
On the Evolution of Parametric L-systems

Roger Curry

research conducted under the supervision of Przemyslaw Prusinkiewicz

Department of Computer Science

University of Calgary, Alberta

CANADA

email: curry@cpsc.ucalgary.ca

9 November 1999

Abstract

L-systems have been shown to be a useful tool for modeling plants; however, the generation of realistic

plant models requires an extensive knowledge of L-systems. People who are not L-system experts require

a simpler way of creating plant models. This paper will describe my attempts at designing a user interface

which allows the user to guide the evolution of plant models (generated from a parametric L-system)

and the genetic algorithm employed to facilitate this evolution. The �nal goal of this research would

be a design environment in which plant models could be easily and quickly generated without explicit

knowledge of L-systems. The plant models would still be L-systems but the user would not ever need to

see them. By exploring the concept of evolution as a method for developing plant models we may also

gain insight into the development of plants themselves.

1 Introduction

Over the past decade L-systems have proven themselves a useful tool for the modeling of plant structures.

Many life-like models can be found in The Algorithmic Beauty of Plants [1]. Generation of models such as

these requires not only knowledge of the plant being modeled but also a clear understanding of L-systems

(and corresponding modeling software such as Cpfg [2]). Creating an L-system model is not always intuitive;

it requires that one think recursively about the development of a plant.

Employing genetic programming techniques [3, 4] in order to evolve L-systems may allow generation of

realistic plant models in a shorter period of time and perhaps more intuitively than was previously possible.

A long-term goal of this research is a design environment in which plant models can be generated (via user-

guided evolution) without explicit knowledge of L-systems. Using this approach the user works only with

visual models and not with their textual representations. This will allow both experts and non-experts alike

to quickly generate realistic plant models in an intuitive fashion.

As a �rst step towards this goal, this paper describes an interface which allows the user to guide the evolution

of plant models (generated from a parametric L-system). It also highlights the genetic operations which were

employed in evolving these models.

The rest of this section contains some background information regarding genetic algorithms and parametric

L-systems; however, some familiarity with these topics is assumed. In Section 2 the details of the model are

examined, and in Section 3 the observations and results are presented.

1



1.1 Parametric L-systems

The concept of parametric L-systems [1, Section 1.10] was formulated in order to extend the modeling

capabilities of L-systems and to simplify the representation of continuous phenomena within a model.

In a parametric L-system each symbol can be associated with one or more real-valued parameters. In

addition, the application of a production may be dependent upon an associated condition. Parametric

L-system productions have the form:

predecessor : condition ! successor.

In the simplest case the predecessor is a single symbol and its associated parameters. If the predecessor's

parameters satisfy the condition then the predecessor is replaced by the successor. Consider the following

parametric L-system:

! : A(0:0; 0:2)

p1
: A(s; f) : s < f ! F [+F ][�F ]A(s+ 0:1; f) (1)

p2
: A(s; f) : s � f ! F@O(0:5)

The derivation sequence is as follows:

�0 : A(0:0; 0:2)

�1 : F [+F ][�F ]A(0:1; 0:2)

�2 : F [+F ][�F ]F [+F ][�F ]A(0:2; 0:2)

�3 : F [+F ][�F ]F [+F ][�F ]F@O(0:5)

Start with �0 as the axiom. Production p1 applies (since 0:0 < 0:2), thus replace A(0:0; 0:2) with

F [+F ][�F ]A(0:1; 0:2): Again production p1 applies (because 0:1 < 0:2) and we get �2: At this point in

the derivation, production p2 applies (since 0:2 = 0:2), yielding �3: Note that there is no production with F

as the predecessor, so F ! F is assumed.

The graphic interpretation of parametric L-systems is similar to that of L-systems without parameters,

except that symbols used for drawing may be parameterized. For example, in a non-parametric L-system

the symbol F tells the \turtle" to move forward in the direction of the current heading by 1 world unit. A

parametric L-system may contain F(c) which indicates that the movement should be by c world units. Other

drawing commands behave similarly. Figure 1 is the graphical interpretation of the string �3 generated by

L-system (1).

See [1, Section 1.10] for a mathematical description of parametric L-systems and further details on their

\turtle" interpretations.

1.2 Genetic Programming

The general concept of genetic programming will now be presented. More information regarding the topic

can be found in [3, 4, 5, 6]. Genetic algorithms are an optimization technique based on Charles Darwin's

[7] theory of survival of the �ttest and natural selection. Genetic programming is an approach to problem

solving that employs algorithms functioning analogously to evolution.

In an evolutionary model we start with an initial population of genetically diverse individuals. Each of these

individuals has an associated genetic code from which it can be constructed. Also required is a function

which evaluates the �tness of the individuals. Fitness is de�ned as the ability of an individual to survive in

its environment and reproduce. The last major requirement is a method of simulating sexual reproduction

2



Figure 1: Graphic interpretation of L-system (1).

(crossover) and mutation. This can be accomplished by de�ning genetic operations which act upon the

genetic codes of the individuals in our population. A crossover operation takes the genetic codes of two

parent individuals and creates a new child exhibiting characteristics of both parents. A mutation operation

takes a single parent and produces (via a pseudo-random operation) a new individual that is based on the

original but modi�ed in some aspect. Now we can begin to simulate evolution. A simple genetic algorithm

is presented below.

1. (Randomly) generate the initial population.

2. Evaluate the �tness of each individual.

3. Take a portion of the individuals with superior �tness and apply the genetic operations to create some

new individuals.

4. Remove those individuals who do not posses the minimum �tness required for survival.

5. Goto step 2.

This algorithm would be terminated after some �xed number of iterations. The individuals which comprise

the population after this algorithm �nishes should have a higher average �tness than those in the initial

population. Over time the population will become more �t to survive in its environment.

2 The Model

In this section we examine the L-system itself, the genetic algorithm employed to evolve this L-system, and

the user interface through which this evolution is guided.

2.1 The L-system

Honda described a simple parametric model which could be used to generate diverse tree-like structures.

The following �ve assumptions [1, pages 51-52] form the basis of his model.

� Tree segments are straight and their girth is not considered.

� A mother segment produces two daughter segments through one branching process.

3



� The lengths of the two daughter segments are shortened by constant ratios, r1 and r2, with respect to

the mother segment.

� The mother segment and its two daughter segments are contained in the same branch plane. The

daughter segments form constant branching angles, a1 and a2, with respect to the mother branch.

� The branch plane is �xed with respect to the direction of gravity so as to be closest to a horizontal plane.

An exception is made for branches attached to the main trunk. In this case, a constant divergence

angle � between consecutively issued lateral segments is maintained.

L-system (2) (from [8, page 551]), partially satis�es Honda's criteria. The �rst three assumptions are

completely satis�ed, and the daughter segments do form constant branching angles with respect to the

mother branch. However, L-system (2) does not guarantee that the branch plane is �xed with respect to

gravity, nor that it contains both the mother segment and its two daughter segments. For aesthetic reasons

we attempt to model the narrowing girth of branches as one proceeds from the main axis though to higher

order branches, however the girth of branches does not a�ect development of the plant model in any other

way. The method used is loosely based on Leonardo da Vinci's postulate [9, page 156] which claims that

\all the branches of a tree at every stage of its height when put together are equal in thickness to the trunk

below them."

! : A(100; w0)

p1
: A(s; w) : s >= min! !(w)F (s) (2)

[+(�1)=('1)A(s � r1; w � q^e)]

[+(�2)=('2)A(s � r2; w � (1� q)^e)]

Symbol A represents an apex. Angle values �1; �2; '1; and '2 determine the trajectory of new apices. s

and w specify the length and width of the current internode. r1 and r2 determine the factor by which the

length of successive internodes is decreased. w0; q and, e are constants which control the width of branches.

Branches will only form if their length is at least min.

Prusinkiewicz extended the class of trees produced by L-system (2) by adding to it the notion of fruit. The

basic structure of L-system (3) is similar to (2), except that a second production has been added which creates

pieces of fruit on the tree whenever the parameter s falls below MINSIZE�0.1. Some constant multipliers

have also been added but these are used only to scale the range of input and do not a�ect the descriptive

power of the L-system. For example the value min in L-system (2) corresponds to MINSIZE�0.1 in L-system

(3). Note: L-system (3) corresponds to actual Cpfg [2] code.

Axiom : A(0.3, W0)

A(s,w) : s >= MINSIZE*0.1 --> !(w)F(s)!(w*b);

[+(ANG1*120)/(DIV1*360)A(s*(0.75+0.3*RATE1),w*q^e)] (3)

[+(ANG2*120)/(DIV2*360)A(s*(0.75+0.3*RATE2),w*(1-q)^e)]

A(s,w) : s < MINSIZE*0.1 --> ;(15)@O(0.1*MINSIZE)

Again, Symbol A represents an apex. ANG1, ANG2, DIV1, and DIV2 correspond to angle values �1; �2; '1;

and '2 of L-system (2). As before, s and w specify the length and width of the current internode. RATE1

and RATE2 correspond to r1 and r2. Constants W0, q and, e control the width of branches. At a certain

point, when parameter s drops below MINSIZE�0.1 a branch will produce fruit instead of branching again.

Derivations proceed as follows. We begin with an apex A(0.3, W0). The �rst production is then repeatedly

applied. This production replaces every apex A(s,w) with an internode of length s (and width w) and two

4



Structure ANG1 ANG2 RATE1 RATE2 DIV1 DIV2 MINSIZE

0 0.010 -0.328 0.547 -0.823 0.603 0.423 -0.350

1 0.064 -0.175 0.354 -0.367 -0.002 0.142 -0.364

2 0.135 -0.243 -0.036 -0.410 0.453 0.011 0.425

3 0.008 -0.309 0.145 -0.416 0.454 0.011 0.227

4 -0.197 0.168 0.029 -0.066 0.045 -0.012 -0.177

5 0.388 0.210 -0.157 0.189 0.738 -0.524 0.317

6 -0.217 -0.247 0.228 0.365 -0.096 -0.375 0.063

7 -0.358 0.201 -0.083 0.361 0.249 -0.019 -0.280

8 -0.234 0.313 -0.029 0.418 -0.151 -0.340 -0.163

Table 1: Parameter values for structures in Figure 2.

new apices which will form child branches whose trajectories (with respect to their mother segment) will be

determined by angles ANG1, ANG2, DIV1, DIV2. The length of the child branches will depend on the values

of RATE1 and RATE2. The second production producing spherical fruit is applied when the parameter s falls

below MINSIZE�0.1.

Although we manipulate only seven parameters (ANG1, ANG2, DIV1, DIV2, RATE1, RATE2, MINSIZE), L-

system (3) is capable of producing a wide variety of branching structures as shown in Figure 2. The

parameters used to generate these images are listed in Table 1.

2.2 The Genetic Algorithm

Representation & Terminology

As is common in much literature on genetic algorithms, some terminology is borrowed from genetics. An

individual parameter is referred to as a gene. Parameters are represented as oating point numbers in the

range (�1;+1). The initial population is generated using uniformly distributed pseudo-random numbers

in the range (�0:5; 0:5). An ordered set of seven parameters constitutes a genotype. We use a 7-dimensional

real vector to represent this set of seven parameters. The image created using these parameters and L-system

(3) is referred to as the phenotype.

Algorithm

The genetic algorithm employed in these experiments can be summarized as follows:

� We start with an initial population of 9 randomly created individuals.

� There are 5 di�erent genetic operations (see below).

� The �tness of individuals is determined by the user according to aesthetic criteria.

This genetic algorithm is atypical in the following two ways:

1. We are using a small population.

2. The user manually determines the �tness function by selecting which genotypes will be combined. The

user chooses parents from a set of phenotypes based on their aesthetic qualities. We can say that the

�tness function is dependent on the aesthetic appeal of the phenotypes. This approach of user-guided

simulation of evolution was used by both Richard Dawkins and Karl Sims [6, 10], and later applied

speci�cally to L-systems by Jon McCormack [11].

Genetic operations

5



0 1 2

3 4 5

6 7 8

Figure 2: Sample structures produced using L-system (3).

6



We now describe the various genetic operations that can be applied to the genotypes in our model. We have

considered both asexual and sexual operations, and both stochastic and deterministic operations. These

operations are detailed below.

� Single-parent mutation

Input: a single genotype (parent), a real mutation factor x 2 (0; 1)

Output: a single genotype

Description: An individual genotype can be mutated by randomly varying the genes which it

contains. The amount by which each gene will vary is proportional to the mutation

factor.

Process:

1. create a vector of random numbers in the range (-0.5, 0.5)

2. multiply this vector by the mutation factor x

3. add the result to the parent genotype (vector)

Example (mutation factor = 0.33):

Random number (vector)

0.125 -0.031 -0.384 -0.235 -0.196 -0.020 -0.135

Random number (vector) � mutation factor = 0.33

0.041 -0.010 -0.127 -0.077 -0.065 -0.007 -0.044

+

Parent genotype

0.049 -0.319 0.019 -0.494 0.389 0.004 0.183

=

Child genotype

0.008 -0.309 0.145 -0.416 0.454 0.011 0.227

See Figure 3 for the corresponding phenotypes.

� Single-point crossover

Input: two distinct genotypes (parents), an integer crossover point x 2 [1; 6]

Output: a set of two genotypes (children)

Description: Two genotypes can be sexually recombined to create two new individuals based on a

given crossover point.

Process:

1. create the �rst new individual by copying the �rst x genes from parent 1 and the last 7� x genes

from parent 2.

2. create the second new individual by copying the �rst x genes from parent 2 and the last 7 � x

genes from parent 1.

Example (crossover point = 4):

Parent 1 genotype

0.305 -0.337 0.280 -0.255 -0.186 -0.048 0.638

Parent 2 genotype

0.260 -0.132 0.246 0.375 0.154 0.357 0.250

Child 1 genotype

0.305 -0.337 0.280 -0.255 0.154 0.357 0.250

Child 2 genotype

0.260 -0.132 0.246 0.375 -0.186 -0.048 0.638

? ?

XXXXXXXXXXXXXXXXXXXXXXXz

�����������������������9

7



Parent phenotype Child phenotype

Figure 3: Sample Single-parent mutation operation.

See Figure 4 for the corresponding phenotypes.

� Multi-point crossover

Input: two distinct genotypes (parents), an integer contribution factor x 2 [1; 6]

Output: a single genotype (child)

Description: Two genotypes can be sexually recombined to create a new individual which inherits

a certain portion of each parent's genetic information. Which genes will be inherited

from which parent is determined randomly; the number of genes inherited from each

parent is determined by the contribution factor.

Process:

1. randomly choose x distinct genes to copy from parent 1

2. copy these genes into the child genotype

3. copy the remaining 7� x genes from parent 2

Example (contribution factor = 3):

Parent 1 genotype

0.093 -0.418 0.070 -0.233 0.453 -0.271 0.302

Parent 2 genotype

-0.162 0.085 0.445 0.144 0.403 -0.132 -0.258

Child 1 genotype

0.093 -0.418 0.445 -0.233 0.403 -0.132 -0.258

HHHHHHHHHHHHj

HHHHHHHHHHHHj

�������������

HHHHHHHHHHHHj

�������������

�������������

�������������

See Figure 5 for the corresponding phenotypes.

� Weighted average

8



Parent 1 phenotype Parent 2 phenotype

Child 1 phenotype Child 2 phenotype

Figure 4: Sample Single-point crossover operation.

9



Parent 1 phenotype Parent 2 phenotype

Child 1 phenotype

Figure 5: Sample Multi-point crossover operation.

10



Parent 1 phenotype Parent 2 phenotype Child phenotype

Figure 6: Sample Weighted average operation.

Input: two distinct genotypes (parents), a real contribution ratio x 2 (0; 1)

Output: a single genotype (child)

Description: Two genotypes can be averaged mathematically to obtain a new individual based on

a given contribution ratio. The contribution ratio determines how much each parent's

genes a�ect the o�spring.

Process:

1. multiple the vector which represents parent 1's genotype by x

2. multiple the vector which represents parent 2's genotype by (1� x)

3. add the resultant vectors to obtain the child genotype (vector)

Example (contribution ratio = 0.70):

Parent 1 genotype

-0.196 -0.001 -0.974 0.864 -0.238 -0.507 0.007

Parent 2 genotype

0.027 0.135 -0.749 1.05 -0.265 -0.355 -0.209

Parent 1 (vector) � contribution ratio = 0.70

-0.137 -0.001 -0.682 0.605 -0.167 -0.355 0.005

+

Parent 2 (vector) � (1 - contribution ratio) = 0.30

0.008 0.041 -0.225 0.315 -0.080 -0.107 -0.063

=

Child genotype

-0.129 0.040 -0.907 0.920 -0.247 -0.462 -0.058

See Figure 6 for the corresponding phenotypes.

� Multi-parent mutation

Input: two or more distinct genotypes (parents)

Output: a single genotype (child)

Description: To each parameter in the child genotype, we assign a random number which �ts a

gaussian distribution whose mean and standard deviation are determined by the

corresponding parameters of the parent genotypes.

Process:

11



1. calculate the average value of the �rst gene (based on all of the parents).

2. calculate the standard deviation between all of the parents' values for the �rst gene.

3. generate a random number which �ts a gaussian distribution with the mean and standard deviation

calculated in steps 1 and 2.

4. assign this number to the �rst gene of the child genotype

5. repeat this process for each of the seven parameters

Example (3 parents):

Parent 1 genotype

0.111 -0.549 0.453 -0.645 0.493 -0.083 -0.052

Parent 2 genotype

0.049 -0.319 0.019 -0.494 0.389 0.004 0.183

Parent 3 genotype

0.018 0.563 0.342 -0.318 -0.354 0.181 -0.322

Parent mean

0.059 -0.102 0.271 -0.485 0.176 0.034 -0.064

Parent standard deviation

0.039 0.479 0.184 0.134 0.377 0.110 0.206

Child genotype

-0.007 -0.238 0.521 -0.449 0.567 0.059 0.068

See Figure 7 for the corresponding phenotypes.

2.3 The User Interface

The user interface consists of two Cpfg windows and the evolve application. The current population

window (Figure 8, right) displays the nine individuals which comprise the current population. The enlarge

window (Figure 8, top-left) can be used to display an enlarged copy of any individual in the current

population window (both Cpfg windows can be resized and the individual in the enlarge window can be

rotated and viewed in 3D). For details on the operation of Cpfg see [2]. Speci�cs regarding the L-system and

view �les used to implement the enlarge and current population windows are presented in Appendix A.

Simulated evolution proceeds as follows: the user chooses one or more individuals from the current

population window by clicking on the corresponding keypad buttons. Then the user selects a genetic

operation (choice of operation is restricted to only those which are applicable given the number of parents

currently selected). The Mutation factor and parental contribution can be adjusted if desired. Finally, the

selected genetic operation is applied to the currently selected individuals resulting in a new population. For

a more detailed description of the evolve application controls see Appendix B.

3 The Results

This section will highlight some of the observations made while experimenting with the model described in

Section 2. A sample evolution will be examined, observations presented, and future work considered.

3.1 Sample Evolution

Figure 3.1 illustrates the process of user-guided evolution within the context of the model presented in

Section 2. The goal of this particular evolution was to generate a monopodial structure with fruit in its

branches.

12



Parent 1 phenotype Parent 2 phenotype

Parent 3 phenotype Child phenotype

Figure 7: Sample Multi-parent mutation operation.

13



Figure 8: User interface for evolution experiments.

14



-

@
@
@
@
@R�

�
�
�
��

-

1 2

3

4

5 6

Structure ANG1 ANG2 RATE1 RATE2 DIV1 DIV2 MINSIZE

1 -0.107 0.399 0.195 -0.271 0.462 -0.488 -0.389

2 -0.034 0.315 0.203 -0.235 0.570 -0.190 -0.596

3 0.260 -0.132 0.246 -0.141 -0.408 0.085 0.490

4 0.260 -0.132 0.246 -0.235 0.570 -0.190 -0.596

5 -0.034 0.315 0.203 -0.141 -0.408 0.085 0.490

6 0.036 0.398 0.256 -0.250 -0.574 0.211 0.328

Figure 9: Sample evolution of a monopodial fruit bearing structure

Individual 1 was chosen from nine random phenotypes because it exhibited the most pronounced main

axis. Several mutations of individual 1 were created and individual 2 was then selected. Individual 3 was

introduced (from an independent evolution) because it was a fruit bearing structure. Individuals 2 and 3

were then crossed in order to obtain o�spring that might produce fruit and exhibit monopodial structure.

The second child (individual 5) captured both of these characteristics. Mutations of individual 5 were created

in search of a structure with greater branch density. Individual 6 was selected from these mutations; thus

concluding the evolution.

In terms of the genetic operations, individual 2 was obtained from individual 1 by applying the Single-parent

mutation operation using a mutation factor of 0.68. Individuals 4 and 5 were the results of a Single-point

crossover operation (with crossover point, x = 3) applied to individuals 2 and 3. Single-parent mutation was

used again with a mutation factor of 0.22 to obtain individual 6 from individual 5.

3.2 Observations

Positive Aspects of model

L-system (3) is a relatively simple L-system; nevertheless, it is capable of generating aesthetically pleasing

plant models which exhibit realistic branching patterns. Using the model described in Section 2 it is possible

to evolve both monopodial and sympodial structures.

The user interface is successful in allowing interactive user-guided evolution of simple plant models.

Possible improvements

Organs such as leaves and owers play an important role in determining a plant's appearance. The current

15



model focuses primarily on the branching structure of the plant rather than its organs. In order to improve

the realism of phenotypes it will be necessary to model plant organs as well.

The current model does not capture any developmental properties of plants. For example, once branch

segments are formed their lengths do not change. Producing developmental models will require taking into

account additional aspects which have been neglected in this simple model.

Genetic operations

Sometimes mutations may result in o�spring bearing no resemblance to their ancestors; this may indicate

that the mutation factor is too large. In general, greater success is obtained when the mutation factor is kept

small. When the mutation factor is too large it is di�cult to control the direction of evolution (since each

mutation of the genotype results in such large changes of the phenotype). There is a tradeo� between the

rate of evolution and the amount of control that can be exerted over it. For instance, with a high mutation

factor it is possible to generate new plants which are very di�erent from the parent, but there is little control

over what characteristics these plants will exhibit. Using a small mutation factor, the o�spring generated

are only slight variations of the parent. Over several generations this allows more opportunity to direct the

evolution of the plants.

On occasion a genetic operation will yield o�spring identical to the parent phenotype(s). Usually this results

from a Single-parent mutation where the mutation factor is too low to produce any visible changes in the

phenotype. While experimenting with this model it was discovered that a Single-point crossover can produce

the same phenomena. How does this come about? Let capital letters A;B;C; ::: denote genotypes. Each

genotype is an ordered set of seven genes. For example A = fa1; a2; a3; a4; a5; a6; a7g For simplicity the

brackets and commas are omitted. Consider the following situation.

A B

a1a2a3a4a5a6a7 b1b2b3b4b5b6b7
C D

a1a2a3b4b5b6b7 b1b2b3a4a5a6a7

A C

a1a2a3a4a5a6a7 a1a2a3b4b5b6b7
E F

a1a2a3b4b5b6b7 a1a2a3a4a5a6a7

The Single-point crossover operation (crossover point x = 3) is applied to the two parents A and B resulting

in two children C and D. At some point individual A and C are crossed (again using the Single-point crossover

operation) using the same crossover point x = 3. This will result in two o�spring identical to the parents

(E = C, F = A). Incestual crossovers are those in which a child is crossed with one of it parents. The results

of such crossovers will not yield new o�spring unless a di�erent crossover point is used.

The mutation operation is necessary and su�cient for the genetic algorithm to function; however, crossover

operations provide shortcuts which allow the user to combine characteristics of several phenotypes into one.

Although the results of crossover operations are not always predictable, in most cases it is possible to produce

o�spring which exhibit characteristics of both parents. However, it is sometimes necessary to try di�erent

combinations of crossover operation and contribution ratio, to obtain the desired result.

3.3 Extension to the Evolution of Surfaces

Bicubic surfaces (patches) are often used in modeling plant organs such as petals and leaves. This section

briey describes how the genetic algorithm (from Section 2.2) and the user interface (from Section 2.3) can

be used to evolve surfaces. Some preliminary experiments have been performed; the current model and some

results will now be presented.

The model

16



Figure 10: A \leaf" generated using an unrestricted model where the genotype consists of 16 control points.

(3,0)

(2,0)

(3,2)

F2

(1,0) (1,3)

(0,3)

(0,2)

(2,3)

TL

(1,2)(1,1)

(2,2)(2,1)

(0,1)

W4

L1

W2

W1(3,1)

L3

(0,0)

(3,3)
F1

W3

L2

Figure 11: Current model of the surface control structure.

There are several types of Bicubic surfaces; this particular model uses B�ezier patches [12, Section 13.6] to

model leaves and petals. The use of developmental bicubic patches in L-systems is detailed in [13, Section

4.3]. B�ezier patches are de�ned by 16 control points. Each of these control points is speci�ed by an x, y,

and z coordinate. The mathematics behind B�ezier surfaces is not covered here but this information can be

found in [12, Section 13.6].

One possible approach to creating a parametric organ model would be to treat each coordinate of each

control point as a \gene". This would yield a genotype of 48 parameters. Each phenotype would then be

the surface de�ned by the 16 control points. This approach was tested but the results were disappointing.

Without any restriction on the genes, the phenotypes produced did not at all resemble leaves or petals (see

Figure 10). One of the major problems with this approach is that the organs have no symmetry. In nature

it is common to �nd leaves and petals which are symmetrical. The model can be simpli�ed and possibly

improved by forcing the surfaces to be symmetrical about some axis. The model described by Jim Hanan in

[13, section 4.3] satis�es the criterion of symmetry. Using Hanan's model as a starting point the following

model (see Figure 11) was developed.

The genotype contains ten genes which determine the shape of a surface control structure (Figure 11). The

surface control structure is responsible for placement of each of the 16 control points. These control points

17



Surface CC L1 L2 L3 W1 W2 W3 W4 F1 F2

0 -0.380 0.165 -0.377 -0.203 0.013 -0.042 0.148 0.104 0.251 -0.373

1 0.448 0.485 0.441 0.392 0.104 -0.319 0.335 -0.166 0.140 -0.213

2 0.747 -0.637 -0.564 -0.537 0.012 0.046 0.082 0.064 0.195 -0.140

3 -0.080 -0.183 -0.169 0.831 -0.413 -0.172 0.170 0.040 -0.387 0.256

4 0.018 0.535 -0.132 0.389 -0.023 -0.025 0.375 0.356 -0.301 -0.522

5 -0.127 0.456 0.377 -0.414 0.147 0.304 -0.087 -0.054 0.457 -0.472

6 -0.352 0.101 -0.429 -0.290 -0.046 -0.005 0.061 0.043 0.337 -0.454

7 0.077 0.246 -0.259 -0.388 -0.439 0.136 0.324 -0.003 0.338 -0.505

8 0.060 0.403 0.438 0.093 0.013 0.192 -0.090 0.297 -0.197 -0.002

Table 2: Genotypes corresponding to surfaces in Figure 12.

will then specify a B�ezier surface, hopefully resembling a petal or leaf. Appendix A contains the L-system

and view �les (enlarged surface.l, surfaces.l and surfaces.v) used to implement this model. The parameters

can be summarized as follows. Parameter CC is used to control how convex the surface will be. L1, L2, L3

specify the lengths of the base, center, and tip segments of the control structure. W1-W4 a�ect the width

of the control structure at various locations. F1 and F2 will determine the amount of bending in the lower

and upper portions of the surface. TL is not a parameter but a value calculated within the L-system. It is

dependent on the convexity constant CC, and related to the parameters L1-L1, W1-W4.

The results

Figure 12 shows several of the phenotypes which were evolved. Table 2 contains the corresponding numerical

genotypes. Overall, the model developed in Section 2 extends well to surfaces. It is possible to evolve quite

a variety of petal and leaf shapes in a reasonably intuitive manner. If we know exactly what we are looking

for (in terms of petal or leaf shape), it is more e�cient to use a 3D surface editor to design our surfaces.

Using the evolve application tends to be more a of creative process then a mechanical one.

3.4 Future Work

This section describes some of the possible directions this research may take. The current goal is to improve

the realism and variety of plants which can be generated, without sacri�cing the ideology of the user interface.

The arrangement of organs within a plant seem to follow some type of pattern or obey some kind of symmetry.

Take for example the leaves on a stem or the seeds of a sunower; both of these exhibit pattern and regularity.

The arrangement of plant organs is clearly not random. Observation of these patterns suggests the existence

of a mathematical model which might describe the apparent regularity. This regular arrangement of lateral

organs is known as phyllotaxis, and there are in fact several models of this phenomenon (see [1, Chapter 4]).

Since phyllotactic models are mathematical in nature they are also good candidates for parameterization

and hence a logical extension of the work discussed in this paper.

Once the techniques in this chapter have been applied to phyllotactic models, it would be nice to see if

L-System branching structures, B�ezier surfaces, and phyllotactic patterns could be combined into a single

model. The results of which could be quite interesting.

The next step is to look beyond parametric models. Focusing on the development of plant form from a

more biological perspective may allow the creation of more realistic models. Coen [14] presents a model

describing the development and di�erentiation of organs within a plant. As a basis for future models this

theory will ultimately result in more biologically accurate simulations of plant development. Developing

these new models will require that new genetic operations be implemented; operations that act not only on

parameters but on the L-system productions themselves.

18



Figure 12: Collection of phenotypes generated using the structural model presented in Figure 11.

19



A Implementation

A.1 L-system �les

enlarged.l

#define STEPS 11

#define W0 5

#define a 0.5

#define b 0.71

#define e 0.40

Lsystem: 0

Start: {

fp = fopen("enlarged.p", "r");

fscanf(fp, "%lf", &ANG1);

fscanf(fp, "%lf", &ANG2);

fscanf(fp, "%lf", &RATE1);

fscanf(fp, "%lf", &RATE2);

fscanf(fp, "%lf", &DIV1);

fscanf(fp, "%lf", &DIV2);

fscanf(fp, "%lf", &MINSIZE);

fclose(fp);

}

derivation length: STEPS

Axiom: A(0.3,W0)

A(s,w) : s>= MINSIZE*0.1 --> !(w)F(s)!(w*b);

[+(ANG1*120)/(DIV1*360)A(s*(0.75+0.3*RATE1),w*a^e)]

[+(ANG2*120)/(DIV2*360)A(s*(0.75+0.3*RATE2),w*(1-a)^e)]

A(s,w) : s<MINSIZE*0.1 --> ;(15)@O(0.1*MINSIZE)

endlsystem

current.l

#define STEPS 12

#define W0 5

#define a 0.5

#define b 0.71

#define e 0.40

Lsystem: 0

Define: {

array xc[9] = {0,1,2,0,1,2,0,1,2};

array yc[9] = {0,0,0,1,1,1,2,2,2};

}

Define: {

array ANG1[9],

20



ANG2[9],

RATE1[9],

RATE2[9],

DIV1[9],

DIV2[9],

MINSIZE[9];

}

Start: {

fp = fopen("individuals.p", "r");

fscanf(fp, "%d", &NUMS);

fscanf(fp, "%lf", &FACTOR);

i = 0;

while(i < 9)

{

fscanf(fp, "%lf", &ANG1[i]);

fscanf(fp, "%lf", &ANG2[i]);

fscanf(fp, "%lf", &RATE1[i]);

fscanf(fp, "%lf", &RATE2[i]);

fscanf(fp, "%lf", &DIV1[i]);

fscanf(fp, "%lf", &DIV2[i]);

fscanf(fp, "%lf", &MINSIZE[i]);

i = i + 1;

}

fclose(fp);

}

derivation length: STEPS

Axiom: Z(0)Z(1)Z(2)Z(3)Z(4)Z(5)Z(6)Z(7)Z(8)

Z(i) : NUMS != 0 --> [-(90)f(xc[i]*FACTOR)-(90)f(yc[i]*FACTOR+(0.5*FACTOR/3))|

@L("%.f",i)f(0.5*FACTOR/3)?(1,1)A(0.3,W0,i)$]

Z(i) : NUMS == 0 --> [-(90)f(xc[i]*FACTOR)-(90)f(yc[i]*FACTOR)|?(1,1)A(0.3,W0,i)$]

endlsystem

Lsystem: 1

derivation length: 1

Axiom: A(1,W0,1)

A(s,w,i) : s>= MINSIZE[i]*0.1 --> !(w)F(s)!(w*b);

[+(ANG1[i]*120)/(DIV1[i]*360)A(s*(0.75+0.3*RATE1[i]),w*a^e,i)]

[+(ANG2[i]*120)/(DIV2[i]*360)A(s*(0.75+0.3*RATE2[i]),w*(1-a)^e,i)]

A(s,w,i) : s<MINSIZE[i]*0.1 --> ;(15)@O(0.1*MINSIZE[i])

endlsystem

enlarged surface.l

#define DBZE 0.000001

Lsystem: 0

21



Start: {

fp = fopen("enlarged.p", "r");

fscanf(fp, "%lf", &CC);

fscanf(fp, "%lf", &L1);

fscanf(fp, "%lf", &L2);

fscanf(fp, "%lf", &L3);

fscanf(fp, "%lf", &W1);

fscanf(fp, "%lf", &W2);

fscanf(fp, "%lf", &W3);

fscanf(fp, "%lf", &W4);

fscanf(fp, "%lf", &F1);

fscanf(fp, "%lf", &F2);

fclose(fp);

L1 = fabs(L1*10);

L2 = fabs(L2*10);

L3 = fabs(L3*10);

W1 = fabs(W1*10);

W2 = fabs(W2*10);

W3 = fabs(W3*10);

W4 = fabs(W4*10);

F1 = F1*45;

F2 = F2*45;

A1 = atan(L1/(W2-W1+DBZE));

S1 = sqrt(L1^2+(W2-W1)^2);

A2 = atan(L3/(W3-W4+DBZE));

S2 = sqrt(L3^2+(W3-W4)^2);

TL = CC*sqrt((L1+L2+L3)^2+(W1+W2+W3+W4/2)^2)/4;

}

derivation length: 2

Axiom: P

P --> [S[l][r]B[L][R]D]

S --> @PS(0)

B --> f(L3)^(F2)[+(90)^(-45)f(TL);@PC(0,1,1)][-(90)^(-45)f(TL);@PC(0,1,2)]

f(L2)^(F2)[+(90)^(-45)f(TL);@PC(0,2,1)][-(90)^(-45)f(TL);@PC(0,2,2)]f(L1)

D --> ;(7)@PD(0,8,8);

l --> +(90)f(W3);@PC(0,0,0)[-(A2)f(S2)@PC(0,1,0)][+(180-A2)f(S2)@PC(0,0,1)]

r --> -(90)f(W3);@PC(0,0,3)[+(A2)f(S2)@PC(0,1,3)][-(180-A2)f(S2)@PC(0,0,2)]

L --> +(90)f(W2);@PC(0,3,0)[+(A1)f(S1)@PC(0,2,0)][-(180-A1)f(S1)@PC(0,3,1)]

R --> -(90)f(W2);@PC(0,3,3)[-(A1)f(S1)@PC(0,2,3)][+(180-A1)f(S1)@PC(0,3,2)]

homomorphism

maximum depth: 1

@PC(i,j,k) --> @O(.05)@L("%.f,%.f",j,k)@PC(i,j,k)

f(x) --> F(x)

endlsystem

surfaces.l

22



#define DBZE 0.000001

Lsystem: 0

Define: {

array xsc[9] = {0,1,2,0,1,2,0,1,2};

array ysc[9] = {0,0,0,1,1,1,2,2,2};

}

Define: {

array CC[9],

L1[9],

L2[9],

L3[9],

W1[9],

W2[9],

W3[9],

W4[9],

F1[9],

F2[9],

A1[9],

A2[9],

S1[9],

S2[9],

TL[9];

}

Start: {

fp = fopen("individuals.p", "r");

fscanf(fp, "%d", &NUMS);

fscanf(fp, "%lf", &FACTOR);

i = 0;

while(i < 9)

{

fscanf(fp, "%lf", &CC[i]);

fscanf(fp, "%lf", &L1[i]);

fscanf(fp, "%lf", &L2[i]);

fscanf(fp, "%lf", &L3[i]);

fscanf(fp, "%lf", &W1[i]);

fscanf(fp, "%lf", &W2[i]);

fscanf(fp, "%lf", &W3[i]);

fscanf(fp, "%lf", &W4[i]);

fscanf(fp, "%lf", &F1[i]);

fscanf(fp, "%lf", &F2[i]);

L1[i] = fabs(L1[i]*10);

L2[i] = fabs(L2[i]*10);

L3[i] = fabs(L3[i]*10);

W1[i] = fabs(W1[i]*10);

W2[i] = fabs(W2[i]*10);

W3[i] = fabs(W3[i]*10);

W4[i] = fabs(W4[i]*10);

F1[i] = F1[i]*45;

F2[i] = F2[i]*45;

23



A1[i] = atan(L1[i]/(W2[i]-W1[i]+DBZE));

S1[i] = sqrt(L1[i]^2+(W2[i]-W1[i])^2);

A2[i] = atan(L3[i]/(W3[i]-W4[i]+DBZE));

S2[i] = sqrt(L3[i]^2+(W3[i]-W4[i])^2);

TL[i] = CC[i]*sqrt((L1[i]+L2[i]+L3[i])^2+

(W1[i]+W2[i]+W3[i]+W4[i]/2)^2)/4;

i = i + 1;

}

fclose(fp);

FACTOR = FACTOR + 10;

}

derivation length: 3

Axiom: Z(0)Z(1)Z(2)Z(3)Z(4)Z(5)Z(6)Z(7)Z(8)

Z(i) : NUMS != 0 --> [-(90)f(xsc[i]*FACTOR)-(90)f(ysc[i]*FACTOR+(0.5*FACTOR/3))|

@L("%.f",i)f(0.5*FACTOR/3)?(1,1)P(i)$]

Z(i) : NUMS == 0 --> [-(90)f(xsc[i]*FACTOR)-(90)f(ysc[i]*FACTOR)|?(1,1)P(i)$]

endlsystem

Lsystem: 1

derivation length: 1

Axiom: P(i)

P(i) --> [S(i)[l(i)][r(i)]B(i)[L(i)][R(i)]D(i)]

S(i) --> @PS(i)

B(i) --> f(L3[i])^(F2[i])[+(90)^(-45)f(TL[i]);@PC(i,1,1)][-(90)^(-45)f(TL[i]);

@PC(i,1,2)]f(L2[i])^(F2[i])[+(90)^(-45)f(TL[i]);@PC(i,2,1)][-(90)^(-45)

f(TL[i]);@PC(i,2,2)]f(L1[i])

D(i) --> ;(7)@PD(i,8,8);

l(i) --> +(90)f(W3[i]);@PC(i,0,0)[-(A2[i])f(S2[i])

@PC(i,1,0)][+(180-A2[i])f(S2[i])@PC(i,0,1)]

r(i) --> -(90)f(W3[i]);@PC(i,0,3)[+(A2[i])f(S2[i])

@PC(i,1,3)][-(180-A2[i])f(S2[i])@PC(i,0,2)]

L(i) --> +(90)f(W2[i]);@PC(i,3,0)[+(A1[i])f(S1[i])

@PC(i,2,0)][-(180-A1[i])f(S1[i])@PC(i,3,1)]

R(i) --> -(90)f(W2[i]);@PC(i,3,3)[-(A1[i])f(S1[i])

@PC(i,2,3)][+(180-A1[i])f(S1[i])@PC(i,3,2)]

endlsystem

A.2 View �le

evolve.v

angle factor: 4

initial color: 1

color increment: 1

24



initial line width: 2 pixels

line width increment: 0

viewpoint: 0,0,1

view reference point: 0,0,0

twist: 0

projection: parallel

front distance: -100000.0

back distance: 100000.0

scale factor: 0.9

z buffer: on

cue range: 0

font: -*-courier-medium-r-normal--34-*-*-*-m-200-iso8859-1

shade mode: 1

light direction: 1.0, 1.0, 1.0

diffuse reflection: 0

tropism direction: 0.0,1.0,0.0

initial elasticity: 0.0

elasticity increment: 0.0

surfaces.v

angle factor: 4

initial color: 16

color increment: 2

initial line width: 0.4

line width increment: 0.1

viewpoint: 0,0,1

view reference point: 0,0,0

twist: 0

projection: parallel

front distance: -10000.0

back distance: 10000.0

scale factor: 0.9

z buffer: on

cue range: 0

font: -*-courier-medium-r-normal--34-*-*-*-m-200-iso8859-1

shade mode: 3

light direction: 1.0,0.0,0.5

diffuse reflection: 10

tropism direction: 0.0000,-1.0000,0.0000

initial elasticity: 0.1100

elasticity increment: 0.0000

surface ambient: 0.75

surface diffuse: 0.9

B Evolve controls

The Contribution slider bar controls the amount of genetic information each parent contributes to

their o�spring. This control only applys to certain genetic operations (Single-point crossover, Multi-point

crossover, and Weighted average).

The Enlarge button can be used to display a larger copy of any individual in the current population. Note

25



that this button is active only when a single parent is selected. Use the parent selection keypad to select

which individual to enlarge and then click the Enlarge button.

Clicking the Evolve button applys the currently selected genetic operation to the currently selected

individuals.

The Genetic operation selection box allows the user to specify which genetic operation will be applied the

next time the Evolve button is pressed.

Clicking the Load button will allow the user to load either an individual, a generation, or an entire evolution.

When performing a load operation, the user is prompted to choose the type of load (load an individual, load

a generation, or load an evolution). Once the user speci�es what type of load they wish to perform a �le

selection dialog box will open. The user then selects which �le to load and clicks okay, completing the

process.

The Mutation factor slider bar is used to control the magnitude of mutations which result when a Single-

parent mutation operation is applied.

The Parent selection numeric keypad is used to select which individuals will be involved in the next genetic

operation. The number of parents currently selected determines which functions can be performed and which

genetic operations can be applied. To select an individual click on the numbered key corresponding to that

member of the population. When an individual is selected the button will remain in the down position. An

individual can be unselected by clicking it a second time.

The Playback controls are a panel of �ve playback buttons which can be used to navigate through the

current evolution. The associated operations allow the user to :

1. Rewind the evolution to the beginning.

2. Move backwards a single generation in the evolution.

3. Playback the evolution starting from from the current generation.

4. Move forward a single generation.

5. Fast forward to the last generation.

The Quit button is used to exit the evolve application.

Clicking the Reset button will replace the existing population with nine new randomly created individuals.

The Save button is used to save either an individual, a generation, or an entire evolution. When performing

a save operation, the user is prompted to choose the type of save (save an individual, save a generation, or

save an evolution). Once the user speci�es what type of save they wish to perform a �le selection dialog box

will open. The user enters a new �lename or selects an existing �le and clicks okay.

The Seed button is used to seed the the random number generator. This is useful because it allows

experiments to be repeated with the same set of random numbers. Clicking the seed button will open

an entry dialog box. Enter an integer in the range [�231; 231) and click okay.

Clicking the View button opens a dialog box that can be used to toggle enumeration or adjust spacing of

the individuals displayed in the current population window.

References

[1] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer Verlag, 1990.

[2] R. M�ech. CPFG Version 3.4 User's Manual. Department of Computer Science, University of Calgary,

1998.

26



[3] J. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The

MIT Press, 1992.

[4] D. Goldberg Genetic Algorithms in Search, Optimization, and Machine Learning Addison-Wesley, 1989.

[5] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1996.

[6] R. Dawkins The Blind Watchmaker. W.W. Norton & Company, 1986.

[7] C. Darwin. On the Origin of Species by Means of Natural Selection. Penguin Paperbacks, 1859.

[8] G. Rozenberg & A. Salomaa (Eds.) Handbook of Formal Languages - Volume 3 - Beyond Words. Springer.

[9] B. B. Mandlebrot. The fractal geometry of nature. W. H. Freeman, San Francisco, 1982.

[10] K. Sims. Arti�cial Evolution for Computer Graphics Computer Graphics, Vol. 25, No. 4, July 1991,

pp.319-328.

[11] J. McCormack. Interactive Evolution of L-System Grammars for Computer Graphics Modeling.

Computer Science Dept. Monash University, AUSTRALIA

[12] J. Foley, A. Van Dam. Fundamentals of Interactive Computer graphics. Addison-Wesley, 1984.

[13] R. M�ech, P. Prusinkiewicz, J. Hanan. Extensions to the graphical interpretation of L-systems based on

turtle geometry. Department of Computer Science, University of Calgary, 1998.

[14] E. Coen The Art of Genes. Oxford University Press, 1999.

27


