertices v using harmonic coordinates, which deform
as the receptacle expands. Intuitively, we may thus think of the harmonic
coordinate fields as playing the role of the ground tissue, in which the vasculature
is embedded. Note, however, that the harmonic coordinates of all vertices are
recomputed after each growth step, and thus the mathematical description of
this embedding changes from one step to the next.

5.3 Vein initials

The patterning of each vascular strand begins with the placement of a pri-
mordium on the receptacle surface by the phyllotaxis model (P-model). This
placement is followed by the formation of a short vein initial that penetrates the
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receptacle interior in a direction approximately normal to the receptacle surface.
Biologically, it may originate in the supported bract or flower, and extend into
the subepidermal tissue, where it connects to other strands of the emerging vas-
cular network. In the following description we refer to this connecting point as
the primordium, even though it is at some distance from the actual primordium
returned by the P-model.

5.4 Minimum resistance path

Once a primorium p has been established, a strand segment that connects it
to the already existing vasculature is formed. The connecting vertex v is cho-
sen such that the resistance between the primordium and the procambial ring
located at the receptacle base is minimized:

v = argmin
v′∈V

[RG(p,v′) +RV(v′, ring)] . (7)

Here RG(p,v′) is the resistance of the path from primordium p to a “candidate”
vertex v′ passing through the ground tissue, and RV(v′, ring) is the resistance
of the path from v′ to the procambial ring passing through the already differen-
tiated vascular strands. While modeling leaf vasculature, Runions et al. (2017)
assumed that resistance RG(p,v′) was proportional to the (Euclidean) distance
d(p,v′) between points p and v′:

RG(p,v′) = rG d(p,v′), (8)

where rG is the resistivity (resistance per unit distance) of the ground tissue.
Similarly, the resistance RV(v′, ring) between point v′ and the ring through
the existing vasculature V was calculated as

RV(v′, ring) = rV
∑
e∈Ev′

le, (9)

where rV is the resistivity of vascular strands, and le denotes the length of the
strand segment e in the path Ev′ connecting vertex v′ to the procambial ring.

Equations 8 and 9 imply that resistivities of the ground tissue (rG) and vas-
cular strands (rV) are constant scalar values. With this assumption it is possible
to simulate vascular development in diverse leaves (Runions et al., 2017), but to
reproduce vascular patterns in heads we needed to vary resistivities according
to time and direction.

5.5 Time dependence

Vascular strands supporting the first few bracts in all three modeled species
run approximately parallel to each other (Figs. 5 and S6b). To promote direct
connections of these bracts to the procambial ring without forming a branching
structure, we assumed that the ground tissue resistivity rG is low in very young
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heads. It increases to its target value used in the remainder of the simulation
after the first few strands have been patterned.

An inherent feature of spiral phyllotaxis is that primordia are arranged into
parastichies: conspicuous spirals running in opposite directions. In some flower
heads, such as Bellis, developing vascular strands consistently follow a specific
parastichy family (Fig. 5i). In contrast, strands simulated using the minimum
resistance algorithm with constant resistivities switch their course between dif-
ferent parastichies in an irregular manner (Fig. S10a). To simulate the develop-
ment of vascular strands that follow a specific family of parastichies, we extend
the minimum resistance model by assuming that ground tissue resistivity rG
and vascular strand resistivity rV depend locally on time in a manner promot-
ing connections to older strands. Specifically, ground tissue resistivity rG(p,v′)
adjusted for the age of nearby veins is calculated using the formula

rageG (p,v′) = rG + µage

[
maxu∈Sp{age(u)}

age(v′)
− 1

]
, (10)

where Sp is a set of vertices u close to vertex p. Resistivity rageG (p,v′) is thus
increased with respect to the reference value rG for vertices v′ younger than the
oldest vertex u in proximity of p. Correspondingly, Equation 8 is modified to

RG(p,v′) = rageG (p,v′) d(p,v′). (11)

Resistivity of an existing strand e is assumed to change from the ground
tissue resistivity rG to its final value rV over maturation time τm. This change
is effected using a sigmoidal function rageV (e) of the segment age measured from
the time of the segment creation. Equation 9 is thus modified to:

RV(v′, ring) =
∑
e∈Ev′

rageV (e) le. (12)

Taking the time-dependent resistivities into account, the path of least resis-
tance is found by substituting Equations 11 and 12 into Equation 7. An example
of a vascular system following a single family of parastichies obtained in this
manner is shown in Fig S10b.

5.6 Reticulation

To complete the reticulate vasculature exemplified by Bellis, the vascular con-
nections that correspond to the opposite family of parastichies must also be pro-
duced. Data (Fig. 5c) indicate that these connections are formed after strands
from the first family of parastichies, as opposed to appearing concurrently. We
find them by searching for the minimum-resistance connection using Equation 7
again, after a delay τd, while excluding vertices v′ that already belong to the
previously formed vascular strand originating at p. Once a candidate vertex v
has been found, the total resistance R(p, ring) of the path passing through v
is compared to the resistance of the original path. Unless the resistance of the
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new path is disproportionally high (the ratio of the resistances of the new and
old paths is above a predefined threshold κ), the connection is made. The effect
of this process is illustrated in Fig. S10c.

5.7 Sectoriality

In sunflower heads, vascular strands supporting floret primordia penetrate the
receptacle deeply, forming highly branching tree-like structures attached to the
radially spreading abaxial strands. These tree structures extend sectorially,
which gives them an almost two-dimensional character. We account for this
sectoriality by assuming the presence of a mechanism that polarizes the ground
tissue radially, producing an anisotropic resistivity field. To model it, we ex-
tend the minimum resistance framework by introducing a non-linear function
that increases ground tissue resistivity rG(p,v′) as point v′ deviates from the
longitudinal section p occupies. Some degree of sectoriality is also observed in
other heads; the impact of its magnitude is illustrated in Fig. S11.

We use the perpendicular distance between v′ and the radial longitudinal
sector including p to modulate ground tissue resistivity rG(p,v′)

rsecG (p,v′) = rG

(
1 + µsec [n̂ · (v′ − p)]

2
)
, (13)

where n̂ is the normal of the sector including p. Parameter µsec thus controls
the increase of ground tissue resistivity in directions not aligned with the lon-
gitudinal sector; µsec = 0 disables this feature. Sectoriality can be combined
with time dependence by replacing rG in Eq. 10 with the function rsecG (p,v′)
(Eq. 13).

5.8 Adaxial vascular strands of gerbera

A distinctive feature of gerbera heads is the presence of adaxial strands that
originate near the head rim and extend radially towards the head center (Figs.
2b,c and S1b,c). These strands have a different character from both the Bel-
lis strands, which follow parastichies, and the sunflower strands, which form
branching structures deeply penetrating the receptacle. Remarkably, the adax-
ial strands of gerbera develop ahead of the florets they support, which indicates
that their development is not guided by the floret primordia (Figs. 5b,c and
S5d). To model these strands, we assume the presence of a diffuse auxin source,
represented geometrically as a set of “attraction points”, towards which the
adaxial strands gradually extend. The attraction points are distributed subepi-
dermally ahead of the active ring, such that they maintain constant density.
The strand extension process is simulated using the space colonization algo-
rithm (Runions et al., 2005, 2007). The veins connecting florets to the already
formed vasculature are then patterned using the resistance minimization algo-
rithm, taking the already formed adaxial strands into account.
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5.9 Randomization

Single-shot vascular connections generated by the resistance minimization algo-
rithm are straight lines connecting primordia (more precisely, the ends of vein
initials originating at the primordia) to the existing vasculature. In contrast, the
strands observed in heads meander, deviating from straight lines to various de-
grees. One source of these deviations is the irregular lattice of ground tissue cells
within which the strand patterning and differentiation occur. As our geometric
model is an abstraction that does not explicitly simulate ground tissue cells or
other possible factors in path deviation (except for the random distribution of
attraction points inherent in the space colonization algorithm), we introduce
deviations by randomly perturbing the vascular paths. To this end, we build a
strand from p to v as a polygonal line with segments of approximately equal
length δstep joined at vertices p0 = p,p1,p2, . . . ,pn = ṽ. The endpoint ṽ is
an existing vascular vertex in the proximity of, but not necessarily coinciding
with, v. The process is controlled by two parameters: the probability η that a
perturbation will take place, and the maximum magnitude of this perturbation,
γmax. The polygonal trajectory is constructed according to the formula:

pt+1 =

{
pt + δstep (ŝt + γtd̂t) with probability η,
pt + δstepŝt otherwise,

(14)

where ŝt is the unit vector from vertex pt towards the target vertex v, d̂t is a
randomly chosen direction of deviation perpendicular to ŝt (in 3D), and γt is the
magnitude of this deviation, chosen randomly (with uniform distribution) from
the interval [0, γmax]. The strand construction ends when the most recently
constructed vertex pt is within a predefined threshold distance from a vertex
ṽ of the existing vasculature, at which time the connection is completed by
adjusting position of pt to coincide with ṽ.

5.10 Calculation of strand diameter

The model elements described so far are focused on generating the skeletons
of vascular structures. To facilitate visual comparisons between scanned and
simulated patterns, we also model the widths (diameters) of the vascular strands.
We adapt for this purpose the method proposed for leaf venation by Runions
et al. (2005). The computation proceeds basipetally, from the organ primordia
to the receptacle base. Veins directly supporting organ primordia, as well as the
tips of adaxial strands in gerbera, are assigned predefined widths ρ specified as
model parameters. Vascular segments that extend a strand outside of branching
points have the same diameter as the preceding strands. At the points where
strands with diameters d1 and d2 meet in their course toward the receptacle base,
diameter d12 of the resulting, more basal strand is calculated using Murray’s
(1927) law,

dn12 = dn1 + dn2 , (15)

where n is a model parameter (MacDonald, 1983). These rules suffice to deter-
mine strand widths in open vascular patterns (without loops).
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In the reticulated vasculature of Bellis (Fig. 7) and its less regular variants
(Fig. S11), we also consider configurations in which vascular strands split. While
modeling leaf venation, Runions et al. (2005) assumed that veinlets reaching a
reticulation point contribute evenly toward the width of the outgoing strands.
In the model of Bellis, we modify this heuristic by assuming that the strand or
strands reaching a reticulation point contribute to the width of outgoing strands
unevenly, favoring the outgoing strand that was formed first. This asymmetry
results in different diameters of the strands following opposite parastichies (Fig.
7), as observed in nature (Fig. 3g).
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A Appendix

Parameter Bellis Sunflower Gerbera
C-Model: Contour expansion model (Sec. 2)
Number of longitudinal sections 7 9 10
Number of landmarks 40 60 40
Final head height 8.37 5.35 7.65
Final head diameter 7.19 12.79 18.72
P-Model: Phyllotactic pattern generation (Sec. 3)
Numbers of primordia Bract 28 Bract 81 Bract 84

Floret 392 Floret 416 Trans 167
Disc 466

H-Model and G-Model: Receptacle model (Sec. 4)
Number of control points N 71 99 110
Number of contours M + 1 2,214 2,214 2,214
Number of simulation iterations 2,214 2,214 2,214
Total number of fields wt

i 157,194 219,186 243,540
V-Model: Vasculature strand insertion (Sec. 5)
Final number of vertices |V| 14,172 38,598 47,497
Minimal resistance path (Sec. 5.4)
Reference ground resistivity rG 0.5→ 6.5 0.6→ 2.1 0.4→ 7.0
Final strand resistivity rV 1.0 1.0 1.0
Time dependence (Sec. 5.5)
Ground resistivity control µage 1.0 0.0 0.0
Maturation time τm [iterations] 255 4 13
Reticulation (Sec. 5.6)
Delay τd [iterations] 285 N/A N/A
Threshold κ 1.3 N/A N/A
Sectoriality (Sec. 5.7)
Sectoriality control µsec 0 0.65 0.25
Adaxial vascular strands (Sec. 5.8)
Attraction points (max.) N/A N/A 1065
Randomization (Sec. 5.9)
Segment length δstep 0.02 0.01 0.02
Deviation probability η 30% 49% 30%
Maximum deviation γmax 0.3 0.8 0.27
Calculation of strand diameter (Sec. 5.10)
Diameter ρ Bract 0.08 Bract 0.14 Bract 0.14

Floret 0.04 Floret 0.1 Floret 0.09
Adaxial 0.11

Murray’s law exponent n 5 5 5

Table SMD1: Numerical values of key model parameters used in the simulations
of the Bellis, sunflower and gerbera heads. Blue rows show quantities derived
from other parameters or emerging in the simulations.
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with discrete exterior calculus. In ACM SIGGRAPH 2013 Courses, pages
1–126. 2013.

R Goldman. On the algebraic and geometric foundations of computer graphics.
ACM Transactions on Graphics, 21:52–86, 2002.

G Guennebaud, B Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

A Jacobson. Algorithms and interfaces for real-time deformation of 2D and 3D
shapes. PhD thesis, ETH Zurich, 2013.

A Jacobson, D Panozzo, et al. libigl: A simple C++ geometry processing library,
2018. https://libigl.github.io/.

H Jönsson, MG Heisler, BE Shapiro, EM Meyerowitz, and E Mjolsness. An
auxin-driven polarized transport model for phyllotaxis. Proceedings of the
National Academy of Sciences, USA, 103:1633–1638, 2006.

P Joshi, M Meyer, T DeRose, B Green, and T Sanocki. Harmonic coordinates
for character articulation. ACM Transactions on Graphics, 26:71, pages 1–9,
2007.

N MacDonald. Trees and Networks in Biological Models. J. Wiley & Sons,
Chichester, 1983.

GJ Mitchison. A model for vein formation in higher plants. Proceedings of the
Royal Society B, 207:79–109, 1980.

CD Murray. A relationship between circumference and weight in trees and its
bearing on branching angles. The Journal of General Physiology, 10:725–729,
1927.

DL O’Connor, A Runions, A Sluis, J Bragg, JP Vogel, P Prusinkiewicz, and
S Hake. A division in pin-mediated auxin patterning during organ initiation
in grasses. PLoS Computational Biology, 10:e1003447, 2014.

14



A Owens, M Cieslak, J Hart, R Classen-Bockhoff, and P Prusinkiewicz. Model-
ing dense inflorescences. ACM Transactions on Graphics, 35:136, pages 1–14,
2016.

D Reinhardt, ER Pesce, P Stieger, T Mandel, K Baltensperger, M Bennett,
J Traas, J Friml, and C Kuhlemeier. Regulation of phyllotaxis by polar auxin
transport. Nature, 426:255–260, 2003.

L Ringham, A Owens, M Cieslak, LD Harder, and P Prusinkiewicz. Modeling
flower pigmentation patterns. ACM Transactions on Graphics, 40:233, pages
1–14, 2021.

Y Rodkaew, S Siripant, C Lursinsap, and P Chongstitvatana. An algorithm
for generating vein images for realistic modeling of a leaf. In Proceedings
of the international conference on computational mathematics and modeling,
volume 9, pages 1–9, 2002.

Y Rodkaew, P Chongstitvatana, S Siripant, and C Lursinsap. Particle systems
for plant modeling. In B-G Hu and M Jaeger, editors, Plant growth modeling
and applications. Proceedings of PMA03, pages 210–217. Tsinghua University
Press and Springer, Beijing, 2003.

A-G Rolland-Lagan and P Prusinkiewicz. Reviewing models of auxin canaliza-
tion in the context of leaf vein pattern formation in Arabidopsis. The Plant
Journal, 44:854–865, 2005.

A Runions, M Fuhrer, B Lane, P Federl, A-G Rolland-Lagan, and
P Prusinkiewicz. Modeling and visualization of leaf venation patterns. ACM
Transactions on Graphics, 24:702–711, 2005.

A Runions, B Lane, and P Prusinkiewicz. Modeling trees with a space colo-
nization algorithm. In Eurographics Workshop on Natural Phenomena 2007,
pages 63–70, 2007.

A Runions, M Tsiantis, and P Prusinkiewicz. A common developmental program
can produce diverse leaf shapes. New Phytologist, 216:401–418, 2017.

T Sachs. Polarity and the induction of organized vascular tissues. Annals of
Botany, 33:263–275, 1969.

T Sachs. Pattern Formation in Plant Tissues. Cambridge University Press,
Cambridge, 1991.

JR Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and De-
launay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied
Computational Geometry: Towards Geometric Engineering, volume 1148 of
Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, 1996.

RS Smith, S Guyomarc’h, T Mandel, D Reinhardt, C Kuhlemeier, and
P Prusinkiewicz. A plausible model of phyllotaxis. Proceedings of the National
Academy of Sciences, USA, 103:1301–1306, 2006.

15



D’Arcy Thompson. On Growth and Form. Second Edition. Cambridge Univer-
sity Press, Cambridge, 1942.

T Zhang, M Cieslak, A Owens, F Wang, SK Broholm, TH Teeri, P Elomaa, and
P Prusinkiewicz. Phyllotactic patterning of gerbera flower heads. Proceedings
of the National Academy of Sciences, USA, 118:e2016304118, 2021.

16


