
The Visual Computer manuscript No.
(will be inserted by the editor)

Adam Runions · Faramarz Samavati · Przemyslaw Prusinkiewicz

Ribbons

A representation for point clouds

Abstract Point clouds are usually represented either
globally, as surfaces, or locally, as sets of points with
small neighbourhoods. We propose an intermediate rep-
resentation, called ribbons, which is obtained by parti-
tioning a point cloud into one-dimensional strips. This
representation is well suited to the placement of strokes
in non-photorealistic rendering, and can be visualized ef-
ficiently using quad strips. Methods for performing hatch-
ing, cross hatching, and silhouette renderings are pre-
sented. Ribbons also allow for the application of curve-
based operations to the point cloud.

Keywords point cloud · point based rendering ·
non-photorealistic rendering · geometric modeling

1 Introduction

The digitization of real-world objects often produces
point clouds. The increasing availability of point cloud
data has made it necessary to develop techniques to pro-
cess and manipulate unorganized point clouds. Over the
past decade point-based modeling and rendering has de-
veloped into a new paradigm in computer graphics.

Point-cloud research initially focused on converting
point sample data to better understood representations,
such as polygon meshes and implicit functions. An al-
ternative approach is to work with point clouds directly,
without imposing the topological and geometric constr-
aints of other representations. Most of the current repre-
sentations can thus be categorized as surface- or point-

Adam Runions
2500 University Dr. NW
Calgary AB, Canada
T2N 1N4
Tel.: +1-403-210-9498
E-mail: runionsa@cpsc.ucalgary.ca

Faramarz Samavati
E-mail: samavati@cpsc.ucalgary.ca

Przemyslaw Prusinkiewicz
E-mail: pwp@cpsc.ucalgary.ca

based. In surface-based representations, the point cloud
is modeled as a single surface [2,8], as opposed to point-
based representations that rely entirely on the points as
individual objects (perhaps using neighbouring points to
determine the normal)[21].

The spectrum from points to surfaces is wide enough
to include other, intermediate representations. For ex-
ample, line drawings play an important role in artistic
representations of an object [7,9]. These lines represent
a connectivity beyond that of point samples, but less
extensive than that of surfaces, which may be an over-
representation for this task.

In this work, we propose ribbons as an intermedi-
ate representation of object geometry that lies between
point-based and surface-based representations. Ribbons
are particularly useful in non-photorealistic rendering,
where objects are represented as collections of lines. We
present a data structure for ribbons, an algorithm for
converting a point cloud to a ribbon representation, and
a method for rendering objects represented by ribbons.
This method is inspired by ink-pen illustration tech-
niques such as hatching, cross-hatching, and silhouette
extraction [14], but it also introduces an original tex-
ture, which is aesthetically appealing in some applica-
tions. We also introduce a simple level-of-detail repre-
sentation based on ribbons, and provide a number of
examples demonstrating the proposed techniques.

Our method transforms the point cloud into long one-
dimensional strips, called ribbons, by connecting points
into sequences according to their neighbourhood rela-
tions. The resulting representation can be computed ef-
ficiently, with the only non-linear operation being a k-
nearest-neighbour search at each point in the pre-pro-
cessing phase. The ribbons may be rendered using
OpenGL to obtain standard or non-photorealistic (NPR)
renderings of the surface. Additionally, the linear struc-
ture of ribbons allows for the direct application of one-
dimensional operations, such as forward and reverse sub-
division.

The structure of this paper is as follows. Section 2
provides a discussion of related literature on point clouds



2 Adam Runions et al.

(a) (b) (c) (d)

Fig. 1 Outline of ribbon generation a) Input consists of an initial point cloud b) Connectivity computed using WPCA c)
Ribbons generated by our algorithm d) Ribbons rendered using an NPR technique

and NPR. In Section 3 we show how to construct rib-
bons by first connecting the points (Section 3.1), then
partitioning the point cloud into ribbons (Section 3.2).
The rendering of ribbons is discussed in Section 4. Ap-
plications to stroke placement in NPR are presented and
illustrated in Section 5. Finally, in Section 6 we outline
future research directions.

2 Related Work

2.1 Point clouds

Point-cloud representations can be coarsely divided into
surface- and point-based. The first category was address-
ed initially by constructing an implicit representation.
Hoppe et al [10] proposed one of earliest methods, in
which a distance function was constructed on a point set.
Reconstruction of a polygon mesh from point-cloud data
has also been implemented using 3D Delaunay triangu-
lations in the Cocone[8] and PowerCrust[2] algorithms.

Some of the first point-based representations were
splatting techniques[21,4]. Splatting generates a local
characterization of the point cloud at each point based
on a small neighbourhood. The points are then repre-
sented by simple geometric primitives, such as ellipses,
which make it possible to efficiently render the point
cloud without using connectivity.

The method of moving least squares (MLS), proposed
by Levin[12], is a projection approach to surface approx-
imation. MLS uses a mapping operator that projects a
given point onto a local approximation of a surface, gen-
erated from a small neighbourhood of the point. The
MLS projective surface has been used to obtain an im-
plicit representation of point cloud data and to perform
operations such as denoising. Adamson et al.[1] proposed
a similar technique using weighted principal component
analysis instead of MLS.

A notable exception to the surface vs point-based
characterization of representations is the work of Bou-
bekeur et al. [5], which offers an intermediate represen-
tation. This representation partitions the point cloud us-
ing an octtree and triangulates each partition. By refin-
ing each triangulation using subdivision it is possible to
achieve visual continuity and efficiently render the sur-
face using the standard graphics pipeline.

2.2 Non-Photorealistic Rendering

Placing strokes on surfaces is an important facet of Non-
Photorealistic Rendering (NPR). Strokes are used to pro-
vide visual cues to the viewer, conveying the structure of
the surface in simple terms. Silhouettes, suggestive con-
tours[7], creases, and hatching are often employed to this
end.

Silhouettes are a well established NPR visualization
technique[18]. Frame coherence of meshes, however, can
be an issue. If frame coherence is not maintained, strokes
can appear or disappear suddenly when a model is ani-
mated, decreasing the visual quality of results. The work
of Brosz et al[6] addresses this problem by varying the
width and shading of silhouette lines based on the sta-
bility of each line.

The automatic hatching or cross-hatching of a surface
was examined outside the context of point clouds[18,9].
In the work of Praun et al[18] and Hertzman et al.[9],
hatching is constructed by placing roughly parallel strok-
es on the surface. Cross hatching is generated by placing
two sets of parallel strokes perpendicular to each other.
Hertzmann et al. create strokes directly on the surface,
whereas Praun et al. use textures to obtain real-time
hatching.

The application of NPR to point clouds has been rel-
atively unexplored. Kawata et al.[11] proposes a tech-
nique for interactive point-based painterly rendering. Xu



Ribbons 3

et al. [19] extract feature points but do not construct
strokes, and Zakaria et al. propose a method for dithering
and silhouette extraction which creates strokes in image
space[20]. Pauly et al.[16] propose a method for extract-
ing feature lines, which refines the k-nearest neighbours
of the point set down to a small number of feature lines.

3 Generating Ribbons

Let P be a point cloud sampled from a 2d manifold
surface embedded in <3 (Fig.1a). Ribbons partition the
point cloud into one-dimensional strips. Maximizing the
length of each ribbon and maintaining a relatively con-
sistent direction reduces the number of short or erratic
ribbons, which do not characterize the point cloud well.
It also serves to improve the results of NPR visualiza-
tion and one-dimensional operations performed on the
ribbons. In this section we propose a method to gener-
ate ribbons that works well for these purposes. It is also
possible to create ribbons under other constraints, which
may lead to different generation methods.

Partitioning P into ribbons relies upon connectivity
obtained from a local parameterization computed at each
point (§3.1, Fig.1b). P is locally parameterized by per-
forming weighted principal component analysis (WPCA)
centred on each point taking into account its neighbour-
hood[1]. The scope of local parameterizations increases
as connectivity is established, yielding regions with a pa-
rameterization similar to tensor surfaces (§3.1.2).

Given the connectivity of each point, the point cloud
is partitioned into ribbons by traversing the connected
structure. (§3.2). By following the local parameteriza-
tion at each point two classes of ribbons, u-ribbons or
v-ribbons, can be constructed (Fig.1c).

With the exception of computing the neighbourhoods
of the points all operations are linear in time, and can
be implemented efficiently using simple data structures
such as queues or linked lists.

3.1 Defining connections

3.1.1 Computing the local frame

The local parameterizations used take the form of coor-
dinate systems, initially computed at each point p ∈ P

using, Np, a local neighbourhood of p. To this end a
subset of the k-nearest neighbours (k-NN) of p is em-
ployed[15] (Fig.2b).

We use principal component analysis(PCA) to find
a coordinate frame for each local parameterization. To
include the impact of the distance of points, we employ a
weighted form of PCA[1,17]. A WPCA estimate is said
to be centred on p∈ <3 if it is computed with Np as the
neighbourhood. For a local weighted function, we use the

function employed by Levin[12]

w(pi) = e
−

‖p−pi‖

H2
p

where the local scale factor Hp is calculated as the aver-
age distance between p and each of the points in Np.

It is possible that the Euclidean distance between
p and one of its k-neighbours is quite large. A distant
neighbour can distort the parameterization of Np . To
guard against this possibility, we use Hp, the local scale
factor at p. All points in Np further than Hp from p are
removed prior to performing WPCA. As Hp is a local
estimate, it changes adaptively across the surface.

Now, Np is used to perform WPCA centred on p

to obtain αp1,αp2, and αp3, the sorted eigenvectors of
the weighted covariance matrix. As the point clouds be-
ing considered approximate a 3d surface, these vectors
have a meaningful geometric interpretation: αp1 and αp2

estimate the tangent plane and αp3 the normal to the
point cloud at p. By projecting the points on the tan-
gent plane, a local parameterization can be determined.
As such, these three vectors thus serve as a basis for a
local parameterization of the point cloud. The vector αp1

indicates the first coordinate, denoted u, and αp2 the sec-
ond coordinate, denoted v. Point p and these two vectors
also form a coordinate frame. We denote by lp1 and lp2

the lines that pass through the vectors of this frame.

3.1.2 Alignment of local frames

Computing a global parameterization for the entire point
cloud is difficult, but creating a number of smaller pa-
rameterizations with enough structure to generate rib-
bons is easily addressed due to their linear connectivity.
This is accomplished by choosing a point and propagat-
ing its parameterization to its neighbours, and in turn
to their neighbours and so on until it can be expanded
no further. Then another point is chosen and the process
repeated. This grows the parameterization at a point to
encompass a larger portion of the point cloud. The ex-
panded parameterizations provide locally consistent di-
rections which are followed to generate ribbons. As the
local parameterization is represented by local frames this
involves aligning the local frames at each p ∈ P .

In order to align the local frames in a linear fash-
ion, the local frames at each point in P are aligned by
first picking an unprocessed point randomly from the
point cloud (initially all points are unprocessed). Next,
using the vectors αh1 and αh2 the local connectivity of
h is computed (Alg.1 lines 7-10). The connectivity of
h is given by the points Left(h), Right(h), Up(h) and
Down(h).

Once the connectivity of h has been calculated, each
point connected to h is processed in order to align their
coordinate frames with h’s. This helps to maximize the
length of each ribbon.

If k is connected to h (one of the Left(h), Right(h),
Up(h), Down(h)) but has not yet been processed then



4 Adam Runions et al.

(a) (b) (c) (d) (e) (f )

Fig. 2 Overview of ribbon generation a)Initial points b)Np of point set c)Local coordinate frames (αp1 in orange, αp2

in green) d)Up(p),Down(p),Left(p), and Right(p) relations for each point e) Ribbons generated on point set f) Result of
rendering ribbons as described in text

it must be processed. To do this it is necessary to first
orient αk1 and αk2 as close to αh1 and αh2 as possible
while keeping both vectors in the tangent plane at k.
This is done by projecting αh1 and αh2 onto the tangent
plane at k to produce αnew1 and αnew2 respectively. A
Gram-Schmidt orthogonalization is performed on αnew1

and αnew2 to guarantee orthogonality. These vectors are
then used in place of αk1 and αk2 respectively. The coor-
dinate frames are visualized for an example point cloud
in Fig.2c.

As k is now consistently oriented with the neighbour-
ing point h its connectivity can be computed, so it is
added to the queue. Once all the points connected to h
have been processed, the process is repeated for the next
point in the queue as described in Alg.1.

This process is repeated starting with an unprocessed
point until the entire point cloud has been processed.

1 Unprocessed := P
2 While p ∈ Unprocessed do:
3 Q.push(p)
4 Unprocessed := Unprocessed − p
5 While Q contains at least one point do:
6 h := Q.pop()
7 Order Np along αh1

8 Calculate Left(h) and Right(h)
9 Order Np along αh2

10 Calculate Up(h) and Down(h)
11 S := {Up(h), Down(h), Left(h), Right(h)}
12 For all k ∈ S do:
13 if k ∈ Unprocessed then:
14 Unprocessed := Unprocessed − k
15 Reorient αk1 and αk2

16 Q.push(k)
17 End if
18 End For
19 End While
20 End While

Algorithm 1: Pseudocode for generating connectivity

3.1.3 Creating local connectivity

The local connectivity at a point p is determined by
finding points preceding and following p along the lines

lp1, lp2 that follow the local parameterization at p (illus-
trated in Fig.2d).

Let Nlp1
be the set of points in Np with Euclidean

distance to lp1 less than that to lp2 or equidistant from
both lines (Fig.3(b)). Once Np has been reduced to Nlp1

it becomes possible to determine Left(p) and Right(p)
by ordering the points along lp1 and selecting the points
preceding and following p respectively (Fig.3 c-d). If no
such point exists then p is selected instead. Determining
Up(p) and Down(p) is similar but uses lp2 in place of lp1

(Fig.3e). It should be noted that the connections between
points may not be symmetric (e.g. Left(Right(p)) might
not equal p).

By using the connectivity at each point two functions
are defined which are used to create ribbons. The first
function nextLR takes two points in a progression and
produces the next point in the same direction using the
local orderings of the points along lp1. The second func-
tion nextUD performs the same function along lp2. These
functions are essential to the chaining process as they
provide the methods necessary to stitch local orderings
together.

3.2 Partitioning the Point Cloud into Ribbons

By using the generated connectivity the point cloud can
be partitioned into ribbons. U-ribbons are produced by
following the connectivity provided by Left(p) and
Right(p) using nextLR, and v-ribbons by following the
connectivity provided by Up(p) and Down(p) using
nextUD.

Each ribbon is started at some unprocessed point p ∈
P . The ribbon is extended in two stages. First, the ribbon
is extended along opposing directions (up and down, or
left and right) until unprocessed points can no longer be
added.

In the second stage if either end of the ribbon termi-
nates at the end of another ribbon then the two ribbons
are linked into a single ribbon. Linking the ribbons serves
to connect existing ribbons in order to create longer rib-
bons, when possible (§3.2.2). The result of the ribbon
generation process can be seen in Fig.2e and Fig.1c.



Ribbons 5

(a) (b) (c) (d) (e)

Fig. 3 Establishing the connectivity at a point p a)The point p is shown in red, its Np in blue, and the lines lp1 and
lp2 in orange and green, respectively. b) The points closer to lp2 than lp1 fall in the shaded region and are excluded from
consideration c) The remaining points are ordered along lp1 d) Left(p) and Right(p) are determined e) The process is then
repeated for lp2 to establish Up(p) and Down(p)

Formally, each ribbon is defined by an ordered set
of points and their respective coordinate frames. When
considering a single set of ribbons (only the u-ribbons or
v-ribbons, not both) the ribbon containing p is labelled
Rp; this notation is well-defined as each set of ribbons
partitions the point cloud. The result is a set of ribbons

R = {R1, R2, · · · , Rj}.

Starting each new ribbon as far from pre-existing ribbons
as possible helps to maximize ribbon length by allowing
the ribbon more room to extend prior to linking. Unfor-
tunately, finding the point farthest from existing ribbons
is an expensive computation; thus the p used to create
Rp is chosen randomly from the points still not contained
in a ribbon, which decreases the likelihood that points
near pre-existing ribbons will be selected.

3.2.1 Creating a ribbon

Each ribbon is generated by staring at p and traversing
the connections to neighbouring points. Here, the genera-
tion of u-ribbons is described, but modifying this process
to create v-ribbons is straightforward and is discussed at
the end of this section.

Ribbon Rp is initialized to contain only a single un-
processed point p, chosen randomly from P . While rib-
bons are being created each point in P is marked to
indicate whether it resides at the end or beginning of a
ribbon, resides in a ribbon but not at the end or begin-
ning, or is not yet part of a ribbon. This allows ribbons
to be efficiently created.

The process proceeds by adding Left(p) to the front
of the ribbon. nextLR is then used to move along the
Left() and Right() connections until nextLR returns a
point that has already been processed. The process is
repeated in lines 7-10 of Alg.2 starting with the point
Right(p) with points added to the end of the ribbon, in
order to respect the ordering of ribbons(Fig.4). When
Alg. 2 terminates the ribbon Rp is ready to be linked to
existing ribbons.

To generate v-ribbons it suffices to repeat the same
procedure, but replace Left(p), Right(p), and nextLR

with Up(p), Down(p), and nextUD, respectively.

1 Add p to Rp

2 p := Left(p)
3 While p is not part of a ribbon :
4 Place p at the front of Rp

5 p := nextLR(Rp,1, Rp,2)
6 End While
7 p := Right(Rp,end)
8 While p is not part of a ribbon:
9 Place p at the end of Rp

10 p := nextLR(Rp,end, Rp,end−1)
11 End While

Algorithm 2: : Pseudocode for generating a single ribbon

3.2.2 Linking ribbons

Once the ribbon Rp is generated it is linked to existing
ribbons if it starts or terminates at the end of another
ribbon (or both). This is handled by connecting Rp and
the adjoining ribbon(s) into a single ribbon by connect-
ing the appropriate ends.

Adjoining ribbons can be identified by examining
Left(Rp,0) and Right(Rp,end) for u-ribbons and Up(Rp,0)
and Down(Rp,end) for v-ribbons. Linking of ribbons is
a local process, thus if multiple non-intersecting point
clouds are present, no ribbon should link them.

4 Rendering Ribbons

Although a set of ribbons presents only a partial recon-
struction of a surface, the ribbons can be rendered in a
manner that approximates visual continuity. The idea of
approximating, instead of guaranteeing, visual continu-
ity is also explored in the work of Boubekeur et al[5].

WPCA provides an estimate of the surface normal,
but the normal may not be correctly oriented. Comput-
ing the correct orientation is a relatively complex and
time consuming operation[10,13]. To avoid this, each
segment of a ribbon is rendered as three parallel quads
(Fig.5). The first quad is translated positively along the
normal, and the second negatively along the normal. The
quads are given width by moving the corners orthogo-
nally with respect to the vector connecting the two points
and the normal at each end of the quad, as is illustrated



6 Adam Runions et al.

(a) (b) (c) (d) (e)

Fig. 4 Creation of a single ribbon a) Point cloud with one ribbon already present, and p highlighted b) Right(p) is calculated
and added to ribbon c) process continues until Right(p) = p d) Process is repeated starting with Left(p) e) The new ribbon
ends at the end of an existing ribbon, so the two ribbons are joined

���

�
�

Fig. 5 The three quads connecting two points: the top and
bottom quads are shaded, whereas the middle quad is not
shaded and coloured the same as the background. The two
orientations of the normal are shown in orange

in Fig.5. The third quad is not displaced along the nor-
mal and is wider than the other quads. Colouring the
middle quad the same colour as the background serves
to occlude quads behind the current quad when perform-
ing NPR rendering. The width of the quads can be set
to a constant value, or vary between quads. Rendering
each ribbon as three quad strips allows for interactive
rates to be achieved, and the user can adjust the max-
imum quad width Wmax in order to visualize the point
cloud. Although ribbons do not branch or form loops,
the visual quality of results is increased when they are
allowed to do so (Fig.2e-f). This is achieved by extend-
ing the beginning and end of each ribbon along nextLR

for u-ribbons and nextUD for v-ribbons when render-
ing. A shaded model rendered as described is shown in
Fig.6. Splatting techniques such as Phong splatting[4] of-
fer better visual quality, but require modification of the
graphics pipeline to be efficient and even then become
inefficient as image resolution increases[5].

It should be noted that one quad strip may be omit-
ted when oriented normals are provided, as is sometimes
the case with point cloud data.

5 Non-Photorealistic Rendering

Ribbons are constructed to maximize length and main-
tain a relatively consistent direction, properties that are
desirable when ribbons are used to visualize strokes on a
surface. We have approximated three pen and ink styles:
silhouette rendering, hatching, and cross-hatching.

Fig. 6 Rendering the ribbons directly to visualize the point
cloud

Given a point p ∈ P with normal n and the eye po-
sition e the view angle, denoted as θ, is defined as the
angle between p − e and n. All three techniques are im-
plemented by varying the width of each stroke based on
the view angle.

5.1 Hatching

To emulate the placement of strokes by an artist, por-
tions of the model almost parallel to the view plane
should be represented with a small number of thin st-
rokes. The number and width of strokes should increase
as the surface turns away from the viewer, which occurs
as the view angle θ decreases.

Ribbons are used as strokes on the surface with width
determined by θ. The width of each shaded quad starting
or ending at p is calculated as

W = Wmax(1 − cos(θ) − τ)

where τ is a user-defined threshold. When W ≤ 0 all
quads containing p are ignored. A similar formulation
was employed for stable silhouettes by Brosz et al.[6] for
polygon meshes. Continuous changes in the view angles
result in continuous variation in width, so that stable
and continuous strokes are produced. This allows frame
coherency to be achieved when models are animated.

Varying width based on view angle, and rendering
ribbons as described in §4 suffices to render the point



Ribbons 7

(a) (b)

Fig. 7 Point cloud consisting of around 100k points, a) v
ribbons rendered as hatching b) Rendered with cross hatching
(Model is provided courtesy of Stanford Computer Graphics
Laboratory)

(a) (b)

Fig. 8 The point cloud from Fig 8 visualized using hatching
a) After one level of reverse subdivision, approx. 96k b) After
two levels of reverse subdivision, approx. 69k points

cloud in a style reminiscent of a hatched pen-and-ink
drawing. The unshaded quad occludes strokes that should
not be displayed. A cross-hatched effect can be generated
by rendering two sets of chains following orthogonal di-
rections at each point as the u and v-ribbons do. Ex-
amples of hatching and cross hatching using ribbons are
given in Fig.7,9,10.

Although visually similar to hatching and cross-hatch-
ing, the proposed methods do not emulate real pen-and-
ink techniques in detail. Yet, ribbons create a specific
texture, which may lead to aesthetically pleasing results.
For example, in Fig.10, ribbons suggest the papillary
lines seen on the palm of the hand and fingers. In this
sense, ribbons may be viewed as an extension rather than
emulation of existing pen-and-ink styles.

When illustrations are small, they have more of a pre-
cise ink drawing appearance, but as the size is increased,
additional details and individual strokes become appar-
ent. Some irregularity is introduced into the placement
of strokes by the distribution of points in the underly-
ing point cloud; this allows conspicuous regularity to be
avoided without special consideration.

5.2 Silhouette extraction

Silhouette lines occur on a object where the surface turns
away from the viewer and becomes invisible[7]. To emu-
late this only the ribbon segments with normals almost
perpendicular to the view vector are rendered. When
compared to the method proposed in [20] our method
emulates a more precise style of stroke placement and is
calculated entirely in object space.

Silhouettes are produced by varying the stroke width
as described for hatching, but using only two quads be-
tween points. The shaded quad is rotated to coincide
with the normal instead of the tangent plane and the
unshaded quad is rendered as previously described. Thus
increasing the visibility of quads on the silhouette. Vi-
sualizing silhouettes require higher values of τ which re-
stricts the strokes displayed to the silhouette. The pa-
rameter τ can be interactively chosen by the user.

5.3 Level of detail

The density of ribbons is tied to the density of points in
the underlying point cloud. As point clouds may be very
dense, it is desirable to have some type of control over
the level of detail. As ribbons are linear strips we can
treat them like one-dimensional curves. In that context
subdivision and reverse subdivision provide an effective
technique for increasing and, more importantly, decreas-
ing the density of points[3]. By exploiting the fact that
ribbons are one-dimensional curves, level of detail of the
ribbons can be controlled using forward and reverse sub-
division. An application of reverse subdivision to ribbons
is illustrated in Fig.8.

6 Conclusion

Ribbons provide an intermediate representation for point
clouds, falling in-between surface reconstruction and
point-based splatting. With the exception of the prepro-
cessing step k-NN searches the ribbon representation of
a point cloud can be efficiently computed using only sim-
ple data structures, and can be directly rendered as quad
strips.

The linear structure of ribbons is well suited to stroke
placement, and this allows for a number of NPR visual-
ization techniques. In addition, one-dimensional opera-
tions, such as forward and reverse subdivision, can be
easily applied to ribbons.

Although ribbons are created by following the co-
ordinate frame computed at each point it is possible to
generate ribbons along any direction field defined at each
point of the point cloud. To follow an arbitrary direction
field it suffices to omit the alignment of local coordi-
nate frames and use the direction field to connect points.
This should allow for the visualization of direction fields



8 Adam Runions et al.

(a) (b)

Fig. 9 Point cloud consisting of around 153k points, a) v ribbons rendered as hatching, with an inset showing more detail
b) u ribbons rendered as hatching (Model is provided courtesy of INIRIA by the AIM@SHAPE Shape Repository)

(a) (b) (c)
Fig. 10 Point cloud consisting of around 53k points, a) u-ribbons rendered as hatching b) v-ribbons rendered as hatching
c) The cloud rendered with cross hatching (Model is provided courtesy of INIRIA by the AIM@SHAPE Shape Repository)

(a) (b) (c) (d)

Fig. 11 Silhouette technique applied to a)dragon b)Olivier’s hand, c-d) and the Chinese dragon



Ribbons 9

on the point cloud, including the principal directions of
curvature and user defined direction fields.

Acknowledgements We would like to acknowledge the sup-
port from the Natural Sciences Research Council of Canada
to AR, FS, and PP, and from the Informatics Circle of Re-
search Excellence to AR.

References

1. Adamson, A., Alexa, M.: Approximating and intersecting
surfaces from points. In: SGP ’03: Proceedings of the Eu-
rographics/ACM SIGGRAPH Symposium on Geometry
Processing, pp. 230–239 (2003)

2. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In:
SMA ’01: Proceedings of the ACM Symposium on Solid
Modeling and Applications, pp. 249–266 (2001)

3. Bartels, R., Samavati, F.: Reversing subdivision rules:
Local linear conditions and observations on inner prod-
ucts. Journal of Computational and Applied Mathemat-
ics 119(1-2), 29–67 (2000)

4. Botsch, M., Spernat, M., Kobbelt, L.: Phong splatting.
In: Symposium on Point Based Graphics, pp. 25–32
(2004)

5. Boubekeur, T., Reuter, P., Schlick, C.: Visualization of
point-based surfaces with locally reconstructed subdivi-
sion surfaces. In: Shape Modeling International, pp. 23–
32 (2005)

6. Brosz, J., Samavati, F., Sousa, M.C.: Silhouette rendering
based on stability measurement. In: SCCG ’04: Proceed-
ings of the spring conference on Computer Graphics, pp.
157–167 (2004)

7. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella,
A.: Suggestive contours for conveying shape. ACM Trans.
Graph. 22(3), 848–855 (2003)

8. Dey, T.K., Giesen, J., Hudson, J.: Delaunay based shape
reconstruction from large data. In: PVG ’01: Proceed-
ings of the IEEE Symposium on Parallel and large-data
Visualization and Graphics, pp. 19–27 (2001)

9. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces.
In: SIGGRAPH ’00, pp. 517–526 (2000)

10. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J.,
Stuetzle, W.: Surface reconstruction from unorganized
points. In: SIGGRAPH ’92, pp. 71–78 (1992)

11. Kawata, H., Gouaillard, A., Kanai, T.: Interactive point-
based painterly rendering. In: CW ’04: Proceedings of
the International Conference on Cyberworlds, pp. 293–
299 (2004)

12. Levin, D.: Mesh-independent surface interpolation. In:
Geometric Modeling for Scientific Visualization, pp. 37–
49 (2003)

13. Mello, V., Velho, L., Taubin, G.: Estimating the in/out
function of a surface represented by points. In: SM ’03:
Proceedings of the ACM symposium on Solid Modeling
and Applications, pp. 108–114 (2003)

14. Nice, C.: Drawing in Pen and Ink. North Light Books
(1997)

15. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplifica-
tion of point-sampled surfaces. In: VIS ’02: Proceedings
of the conference on Visualization ’02, pp. 163–170 (2002)

16. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature ex-
traction on point-sampled models. In: Proceedings of
Eurographics, pp. 281–289 (2003)

17. Pauly, M., Kobbelt, L.P., Gross, M.: Point-based multi-
scale surface representation. ACM Trans. Graph. 25(2),
177–193 (2006)

18. Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-
time hatching. In: SIGGRAPH ’01, p. 581 (2001)

19. Xu, H., Chen, B.: Stylized rendering of 3d scanned real
world environments. In: NPAR ’04: Proceedings of the in-
ternational symposium on Non-photorealistic animation
and rendering, pp. 25–34 (2004)

20. Zakaria, N., Seidel, H.P.: Interactive stylized silhouette
for point-sampled geometry. In: Proceedings of ACM
Graphite, pp. 242–249 (2004)

21. Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface
splatting. In: SIGGRAPH ’01, pp. 371–378 (2001)

Adam Runions is a graduate
student in Computer Science at
the University of Calgary pur-
suing his Masters of Science.
Adam Runions’ research inter-
ests are Computer Graphics,
Geometric Modeling, and Bio-
logical Modeling and Visualiza-
tion

Faramarz Samavati is an as-
sociate professor in the De-
partment of Computer Sci-
ence, University of Calgary. He
is also an adjunct associate
professor in Computer Engi-
neering Department, Techni-
cal University of Lisbon, Por-
tugal. He received his PhD
degree from Sharif University
of Technology in 1999. He
was a research visitor at Uni-
versity of Waterloo in 1997.
Prof. Samavatis research in-
terests are Computer Graph-
ics, Geometric Modeling, Vi-
sualization, and Computer Vi-

sion. He has authored more than 40 research papers in Subdi-
vision Surfaces, Sketch based Modeling, Multiresolution and
Wavelets, Surface Modeling and Scientific Visualization.

Przemyslaw Prusinkiewicz
is a Professor of Computer Sci-
ence at the University of Cal-
gary. He holds a Ph.D. from the
Technical University of War-
saw. His research interests in-
clude computer graphics, and
modeling, simulation and visu-
alization of biological patterns
and structures, in particular
plants.


