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1 Introduction

Interesting applications of parametric context-sensitive L-systems stem from
their capability of expressing numerical solutions to initial value problems
for partial differential equations. This capability was originally explored in
the context of simulations performed using CELIA, the first software im-
plementation of L-systems [2, 3, 9, 12], with the most general observations
made in [10]. In this note, we present an approach to solving the initial value
problem for PDEs with L-systems, using a parabolic (diffusion) equation as
an example. We then apply this approach to solve a system of reaction-
diffusion equations operating in a one-dimensional medium of constant size,
as well as in an expanding medium. These solutions represent the evolu-
tion of the spatial distribution of the dependent variable(s) over time, and
therefore lend themselves in a natural way to visualizations using extruded
objects in space-time. In the examples considered, the visualizations lead to
a realistic image of the shell of Nautilus pompilius with a pigmentation pat-
tern, and to a graphical representation of the development of a filamentous
bacteria Anabaena catenula.

2 Diffusion and decay

Let us consider the following equation:

ou 0%u
ot Ox? (1)
*Adapted from: M. Hammel and P. Prusinkiewicz: Visualization of developmental
processes by extrusion in space-time, Proceedings of Graphics Interface 96, pp. 246—258.
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If w is interpreted as the concentration of a substance C, this equation
represents the decay of C' with time constant v and the diffusion of C' along
axis « with the diffusion coefficient D (for example, see [6]). Suppose that
we want to solve this equation in the interval [a, b] for ¢ > 0, assuming the
boundary conditions u(a,t) = ug, u(b,t) = up, and the initial conditions

T —a

T (2)

Following the finite-difference method [19, Chapter 19], we approximate the
derivatives in Equation (1) using values taken at equally spaced sampling
points along both the x and t axes:

u(z,0) = uq + (up — uq)

x; = xo+iAx, wherei=0,1,...,m,
. . (3)
tj = to+jAt, wherej=0,1,2,....

Using notation uz = u(x;,tj), we obtain:

1 . . . .
ui — uz — —V’U,g + Dug-i-l _ 2“3 + ug—la (4)
At (Ax)?
which leads to
J J J
i1 . . u4+1—2u. —|—u.71
uwl ™ =l + (—Vuf + D (A;)Z : ) At. (5)

For any values of indices 4 and j, Equation (5) can be regarded as assigning
a new value u] *1 to the variable u}, taking into account the values 7, ; and

u]_, at the neighboring sampling points. Any sampling point along the axis
x (except for the boundary points) is subject to a similar assignment, thus
Equation (5) can be rewritten as the following context-sensitive L-system
production:

M(w) < M(u) > M(uy) — M (u+ (—vu+ DUZSE)AL) . (6)

Notice that the L-system notation eliminates the need for index arithmetic.
The subscripts in the formal parameter names u;, u, and u, are not numbers,
but mnemonic descriptors of the left and right neighbors. Similarly, indices
are not needed to distinguish between the “old” and “new” values of variable
u at any point in space, because the progress of time is implicit in the notion
of a derivation step in an L-system.

To provide a framework for finite differencing expressed by production
(6) a complete L-system solving Equation (1) must also:
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Figure 1: a) Visual representation of a solution to the PDE (1) obtained
using an L-system based on production (6). Boundaries separating black
and white regions indicate selected values of variable u. b) Visual represen-
tation of a solution to the PDE (7) obtained using an L-system based on
production (10). White areas represent concentrations a < 0.15, and black
areas represent concentrations a > 0.15. In both figures, time progresses
from the top down.

e create a string of m modules M from the axiom,
e set the initial value of variable u in each module,

e maintain the boundary values of u in the first and the last modules M
during the derivation process.

In addition, a graphical output must be associated with each module M if
a visual representation of the solution is needed.

Figure la shows an extruded representation of the solution to PDE (1)
obtained using an L-system in which each module M is shown as a line
segment of unit length, with the color dependent on the value of variable w.
The values of constants used in this simulation were: v = 0.01,D = 5,a =
0,uq = 64,b =128, up = 256, At = 1, and m = 128, yielding Az = =2 = 1.

m
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3 Reaction-diffusion

The described approach to solving partial differential equations using L-
systems can easily be extended to systems of equations. In this case, a
module M will have several parameters, each representing a different de-
pendent variable. We will illustrate this technique by referring to reaction-
diffusion models of the formation of pigmentation patterns in sea shells
[7, 14, 15, 16, 17]*. The models recreate pattern formation in nature, which
is characterized by Meinhardt as follows [15, p. vii]:

A mollusc can enlarge its shell only at the shell margin. In most
cases, only at this margin are new elements of the pigmentation
pattern added. Therefore, the shell pattern preserves a record in
time of a process that took place in a narrow zone at the growing
edge. A certain point on the shell represents a certain moment
in its history. Like a time machine one can go into the past or
the future just by turning the shell back and forth.

According to this description, a pigmentation pattern can be captured by
simulating processes taking place at the growing edge and extruding this
edge along an axis representing time. For example, the following system of
differential equations was proposed by Meinhardt to model the formation of
the pigmentation pattern on the shell of Nautilus pompilius [16] (see also [15,
page 61]):

ga :a’—ua—l—Da%,

(7)

% = o(x) —a’—us—i—Dsg—i‘;,
where
2
, a
= _ s 8
W = ps o (5)
and

2min{z — Tpmin, Tmaz — T}

(9)

O'($) = Omin + (Umaz - Jmin) T .
max — 4mn

!The idea of modeling shell patterns using L-systems is not entirely new. Specifically,
Baker and Herman generated pigmentation patterns similar to those found in Oliva por-
phyria [3] (see also [10, Chapter 18]) by applying L-systems to express a cellular automaton
model proposed by Waddington and Cowe [21]. This approach preceded the formulation
of the reaction-diffusion models of pigmentation, first reported in [14], and therefore did
not expose the general possibility of expressing reaction-diffusion models using L-systems.
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The variables a and b in Equation (7) describe concentrations of two chemical
substances, called the activator and the substrate, which diffuse along the
growing edge and react with each other. Equation (9) characterizes the
production of the substrate o(z) as a triangle-shaped function of the position
of the sampling point x along the edge [Tmin, Tmaz]-

To solve Equation (7) using an L-system, we discretize the growing edge
and represent it as a string of modules M. The production that implements
the finite difference method is:

M(ay, s1,01) < M(a,s,o) > M(ay, sy, or)

— M (a + (a/ — pa + DGW)AL (10)
s+ (0 —d —vs+ Dy sl(f;;;sr)At, a) .

where o’ is defined by Equation (8). As in the diffusion-decay example dis-
cussed in Section 2, the complete L-system for solving Equations (7) must
also create the string of modules M and assign the initial and boundary
values to the variables. This includes, in particular, the values of substrate
production o, which depend on the module position in the string (Equa-
tion 9).

A solution to Equation (7) in the interval

[xmina xmax] = [07 100] (11)

with the initial conditions a(z,0) = s(x,0) = 0 and boundary conditions
a(0,t) = a(100,t) = s(0,t) = s(100,t) = 0, is visualized in Figure 1b. The
following constants were used: p = 0.5,k = 1,pp = 0.004, = 0.1,D, =
0.1, =0,D5 = 0.1, 0pin, = 0.012, 040, = 0.038, Ax = 1, and At = 1.

A realistic model of the Nautilus shell can be obtained assuming that
the shell opening has the shape of a circle, growing exponentially from one
derivation step to another, and that the axis of extrusion is coiled into a log-
arithmic spiral (see [7, 15] for details regarding the modeling of shell shape).
Both phenomena can be easily expressed using an L-system, resulting in the
model shown in Figure 2.

4 Reaction-diffusion in an expanding medium

The model of Nautilus pompilius extends the range of applications of L-
system models to sea shells with pigmentation patterns. More generally,
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Figure 2: Model of a Nautilus pompilius shell

it demonstrates that reaction-diffusion processes can be expressed using L-
systems. However, the integration of reaction-diffusion processes and L-
systems also leads to a wider class of models of morphogenesis, characterized
by reaction-diffusion taking place in expanding media.

From a historical perspective, reaction-diffusion models were originally
formulated under the simplifying assumption that the medium in which
diffusion takes place does not grow [20]. This assumption dominated subse-
quent applications of the reaction-diffusion model. Exceptions include the
consideration of edge growth in models of the pigmentation pattern of se-
lected sea shells [15, 16], a model of stripe rearrangement during growth on
the skin of the fish Pomacanthus semicirculatus [11], and a generic model
of a growing filament that maintains a constant spacing between dividing
and non-dividing cells [4]. In this section we present a related model of the
development of the bacteria Anabaena catenula.

As described by Mitchison and Wilcox [18], the cells of Anabaena are
organized into filaments which consist of sequences of vegetative cells sepa-
rated by heterocysts. The vegetative cells divide into two cells of unequal
length and, in some cases, differentiate into heterocysts which do not further
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divide. Due to this differentiation, the organism maintains an approximately
constant spacing between heterocysts: whenever the distance between two
heterocysts becomes too large due to the division and elongation of vegeta-
tive cells, a new heterocyst emerges.

What mechanisms is responsible for the differentiation of heterocysts
and the maintenance of constant spacing between them? Baker and Herman
[2, 3] (see also [5, 9, 12] proposed the following model. The heterocysts fix
atmospheric nitrogen and transform it into nitrogenous compounds. These
compounds diffuse along the filament and are used by the vegetative cells.
When the level of nitrogenous compounds drops below a threshold value,
the cells that detect this reduced level differentiate into heterocysts.

Although the model of Baker and Herman is capable of reproducing the
observed pattern of heterocyst spacing, it is very sensitive to parameter
values. Small changes in these values easily result in filaments with pairs
of heterocysts appearing almost simultaneously, close to each other. This is
not surprising, considering the operation of the model. The gradient of the
concentration of nitrogenous compounds may be too small near the middle
of a sequence of vegetative cells to precisely define the point in which a new
heterocyst should differentiate. Consequently, the threshold value may be
reached almost simultaneously by several neighboring cells, resulting in the
differentiation of two or more heterocysts close to each other.

The described model can be improved assuming that the prospective
heterocysts compete until one “wins” and suppresses the differentiation of
its neighbors. This “interactive” model was originally proposed by Wilcox et
al [22]. We formalize it using the framework of the activator-inhibitor class
of reaction-diffusion models [13]. In addition to the nitrogenous compounds
that inhibit the differentiation, the cells are assumed to carry a hypothetical
substance referred to as the activator. The concentration of the activator
is the criterion that distinguishes the vegetative cells (low concentration)
from the heterocysts (high concentration). The activator and inhibitor are
antagonistic substances: the production of the activator is suppressed by
the inhibitor unless the concentration of the inhibitor is low. In that case,
production of the activator drastically increases through an autocatalytic
process (an increased concentration of the activator promotes its own fur-
ther production). High concentration of the activator also promotes the
production of the inhibitor, which diffuses to the neighboring cells. This
establishes a ground for competition in which activator-producing cells at-
tempt to suppress production of the activator in the neighboring cells. For
proper values of parameters that control this process, only individual, widely
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spaced cells are able to maintain the high-activation state.
An L-system implementation of these mechanisms (a variant of the L-
system from [8]) is given below:

w: M(0.5,1,200,right) M (0.5, 1, 100, right) M (0.5, 1, 100, right)
p1: M(Shalahlapl) < M($7a7h7p) > M(S’I‘7a’r‘7h7’7pT) :

$ < Smaz & a < ag, — M(s',d', 1, p)
b2 M(Slaahh’lapl) < M($7a7h7p) > M<8T7a7‘7h7’7p7‘) :

8> Smaz & a < ayp, & p = left —

M(ks',a', B left) M ((1 — k)s’,a’, W, right) (12)
b3 : M(Sl)alvhlapl) < M(S,CL, h’vp) > M(Sr)arvhrapT) :

S > Smaz & a < agp, & p = right —

M((1—k)s',a',n left)M(ks',a’, b/, right)
ba: M(sbalahlvpl) < M(87a7h7p) > M(5T7a7’7h7“7p7") :

a Z agp — M(Svalv hlvp)

where:

s = s(1+rAt),
¢ = a+ (8(re +ao) — ua) At, (13)
B = h+(p(%+ho)—uh+DhW)At.

The cells are specified as modules M, where parameter s stands for cell
length, a is the concentration of the activator, h is the concentration of the
inhibitor, and p denotes polarity, which plays a role during cell division. All
productions are context-sensitive to capture diffusion of the activator and
inhibitor. It is assumed that the main barrier for the diffusion are cell walls
of width w. Production p; characterizes growth of vegetative cells (a < ap,),
controlled by the growth rate r. A cell that reaches the maximum length of
Smaz divides into two unequal daughter cells, with the lengths controlled by
constant k < 0.5. The respective positions of the longer and shorter cells
depends on the polarity p of the mother cell, as described by productions
po and p3. Increase of the concentration of the activator a to or above
the threshold value a;, indicates the emergence of a heterocyst. According
to production p4, a heterocyst does not further elongate or divide. The
equations for s, @/, and I’ govern the exponential elongation of the cells
and the activator-inhibitor interactions [13].

The operation of the model is illustrated in Figure 3. The vertical lines
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Figure 3: Fragment of a simulated filament of Anabaena. Vertical lines indi-
cate the concentrations of the activator and inhibitor (above and below the
cells, respectively). Notice the sharp peaks of the activator concentration
that define the heterocysts, and high levels of the inhibitor concentration in
the neighboring vegetative, which prevent their differentiation. The param-
eters used in the simulation were: p = 3, x = 0.001, ag = 0.01, p = 0.1,
ho = 0.001, v = 0.45, Dy = 0.004, ay, = 1, k = 0.38196, Spmaz = 1,
r = 0.002, and w = 0.001.

indicate the concentrations of the activator (above the filament) and in-
hibitor (below the filament) associated with each cell.

It is interesting from the historical perspective that the interactive model
of Wilcox et al. [22] and its subsequent L-system implementation [8] pre-
dicted the essential structure of the gene regulation network that controls
the development of Anabaena filaments in nature [1]. The activator corre-
sponds to the protein HetR, which plays a key role in the maintenance of
the heterocyst state, whereas the inhibitor corresponds to the protein PatS
(or a fragment of it), which diffuses across the filament and maintains the
spacing between the heterocysts. The character of interactions captured by
the simulation model is consistent with the postulated structure of the gene
regulation network, in which HetR upregulates its own production as well
as the production of PatS, whereas PatS downregulates production of HetR.
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