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Abstract

Procedural methods provide an algorithmic way to produce textures for use in computer

graphics. One such method, reaction-diffusion, is a powerful mathematical approach that

describes natural pattern formation in terms of chemicals known as morphogens. This thesis

describes LRDS, an environment for authoring reaction-diffusion models directly on arbitrary

surfaces. Morphogens, their behaviours, and the domain in which they reside can be quickly

and easily defined. By performing computation on the GPU, the pattern forming simulation

can be interacted with in real-time, facilitating productivity and experimentation. Four case

studies are presented. The first is a simulation of ladybug pigmentation patterns. The second

is a simulation of pigmentation patterns seen on the body of snakes. The third study looks

at flower petal pattern modelling. Lastly, a biologically-motivated model of the autoimmune

disease psoriasis is presented.
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Chapter 1

Introduction

From the stripes on a zebra to the spots on a leopard, nature provides a wide variety of

beautiful patterns (Fig. 1.1). In 1952 Alan Turing proposed a system of partial differential

equations (PDEs) aimed at explaining the formation of natural patterns. The patterns are

created from chemicals that diffuse and react together through a spatial medium (Turing,

1952). The chemicals are thought to cause various phenomena such as specialization of

tissue in a process known as morphogenesis. Therefore, these chemicals are referred to

as morphogens.1 This system is named reaction-diffusion and has since become widely

used in mathematical and computational modelling of natural pattern formation. In 1972

Hans Meinhardt and Alfred Gierer independently discovered and advanced reaction-diffusion

by focusing on the roles of long-range activation and short-range inhibition (Gierer and

Meinhardt, 1972). Since then, advanced reaction-diffusion models have been created and

used to explain many different biological patterns (Garzón-Alvarado, Diego A. and Ramı́rez

Martinez, Angelica M., 2011; Fowler et al., 1992; Lefèvre and Mangin, 2010; Meinhardt,

2009).

1The term “morphogen” should not be confused with Wolpert’s positional signals definition (Wolpert,
1996).
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Figure 1.1 – Examples of beautiful patterns found in nature. Photographs by pixabay.com,
licensed under Pixabay License.

There has been a large body of work focused on simulating reaction-diffusion patterns.

These simulations can be used to give insights into the inner workings of nature or provide

textures for use in computer graphics. Regular grids represent the space in which most

simulations compute the partial differential equations. Chemicals are found in the grid cells,

which represent discrete areas. This arrangement offers many advantages, such as ease of

evaluation and the use of specialized graphics hardware to accelerate computation.

Witkin and Kass (1991) used reaction-diffusion as a method of texture synthesis for

computer graphics and extended the range of possible patterns from traditional reaction-

diffusion by introducing anisotropic diffusion and varying diffusion rates in their simulations.

The patterns were simulated on a grid, which was subsequently mapped onto a parametric

surface as a texture. Grid boundaries were connected in the topology of a torus to avoid
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seams in the texture.

Growth of the spatial medium supporting pattern formation can affect the pattern’s

appearance2. Although grid domains can grow, they are not suitable for growth occurring

just at a single location. Local growth requires an arbitrary surface not constrained to a

rectangular shape.

Lefèvre and Mangin (2010) modelled the growth and folding of a brain using reaction-

diffusion. In this work, they simulated a labyrinth pattern on a spherical mesh representing

the brain’s surface. Chemical concentrations determined the rate of mesh growth. This

growth, in turn, provides more space for the pattern to develop. The result is labyrinth-like

folds protruding from the surface of the mesh. Harrison et al. (2002); Holloway and Harrison

(2007) modelled the growth of plants by coupling reaction-diffusion and surface deformation

in the same way. Fowler et al. (1992) modelled patterns found on seashells using a special

case of growth. The shell domain starts as a 1D layer representing the initial conditions

of the pattern. Layers are accrued over time, where each subsequent layer is a progression

through time of the simulation.

Turk (1991) simulated reaction-diffusion on meshes by using a second Voronoi mesh to

represent the original mesh surface. This Voronoi mesh was used as the spatial domain and

chemicals were stored in its faces. The rate of diffusion across face edges depends on the

edge lengths. Using a second mesh avoids modification of the original mesh and allows for

the generation of detailed pattern textures. Another benefit of simulating directly on a mesh

is that there is no need to correct for pattern distortion that occurs when mapping a grid to

an arbitrary surface. Unfortunately, there is no consideration for growth or interaction.

Reaction-diffusion has also been solved directly on triangular meshes (Descombes, Samira

Michèle and Dhillon, Daljit Singh and Zwicker, Matthias, 2016), avoiding the need for a

Voronoi mesh. This work leveraged the GPU, allowing for much faster simulation progression

compared to CPU-based computation. This speed facilitated parameter space exploration

2This is an observation that Turing identified but purposely ignored.
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and pattern creation. However, Descombes, Samira Michèle and Dhillon, Daljit Singh and

Zwicker, Matthias (2016) do not consider growth or anisotropic diffusion.

There have been a number of software applications designed around creating models that

can procedurally generate patterns. A program named “TexRD” supports simulation of

reaction-diffusion on grid based domains (Luc Decker, 2019). “NetLogo” is a mature and

well tested application that allows for fast simulation of PDEs and other pattern forming

systems such as cellular automata (Wilensky, U, 1999). A cross-platform application named

“READY” is designed around simulating GPU accelerated reaction-diffusion equations on

arbitrary domains (GollyGang, 2012). In the listed applications, there is no built-in support

for extensions to reaction-diffusion such as anisotropic diffusion on arbitrary triangulated

surfaces. Also, parameter specification is only done through editing text files.

In this thesis I present “Lightweight Reaction-Diffusion Simulator” (LRDS), a program

that facilitates simulation and exploration of reaction-diffusion patterns, including those

formed on grids and arbitrary triangular meshes. These meshes have support for growth,

anisotropic diffusion, and parameters that change value in over space and time. Reaction-

diffusion is computed directly on triangular meshes by combining the use of the CPU and

GPU. Adaptive subdivision and user interaction, which do not benefit from parallelism due to

their recursive or sequential nature, use the CPU. Parallelizable algorithms, such as reaction-

diffusion equations are calculated efficiently by using the GPU. This mixed approach makes

it possible to create fast and interactive simulations.

This thesis is organized as follows. First, I review the principles of reaction-diffusion

patterning, and I explain the computational aspects of simulating reaction-diffusion. Next,

I describe the implementation details of the LRDS system. On this basis, I present four

case studies. The first study analyses ladybug shell patterns. Liaw et al. (2001) produced

simulations of ladybug shell patterns on a grid located on a partial sphere. I improve on

this study by using arbitrary triangular meshes to replace the partial sphere. These meshes

allow for an organic shell shape. I also explore some alternative parameters and initial
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conditions to improve on the pattern stability and appearance. The second study produces

reaction-diffusion patterns that resemble those found on snakes. Anisotropy is used to align

these patterns to the snake mesh and growth is used to create more complicated patterns

such as rows of dual spots. The third study explores pigmentation patterns on flowers.

I produced models of various flower species on meshes by using varying parameters and

anisotropic diffusion. Some flowers considered include foxglove, monkeyflower, and orchids,

which display vibrant patterns on attractive curved petals. Although petal pigmentation

patterns are visually striking, it is an area that remains largely unexplored despite the large

amount of work put into modelling other aspects of flower petals (Owens et al., 2016). Next,

I present a case study on modelling the autoimmune disease psoriasis based on contemporary

research into cytokine interactions. A computational model of psoriasis has the potential

to be a useful tool as it provides a mathematical representation of the disease and a fast,

non-invasive way to test the disease’s response to treatments. It is hoped this model can

be extended to other autoimmune diseases as well as increasing the efficacy of treatments.

Finally, I conclude the main contributes of this thesis and discuss future work.
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Chapter 2

Principles of Reaction-Diffusion

Patterning

Alan Turing proposed a system of differential equations as a model for biological pattern

formation (Turing, 1952). In this system, a spatial medium contains an initially homogeneous

distribution of chemicals. This arrangement is in an unstable equilibrium and the presence

of small chemical perturbations instigates pattern formation. The system responds in a few

ways over time: it can gain stability in a patterned state, oscillate between patterns, or settle

in a homogeneous non-patterned state.

2.1 Reaction-Diffusion in a Continuous Domain

Reaction-diffusion is formalized as a set of PDEs that represent the change in concentration of

morphogens over time. Considering morphogens a and b, a two-substance reaction-diffusion

system is defined by the system of equations:

∂a

∂t
= F (a, b) +Da∇2a,

∂b

∂t
= G(a, b) +Db∇2b.

(2.1)
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As the name suggests, reaction-diffusion is composed of two mechanisms, reaction and dif-

fusion. Functions F and G describe the production and decay of a and b, and together

constitute the reactions of the system. Da and Db are coefficients that control how fast

these morphogens diffuse through the domain. Physically, they depend on the morphogen

particle size and permeability of the domain. ∇2 is the Laplacian operator, and in conjunc-

tion with the diffusion coefficients, describes the diffusion component of the system. The

concentrations of a and b are functions of time and position. All other values are constant

parameters.

These equations apply at any position in the domain in which reaction-diffusion is occur-

ring. The size, shape, and growth of this domain may also play a role in pattern formation.

Some patterns require a minimum amount of space to form. As domain size increases, the

same parameters can produce different patterns. Additionally, the shape of the domain can

affect pattern positioning and orientation.

2.2 Reaction-Diffusion Models

2.2.1 The Turing model

Turing (1952) considered reaction-diffusion on both a discrete and continuous 1D ring. Ini-

tially, morphogen concentrations would be constant across the domain and the system would

be in a stable state. Low-amplitude noise would then instigate pattern formation. The equa-

tions he proposed had the form:

∂v

∂t
= s(uv − v − β) +Dv∇2v,

∂u

∂t
= s(α− uv) +Du∇2u.

(2.2)

The morphogen u has a base production α. The uv term describes the rate at which the

morphogen u is converted into the morphogen v. Changes to s, the reaction rate, scale
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the pattern features. For example, a spot pattern will appear larger with smaller values of

parameter s. β controls a constant removal of v.

2.2.2 The Activator-Inhibitor Model

The concept of reaction-diffusion was reinvented by Gierer and Meinhardt (1972) (see also

(Meinhardt, 1982)). They considered two morphogens, an activator a and an inhibitor h.

The activator is autocatalytic, using itself to reproduce. It also spurs the production of

the inhibitor, which slows autocatalysis. The interplay between these two actions is what

allows for patterns to form. Meinhardt and Gierer advanced the idea that pattern formation

depended on is the activator diffusing much slower than the inhibitor. Often this is the

case, but such drastic differences in diffusion are not always needed (Gray and Scott, 1984;

Marcon et al., 2016). The activator-inhibitor model is defined as:

∂a

∂t
= ρ

a2

h
− µaa+ ρa +Da∇2a,

∂h

∂t
= ρa2 − µhh+ ρh +Dh∇2h.

(2.3)

In these equations, ρ is the reaction rate. µa and µh are the decay rates of a and h. ρa and

ρh represent the base production of a and h.

2.2.3 The Activator-Depleted Substrate Model

The activator-depleted substrate model is another model proposed by Gierer and Meinhardt

(1972). In this model, the inhibitor is replaced by a substrate that the activator uses to

perform autocatalysis. The inhibition mechanism results from the depletion through the

consumption of the substrate by the activator. This is represented by the equations:

∂a

∂t
= ρsa2 − µaa+ ρa +Da∇2a,

∂s

∂t
= −ρsa2 − µss+ ρs +Ds∇2s.

(2.4)
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Here ρ is the reaction rate, µa and µs are the decay rates, and ρa and ρs are the base

production rates of a and s.

2.2.4 The Gray-Scott Model

Gray and Scott (1984) investigated the behaviour of a simple irreversible set of reactions

and discovered it produced interesting patterns. These reactions occur in an isothermal,

continuously stirred tank reactor into which chemicals U is continuously fed. V reacts with

U in the tank and decays into an inert product P . This system is known as the Gray-Scott

model, and the reactions are formalized as:

U + 2V → 3V,

V → P.

(2.5)

When represented as partial differential equations, this system has the form:

∂v

∂t
= uv2 − (F + k)v +Dv∇2v,

∂u

∂t
= −uv2 + F (1− u) +Du∇2u.

(2.6)

uv2 represents U+2V → 3V and the constant k controls the rate at which V → P occurs. F

is a scalar parameter that controls how much of u is fed into the system and the proportion

of u and v that is removed. The feeding and removal of u is controlled by F which has the

effect of trying to keep the concentration of u near 1. Remarkably, the diffusivity coefficients

use a ratio of 1:2 for the activator and substrate, which is a smaller ratio than considered by

Gierer and Meinhardt. Except for a narrow range of parameters, pattern formation in this

system is not instigated by noise. A pre-pattern is required to start pattern formation.

The Gray-Scott model is a specific case of the activator-depleted substrate model. Using

the substitutions: a = v, s = u, ρ = 1, ρa = 0, µa = F + k, ρs = F , and µs = F , we obtain

Eqn. 2.4. Pearson (1993) extensively explored and visualized the Gray-Scott model in 2D
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and produced many diverse patterns (Fig. 2.1).

Figure 2.1 – Gray-Scott parameter space for parameters k on the x-axis ranging from [0.019−
0.078] and F on the y-axis ranging from [0−0.11]. Visualized is the concentration of morphogen
a. Low concentration values are blue and high concentrations are orange.

2.3 Extensions to Basic Reaction-Diffusion

The basic reaction-diffusion concept proposed by Turing and contextualized by Gierer and

Meinhardt has provided the tools for reasoning about natural pattern formation. From that

idealized system, we consider extensions to represent nature and produce realistic patterns

more accurately.

One such extension is changing parameters based on their position in the domain. A

commonly changed parameter is the diffusion rate. Increasing the diffusion rate along the
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domain causes patterns such as meandering stripes to exhibit a preferred orientation (Zheng

et al., 2009). Witkin and Kass (1991) also varied diffusion rates to correct for pattern

distortion on curved surfaces. The change of parameters in space can be driven by images

to create intricate patterns for artistic renderings.

Not only does diffusion vary, it can be anisotropic due to the heterogeneous structure

of tissue. Zhou et al. (2007) modelled pigment patterns on flower petals by considering

the influence of veins on diffusion. The diffusion between adjacent cells is modified based

on the presence of vascular cells. Adding consideration for vein width results in darker

pigment patterns along veins, as seen in real flowers such as orchids. Sanderson et al. (2004)

used anisotropic diffusion with reaction-diffusion to visualize vector fields. A uniform spot

pattern has its diffusion driven by an underlying vector field that produces distorted ovals.

In a study of snake pattern diversity, Allen et al. (2013) used anisotropic diffusion to model

various snakeskin patterns and associated them with snake behaviour.

Domain growth can affect morphogen patterns. Patterns may form before growth is

finished, and subsequent growth will cause patterns to stretch and deform. Alternatively,

patterns can develop in tandem with growth, adjusting and migrating with available space.

Kondo and Asai (1995) modelled the stripe patterns found on the angelfish Pomacanthus by

considering pattern formation during growth. The pattern is not affixed to the underlying

skin and gains new stripes that insert between existing ones over time. Similarly, J.D. Murray

and M.R. Myerscough (1991) modelled the effect of growth on snakeskin pigment pattern

formation. Fowler et al. (1992) modelled patterns formed on a growing 1D seashell margin.

Pattern-driven growth couples the growth rate of the surface with morphogen concentrations.

Lefèvre and Mangin (2010) used pattern-driven growth to model brain development. This

coupling has also been used to simulate structure formation in plants (Harrison et al., 2002;

Holloway and Harrison, 2007).

Multi-stage models where parameter values change over time have been used to simulate

the pigment patterns on leopards and jaguars (Liu et al., 2006). Malheiros and Walter (2017)

11



simulated moray eel spots by varying diffusion rates and changing morphogen saturation

limits on different areas of the body. Changing these parameters had the effect of creating

irregular spots that changed into a thicker labyrinth-like pattern. Having more than two

morphogens allows for different patterns. Schenk et al. (2000) created a three-morphogen

model that produces a pattern of spot clusters that move together as a group. Meinhardt

(1982) created a five-morphogen model that produced zebra-like stripe patterns.

Due to high sensitivity to small changes in parameters and the dependence on a difference

in diffusion rates, it is hard to justify reaction-diffusion models as a representation of nature.

Stationary cells are an example of immobile cell-autonomous factors that play a role in real

pattern formation. They can be represented as non-diffusing morphogens but are usually ab-

stracted away when creating a model. Omitting non-diffusing morphogens is done to simplify

the model and focus on the obvious morphogens. In a study by Marcon et al. (2016), they

found that 70% of three or four-morphogen systems, including non-diffusing morphogens, do

not require differing diffusion rates. Also, the patterns formed by these models are much less

sensitive to parameter changes. Including these non-diffusing morphogens provides a closer

representation of reality and suggests that some basic assumptions, such as long-range inhi-

bition and short-range activation, should be used as a special case rather than the standard

when modelling biological patterns.
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Chapter 3

Computational Aspects

3.1 Systems of Chemical Reactions

Reaction-diffusion equations are an idealized and abstract representation of reality. They

capture two phenomena, chemical reactions and diffusion. Mathematically, this is repre-

sented as a system of partial differential equations, whose numerical solution requires dis-

cretization of time and space. Computation of the chemical reactions at a specific point in

space depends on the elapsed time and previous concentration. Computation of diffusion,

however, depends additionally on the concentrations at adjacent points.

3.2 Isotropic Diffusion

Diffusion is a process in which particles of a substance move from areas with high concen-

tration to areas with low concentration. The change in concentration over space is referred

to as a concentration gradient. Diffusion was formalized in 1855 by Fick’s second law:

∂u

∂t
= ∇ · (D∇u). (3.1)
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The symbol ∇· is the divergence operator, ∇ is the gradient operator, and u is a scalar field.

Given Eqn. 3.1, we see that the diffusion rate depends on the gradient of the concentration.

At a given location, the divergence of the gradient of u measures the difference between the

concentration at that point and the average of the neighbouring concentrations. Diffusion

is proportional to this change in concentration. However, particle size and domain porosity

also affect the diffusion rate. This is represented by the diffusivity coefficient D. If diffusivity

is the same regardless of direction, this diffusion is said to be isotropic, and we can simplify

Eqn. 3.1 to:

∂u

∂t
= D∇2u, (3.2)

where ∇2 is the divergence of the gradient and is called the Laplacian. Formally, it is the

sum of the second spatial derivative in each basis direction xi.

∇2 =
n∑
i=0

∂2

∂x2i
. (3.3)

3.3 Anisotropic Diffusion

In many biological scenarios, particles do not diffuse at an equal rate in all directions. In

that case, the diffusion is called anisotropic, and the diffusivity coefficient changes based on

the direction considered. For anisotropic diffusion, a single scalar D no longer suffices. We

can represent anisotropy by a tensor Λ. In the two-dimensional case, the tensor has the

form:

Λ =

λ1 0

0 λ2

 (3.4)

Each λi represents the diffusivity in a basis of the space. In practice, λ1 and λ2 are used

to represent a portion of the desired scalar diffusion rate. To represent isotropic diffusion,

λ1 = 1 and λ2 = 1. Λ is axis-aligned. Arbitrary orientations can be calculated with a

14



rotation matrix R, allowing us to represent general anisotropic diffusion:

D = RTΛR. (3.5)

We can use D to transform the gradient and thereby the diffusion rate, obtaining Eqn. 3.1.

3.4 Discrete Diffusion Operators

To simulate reaction-diffusion, the domain on which it is simulated must be discretized,

which in turn means that we must use a discrete version of the Laplacian.

3.4.1 Diffusion on Grids

Grids of square cells are a common representation of domains. This has many benefits as grids

are easy to represent, and the required differential operators are simple to implement. Each

cell in the grid has an area associated with concentrations of morphogens. Computationally,

concentrations are represented by a scalar value assigned to each cell.

Diffusion in 1D

Diffusion on a 1D grid of cells can be computed by representing the Laplacian through

finite differencing operations. Because the Laplacian involves second-order derivatives, we

can approximate it by computing the difference of two first-order differences for a grid cell

centred at i, where i is the ith cell:

T0 =
(ui − ui−1)

h
,

T1 =
(ui+1 − ui)

h
.

(3.6)

Here ui−1, ui, and ui+1 are morphogen concentrations at their respective grid cells, T0 and

T1 are the first order differences, and h is the distance between the centres of adjacent cells.

15



The discrete Laplacian is then:

∇2ui =
T1 − T0

h
=
ui−1 − 2ui + ui+1

h2
. (3.7)

This differencing can be represented as a convolution mask during computation, as shown

below:

∇2 = 1 -2 1

Diffusion in 2D

In this case we have two directions to consider. Recall that the Laplacian is the sum of the

second derivatives in each principle direction. This allows us to use the summation of the

1D case in both x and y directions, which, for a cell ui,j, yields:

∇2ui,j =
ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j

h2
. (3.8)

Again, the Laplacian operator can be represented as a convolution mask:

∇2 =

0 1 0

1 -4 1

0 1 0

3.4.2 Diffusion on Arbitrary Triangular Meshes

Triangular meshes are ubiquitous in computer graphics. Meshes allow for a discrete rep-

resentation of arbitrary surfaces, and there are well-studied algorithms for growing and

subdividing them. These properties make meshes a good candidate for reaction-diffusion

simulations. As in the grid case, concentrations are associated with cells. These cells are
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the faces of the mesh dual graph. Concentrations are stored at the vertices because each

vertex is located at the centre of its cell. To allow for easy neighbour identification and

area calculation, I represent the mesh as a half-edge data structure (Marschner and Shirley,

2015).

Two half-edges replace each edge in the mesh to build this data structure. Each half-

edge stores a pointer to the next half-edge in the same face, a pointer to the vertex that

it originates from, and a pointer to the complementary half-edge (Fig. 3.1). Each vertex

stores a scalar representing the area of the dual cell. This area is the sum of one-third of

each adjacent face’s area.

Figure 3.1 – Two triangles and their half-edge representation denoted by black arrows.

Isotropic Diffusion on Meshes

To compute diffusion on an arbitrary triangular mesh, we need a discrete Laplacian. This

Laplacian can be a generalization of Eqn. 3.8:

(∇2u)i =
1

A

∑
i∼j

wij(ui − uj). (3.9)

This generalized equation states that the Laplacian at vertex i of the scalar field u is the

sum of the weighted differences between, ui, the concentration at i, and each neighbouring
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concentrations uj. The weight is wij, the neighbouring edges of vertex i are denoted i ∼ j,

and the area associated with i is A. The choice of weight determines the behaviour of the

discrete Laplacian. Unfortunately, Wardetzky et al. (2007) have shown that no discretization

maintains all the properties of the continuous Laplacian. The most common weighting used

is the cotangent Laplacian,

(∇2u)i =
1

2A

∑
i∼j

(cotα + cot β)(ui − uj). (3.10)

A vertex i and a neighbouring vertex j are connected by an edge coloured black in Fig.

3.2. The cotangent weight for the black edge is computed from the angles α and β, which

are opposite from the edge. This weight can be derived from the ratio of the edge length of

the dual cell, shown in red, and the black edge’s length. The black edge length is inversely

proportional to the magnitude of the morphogen gradient between vertices i and j. The

length of the red edge represents how much of an interface between the area associated with

i and the area associated with j exists. Consequently, the amount of diffusion increases

when the length of the red edge increases. To find the cotangent Laplacian for the entire

mesh, we evaluate Eqn. 3.10 at each vertex. A rigorous derivation is given in (Crane et al.,

2013; Herholz, 2013). The drawback of this Laplacian compared to the continuous version is

that the cotangent weights can be negative, which occurs when angles are greater than 90◦.

Consequently, care must be taken when meshing the domain.
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i
j

α

β

A

Figure 3.2 – A vertex i and its dual area A. The weighting for the cotangent Laplacian
between vertex i and j is dependant on the length of the red and black edges.

Anisotropic Diffusion on Meshes

Computing anisotropic diffusion on a mesh requires Laplacian weights that reflect the change

in diffusivity for a given direction. This change is computed by applying a diffusion tensor,

D, to the gradient of the morphogen field (Eqn. 3.1). The diffusion tensor at a vertex

can be visualized as an ellipse (Fig. 3.3a). The length of the ellipse’s axes correspond to

the eigenvalues in the diffusivity matrix Λ (Eqn. 3.4). To properly orient Λ, we need a

vector denoting the dominant direction of diffusion. For a given vertex, i, a vector, ~di is

specified which provides a notion of direction on the mesh. However, morphogen gradients

are defined on triangle faces. To calculate a diffusion direction for a given face, the angle

weighted average of its vertex directions, ~di, ~dj , and ~dk, is computed and projected onto

the face to obtain ~dijk (Fig. 3.3b). The face normal is used with ~dijk to obtain a rotation

matrix R and subsequently, D (Eqn. 3.5).
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~dii
~di

~dj

~dk

i k

j

~dijk

Figure 3.3 – Visualization of a diffusion tensor at a cell and diffusion direction on a face. a:
the diffusion tensor at vertex i. The green arrow, ~di, is the primary direction of diffusion and
its length corresponds to the first eigenvalue value of Λ. The red arrow is perpendicular to ~di
and its length corresponds to the second eigenvalue value of Λ. b: A triangle with diffusion
vectors at each vertex and the resulting face vector.

The morphogen gradient on a face is determined by the sum of the face’s edge normals. An

edge normal provides the gradient direction and is weighted by the morphogen concentration

opposite to that edge. To find an edge normal, we apply a 90◦ rotation matrix, Q, about

the face normal, to the edge. Q is multiplied with D to include this rotation:

D⊥ = QTDQ. (3.11)

Using D⊥ we calculate the Laplacian weighting and obtain the discrete anisotropic Laplacian:

Lij =



− 1
2A

∑
t

D⊥ei
‖ei‖ ·

ei
‖ei‖(cotα + cot θ) if i = j,

1
2A

(Γ cos γ
sinα

+ Ξ cos ξ
sinβ

) if i ∼ j,

0 otherwise.

(3.12)

This matrix is used to compute diffusion when given a vector of morphogen concentrations,

u, by:

Lu = ∇2u. (3.13)

This Laplacian is more complicated than before, and a complete derivation is given by

Andreux et al. (2014). The parameters correspond to Fig. 3.4. i and j are vertices, and ei
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and ej are edges, as shown in Fig. 3.4. t is a triangle that shares vertex i. Γ =
‖D⊥ej‖
‖ej‖ and γ

is the angle between ej and D⊥ej. If D⊥ = I then γ = α and we obtain isotropic diffusion.

Ξ and ξ are the same quantities measured on the adjacent triangle with that triangle’s D⊥.

i

j

α

θ

βei

ej

γ

D⊥ej
ξ

Figure 3.4 – Two triangles with their angles and edges associated with the anisotropic cotan-
gent Laplacian.

3.5 Boundary Conditions

PDEs determine the state of the simulation inside the domain. Interaction between the

simulation and the world outside the domain is based on boundary conditions. Dirichlet and

Neumann are the two most common boundary conditions. Dirichlet enforces the morphogen

values directly at the boundary, and Neumann specifies the rate of change of the morphogens

across the boundary. LRDS uses Neumann with a value of zero by default or Dirichlet if

specified.

3.6 Systems with Dynamic Structure

In nature, domains grow over time, which can have an appreciable effect on pattern forma-

tion. One of them is a diluting effect on chemical concentrations that make up a pattern.

When simulating directly on meshes, the face’s area represents a minimum size of pattern
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detail that can be represented. Thus, it is important to consider the increase in face size from

growth. A subdivision algorithm is used to split large triangles into smaller ones to address

this. However, subdividing every face in the mesh causes small triangles to be subdivided

unnecessarily, and the total number of triangles increases quickly. This is a problem because

the simulation’s performance decreases as the number of vertices increases.

Figure 3.5 – Subdividing a face, shown in red, using longest-edge bisection. a: subdivision
starts with the red triangle. b-d: the progression of algorithm.

Adaptive subdivision is a technique used to only subdivide triangles with an area larger

than a given threshold. This approach allows all triangles to maintain a similar area and

limits the unnecessary creation of triangles. The choice of adaptive subdivision algorithm

used determines the shape of the generated triangles. If the internal angles of a triangle

exhibit large deviations from 60◦, it can pose a problem for the simulation. The number

and magnitude of deviations in a mesh give an informal notion of mesh quality and affects

the simulation. Depending on the angle, the cotangent weights can be negative or widely

varying due to the behaviour of cotan around 0 and 180 degrees. Negative cotangent weights

cause diffusion to move morphogens from low to high concentrations incorrectly (Wardetzky

et al., 2007).

To obtain optimal incremental triangulation that tends to produce good quality triangles,

we use longest-edge bisection (Rivara and Inostroza, 1998). In this method, faces are only

ever subdivided with respect to their longest edge. The red triangle in Fig. 3.5a is too large

and must be subdivided. In Fig. 3.5b, the red triangle has been subdivided, but the new

edge does not connect to an edge in the adjacent face. To solve this, we also subdivide the
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adjacent face along its longest edge. This may fix the issue, or it may cause another triangle

to be missing an edge. We proceed by subdividing every face missing an edge in the same

way until all the edges are connected. This process is shown in Fig. 3.5 and the algorithm

is detailed in Alg. 1.

Subdivision also requires the proper handling of concentrations. The concentration as-

signed to the new vertex is the average of the neighbouring concentration values that shared

the edge.

Algorithm 1: An algorithm to recursively subdivide a triangle and its neighbours
based on (Rivara and Inostroza, 1998).

Input: Triangle t0
Result: Triangle is subdivided along its longest edge. Adjacent triangles are

recursively subdivided to share edges.
1 subdivide(Triangle t0)
2 Edge e0 = getLongestEdge(t0)
3 bool subdividing = hasAdjacentFace(e0)
4 subdivideFace(t0, e0)
5 while subdividing do
6 if hasAdjacentFace(e0) then
7 Triangle t1 = getAdjacentFace(e0)
8 Edge e1 = getLongestEdge(t1)
9 if e1 == getPairEdge(e0) then

10 subdivideFace(t1, e1)
11 subdividing = false

12 else
13 subdivide(t1)
14 end

15 else
16 subdividing = false
17 end

18 end

19 end
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3.7 Numerical Methods

The simulation is advanced by taking small steps through time from a given initial condition.

I use the forward Euler method to perform this integration. A reaction-diffusion formula,

similar to Eqn 2.1, integrated with forward Euler is:

xi+1 = xi + (D∇2xi + F (xi))∆t. (3.14)

Here xi is a vector of scalars representing morphogen concentrations at step i and ∆t is

the time-step. D is diffusivity, ∇2 is the discrete Laplacian used to compute diffusion, and

F (xi) encapsulates the reactions of the system. This method suffers from inaccuracy at

larger time-steps because we are assuming ∇2xi +F (xi) is constant for the whole time-step.

This inaccuracy can cause instability in stiff equations by accruing error with each simulation

step. Semi-implicit integration schemes (Nie et al., 2006) allowing for larger time-steps, but

in practice, it is possible to use small enough time-steps to minimize inaccuracy with forward

Euler.
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Chapter 4

Software Design and Implementation

4.1 General Requirements

LRDS was designed to fulfil six main requirements.

1. To simulate reaction-diffusion on grids and arbitrary triangulated surfaces. Grids pro-

vide a common and simple domain for simulating reaction-diffusion. Meshes afford a

more realistic domain because they are not restricted to the plane and are better suited

for growth.

2. To allow for interaction with simulation parameters at runtime. Real-time interaction

allows for rapid iteration during model creation and pattern exploration. Minimizing

delays increases user enjoyment and productivity.

3. To visualize pattern formation over time. Watching a pattern’s development allows

the user to gain an intuition about simulation behaviour. Also, patterns seen in nature

are not necessarily those at a steady state.

4. For easy modification of parameters and the equations themselves. Allowing config-

urable PDEs dramatically increases the usefulness of LRDS as users can create custom
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models. Another benefit of configurable PDEs is that not all users may have access to

the program’s source code.

5. To support growth, spatially varying parameters, and anisotropic diffusion. These

features are essential because their impact on pattern development can lead to more

biologically relevant models.

6. For the ability to track the incremental changes made to models. A track record of a

model’s changes allows the user to see its developmental process. This history provides

a list of the avenues examined during the model’s creation and future areas of interest.

4.2 Program Architecture

LRDS was implemented on the Windows 10 operating system using C++ and OpenGL. The

graphical user interface was developed with the library “Dear ImGui” (Cornut, 2019).

LRDS contains two important abstract classes: SimulationDomain and Simulation.

The former is a class which abstracts the concept of a domain. It contains an array of

morphogen concentrations and all the domain-specific functionality that can be performed

without knowledge of the spatial relationships within the domain. Pure virtual functions such

as Laplacian and gradient are declared in SimulationDomain. However, these functions

must be implemented by subclasses of SimulationDomain. An example subclass is the

HalfEdgeMesh class, which implements the Laplacian function using Eqn. 3.12 defined in

Chapter 3. The SimulationDomain base class provides an extensible way to add support

for other domain types without having to copy non-domain specific code. The reaction-

diffusion models are represented by extending the Simulation class. This abstracts and

provides all the functionality relevant to the simulation except the PDE formulas. Simulation

also contains a SimulationDomain member variable, which is how a reaction-diffusion

model is associated with a domain. GPUSim and CustomSim extend Simulation and

are the two main classes which provide the link between LRDS and the simulation module.
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This architecture is shown in Fig. 4.1.

Figure 4.1 – UML diagram representing LRDS’s architecture.

4.3 Simulation Creation

Upon start-up, LRDS parses user-provided command-line arguments and reads in a param-

eter file. The possible command line arguments are described in A.1. The label-value pairs

in the parameter file are used to create a symbol table. Then, the window is created along

with the camera and scene objects responsible for rendering. Next, an instance of the class

SimulationDomain is created. This domain instance and symbol table are then used to

create a Simulation object. The symbol table determines if the simulation module is a

DLL or compute shader. After creation, the initial conditions, and boundary conditions are

applied from the parsed parameters to the simulation. Next, the simulation and domain

instances are added to the scene so they can be updated and rendered. The remainder of the
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simulation executes a loop that calls the scene’s update and render functions. The update

function invokes the simulation module, which computes the PDEs.

4.3.1 GPU Acceleration

Due to the popularity of video games, GPUs have become cheaper and more common.

They contain many more cores than CPUs, enabling them to perform highly parallelized

processing of triangles and pixels at a much faster rate. With the advent of compute shaders

in modern graphics APIs, the power of the GPU can be leveraged to perform general-purpose

computation.

In LRDS, these shaders are written in the OpenGL Shading Language (GLSL). Since the

evaluation of reaction-diffusion equations depends solely on the previous simulation state,

reaction-diffusion is easily parallelized. A single execution of the shader evaluates the equa-

tions once at a single location on the domain. For an entire step of the simulation, the

compute shader is executed conceptually in parallel, across all the GPU cores, until all lo-

cations have been processed. Representing the half-edge data structure on the GPU can be

done the same way as in RAM, by using structs and arrays. In practice, a simulation step

will processes groups of cells in parallel. Each group of cells has access to a small amount

of memory. This memory is fast to use but may not be large enough to hold our domain,

especially if growth is involved. General-purpose GLSL arrays that are not limited in size

are named Shader Storage Buffer Objects (SSBOs). SSBOs are slower to use but allow for

arrays big enough to hold all the simulation data. To allow for growth, I allocate SSBOs

larger than first needed, providing extra capacity for the simulation to grow. In my GPU

half-edge data structure, pointers are replaced by index offsets into their respective SSBOs.

A drawback of compute shaders is the slow transfer rate between RAM and GPU memory.

This problem arises with frequent or substantial data transfers. The data are usually the

result of algorithms that cannot be parallelized and thus are computed on the CPU. The

results are then transferred to the GPU for further processing. The reverse case can also
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occur; results are generated on the GPU and require further computation on the CPU. After

the CPU is done, the data may then be transferred back to the GPU. Performance loss

due to transferring occurs in LRDS due to the recursive nature of the subdivision algorithm

used. The CPU is used to perform subdivision when a face becomes too large. Then the

GPU is updated. Care has been taken to only transfer the changes subdivision has caused,

avoiding performance drops. Nevertheless, if significant changes that affect many locations

on the domain are made, users may experience a pause as data synchronizes between GPU

memory and RAM.

4.4 Parameter File

When starting the program, the user may specify a configuration file from the command line.

If no file is specified, the program will look for “SimConfig.txt”. The parameter text file is

a customizable model specification. An example parameter file is shown in Fig. 4.2. Text

prefixed by a hash symbol denotes a comment. Comments have no effect on the simulation

and are used for documentation. A parameter is defined by a label-value pair delimited by

a colon. The user can define any number of parameters that do not contain reserved labels.

A complete listing of reserved labels is provided in A.2. The domain parameter specifies a

mesh or grid domain. A Wavefront OBJ filename specifies a mesh domain. Alternatively,

“grid” specifies a grid domain. The grid’s resolution is defined with the labels xRes and yRes,

and the distance between cells is defined by cellSize. The morphogens parameter allows the

user to specify the names in uppercase, of the morphogens involved in the simulation. These

uppercase names are used when defining the initial conditions and PDEs.

User-defined parameters can be declared under the params label. Parameters are written

inside a pair of curly brackets. The cell indices associated with the parameters are denoted by

the indices label. In grid-based domains, cells are stored in columns with index 0 representing

the bottom left cell. Mesh cells are indexed by the order in which they are declared in the
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OBJ file. Valid indices are comma-separated integers, a range defined with a hyphen, “all”,

or “boundary”, which only identifies the boundary indices. A random selection of m indices

can be requested using rand(m). If the user wishes each index to represent a larger area,

an integer radius can be specified with radius, which corresponds to an n-ring region around

the cell. For a given cell, a 1-ring region corresponds to the eight adjacent cells on a grid

and the cells that can be reached within one edge on a mesh. Multiple entries can be made

within the curly brackets to define non-homogeneous parameters. This allows for different

sets of indices to be associated with different parameter values.

The initialConditions parameter specifies the morphogens associated with each index at

start-up. Like params, the initialConditions are declared in a pair of curly brackets. After

the indices are defined, the morphogen concentrations are declared. This can be a number

or a random selection from a range of values in [n,m). The latter is specified by using

rand(n,m), where n and m are floating-point values. The simFile label is used to start the

model from a saved simulation state. It accepts a filename with a per-index entry for each

morphogen concentration, anisotropic vectors, and principle diffusion rates.

The boundaryConditions parameter precedes a pair of curly brackets that determine the

PDE behaviour at the domain boundary. First, a set of cell indices is defined. Next, the

behaviour for each morphogen is defined. These behaviours only affect the cells defined. The

two options are Neumann set to 0 (the default setting) or Dirichlet.

The rdModel parameter can be assigned a value of CPU or GPU depending on the de-

sired computation mode. PDEs are declared within curly brackets that follow the rdModel

parameter. These equations are declared in either GLSL or C++, depending on the com-

putation mode. In the PDEs, user-defined parameter values are accessed by pre-pending

“params.”1 to their name. Current morphogen values are used by referencing their names in

lower-case. Equation splitting is used to evaluate diffusion before the PDEs are calculated.

An array L is predefined and contains the results of the Laplacian of the current morphogen

1note the trailing period.

30



field. When using the GPU, this array is big enough to hold a value for each morphogen

at the current cell, and when using the CPU, it is big enough to hold values for every cell

and their morphogens. When defining the PDEs, the user only needs to access L with the

upper-case morphogen name. This name is then converted to the proper index when the

simulation module is created. Similarly, morphogen values are updated by using upper-case

morphogen names and writing to a predefined “new” array. An example parameter file is

shown in Fig. 4.2.
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# The following parameters correspond to the Gray-Scott model
domain: icosphere.obj
colorMap: color.map
morphogens: A, S
params:
{

indices: all
dt: 0.1
Da: 0.0005
Ds: 0.001
f: 0.03
k: 0.063
}
initialConditions:
{

indices: 0-641 # Example of index range, could also be “all”
A: 0
S: .5 + rand(0, .5)

indices: rand(10)
radius: 1
A: 1
S: 1
}
boundaryConditions:
{

indices: boundary
A: dirichlet
S: dirichlet
}
rdModel: GPU
{

float saa = s*a*a;
new[A] = a + (params.Da * L[A] + saa - (params.k + params.f) * a) * params.dt;
new[S] = s + (params.Ds * L[S] - saa + params.f * (1 - s)) * params.dt;
}

Figure 4.2 – Example parameter file for the Gray-Scott model. The domain referenced is
a unit icosahedron mesh. The mesh has no boundaries. However, boundary conditions are
included for completeness.

32



4.5 User Interface

In conjunction with speed, the integration of a GUI made LRDS an excellent tool for inter-

actively exploring diverse reaction-diffusion models. Exploring different parameter values at

runtime is achieved by using graphical control panels shown in Fig. 4.3. They have controls

for growth, rendering, and interactive non-homogeneous parameter specification.

Parameters are shown in textboxes generated from the symbol table. Initially, changes

to these parameters affect all indices. For more control, subgroups of indices can be selected

through painting. Groups of indices with the same set of parameters are given an ID number

and can be selected by cycling through numbers with the “Params” textbox.

Figure 4.3 – The available control panels. GPU: The control panel for modifying parameters
as well as collapsible menus for controlling growth, painting, and rendering behaviour. Info:
information about the model such as the PDEs used and selected vertex attributes. Controls:
simulation controls allow for saving screenshots and textures. Stats: program statistics are
shown such as the time per frame, cell count, and total area of the domain.

When specifying parameters locally on a mesh, the user selects a painting mode from

the control panel and right-clicks on the mesh to change the values at vertices within a
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given radius. When the left mouse button is clicked, and if a mode is selected, a sphere

is projected onto the mesh using a raycast. The cell closest to the sphere centre is used

to find the vertices that are also affected by the painting operation. From the closest cell,

subsequent rings are checked to see if they reside in the sphere. This continues until no more

vertices are found. There are three painting modes. The first painting mode is “selection,”

which allows the user to select groups of vertices and set parameters in bulk. The second

painting mode is “morphogen,” which allows the user to add to or set the morphogen value

at the painted cells. The third painting mode is “anisotropic diffusion,” which allows the

user to paint the direction of diffusion and the principle diffusion rates. The previous raycast

location is recorded and used with the current location to determine the direction the cursor

is moving when painting anisotropic diffusion (Fig. 4.4). The principle diffusion rates are

specified in the control panel. When painting morphogens or diffusion, the quantity at each

cell is modified with a linear falloff from the centre of the sphere.

Figure 4.4 – Painting direction is determined by taking the difference in cursor positions from
consecutive frames. The X inside dashed circle is the initial cursor location, and the X inside
the solid circle is the current cursor position. Vertices in the blue area are affected by the paint
operation.

The sphere radius can be adjusted from the control panel or with the mouse scroll wheel.

If not painting, the mouse scroll wheel controls the camera zoom. The left mouse button can

be used to rotate the model, and right-click translates the model. Domain orientation and

position can be reset by pressing the 1 key or through the control panel. The camera can be

moved left, right, up, down, in, and out with the W, A, S, D, R, and F keys, respectively.
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4.6 Visualization

The user has a choice of visualizing different morphogen concentrations by actual or normal-

ized value. In the latter case, every morphogen concentration is divided by a user-provided

value. The concentration is mapped using a colormap to determine the colour to represent

the concentration. A separate colormap can be specified for each side of the domain. This

feature can be used to hide the pattern on one side of the mesh. Concentration gradients and

the vectors driving anisotropic diffusion can also be visualized as lines (representing vectors)

extending from their corresponding vertices. These lines are coloured black at their vertex

and transition to green for diffusion vectors or red for gradient vectors (Fig. 4.5). Wire-

frame mode allows users to see the underlying triangular geometry of the domain. The mesh

rendering is enhanced by diffuse lighting to highlight its shape. When selected vertices are

visualized, the unselected ones will appear faded. Users can export the generated pattern as

a texture for higher quality rendering of models through other software. Exporting requires

that the domain mesh comes with texture coordinates. A blank texture is then coloured

using the domain mesh texture coordinates.
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Figure 4.5 – Visualization of vector fields. a: The pattern gradient is visualized by lines
fading from black to red. b: The vector field driving anisotropic diffusion is shown by lines
fading from black to green.

4.7 Saving and Loading

After the simulation has loaded, the user can save the simulation at any point, preserving

the state of the simulation after pattern development. Another use for saving is if a spe-

cific vector field or morphogen configuration is desired, which otherwise might be tedious to

define directly with indices. Saving creates a set of files containing the program and sim-

ulation state. These files include the colour map, Wavefront OBJ file, and the parameter

file. Another created file is “EditorSettings.txt”, which contains settings not integral to the

simulation’s behaviour such as background colour and cursor radius. The saved state of

the program is in a “.rd” textfile. This file contains a header that specifies the number of

morphogens on the first line and the number of cells on the second line. After the header,

the following n lines correspond to the n cells in the domain. The first line is the 0th in-

dexed cell and contains a list of floating-point values separated by spaces. For a model with
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morphogens A and S, a line would look like:

a s xa ya za xs ys zs λ1a λ2a λ1s λ2s da ds.

Parameters a and s are the morphogen concentrations and entries with subscripts a and

s belong to A and S morphogens respectively. x, y, and z are the components of a cell’s

anisotropic direction vector. λ1 and λ2 are the diffusivities and d is the diffusion scale. A

user can load a simulation by specifying the individual files to be used in the parameter file.

Using a “.rd” file overrides the model’s initial conditions.

4.8 Model Exploration

Designing and exploring a model’s pattern forming potential can be challenging. Tracking

progress as incremental changes are made is a requirement of model creation with LRDS.

To satisfy this, I used the Git version control system. I commit the files associated with

a model to a repository periodically during exploration. This allows for easy reproduction

of previous patterns and avoids duplication of past efforts. The greatest benefit from this

workflow is that the progression through a multi-dimensional parameter space is tracked,

providing a mapping of what has previously been explored. Fig. 4.6 shows a visualization

of the version control history.
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Figure 4.6 – Visualization of the Git repository by the Sourcetree software (Atlassian, 2019).
Coloured vertical lines represent models. A dot on the corresponding line represents the state
of the model, and a user-provided comment appears on the right. Models derived from others
have their vertical line connected by a horizontal line leading to the parent.
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Chapter 5

Case Study 1: Ladybug Patterns

5.1 Literature Review

The ladybug (also known as ladybird beetle or lady beetle) is an insect in the family Coccinel-

lidae. They are a small round beetles that range in length from 0.8 to 18mm (Glisan King

and Meinwald, 1996) and are often found in leaf piles and gardens. Ladybugs exist through-

out the world and display a myriad of spot and stripe pigmentation patterns on their elytra:

the two symmetric hard shells on the dorsal side of the insect (Fig. 5.1). The elytra’s main

purpose is to protect the fragile wings located underneath, and the pattern is thought to

deter predators by indicating that the ladybug is bitter tasting (Glisan King and Meinwald,

1996). The pattern on one elytron is a mirror image of the pattern on the other.

Understanding the ladybug life cycle can give insight into how and when their patterns

form. The cycle starts with eggs laid on the underside of leaves. These eggs hatch into larvae,

which then eat aphids and other food sources until they can pupate and metamorphose into

adults. Immediately after pupation, the elytra appear patternless and are a pale-yellow

colour. In a timespan of hours to days, dark spots emerge and become black. The yellow

transitions to red, giving the ladybug its characteristic appearance. Although certain species

of ladybugs are described by the number of spots on their elytra, there can be a variable
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Figure 5.1 – A selection of H. axyridis ladybugs displaying various spot patterns. c© 2019 by
Entomart, used with permission.

number and shape of spots found on ladybugs of the same species.

Ando et al. (2018) explored the genetic mechanisms governing the formation of ladybug

patterns. They found a gene, pannier, which is responsible for much of the observed pig-

mentation patterns in H. axyridis and Coccinella septempunctata. Before any pigment is

visible, pannier is found in a pre-pattern on the elytra. It then promotes melanin (black)

and inhibits carotenoids (red) pigmentation accumulation creating a visible pattern. Future

work is needed to identify if other specific genes are involved in pigmentation expression.

Although the specific genetic mechanisms behind pattern formation are not fully known,

Liaw et al. (2001) used reaction-diffusion to simulate visually similar ladybug patterns. The
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equations used are activator-depleted substrate (Eqn. 2.4) with saturation. Their results

were obtained numerically by using forward Euler integration on a grid located on the sur-

face of a partial sphere. A Laplacian defined in spherical coordinates was used to compute

diffusion on partial hemispheres of radius 1. It was found that the domain boundary and the

curvature change the final position of spots and stripes. Five models were proposed. Three

species considered display black spots on a red/orange background. In particular, Platynas-

pidius quinquepunctatus, Coccinella septempunctata, and Epilachna crassimala display 5, 7,

and 10 spots respectively. Macroilleis hauseri has brown stripes aligned with the long axis

of the shell on a yellow background. Bothrocalvia albolineata displays elongated orange loops

on a brown background.

5.2 Model Description

I used LRDS to improve these models. The equations remain the activator-depleted substrate

formula (Meinhardt, 1982):

∂u

∂t
= ρu

u2v

1 + κu2
+ σu − µuu+Du∇2u,

∂v

∂t
= −ρv

u2v

1 + κu2
+ σv +Dv∇2v.

(5.1)

The activator is represented by u and is displayed as the pigmentation on the elytra. The

substrate is denoted by v. The rate of conversion of v into u is determined by the reaction

rate ρu. Similarly, ρv represents how much v is used in the conversion to u. κ controls

saturation, σu and σv are the base production rates, and µu is the decay of u. ∇2 is the

discrete Laplacian with the diffusion rates being Du and Dv for u and v. The boundary

conditions are no-flux, except for the model of B. albolineata, which contains a sink along

the middle of the domain where the two shell halves would meet.
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5.3 Results

By simulating ladybug patterns on a mesh, I improved on the results in (Liaw et al., 2001).

Due to the mesh’s flexible representation of 2D surfaces, my model provides a more faithful

portrayal of ladybug elytra compared to a partial sphere (Fig. 5.2). A couple of aspects

of patterning contributed to the quality of the results. The pattern shape, such as spots

or stripes, was essential, and the previous work provided this. Pattern colouration was

important as I observed a substantial qualitative increase in patten realism by using images

of real ladybug specimens to determine the pattern colours. The pattern’s positioning on

the mesh, especially for spots, was a necessary pattern feature. It was difficult to predict

the final spot positions before the simulation reached a steady-state. Final spot locations

often varied based on small changes to the specific initial distribution of morphogens. Being

able to run the models quickly helped when picking a morphogen distribution. Fig. 5.3

shows the development of the simulated patterns. During the simulation of spot patterns,

the initial pattern will disappear quickly and then reappear as large blotches. The blotches

settle split into smaller ovals and then settle as spots. The original parameters provided by

Liaw et al. (2001) have been altered to be more mathematically sound, and to account for the

differences when simulated on a mesh. A complete list of model parameters is shown in Table

5.1. As noted by Liaw et al. (2001), a starting band of morphogens across the top of the

elytra is important for spot alignment. In C, I also used a stripe at the top but ignored the

central stripe. This alternative starting pattern produced rows of spots more predictably as

individual spots migrated less during pattern formation. I also produced patterns on elytra

that were joined in the middle and this produced the same patterns. This is probably due

to the high amount of symmetry of the domain and starting pattern. A ladybug rendering

is shown in Fig. 5.4.

42



Model Species Du Dv κ σu

A P. quinquepunctatus 0.0005 0.035 0 0
B C. septempunctata 0.0005 0.025 0 0
C E. crassimala 0.0003 0.024 (0.04) 0 0.01 (0)
D M. hauseri 0.000028 0.00168 (0.000168) 0.5 (0.35) 0
E B. albolineata 0.000026 0.00182 (0.000182) 0.45 0.0019

Table 5.1 – Parameter values used for ladybug models on a mesh. The following parameters
remain constant for all models dt = 0.001, σv = 0.1, ρu = 0.18, ρv = 0.36, and µu = 0.08.
The total number of steps is 1, 500, 000 for all models except E where it has been decreased
to 500, 000. Parameters in parenthesis are the original values used by (Liaw et al., 2001).
Parameter values were changed due to small differences between the patterns formed on a
partial sphere and a mesh. In my model of D and E, the parameter Dv has been increased by
an order of magnitude to obey the rule that Dv/Du ≥ 7.8 (Liaw et al., 2001). The number of
spots on C (E. crassimala) was less than ten. To rectify this, I lowered Dv from 0.04 to 0.024
and changed the initial morphogen distribution to a stripe at the top. σu was then increased
from 0 to 0.01, allowing for horizontal lines to form which turn into spots over time. Another
discrepancy observed with the initial parameters was that the stripes in D and E turned into
spots and irregular lines near the boundary. In D, the initial morphogens propagate as a wave,
leaving stripes in its wake. On a mesh, the wave was observed to outpace itself in places,
causing it to self-interact and destroy the vertical line pattern. I have increased κ from 0.35
to 0.5, strengthening the tendency to form lines. I also changed the initial distribution from a
vertical stripe of u down the centre to include stripes along the boundary (excluding the top).
This has the effect of aligning the pattern by reducing the distance the middle wave must travel
and avoiding the self-interaction. The total simulation steps was reduced to 500,000 from the
original model’s 1,500,000 steps to account for lines becoming spots in E. This could also be
addressed by decreasing σu, which produces a pattern like D.
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Figure 5.2 – Simulation of ladybug patterns. Row 1: initial simulation state. Row 2: final
simulation state. Row 3: collection of the real ladybug species. A-E: P. quinquepunctatus,
C. septempunctata, E. crassimala, M. hauseri, and B. albolineata respectively. Photographs c©
2008 by S.-P. Chen, used with permission.
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Figure 5.3 – Progression of ladybug patterns over time. A-E: P. quinquepunctatus, C. septem-
punctata, E. crassimala, M. hauseri, and B. albolineata respectively.
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5.4 Discussion and Future Work

Improvements to these models can be made once the biological chemical interactions are

fully understood. The most relevant insights would be the real initial distribution of mor-

phogens, the actual reaction behaviour between morphogens, and the rate at which they

diffuse throughout the elytra. Some ladybug species can control their pigmentation pat-

terns depending on the season or the surface the ladybug is on. This suggests a simple

reaction-diffusion model cannot represent all types of ladybug patterns (ins, 2009).

Further investigation should be made to determine how much the patterns found on the

head of the ladybug effect the elytra pattern. Another critical question is if the patterns

displayed are at a biological steady-state or does pattern formation stop prematurely. De-

velopment of the ladybug patterns over time is less studied, and it would be interesting to

see if there exists a real chemical pre-pattern that moves like the models.
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Figure 5.4 – A rendering of two ladybugs on a leaf.
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Chapter 6

Case Study 2: Snakes

6.1 Biological Background

Snakes display many pigmentation patterns such as speckles, blotches, longitudinal stripes,

and transverse stripes. Some of these pattern types are shown in Fig. 6.1. Snakes are entirely

covered by protective scales whose top layer is made of translucent keratin. Under this layer

is where pigmentation patterns are found. Although the keratin layer is translucent, it may

contribute to the pattern’s appearance by acting as prisms through which light refracts,

producing an iridescent sheen. Scales contribute to pattern formation in other reptiles by

limiting diffusion of pigments across the scale boundaries (Manukyan et al., 2017).

Pigmentation patterns perform many useful functions, such as camouflaging the snake

from prey and predators or acting as a brightly coloured warning signal that the snake

may be venomous. An example warning pattern is seen on the North American coral snake,

Micrurus fulvius, with its distinctive red, yellow, and black coloured bands (Fig. 6.1a). Some

non-venomous snakes employ mimicry, which serves as a defence mechanism by displaying

a pattern similar to that of a venomous snake’s. A well-known example of this is the scarlet

king snake, Lampropeltis elapsoides, which also displays red, black and yellow bands like M.

fulvius (Fig. 6.1b).

48



The regions of a snake that display pigmentation patterns can be roughly partitioned into

the head, body, tail, and underbelly. Here I focus on the most striking patterns found on the

body and tail. The similarity between patterns found in these regions and those found on the

head or underbelly varies between species. It is not uncommon for the head and underbelly

to display a different pattern than the body. A notable example is the ring-necked snake,

shown in Fig. 6.1c, which presents a dull colour on its back, serving as camouflage. When

the ring-necked snake is provoked, it will display its bright red and orange underside to deter

predators.

Figure 6.1 – Examples of snakes with interesting patterns. a: An American coral snake, M.
fulvius. b: A scarlet kingsnake, L. elapsoides. c: The tail of a ring-necked snake. d: A python.
e: A banded kingsnake snake. Photographs (a) c© 2017 by Trent Adamson, used with permis-
sion, (b) Glenn Bartolotti, licensed under CC BY-SA 3.0, (c) Peter Paplanus, licensed under
CC BY-NC 2.0, (d) R. Cammauf, licensed under public domain, (e) pixcove.com, licensed
under public domain.

Snake patterns start development when the animal still in its egg. Murakami et al.

(2018) studied the early development of pigmentation patterns in the Japanese four-lined

snake (Elaphe quadrivirgata). The characteristic pattern E. quadrivirgata displays is four
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black lateral lines on a light brown background (Fig. 6.2c). In juveniles, these stripes are

dark brown and are connected by transverse lines like a ladder. As the snake matures the

transverse lines disappear.

To understand how the patterns of E. quadrivirgata develop, snakes were observed at dif-

ferent points in time during embryonic development. Pigmentation is measured by observing

chromatophore cells, which contain pigmentation molecules. A type of chromatophore, called

a melanophore, is responsible for brown to black colouration and is first seen in deeper tissues

of E. quadrivirgata around 18-21 days after oviposition. These cells do not affect the later

development of melanophores seen in the dermal and epidermal layers. Striped pigmentation

patterns emerge behind the head after 26-32 days. Stripes then appear on the whole body,

first thinly at 29-35 days and then clearly at 35-42 days. Data about how patterns emerge

and develop are valuable because they contribute to an understanding of the patterning

process and provide testable data points to guide the model’s development.

Allen et al. (2013) studied the role behaviour, and ecological factors played in snake

pattern diversity by using reaction-diffusion. They classified these patterns by simulating

reaction-diffusion with a custom-built program and having users compare the simulated

patterns against real snake images. The match between a simulation and a real snake image

provided an association between the reaction-diffusion model and a real pattern. Pattern

features such as size, complexity, and anisotropy were then represented as parameters.

To gain insight into how patterns are related to the behaviour and environment of snakes,

these parameters were associated with ecological and behavioural variables. Examples of

ecological variables are those related to habitat like Desert or forest. Behavioural variables

correspond to speed, aggression, and hunting strategy. Phylogenetic analysis then revealed

to what extent the environment and or snake behaviour was responsible for the diversity of

patterns. The results of this analysis suggested snake patterns are mainly correlated with

behaviour rather than the environment the snakes inhabited. Allen et al. (2013) found that

plain longitudinally- striped snakes are usually smaller and prefer to flee from predators. The
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striped pattern makes the snake harder to track by sight while moving. Transverse striped

and blotched snakes are often larger and more aggressive. They may also be more venomous

and hunt by ambush.

6.2 Previous Modelling Work

Patterns on the ocellated lizard1 have been simulated by Manukyan et al. (2017). These

lizards are covered in a quasi-hexagonal lattice of pigmented scales. A juvenile lizard’s scales

display white spots on a brown background. This pattern changes in adults whose scales

are coloured individually, either a solid green or black. Pattern development continues over

the lifetime of the adult, with scales switching between green and black. Manukyan et al.

(2017) modelled the adult pattern using a reaction-diffusion system on a grid where multiple

cells represented one scale. They lowered the diffusion rates across the scale boundaries

simulating thinner skin. Consequently, the diffusion between scales is much slower than

inside an individual scale. This reaction-diffusion system behaves like a cellular automaton.

J.D. Murray and M.R. Myerscough (1991) modelled snake patterns by simulating the

movement and interaction of chromatophores. Before chromatophores differentiate, they

exist as chromatoblasts, which are found uniformly in the dermis. After some time, these

cells may become chromatophores by producing pigments, resulting in a visible pattern.

Movement of these cells is driven by diffusion and chemotaxis (movement up concentration

gradients). The use of chemotaxis makes it possible to generate simple and more complex

patterns when calculated on a growing domain. Although J.D. Murray and M.R. Myer-

scough (1991) proposed that standard reaction-diffusion models may also produce the same

patterns. J.D. Murray and M.R. Myerscough (1991) produced more intricate patterns such

as staggered and side-by-side spots as well as diamond-shaped patterns by growing the do-

main. Simulations are carried out on a grid, and only the patterns on the body of the snake

1Although lizards are of a different suborder than snakes, they both reside in the squamate reptile family
because of their scaled bodies.
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are considered.

Pinheiro (2017) created a program for modelling snake patterns by using a combination

of textures, cellular automata, and image manipulation. To simulate a transverse stripe

pattern, a modeller can define up to four different coloured bands of various thicknesses.

Similarly, for longitudinal stripes, the modeller defines the number and the colour of the

stripes to be used. Circle textures are randomly distorted in size and position to simulate

spots. For other simple patterns, cellular automata are used to generate blotch or zigzag

patterns. Generated patterns are unnaturally uniform, so they are distorted using Perlin

noise to look more organic. This results in a generated texture that is rendered on a snake

mesh and enhanced by using a roughness and height map to provide a scaly appearance. This

approach produces compelling results, although Pinheiro (2017) notes that more complex

patterns need a phenomenon such as chemotaxis.

6.3 Model Description

I have produced snake patterns using reaction-diffusion on a mesh representing the snake’s

skin. Most of my models use different parameters for the ventral scales, as there often is a

different pattern found there. Snake meshes have been modelled and rendered using the 3D

computer graphics software Blender. A normal map is used to add a scaly appearance, and

two black spheres are used to represent snake eyes. Models A-E use Gray-Scott reaction-

diffusion equations, Eqn. 2.6, and the parameter values are found in Table 6.1. Model F

uses the activator-depleted substrate model with saturation, Eqn. 5.1, and its parameters

are found in Table 6.2. Models B, D, and F assume anisotropic diffusion. The vector field

used runs parallel to the snake’s longitudinal axis. The coefficient λ1 is the diffusivity in the

direction of the vector field, and λ2 is the diffusivity orthogonal to it (Eq. 3.4).
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The first snake model displays brightly coloured transverse stripes like those of the Hon-

duran milk snake (Lampropeltis triangulum hondurensis). This species is non-venomous but

appears similar to other venomous snakes. The initial distribution of morphogens and the

final pattern are shown in Fig. 6.2.

Figure 6.2 – Model of the Honduran milk snake. The activator, a, is visualized where concen-
tration values from low to high are represented as dark orange, black, and bright orange. a:
The initial state: a = 1 on the nose and 0 elsewhere, s = 1 everywhere. b: The final pattern.
c: An image of a real Honduran milk snake. c© 2019 by Robert Coral, used with permission.

The next snake model displays a pattern consisting of four black lateral stripes, similar

to those of an adult E. quadrivirgata. I have assumed anisotropic diffusion of the activator

a, as described in Eqn. 3.1, of a. The diffusivity coefficients are λ1 = 1 and λ2 = 0.502.

Anisotropic diffusion with λ1 > λ2 was important because the lines should form parallel to

the longitudinal axis of the snake. The ventral scale’s parameters vary from those used on

the dorsal side by setting f = 0 so that extra lines do not form on the underside. The initial

and final patterns are shown in Fig. 6.3.
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Figure 6.3 – Model of the E. quadrivirgata. The activator, a, is visualized where concen-
tration values from low to high are represented as brown to black. a: The initial morphogen
distribution is s = 1 and a = 0 except a stripe of a = 1 down the dorsal side of the snake.
b: The final pattern. c: An image of a real E. quadrivirgata. c© 2014 by Anthony Plettenberg
Laing, used with permission.

The third model I made displays a spot or blotch pattern like that of the spotted rock

snake (Lamprophis guttatus). This pattern is interesting because, in basic spot producing

reaction-diffusion models, the spots tend to be distributed over the domain equally. However,

the pattern seen on Lamprophis guttatus has spots located close together in two rows down

the snake’s back. This type of pattern can be produced by adding growth and adaptive

subdivision to the model. There are two phases during pattern formation. In phase 1, the

simulation is initialized from a random placement of morphogens. After initialization, a row

of spots forms on the snake. During phase 2, the snake grows uniformly, increasing its surface

area by four times. Faces of the mesh start with an average area of 0.52 and are subdivided

when they exceed the max face area of 1. This growth allows the spot pattern to form into

two rows of spots. Fig. 6.4 shows this model.
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Figure 6.4 – Model of the spotted rock snake. a: Start of phase 1 showing the initial mor-
phogen distribution of s = 1 and a = 0 except for 30 randomly placed spots where a = 1. b: A
pattern of spots has formed along the snake. This is the end of phase 1 and the start of phase
2. c: End of phase 2 where rows of spots have formed on an enlarged snake. d: An image of
a real spotted rock snake. c© 2019 by Tyrone Ping, used with permission.

The common European viper, Vipera berus, displays an interesting zigzag pattern. This

snake is venomous, and the pattern can serve as a warning signal or as camouflage when

the snake is tightly coiled (Lillywhite, 2014). Morphogen a diffuses anisotropically using

coefficients λ1 = 0.81, λ2 = 1. This model is shown in Fig. 6.5.
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Figure 6.5 – Model of the European viper. a: The initial distribution of a is randomly chosen
from [.5, 1) for each vertex and s = 1 everywhere. The concentration of a seen is multiplied
by 0.263 to show the character of the start state pattern. b: The final pattern. In this case
a multiplied by 0.556. c: An image of a real V. berus. Photograph by Benny Trapp, licensed
under CC BY 3.0.

Another snake model is based on the transverse stripes of a southern coral snake (Micru-

rus frontalis). The stripes are brightly coloured and are a warning to others that this snake

contains a potent venom. There are two phases: pattern establishment and mesh growth.

During phase 1, a simple stripe pattern is established. During phase 2, the mesh grows

uniformly, causing the snake’s surface area to double. Mesh faces start with an average area

of 0.55, and the faces are subdivided when they exceed an area of 1. The snake mesh used

is shown in Fig. 6.6.
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Figure 6.6 – Model of the M. frontalis. a: Initially s = 1 and a = 0 everywhere except on
the nose, where a = 1. a is visualized from red to black to white and is normalized by 0.520.
b: end of phase 1 where a basic stripe pattern has formed. c: The final pattern after growth.
Black stripes have appeared in-between the previous stripes. d: A picture of a real M. frontalis.
Photograph by William Quatman, licensed under CC BY-SA 2.0.

The California kingsnake (Lampropeltis californiae) contains white and black transverse

stripes, which sometimes bifurcate. I have assumed anisotropic diffusion on the snake’s body.

Morphogen u has diffusivity coefficients λ1 = 0.75, λ2 = 1, and v has λ1 = 1, λ2 = 0.75.

Anisotropic diffusion was needed to align the stripes perpendicular to the body. The snake’s

head assumes standard isotropic diffusion as the real snake does not have stripes on its head.

This model is shown in Fig. 6.7.
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Figure 6.7 – Model of the L. californiae. Morphogen u is visualized as white when its value
is low and black when high. a: The initial distribution is u = 0 and v = 1 everywhere except
a lateral stripe of u = 1. b: The final pattern. c: An image of a real L. californiae. c© 2015
by David Steen, used with permission.

6.4 Discussion and Future Work

Snake patterns provide an interesting modelling challenge due to the broad diversity of

patterns on a geometrically simple domain. I have produced a variety of patterns based on

real snake species. By using the features of LRDS, such as the simulation of growth and

anisotropic diffusion, I generated relatively complex pigmentation patterns. My previous

models of ladybugs and research into the parameter space of the Gray-Scott model (Eqn.

2.6) helped me identify iconic features of reaction-diffusion patterns that were also seen on

snakes. Most of the models produced the same type of pattern on a straight and curved

domain. However, simulating model E on a curved domain caused the stripes to split,

creating an incorrect forked pattern. Likewise, simulating model F on a straight domain did

not allow the stripes to fork correctly. This behaviour raises the question as to what pose a

snake assumes throughout its pattern’s development. As stated by J.D. Murray and M.R.

Myerscough (1991), reaction-diffusion without the effect of chemotaxis is expressive enough

to produce some snake patterns. As illustrated in Fig. 6.8, reaction-diffusion models can be
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used to create convincing biological patterns for use in computer graphics. Future work may

provide an understanding of the role of scales in pattern formation. Models that account

for the effect of scale boundaries on diffusion may produce the more delicate details seen in

nature, such as the pigmented tips of scales.

One noticeable limitation of the models is seen on the ends of the tails. Stationary

reaction-diffusion patterns are frequently standing waves with a fixed wavelength. Thus, the

patterns can only fit on a domain if there is enough space for them. A fixed wavelength

poses a problem because the end of the tail runs out of space to support the same pattern

seen on the body. In nature, the patterns tend to scale down to account for the tail tapering.

However, gradually reducing the diffusion rate based on the proximity to the end of the tail

might be a solution.

Snake pattern formation is of great interest to herpetologists, who study reptiles and

amphibians. They can understand snake evolution through the myriad of patterns snakes

display. Snake breeders profit off selling snakes that display striking and unique patterns.

Consequently, there is also a financial incentive to predict the effect of breeding on pattern

development.

Model Species Da Ds f k dt
Total steps
(x1000)

A L. triangulum hondurensis 1.000 2.000 0.026 0.055 0.030 200
B E. quadrivirgata 0.175 0.350 0.078 0.061 0.030 28
C L. guttatus 0.350 0.700 0.022 0.022 0.100 100; 70
D V. berus 0.150 0.300 0.109 0.053 0.300 40
E M. frontalis 1.000 2.000 0.034 0.057 0.030 200; 23

Table 6.1 – Parameters for models A-E using the Gray-Scott equations (Eqn. 2.6). In B and
C the ventral scales have f = 0. In D the ventral scales have f = 0 and k = 0.08. In the “Total
steps (x1000)” column, values separated by a semicolon denote a multi-phase model with the
first and second values representing phase 1 and 2 respectively.
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Model Species Du Dv κ ρu ρv σu σv µu dt
Total steps
(x1000)

F L. californiae 0.056 3.36 0.5 0.18 0.36 0.001 0.1 0.08 0.01 70

Table 6.2 – Parameter values for the California kingsnake model. This model uses the
activator-depleted substrate equations (Eqn. 5.1).

Figure 6.8 – A rendering of E. quadrivirgata with iridescence.
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Chapter 7

Case Study 3: Flowers Petal Patterns

7.1 Biological Background

To humans, flowers are a symbol of natural beauty. Their spots and stripes enhance this

quality (Fig. 7.1). For nature, flower pigment patterns have a more utilitarian purpose.

They are used to help plants reproduce by attracting insects and likely evolved to exploit

pollinator vision to further this goal. Patterns guide insects to nectar and can appear as

paths or landing spots, sometimes visible only in the UV spectrum (Davies et al., 2012).

Alternatively, patterns may develop due to external factors such as infections, age, and the

environment (Davies et al., 2012; Dana Olivia Robinson and Adrienne HK Roeder, 2015).

Thus, understanding them also gives insight into flower reproduction, insect behaviour, and

environmental factors. Some patterns mimic the appearance of female bugs, as in the case

of the bee orchid (Vereecken and Schiestl, 2008). This deceives bees looking for mates, into

pollinating the flower. Surprisingly, given the importance of petal patterns to nature, little

attention has been given to simulating them.

Pigments are molecules that provide the colour seen in many natural patterns. Antho-

cyanins and carotenoids are two examples of pigments found in plants. Anthocyanins can

appear as red, blue, and purple, and carotenoids appear red or yellow (Bayer et al., 1966).
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Martin and Gerats (1993) studied the role genes play during pigment creation in flowers.

These pigments are created in the developing flower petal epidermis. Petals starts as small

mounds of cells known as primordia. It is thought that two independent groups of cells grow

to form the inner and outer epidermis of the petal. The inner epidermis is the first layer

of cells inside the flower. Conversely, the outer epidermis is the first layer of cells on the

surface of the flower’s exterior. A selection of cells contains the genes that produce pigments

in response to proteins called transcription factors. Many transcription factors are involved

in complex activation and inhibition relationships together, making identification of the rel-

evant morphogens difficult. As cells of the primordia undergo mitosis, they propagate their

genetic information distally. This propagation can create wedge-shaped pigmentation pat-

terns in the presence of transcription factors. In some cases, transcription factors involved

in pigment production are supplied by the petal’s veins. Therefore, epidermis near a vein

will contain more pigment than that which is more distant. 5 to 6 days before the flower

has matured, the petals cells have stopped dividing. In the remaining days, cells undergo a

process of elongation and this is when pigments are produced.

Figure 7.1 – Examples of pigment patterns on real flowers. Photographs courtesy of Przemys-
law Prusinkiewicz.

Yuan (2019) analyzed pattern formation on various species of Mimulus(monkeyflowers).

Specifically M. lewisii and M. guttatus. This flower contains red spots located where the

flower petals converge into semi-tubular furrows, as shown in Fig. 7.2. The red pigmentation

consists of anthocyanin. Through the exploration of the genetic mechanisms controlling pig-
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mentation accumulation and distribution, Yuan (2019) identified the key proteins responsible

for spot formation. The protein interactions that were also discovered display the key as-

pects of reaction-diffusion: diffusion, autocatalysis, and inhibition. The proteins are named

nectar guide anthocyanin (NEGAN) and red tongue (RTO). NEGAN is a transcription fac-

tor responsible for the production of red pigment, and its distribution over the flower can

be thought of as a pre-pattern. Through experimentation, Yuan (2019) found that RTO

diffuses throughout the flower, and NEGAN is localized in the furrows. The protein NE-

GAN is shown to be autocatalytic, and in the presence of RTO, this reaction is inhibited.

Consequently, RTO is the inhibitor, and NEGAN is the auto-catalytic activator.

Figure 7.2 – Image of a monkeyflower covered in raindrops. The black arrows denote regions
where pattern formation occurs. Photograph by James Gaither, licensed under CC BY-NC-ND
2.0.
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7.2 Previous Modelling Work

Reaction-diffusion has been used to simulate petal patterns on a grid (Zhou et al., 2007).

In this model, petal shape, initial morphogen distribution, and a venation map are input

as textures. The diffusion rate at a given point is determined by the distance to a vein.

This distance is found by querying the venation map. The reaction-diffusion equations are

simulated to generate a final pigment distribution. Finally, colour is determined by mapping

the concentration to a user-provided colormap.

Another mathematical approach to flower modelling for use in computer graphics is

proposed in (Lu and Song, 2014). This work focuses on modelling flower petal patterns

as well as geometric components such as the pistil, stamen, and receptacle in 3-dimensions.

These flower components are modelled with parametric ellipsoids and cylinders, and the petal

geometry is modelled by deforming rectangular surfaces. Pigment intensity is determined

from various combinations of sine functions. The distance from the centre of the flower is

used as the argument of these functions, and the resulting values correspond to pigment

intensity. This approach provides visually good results, but it does not seem to support

irregular or complex patterns.

A simulation of procedurally generated two-dimensional flowers is proposed by Risi et al.

(2012). In this model, a flower is represented by a specialized artificial neural network

that encodes the flower shape and colour. This network is called a compositional pattern-

producing network (CPPN) (Stanley, 2007). It uses a wider range of activation functions

compared to a standard neural network to produce symmetric and repeating patterns, which

are features often seen in natural flower petals. An example activation function is the sine

function, the use of which biases the output toward producing repeating patterns. The

CPPN defines a flower by outputting the flower’s perimeter and petal colour. The perimeter

is found by taking an angle from the x-axis as an input, and it will output a distance value to

the perimeter. The CPPN calculates flower colour by accepting a distance value, along with

the angle. It then determines the colour at that location on the flower petal. This process
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can be repeated for multiple layers that are composited together to create more complex

flowers.

This simulation was implemented in the video game Petalz which is based on procedurally

generating and sharing flowers of different shapes and colours. Users are given pre-made

starting flowers, which they can then breed, display, and sell. Breeding is accomplished

through mutating a single flower or cross-pollinating different flowers together. Specifically,

the nodes and connections of the CPPN are mixed with another network. This results in

a combination of each flower’s colours and shape. Selling flowers gives the user in-game

currency, which is used to buy flowers from other users, which can then be cross-bred to

create new and unique flowers. The social aspect of this game leads to a crowdsourced

method of flower creation where the flower attributes are selected for based on their visual

appeal.

7.3 Monkeyflower Modelling

The Monkeyflower is a rare case in which actual morphogens and their reactions have been

identified. The existence of this theory and the appearance of spots characteristic of reaction-

diffusion patterning was a compelling reason to create this model. My model was produced

on a triangular mesh using LRDS. The reaction-diffusion equations I selected were activator-

inhibitor, Eqn. (2.3), because of the inhibitory relationship between NEGAN and RTO. Here

NEGAN plays the role of activator, a, and RTO is the inhibitor, h. In nature, NEGAN is

only found in the nectar guides. This holds true in mutant flowers that lack the presence

of RTO. Consequently, my model uses two sets of parameters. The difference between the

parameters is that the base production of NEGAN, ρa, only exists in the nectar guides. The

boundary between the regions provides the required noise to instigate pattern formation.

Consequently, spots first form on the boundary and continue to form towards the centre.

This procession aligns the spots to the shape of the boundary. The full list of parameters is
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found in Table. 7.1.

Model Da Dh ρ ρa ρh µa µh dt
Total steps
(x1000)

M. guttatus 2.5 ∗ 10−5 0.001 0.05 0.0125, 0 0 0.05 0.08 0.005 1,500

Table 7.1 – Parameters for the monkeyflower model using activator-inhibitor equations (Eqn.
2.3). The ρa value after the comma is used at the periphery. The initial morphogen distribution
has NEGAN = 0 and RTO = 1 everywhere.

Results

This model produces convincing results as compared to the real picture and has mimicked the

spot positioning and general character (Fig. 7.3). The spots seen on the region boundary

look artificial because of how neatly they are arranged. This may be due to the sharp

transition between regions and can be improved with noise or more care when they are

specified. Further study should be done to determine to what extent the separate regions in

my model occur in nature. And, if there are two regions, is the boundary shape responsible

for the linear arrangement of spots? This model also provides a starting point for models of

other monkeyflower species.
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Figure 7.3 – Simulated and real monkeyflowers. a: NEGAN base production, ρa, is 0 in the
dark region, and 0.0125 in the light region. b-g: progression of simulated pattern formation.
h: a picture of a real monkeyflower.

7.4 Other Flower Models

Orchids display many beautiful pigmentation patterns. Examples range from scattered dis-

tributions of spots to arrangements of discordant lines, and venation patterns. This wide

range of intriguing patterns pose a compelling modelling challenge, which is made more dif-

ficult because of their highly varied petal morphology. Patterns on the genus Digitalis and

Kohleria also display interesting spot and stripe patterns. I have used LRDS to model these

flower patterns, shown in Fig. 7.4.

Model a: This model is of a Phalaenopsis orchid, which displays varying sizes of purple

spots on a white background. The Phalaenopsis orchid was a modelling challenge due to

the variance in spot size and the relatively complex geometry of the flower. A regular spot

pattern was simulated to simulate the purple spots. Pattern formation was stopped before

the pattern became fully stable, allowing for varying sizes of spots in the resulting pattern.

The parameters are listed in Table. 7.2.

Model b: This orchid of the Encyclia genus displays orange and yellow stripes across the

flower petals. The domain is partitioned into three circular zones that increase the pattern
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Model Da Ds F k dt Total steps
a (Phalaenopsis) 0.25 0.5 0.082 0.063 0.3 150

Table 7.2 – Parameters for the Phalaenopsis orchid using the Gray-Scott reaction-diffusion
system (Eqn. 2.6). At the start, 400 random vertices are initialized with both activator, a and
substrate, s values randomly chosen in [0, 1). The remaining vertices have no activator and
substrate concentration of 1.

scale as it moves from the centre to the ends of the petals. Initially the morphogens u and

v are set to 4 + [−2.0, 2.0) everywhere. Anisotropic diffusion (Eq. 3.4) is used to orient the

pattern across the petals with both u and v assuming λ1 = 0.35, λ2 = 1 and the vector field

is radiating from the centre. After this pattern has settled, there is a second phase, during

which the boundary conditions are changed in some sections to act as sources and sinks. In

these sections, u and v use Dirichlet conditions with a value of 0 and 30, respectively. This

simulation is then stopped after 4, 500 steps before the pattern fully settles. The parameters

for this model are in Table. 7.3.

Model c: Some Kohleria flowers display two distinct patterns: A white background

with red spots on the border of the petals, and red oriented lines that branch and radiate

from the centre. The outside of the flower appears as a solid light pink. I modelled the

inner patterns using anisotropic diffusion (Eq. 3.4). This model uses two morphogens: u

and v. Initially they are set to 4 + [−3.0, 3.0) everywhere. The model produces spots in

the absence of anisotropic diffusion. The region containing line patterns has been modelled

by increasing the diffusion rates with respect to the longest axis of the flower. This causes

spots to become a series of branching connected lines. The inner region parameters differ

by a = 16 and u assumes anisotropic diffusion with the coefficients λ1 = 0.51, λ2 = 1 and

vectors radiating from the centre. To form correctly sized spots in the outer region, I use

a = 16.5 with isotropic diffusion. The parameters for this model are in Table. 7.4.

Model d: Digitalis has a scattered pattern of dark purple spots on the bottom inside

of its flowers. These spots are surrounded by a white halo that merges with others nearby.

Beyond these halos, the rest of the flower appears pink or light purple.
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Figure 7.4 – A developmental sequence of the simulated flower models and the corresponding
real flowers on the right. a-d: Phalaenopsis, Encyclia, Kohleria, Digitalis. Photographs (a-b)
courtesy of Przemyslaw Prusinkiewicz, (c-d) by pixabay.com, licensed under Pixabay License.

Model Du Dv α β s uSat dt
Total steps
(x1000)

b (Encyclia) 0.4 0.01 16 12 0.005, 0.002, 0.001 6.3 0.05 60; 4.5
c (Kohleria) 0.3 0.0625 15.75, 16.5 12 0.035, 0.04 7 0.1 10

Table 7.3 – Parameter values for Encyclia and Kohleria using Turing reaction-diffusion (Eqn.
2.2). uSat represents the maximum value of the u. Values separated by commas are used on
different regions of the domain.

Model Da Ds ρa ρs µa µs ρ dt
Total steps
(x1000)

d (Digitalis) 0.00004 0.0015 0.0125 0.05 0.05 0.08 0 0.005 20.7

Table 7.4 – Parameters for the Digitalis model using the activator-depleted substrate formula
(Eqn. 2.4). This model uses two morphogens s and a. The substrate s is 1 everywhere and a
is 0 except for a few vertices at the bottom of the flower. These cells have a value of a = 1 and
will progress over time to become the dark purple pigment spots.
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7.5 Discussion and Future Work

As far as I know, this study represents the only reaction-diffusion simulation on arbitrary tri-

angulated surfaces of flower petal patterns. I have also implemented a biologically-motivated

model of monkeyflower spots and their formation. A rendering of the monkeyflower is shown

in Fig. 7.5. This simulation provides a reason for the linear arrangement of spots arising

from the shape of a parameter boundary. I have also produced other flower models using

various reaction-diffusion equations. These models highlight the usefulness and flexibility of

reaction-diffusion and LRDS. Anisotropic diffusion was critical for aligning patterns. Future

work should identify to what extent anisotropic diffusion occurs in real petals.

There are many more flowers with striking patterns to be modelled. The visual ap-

pearance of patterns is affected by the shape of the flower petal cells. Incorporating this

phenomenon into renderings of flower petal patterns will provide a more realistic simulation

appearance. Flowers attract insects through pigmentation patterns only visible in ultraviolet

light. These types of patterns would be an exciting modelling challenge, especially if real

insects were attracted to the simulated images. More insight into how genes interact and

affect pattern formation would help specifying model PDEs. Future works may investigate

the role of growth and vasculature structures on pattern formation.
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Figure 7.5 – A rendering of a monkeyflower.
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Chapter 8

Case Study 4: Psoriasis

Reaction-diffusion has been widely used to model natural patterns that appear as part of nor-

mal development. Reaction-diffusion can also represent other patterns, specifically patterns

of disease. This chapter describes such an application. It is an edited version of (Ringham

et al., 2019)1.

8.1 Introduction

Most skin diseases manifest themselves with reproducible patterns of skin lesions, which are

conventionally described in terms of lesion morphology (e.g. macules, papules, plaques, etc)

and distribution on the skin surface (Nast et al., 2016). The biological basis of pattern forma-

tion is only understood in a few special cases. For instance, the segmental pattern of herpes

zoster reflects dermatomal viral reactivation through sensory nerves, and the linear pattern

in Blaschko lines represents genetic mosaicism. In most cases, however, the mechanisms

by which pathological processes in the skin generate reproducible patterns remain virtually

unknown (Nast et al., 2016). The majority of skin diseases are inflammatory, which explains

why the lesions are often red, elevated and scaly (resulting from, respectively: vasodilation

1P.P. and R.G. designed the research, L.R. and P.P. created the mathematical model and performed
computer simulations, L.R., P.P. and R.G. wrote the paper.
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and hyperemia, inflammatory infiltrate and edema, and pathologically increased epidermal

keratinization secondary to inflammation). The skin has a large surface (average 1.5 m2 -

2.0 m2) compared to its thickness (0.5 mm-4 mm; the surface-to-volume ratio of approxi-

mately 650 m2/m3) (Leider, 1949), and is therefore ideally suited to study the mechanisms

of spatial propagation of inflammatory processes in a tissue. Psoriasis, a chronic, autoim-

mune inflammatory skin disease affecting 2% − 3% of the population in Western countries

(Parisi et al., 2013) provides a particularly useful model. The lesions are sharply demarcated,

scaly, and distributed symmetrically on the body (Christophers, 2001; Griffiths and Barker,

2007; Nestle et al., 2009). The plaques evolve from pinpoint papules by centrifugal growth,

which explains an oval contour of mature lesions (Farber et al., 1985; Soltani and Van Scott,

1972). Individual plaques may merge producing polycyclic contours (Christophers, 2001;

Farber et al., 1985). In some instances the plaques have the appearance of rings (referred

to as annular, arciform or circinate patterns) (Christophers, 2001; Nast et al., 2016), which

is the predominant morphological feature in approximately 5% of patients (Morris et al.,

2001). The mechanisms responsible for these patterns are not readily explainable in terms

of the lateral propagation of inflammation, in which one would expect gradual attenuation

of inflammation due to the dilution of proinflammatory agents that diffuse in the skin. In

contrast, in psoriatic lesions the intensity of inflammation is preserved throughout the whole

plaque and sharply suppressed at its margin over the distance of a few millimeters. We show

that the phenotypic features of psoriasis can be explained in terms of interactions between

key pathogenic cytokines consistent with a reaction-diffusion model. This model captures all

cardinal phenotypic features of psoriasis and may provide a wider framework to understand

the patterning and maintenance of inflammation in other skin diseases.
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8.2 Results

8.2.1 Classification of Psoriasis Plaque Patterns

The patterns repetitively identified in the literature are listed in Fig. 8.1, see the full paper

for additional details.

Figure 8.1 – Patterns of skin lesions psoriasis.

8.2.2 Model of Cytokine Interactions in Psoriasis

Cytokines IL-23, IL-17 and TNFα are central mediators in the psoriatic plaque formation, as

underscored by the fact that pharmacological blockade of either cytokine by monoclonal anti-

bodies causes clinical remission in a large proportion of patients (Jabbar-Lopez et al., 2017).

Interactions between the cytokines inferred from the available data are shown schematically

in Fig. 8.2A. The most important pathogenic cytokines are those of the IL-17 family be-

ing produced primarily by the TH17 lymphocytes (interaction 0) (Krueger et al., 2012).
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These cells require IL-23 for expansion and activation (Cosmi et al., 2008; Wilson et al.,

2007; Zheng et al., 2007), and amplify the inflammatory process by inducing other proin-

flammatory cytokines, the most important of which is TNFα (Boehncke and Schön, 2015).

Psoriatic plaques contain both dendritic cells producing IL-23 and TH17 cells expressing the

IL-23 receptor (Cosmi et al., 2008; Lee et al., 2004; Tillack et al., 2014; Wilson et al., 2007).

Treatment with guselkumab, a selective therapeutic monoclonal antibody inhibiting IL-23,

attenuates IL-17s in psoriatic plaques and in serum in patients with psoriasis (interaction 1)

(Hawkes et al., 2018; Sofen et al., 2014; Tillack et al., 2014). This attenuation is correlated

with the clinical clearing of psoriasis lesions (Sofen et al., 2014). IL-17 and TNFα synergize

with each other (Alzabin et al., 2012; Krueger et al., 2012; Xu et al., 2017): IL-17 increases

the expression of TNFα (Jovanovic et al., 1998) (interaction 2), whereas therapeutic TNFα

inhibition blocks IL-17 in responding patients (interaction 3) (Zaba et al., 2007, 2009). The

positive feedback of IL-17 cytokines on their own production (interactions 2 and 3) is fur-

ther demonstrated by the findings that IL-17A induces IL-17C (Xu et al., 2018), and that

the therapeutic inhibition of the IL-17 receptor with brodalumab reduces the expression of

the IL-17 cytokine (IL-17A, C, F) (Russell et al., 2014). TNFα downregulates IL-23 (in-

teraction 4) either directly (Notley et al., 2008; Zakharova and Ziegler, 2005) or indirectly

via inhibition of interferons (Palucka et al., 2005; Tillack et al., 2014). Disturbance of this

negative interaction is probably responsible for paradoxical induction of psoriasis in patients

with rheumatoid arthritis and inflammatory bowel disease treated with TNFα antibodies

(Palucka et al., 2005; Tillack et al., 2014). That induction is readily reverted by therapeutic

inhibition of the excess of IL-23 by ustekinumab, an antibody binding to the p40 chain of

IL-23 (Tillack et al., 2014).

8.2.3 Computational Model Construction

To analyze whether the molecular-level interactions depicted in Fig. 8.2A can account for

the observed plaque patterns and the response of the disease to treatment, we constructed a
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Figure 8.2 – Modelling plaque formation in psoriasis. A) Interactions between key cytokines
involved in psoriasis plaque formation. Labels 0-4 refer to the observations from which these
interactions have been inferred (see Results). B) A simplified diagram of interactions, in which
cytokines IL-17 and TNFα are considered jointly. C) Diagram B relabeled as an activator (A)
- depleted substrate (S) system. D) Skin representation and simulation initialization. The
skin surface is partitioned into square regions. A lesion is initiated by an activated TH17 cell
(red) which is either a resident memory T-cell activated by a dendritic cell (green, interaction
a) or has migrated from circulation through a capillary wall (interaction b). The area of
microinflammation around the activated TH17 cell is considered as a “seed” region and its
projection to the surface (arrow c) is colored in red. Epidermis, the upper layer of the skin is
shaded in grey, capillaries in the dermis are colored in red (arterioles) and blue (venules). Skin
resident memory T-cells are marked in grey. E) Detail of skin surface representation. Each
region is two-dimensional projection of the underlying activator-depleted substrate system of
proinflammatory cytokines and represents a computational cell implementing reaction system
(C). These computational cells are interconnected (double arrows), allowing for the diffusion
of cytokines.
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mathematical model. We followed the standard method of simplifying the modeled system

to focus on its essence and make the model more amenable to analysis (Bak, 1996; Gaines,

1977; Prusinkiewicz, 1998). This simplification reduced the size of the parameter space and

thus, to the extent possible, the use of parameters for which quantitative data are currently

unavailable. It has also related the problem of plaque pattern formation to a known class

of reaction-diffusion systems, which provided guidance for the exploration of the parameter

space, and facilitated the analysis and interpretation of the results.

We have pursued the following train of thought. The mutual promotion of cytokines

IL-17 and TNFα, represented by interactions 2 and 3 in Fig. 8.2A, suggests that their con-

centrations may change in concert. Assuming this is the case, we reduced the three-substance

graph in Fig. 8.2A by representing IL-17 and TNFα jointly. The resulting two-substance

graph (Fig. 8.2B) has the structure of an activator-depleted substrate reaction-diffusion

model (Gierer and Meinhardt, 1972; Marcon et al., 2016)(Fig. 8.2C). In this model, the

substrate S with concentration s is locally converted into the activator A with concentration

a according to the canonical equations (Gierer and Meinhardt, 1972; Meinhardt, 1982):

∂a

∂t
= ka2s+ ρa0 − µaa+Da∇2a

∂s

∂t
= −ka2s+ ρs0 − µss+Ds∇2s

(8.1)

The term ka2s indicates that the conversion is autocatalytically promoted by the activa-

tor, with the rate controlled by parameter k. Its concentration increases at the expense of

the substrate, thus the activator downregulates the substrate. Parameters ρa0 and ρs0 are

the rates of the base production of the activator and the substrate, and µa and µs control

their turnover. The remaining terms, Da∇2a and Ds∇2s, represent diffusion of the activator

and substrate at the rates controlled by parameters Da and Ds, respectively (for simplicity,

diffusion is not explicitly represented in Figs. 8.2A-C). Consistent with figures 8.2B and C,

we identify variable a with the concentration of cytokines TNFα and IL-17, and s with the
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concentration of IL-23:

a = [TNFα, IL17], s = [IL23].

In the simulations, a patch of skin surface (Fig. 8.2D) is represented by an array of

interconnected computational “cells”, each of which performs local computation according

to Equations (8.1) (Fig. 8.2E). The initial state in all simulations is a uniform distribution

of IL-23 in the whole array, except for randomly distributed small “seed” areas with a high

concentration of IL-17 and TNFα. These areas represent IL-17-secreting cells (such as the

TH17-cell) that either have been activated in situ (Fig. 8.2D, interaction a) or have migrated

from the circulation to the skin or (Fig. 8.2D, interaction b) (Krueger et al., 2012).

8.2.4 Exploration of the Model Parameter Space

Currently, it is not feasible to measure the diffusion of cytokines in human skin and conse-

quently, there are no experimental data to provide suggestions for the parameter values of the

model. Consequently, we adopted a reverse strategy where we explored the model parameter

space by searching for values that would yield psoriasis patterns observed in patients (Fig.

8.1). To guide this search, we referred to the Gray-Scott reaction-diffusion system (Gray

and Scott, 1984), for which the parameter space has been thoroughly explored:

∂a

∂t
= a2s− (f + c)a+Da∇2a

∂s

∂t
= −a2s+ (1− s)f +Ds∇2s

(8.2)

We observe (see also (Yamamoto and Miorandi, 2010; Yamamoto et al., 2011)) that Equations

(8.2) are a special case of Equations (8.1), where

k = 1, ρa0 = 0, µa = f + c, ρs0 = f, and µs = f.
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The parameter space and details of six patterns obtained for specific parameter values are

shown in Fig. 8.3. These patterns correspond visually to the six types of psoriasis identified

in patients (Fig. 8.1). Note that, consistent with the common assumption of the Gray-Scott

reaction-diffusion model, the ratio of the diffusion rates of substrate and activator was set

to Ds : Da = 2 (Pearson, 1993). This is a departure from the much larger ratios typically

used in reaction-diffusion models (Diego et al., 2018; Gierer and Meinhardt, 1972; Kondo

and Miura, 2010; Lengyel and Epstein, 1991; Marcon et al., 2016; Vastano et al., 1987). On

biochemical grounds, this departure is justified by the commensurate, small size of the three

cytokines, implying comparable diffusion rates (see Table 8.1). The small ratio of diffusion

rates does not preclude Turing instability and spontaneous pattern emergence for carefully

chosen values of the remaining parameters (see Fig. 8.4). Nevertheless, the parameter values

leading to the formation of plaque patterns are compatible with the “filtering” operation

mode, in which the patterns do not emerge spontaneously in a homogeneous medium and

elaborate initial pre-patterns instead (Diego et al., 2018; Lee et al., 1993; Muratov and

Osipov, 2000; Pearson, 1993). This latter mode is more pertinent to the development of

psoriasis plaques, which is initiated by an activated TH17 cell in the skin (Fig. 8.2D).

Molecule MW [kDa] Dtiss[µm
2/s]

TNFα 26 154.4
IL17 35 123.6
IL23 54.1 89.1

Table 8.1 – Diffusion coefficients for the three cytokines involved in our model using the em-
pirical formula Dtiss = 1.778x10−4xMW−0.75 (Swabb et al., 1974)(Equation F in their paper).
The actual rates of macromolecule transport in a tissue may differ from these estimates, as
other factors may also play a role. These include convection, which may run in the direction
opposite to the concentration-gradient-driven diffusion (Swabb et al., 1974), and cell prolifer-
ation, which may be relevant to the transport of cytokines otherwise mostly confined to their
mother cells.
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Figure 8.3 – Parameter space of the model and selected patterns. Top left: A comprehensive
representation of the range of patterns generated using Equations 8.2 for different values of
the synthetic parameters c and f. A-D: magnified views of patterns generated using select
parameter values. These labels and patterns correspond to the patterns of psoriatic skin lesions
identified in Fig. 8.1.

8.2.5 The Development of Lesions and Response to Treatment

The simulated development of psoriasis lesions and the response to treatment are shown in

Fig. 8.5. The development was simulated by using the forward Euler method to advance

the state of the reaction-diffusion model over time, given an initial random distribution of

small papules. The parameter values and the initial conditions for each of these simulations

are listed in Table 8.2, with additional information characterizing the sensitivity of simu-

lations to the variation of (individual) parameter values collected in Table 8.3. Minimum

values of the activator A, representing cytokines IL-17 and TNFα, needed to initiate pattern

formation are collected in Table 8.4. The simulated patterns shown in Fig. 8.5 A-D3 have
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striking resemblance to the actual patterns of psoriatic skin lesions shown in Fig. 8.1. Next,

we simulated the effect of therapy by increasing the decay rate of cytokines IL-17 and TNFα

(activator A), which mimics real-life treatment with an anti-cytokine antibody. Interest-

ingly, the simulated lesion clearing was not simply a time-reversal of the processes of plaque

formation: the interior of the plaques cleared first, producing annular lesions (Fig. 8.5, row

5). The residual lesions dispersed slowly, eventually disappearing entirely or leaving residual

spots (Fig. 8.5, row 6).

Finally, to verify that the modelling results do not critically depend on the reduction

of the three-substance system in Fig. 8.2A to the two-substance system in Fig. 8.2B, we

have constructed a simulation model corresponding directly to Fig. 8.2A (see Supplementary

Text). Guided in part by parameter values found for the two-substance model (Tables 8.2

and 8.3), we found values for which the three-substance model produces qualitatively the

same plaque patterns (Table B.1). This result validates the simplification underlying the

two-substance model.
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Figure 8.4 – (Example of a pattern generated de novo using the Gray-Scott model (Equa-
tion 8.2) after 6000 iterations. The concentration is visualized from blue to orange. Pa-
rameter values: f = 0.042, c = 0.06, Da = 0.25, Ds = 0.5, dt = 1. The initial conditions
are a homogeneous distribution everywhere, with the addition of a small amount of noise:
a = 0.22557, s = 0.45219± 0.000001.
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Figure 8.5 – The simulated progression of different types of psoriatic lesions. Rows 1-3:
Development of the lesions. The earliest stage of a papule (Row 1) consists of randomly
distributed small seed areas. Later forms of the disease (Rows 2 and 3) correspond to patterns
identified in Figs. 1 and 3. Rows 4-6: The effect of treatment simulated by increasing the
decay rate of IL-17 and TNFα. Note that the treatment does not result in a simple reversal
of the original pattern development, but produces residual lesions with more activity at the
margin of the plaques (Row 5). In some instances, residual papules persist (Row 6).
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8.3 Discussion

Since the foundation of dermatology as a medical specialty in the beginning of the 19th

century, morphological patterns provided a useful and robust criterion for the diagnosis and

classification of skin diseases. However, the mechanisms through which skin diseases produce

diverse patterns remained unknown. We have shown that all major morphological types of

the common skin disease psoriasis (papular, small plaque, large plaque, and different forms of

circinate patterns) can be generated by a reaction-diffusion model with different parameter

values. The model is based on the currently known up- and down-regulating interactions

between three proinflammatory cytokines: TNFα, IL-23 and IL-17. These interactions are

not direct chemical reactions, but are mediated by the immunologically active cells stimu-

lating or inhibiting the release and proliferation of intermediary cytokines. The model has a

spatio-temporal character, explaining the emergence of patterns during disease development

and their disappearance during subsequent treatment. Reaction-diffusion thus provides a

promising framework for studying mechanisms underlying the progress and treatment of

psoriasis. As detailed data regarding the interaction and diffusion of cytokines involved in

psoriasis become available, more elaborate models may be constructed to recreate the actual

biological processes in the skin with an increased accuracy. Recent advances in the theoreti-

cal understanding of reaction-diffusion (Diego et al., 2018) suggest that the resulting models

may also become more robust to parameter changes, currently limited to narrow ranges.

Inflammatory patterns related to psoriasis are found in other diseases as well. For example,

annular lesions are seen in erythema multiforme, dermatophytosis and erythema annulare

centrifugum; reniform patterns in erythema gyratum repens, urticaria and lupus erythe-

matosus; and rosettes in granuloma annulare. We thus hypothesize that reaction-diffusion

models can be applied further to explain the patterns of other inflammatory skin diseases,

and suggest their treatment by selective cytokine inhibition. Eventually, reaction-diffusion

models could provide a framework for understanding the pathogenesis and pharmacologic

intervention of a broad spectrum of skin diseases.
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Name Papular
Small
Plaque

Large
Plaque Annular Rosette Reniform

µ[IL23] = ρ[IL23]0 0.046 0.084 0.091 0.001 0.009 0.011

µ[TNFα]

(before treatment) 0.116 0.141 0.148 0.028 0.056 0.057

µ[TNFα]

(during treatment) 0.120 0.1467 0.153 0.04 0.0625 0.065

maxSteps 12,620 14,000 143,000 4,500 3,900 15,500
treatSteps 12,000 12,000 140,000 1,700 2,700 13,000

Table 8.2 – Parameter values used to generate the six classes of psoriasis plaque patterns
shown in Fig. 8.5. In all simulations k = 1, ρa0 = 0, Da = 0.25, and Ds = 0.5. Simulations
were carried out using forward Euler methods with time-step dt = 0.4 for maxSteps iterations,
with the treatment starting after treatSteps iterations. The textures used in all simulations
had a resolution of 500 x 500 texels, with each texel representing a sample point of a discretized
patch of the skin. Parameters of individual simulations are collected in Table 8.1. We assumed
Neumann boundary conditions set to 0, i.e., no diffusion of activator A and substrate S across
the boundary. The initial activator concentration a was set to 0 in each texel except for 50 seed
spots, placed randomly across the domain. Each spot was represented by a 3x3 array of texels
with a concentration of 0.5 (See Table 8.3 for the minimum values). The initial concentration
of the substrate s was 1.0 everywhere. All concentrations were represented with 32-bit floating
point accuracy.
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Name Papular
Small
Plaque

Large
Plaque Annular Rosette Reniform

ρs0

[0.04510,
0.04705]

[0.08375,
0.15000]

[0.09060,
0.09110]

[0.00075,
0.00285]

[0.00875,
0.00910]

[0.01085,
0.01112]

ρa0

[0.00000,
0.00075]

[0.00000,
0.00525]

[0.00000,
0.00002]

[0.00000,
0.00022]

[0.00000,
0.00015]

[0.00000,
0.00008]

µs

[0.04435,
0.04725]

[0.03475,
0.08475]

[0.09085,
0.09175]

[0.00000,
0.00125]

[0.00875,
0.00910]

[0.01085,
0.01120]

µa

[0.11265,
0.11899]

[0.10000,
0.14180]

[0.14785,
0.14870]

[0.01500,
0.03500]

[0.05360,
0.05650]

[0.05620,
0.05750]

Ds

[0.46000,
0.57500]

[0.42500,
0.80000]

[0.46100,
0.50500]

[0.00000,
1.05000]

[0.47500,
0.52500]

[0.42500,
0.61500]

Da

[0.22000,
0.27000]

[0.17500,
0.29000]

[0.24500,
0.27000]

[0.15000,
0.75000]

[0.23500,
0.27500]

[0.22500,
0.28500]

k
[0.95900,
1.05000]

[0.98800,
1.60000]

[0.99000,
1.00200]

[0.75000,
1.35000]

[0.98500,
1.06500]

[0.97500,
1.01500]

Table 8.3 – Ranges of parameter values resulting in patterns visually similar to those shown
in Fig. 8.5. For each varied parameter all remaining values are as in Table 8.2.

Pattern A B C D1 D2 D3

Minimum initial concentration of
the activator at the spots 0.208 0.244 0.256 0.088 0.126 0.127

Table 8.4 – Minimum values of the activator A needed to initiate the formation of patterns
shown in Fig. 8.5.
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8.4 Limitations of the Study

The main limitation of this study is that the validity of the proposed model cannot be

confirmed by direct measurements of cytokine concentration gradients in the skin. Although

the diffusion rates of the cytokines are expected to be similar to each other (Table 8.1),

which is consistent with the Gray-Scott-type model, the range of diffusion is likely to be

much larger than the predicted millimeter scale due to the accrual of cytokine-secreting

cells to the inflammatory infiltrate and centrifugal cell movement. Currently, the large-scale

measurements of cytokine gradients in human skin are not technically feasible.
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Chapter 9

Software Performance

A critical aspect in the design of LRDS was real-time performance. In order to support

pattern formation at interactive rates, the PDEs and extensions to reaction-diffusion were

required to be calculated quickly. Efficient simulation was achieved by leveraging the GPU

to perform computation in a highly parallelized fashion. As shown in Table 9.1, the high

degree of parallelization provided by the GPU was integral for increasing simulation speed in

medium to large domains. And performance of LRDS can be improved greatly by upgrading

the GPU used for computation.

This speed facilitated interaction by decreasing the time between user provided input

and LRDS’ response. GPU integration allows a user to directly manipulate their model and

explore how parameter changes effect pattern details. Another benefit was the added ability

to observe pattern formation in real-time.

User productivity is also affected by software performance. Studies have shown that,

when using websites, a delay greater than 1 second interrupts the user’s flow of thought,

and if a delay is greater than 10 seconds, the user will want to do something else (Nielsen,

1994). Thus, it was important to minimize delays after user’s actions in order to increase

user productivity.
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Cell Count GPU - NVIDIA GTX 850M (ms) CPU - INTEL i7-4810MQ (ms)
642 21,117 22,628
10,242 21,964 91,805
21,728 24,387 194,066
40,962 33,250 378,590
163,842 94,017 2,104,099

Table 9.1 – Analysis of LRDS performance. Shown is the time taken to perform 10,000
iterations of a reaction-diffusion simulation. For small domains consisting of less than 1000
cells, the CPU and GPU exhibit similar performance. When simulating on medium to large
domains, the GPU outperforms the CPU by an order of magnitude or more as the number of
cells increases. This benefit is still seen, even with the modest graphics card used for this test.
Timings of the specific models presented in this thesis are found in Table. C.1.
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Chapter 10

Conclusions

10.1 Contributions

In this thesis, I have introduced LRDS, an environment for quick and efficient authoring

and simulation of reaction-diffusion models on grids and triangulated manifolds. To create

a model, users easily specify their equations and parameters in a text file. These models are

then simulated on the CPU or by using parallelized computation on the GPU. LRDS pro-

vides advanced features like anisotropic diffusion, non-homogeneous parameters, and domain

growth with adaptive subdivision to give users flexibility when creating patterns. Integration

of these features and the speed of the GPU has made LRDS an powerful tool for interactively

exploring a wide array of reaction-diffusion models. Furthermore, these patterns can then be

used to create textures or animations of pattern development for use in computer graphics,

video games, and films. LRDS also has applications in a scientific setting, allowing users

to model their observations and test their biological hypotheses quickly. These models can

then be used to gain a better understanding of nature.

Using LRDS, I have produced models of natural patterns on grids and triangular meshes

in a series of case studies. The first study concerns simulating ladybug elytra patterns.

These patterns are composed of spots, stripes, and loops and are coloured in vivid red,
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black, brown, and yellow. To represent the elytra, I used a triangular mesh. Using a mesh

provides a flexible and natural representation of the elytra’s curvature and shape compared

to grid-based simulations. Pattern formation occurs directly on the mesh, avoiding any

mapping distortion. The colour of the simulated patterns was chosen by referencing real

ladybug images.

The next study concerns pigmentation patterns seen on snakes. These patterns can be

spots and stripes or more complex patterns composed of zigzags and blotches. Growth

and anisotropic diffusion augment simple patterns to create more complex ones. Pattern

simulation occurs on a snake-shaped mesh.

The third study deals with simulating flower petal patterns. Although the colourful

patterns seen on flower petals are a defining aspect of their appearance, few studies research

simulating them. I created novel models of orchids by referencing parameters from other

works as well as independently searching the parameter space. The models were expanded by

varying parameters spatially and by using anisotropic diffusion. I also modelled the spotted

purple flower Digitalis, among others. Using existing protein interactions that determine

pigment formation, I modelled the monkeyflower species. The monkeyflower is a rare case

where the real world morphogens responsible for pattern formation are known.

In the final case study, I presented a biologically-motivated model of the autoimmune

disease psoriasis. This study took a departure from modelling pigmentation patterns and

ventured into the domain of medicine. A hallmark of psoriasis is the red lesions that appear

on the skin with a variety of geometric patterns. These patterns are an essential characteristic

of the disease, yet the mechanisms through which they arise remain unknown. We modelled

the interactions between the main pathogenic cytokines, TNFα, IL17, and IL23, to produce

all known patterns of psoriasis. From this, we simulated the treatment of the disease through

cytokine targeting. This computational model offers an exciting approach to understanding

psoriasis better because of the rapid rate in which psoriasis can be simulated compared to

the actual disease. Modelling also provides an avenue for testing treatments and possibly a
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future cure.

10.2 Future Work

From this thesis, two main avenues can be explored as future work. First, LRDS can be

extended with more features. Coupling growth and patterning has been shown to create

compelling structures in 3D Harrison et al. (2002); Holloway and Harrison (2007). This

feature would be easy to add as the essential components are already implemented. Support

for volumetric domains would allow for the exploration of 3D patterning. An area of research

that would benefit from this feature is the simulation of vein formation. Supporting arbitrary

values for Neumann boundary conditions and more boundary conditions in general would

be useful as well. Active-transport is an alternative to diffusion that could also be a useful

feature in LRDS for modelling biological systems.

Concerning future reaction-diffusion work, the effect of more sophisticated methods

for computing reaction-diffusion, like higher order differential operators and time-stepping

schemes, should be researched to see what effect they have on pattern formation. Another

future work is to simulate the same patterns on meshes of varying resolution and quality to

determine how triangle shape and size effects patterning.

The second area of future work concerns the technical aspects of LRDS. Support for CPU

multi-threading, SIMD, or distributed computing would increase the software’s performance

and productivity of users. Being able to edit all aspects of the parameter file directly inside

LRDS would increase usability. Currently, the only supported operating system is Win-

dows, adding cross-platform support would allow LRDS to reach a more extensive user base.

Finally, I intend to open-source LRDS to allow users to explore and build off my results.

92



Bibliography

(2009). Encyclopedia of Insects. Elsevier Science, 2 edition.

Allen, W. L., Baddeley, R., Scott-Samuel, N. E., and Cuthill, I. C. (2013). The evolution

and function of pattern diversity in snakes. Behavioral Ecology, 24(5):1237–1250.

Alzabin, S., Abraham, S. M., Taher, T. E., Palfreeman, A., Hull, D., McNamee, K., Jawad,

A., Pathan, E., Kinderlerer, A., Taylor, P. C., et al. (2012). Incomplete response of

inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Annals

of the rheumatic diseases, 71(10):1741–1748.

Ando, T., Matsuda, T., Goto, K., Hara, K., Ito, A., Hirata, J., Yatomi, J., Kajitani, R.,

Okuno, M., Yamaguchi, K., Kobayashi, M., Takano, T., Minakuchi, Y., Seki, M., Suzuki,

Y., Yano, K., Itoh, T., Shigenobu, S., Toyoda, A., and Niimi, T. (2018). Repeated

inversions within a pannier intron drive diversification of intraspecific colour patterns of

ladybird beetles. Nature Communications, 9(1):3843.

Andreux, M., Rodola, E., Aubry, M., and Cremers, D. (2014). Anisotropic Laplace-Beltrami

Operators for Shape Analysis. In NORDIA’14 - Sixth Workshop on Non-Rigid Shape

Analysis and Deformable Image Alignment.

Atlassian (2019). Sourcetree. https://www.sourcetreeapp.com/.

Bak, P. (1996). How nature works: the science of self-organized criticality.

93

https://www.sourcetreeapp.com/


Bayer, E., Egeter, H., Fink, A., Nether, K., and Wegmann, K. (1966). Complex formation

and flower colors. Angewandte Chemie International Edition in English, 5(9):791–798.

Boehncke, W.-H. and Schön, M. P. (2015). Psoriasis. The Lancet, 386(9997):983–994.

Christophers, E. (2001). Psoriasis- epidemiology and clinical spectrum. Clinical and experi-

mental dermatology, 26(4):314–320.

Cornut, O. (2019). Dear ImGui. https://github.com/ocornut/imgui.

Cosmi, L., De Palma, R., Santarlasci, V., Maggi, L., Capone, M., Frosali, F., Rodolico,

G., Querci, V., Abbate, G., Angeli, R., et al. (2008). Human interleukin 17–producing

cells originate from a CD161+CD4+ T cell precursor. Journal of Experimental Medicine,

205(8):1903–1916.

Crane, K., de Goes, F., Desbrun, M., and Schröder, P. (2013). Digital Geometry Processing
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Appendix A

Program Inputs

A.1 Command Line Arguments

ModelsPath= Path to where OBJ models are located.

ShadersPath= Path to where shaders are located.

ColorMapsPath= Path to where colormaps are located.

SavePath= Path to save output to.

ConfigFile= SimConfig filename (eg. SimConfig.txt).

SimFile= Filename containing the starting morphogen concentrations.

Steps= Integer number of simulation steps until program exits.

SaveOnExit Enable saving the model when program exits.

Run Start the simulation running.
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A.2 Reserved Labels Used in a Parameter File

ModelsPath: Filepath to folder containing OBJ models.

ColorMapsPath: Filepath to folder containing colormaps.

ShadersPath: Filepath to folder containing shaders.

camera: Six comma separated floating point values representing the position and look at

points used to orient the camera.

model: Nine comma separated floating point values representing the X, Y, Z vectors used

to orient the domain.

domain: The domain as either an OBJ filename (eg. model.obj) or grid. Only manifold

OBJ meshes are supported. Grid domains look for two other parameters width and

height which denote grid resolution.

xRes: Integer representing width in squares of a grid domain.

yRes: Integer representing height in squares of a grid domain.

cellSize: A float representing spatial width of a single square in a grid domain.

simFile: A filename of a text file containing all per vertex values such as morphogen con-

centrations, vector directions and principle diffusivities. (eg. simfile.rd)

colorMap: A filename of binary file containing a 256 RGB colormap. This is used for both

inside and outside the mesh (eg. color.map).

colorMapOutside: The colormap for the outside of the mesh.

colorMapInside: The colormap for the inside of the mesh.

growthTickLimit: An integer representing the number of simulation steps before the do-

main is grown.

growing: true or false to turn growth on or off.

growthX: A float percentage representing growth percentage on global X axis.
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growthY: A float percentage representing growth percentage on global Y axis.

growthZ: A float percentage representing growth percentage on global Z axis.

maxFaceArea: The face area threshold as a float for adaptive subdivision.

pauseAt: Integer number of simulation steps until program pauses.

exitAt: Integer number of simulation steps until program exits.

morphogens: A comma separated list of morphogen names in uppercase (eg. A, S, U, V).

initialConditions: The start of initial condition specification.

rdModel: Either GPU or CPU depending on desired computation mode. Also denotes the

indices: Specifies integer indices used to define initial conditions and parameters. Valid

values are: all or 1,2,3 or 1-3.
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Appendix B

Psoriasis

B.1 Three-Substance Model of Psoriasis

To show that the results obtained for the two substance system in Fig. 8.2B also hold for the

three-substance system in Fig. 8.2A, we have constructed a simulation model corresponding

directly to Fig. 8.2A. The equations have the form:

∂[TNFα]

∂t
= ρ[TNFα]0 − µ[TNFα][TNFα] + η[IL17]− k[TNFα]2[IL23]

+D[TNFα]∇2[TNFα]

∂[IL17]

∂t
= ρ[IL17]0 − µ[IL17][IL17] + k[TNFα]2[IL23] +D[IL17]∇2[IL17]

∂[IL23]

∂t
= ρ[IL23]0 − µ[IL23][IL23]− k[TNFα]2[IL23] +D[IL23]∇2[IL23]

(B.1)

Parameter values resulting in the different pattern classes shown in Fig. 8.5 are collected in

Table B.1.
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Name Papular
Small
Plaque

Large
Plaque Annular Rosette Reniform

[IL23]=[IL23]0 0.04 0.045 0.055 0.001 0.009 0.011

µ[TNFα]

(before treatment) 0.103 0.103 0.115 0.028 0.055 0.054

µ[TNFα]

(during treatment) 0.107 0.1087 0.12 0.04 0.0615 0.062

maxSteps 13,000 14,000 143,000 4,500 3,900 15,500
treatSteps 12,000 12,000 140,000 1,700 2,700 13,000

Table B.1 – Parameter values for generating the six classes of psoriasis plaque patterns shown
in Fig. 8.5 using the three-substance model. In all simulations: k = 1, η = 2, ρ[TNFα]0 =
ρ[IL17]0 = 0, µ[IL17]=1,D[IL23]=0.5,D[TNFα]=D[IL17]=0.25.
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Appendix C

Model Timings

Name Cell Count Time (sec)
P. quinquepuncatuts 6238 2744.32
C. septempuncata 6238 2752.61
E. crassimala 6238 2770.58
M. Hauseri 6238 2615.42
B. albolineata 6238 926.58
L. triangulum hondurensis 10593 393.84
E. quadrivirgata 10593 54.12
L. guttatus 10593 502.13
V. berus 10593 89.32
M. frontalis 10593 490.8
L. californiae 10593 147.09
M. guttatus 49700 6229.07
Phalaenopsis 10504 0.41
Encyclia 11025 119.38
Digitalis 12223 48.59
Kohleria 24561 25.36

Table C.1 – Model cell counts and the associated time to simulate each model. The computer
used contained an NVIDIA GTX 850M GPU and an INTEL i7-4810MQ CPU. Computation
of the PDEs was performed on the GPU.
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Appendix D

Copyright Permissions
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