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Abstract

Implicit surface modeling systems have been used since the mid−1980s for the generation of
cartoon−like characters. Recently implicit models combined with constructive solid geometry
(CSG) have been used to build engineering models with automatic blending. This work is
based on a structured implicit modeling system which includes CSG, warping, 2D texture
mapping and operations based on the BlobTree, and its application to the generation of a
complex and visually accurate biological model of the sea shell Murex cabritii. Since the
model is purely procedurally defined and does not rely on polygon mesh operations, it is
resolution independent and can be rendered directly using ray tracing. An interface has been
built for the BlobTree using an interpreted programming language (Python). The language
interface readily allows a user to procedurally describe the shell based on numeric data taken
fromthe actual object.
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Implicit surface modeling systems have been
used since the mid-1980s for the generation
of cartoon-like characters. Recently implicit
models combined with constructive solid
geometry (CSG) have been used to build
engineering models with automatic blend-
ing. This work is based on a structured im-
plicit modeling system which includes CSG,
warping, 2D texture mapping and operations
based on the BlobTree, and its application
to the generation of a complex and visually
accurate biological model of the sea shell
Murex cabritii. Since the model is purely
procedurally defined and does not rely on
polygon mesh operations, it is resolution
independent and can be rendered directly us-
ing ray tracing. An interface has been built
for the BlobTree using an interpreted pro-
gramming language (Python). The language
interface readily allows a user to procedu-
rally describe the shell based on numeric data
taken from the actual object.
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The seemingly simple mathematical character of
shells, which yield a great variety of beautiful
shapes, has attracted much attention from computer
modelers. Two motivations for such work are to syn-
thesize realistic images that can be incorporated into
computer-generated scenes and to gain a better un-
derstanding of the mechanism of shell formation
(Fowler et al. 1992, Meinhardt 1995). This paper is
concerned with the first of these two goals and is
based upon implicit modeling techniques using the
BlobTree (Wyvill et al. 1999).
The BlobTree has made possible the construction of
much more complex models than the cartoon-like
characters depicted in movies such as Wyvill (1988).
In the BlobTree system models are defined by ex-
pressions which combine implicit primitives using
blending, warping, and boolean set operations in an
homogeneous fashion. The BlobTree also incorpo-
rates controlled blending (Guy and Wyvill 1995),
and 2D texture mapping (Tigges and Wyvill 1998,
Tigges 1999), without which it is difficult to capture
naturally occurring shapes and patterns.
The first shell model intended specifically for use
in computer graphics was developed by Kawaguchi
(1982). He created shell models using polygon
meshes. Other methods of modeling shells have
included the use of inter-penetrating spheres, and
generalized cylinders. Fowler et al. (1992) reviewed
previous work on shell modeling and extended the
field by introducing free-form parametric curves to
capture the shape of shell aperture and by using
reaction–diffusion methods to incorporate pigmenta-
tion patterns into the models.
Fowler et al. (1992) describes several open problems
in the modeling of shells. Two of these are

• Modeling of spines. Previous methods of model-
ing have been able to capture small perturbations
of the surface of the shell. Large modifications
of the shape such as the spines in Murex cabritii
(Fig. 1) have not been captured by existing meth-
ods.

• Capturing the thickness of shell walls. The para-
metric representations used thus far typically
model the shell walls as mathematical surfaces
which have no actual thickness. Rendering the
inside and outside differently can produce the il-
lusion of a substantive wall, but the opening of the
shell is not properly visualized.

In this work both of the above problems are ad-
dressed using the BlobTree. A model of Murex
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Fig. 1. Murex cabritii

cabritii is described which includes the large spines,
shell walls of non-zero thickness, and allows dif-
ferent textures to be applied to different parts of
the shell while automatically blending the textures
where these parts join. Our model is resolution in-
dependent and can be polygonized at an arbitrary
resolution, as well as ray traced directly, for higher
quality images.
This paper is organized as follows: Sect. 2 discusses
existing methods that have been combined to build
the model. Section 3 presents the method of model
construction. The obtained results are presented and
discussed in Sect. 4.

2 Background

Background work will be considered in two parts.
Formulas that describe the geometry of shells will be
discussed in Sect. 2.1. The BlobTree, which is used to
construct the model, is introduced in Sect. 2.2.

2.1 Modeling Shell geometry

As reviewed in Fowler et al. (1992) and Meinhardt
(1995), the surface of a shell without protrusions
may be defined by sweeping a closed generating
curve C in the shape of the aperture of the shell along
a logarithmic helico-spiral S. The scale of the gen-
erating curve increases in geometric progression as
the angle of rotation around the shell’s axis increases
arithmetically.
The helico-spiral is conveniently described in a cylin-
drical coordinate system. The radius R (distance of
a point, P, on the helico-spiral from the shell axis) is
an exponential function of the angle of revolution θ
around the axis:

R(θ) = R0ρ
( θ

360◦ ) , R0 > 0 , ρ > 1 , θ ≥ 0 , (1)

where R0 is the initial radius and ρ is the ratio of the
radii corresponding to a rotation of 360◦. The vertical
displacement, H, of point P increases in proportion
to the radius:

H(θ) = R(θ) cot β , β > 0 , (2)

where β is the angle between the axis of the spiral
and a line, L , passing through successive whorls of
the helico-spiral (Fig. 2). A whorl is defined as a sin-
gle turn or volution of a spiral shell.
The size of the generating curve C at point P can
easily be determined under the assumption that C is
a circle of radius D lying in the plane including the
shell axis and the point P, and that the circles in con-
secutive whorls are tangential to each other. From
Fig. 2 we then obtain:

D(θ) = R(θ)

sin β

ρ−1

ρ+1
. (3)

In the case of non-circular generating curves, Eq. (3)
remains useful as an approximate indicator of the
curve size.

2.2 The BlobTree

The major advantage of implicit surface modeling
systems has been the use of automatic blending be-
tween skeletal elements. Recent developments in
such systems include the addition of space warping,
which provides a method of implementing deforma-
tions (Crespin et al. 1996), and Boolean operations
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Fig. 2. One half of a longitudinal cross-section of
a turbinate shell, illustrating Eqs. (2) and (3)

used in constructive solid geometry (CSG) systems
(Pasko et al. 1995, Wyvill 1996). CSG systems typ-
ically use a tree structure to describe the relationship
of Boolean set operations such as union and intersec-
tion between half-space primitives.
The BlobTree (Wyvill et al. 1999) has been intro-
duced as a method of organizing all of these op-
erations in a manner that enables global and local
operations to be exploited in a general and intuitive
fashion. In the BlobTree, an implicit surface model
is defined using a tree data structure which com-
bines implicit surface primitives as leaf nodes, with
arbitrary operations such as blending, warping, and
Boolean operations as interior nodes. We refer to the
structure as the BlobTree.
One advantage of the BlobTree is that it is easily
extended to incorporate new functionality. Several
problems have been associated with the use of im-
plicit surfaces as a general modeling method. Of
great importance is the ability to make objects blend
selectively (locally) rather than globally, and also
the lack of a natural coordinate system to allow 2D
texturing. These problems have recently been ad-
dressed, and their solutions have been incorporated
into the BlobTree (Guy and Wyvill 1995, Tigges and

Wyvill 1998, Tigges 1999). The nature of the Blob-
Tree cleanly allows us both local and global texturing
of implicit models.
Models are defined by expressions which combine
implicit primitives and the operators ∪ (union),
∩ (intersection), − (difference), + (blend), 
n (super-
elliptic blend), c (controlled blend), w (warp),
t (translate), s (scale), r (rotate), and m (2D texture
map). At the lowest level these operators act on one
or more primitives. The result of each operation is
a BlobTree, and may be passed to another operator.
The operators listed above are n-ary with the excep-
tion of warp, affine transformations and 2D texture
mapping, which are unary operators. An example of
a simple BlobTree model is given in Fig. 3.
The affine transformations are the standard ones
and are defined as: t(x, y, z)(B) – translate Blob-
Tree B by (x, y, z); s(x, y, z)(B) – scale BlobTree B
by (x, y, z); r(axis, θ)(B) – rotate BlobTree B by θ
about the given axis using the right-hand rule.
Blending operators are of particular importance to
the model construction described in Sect. 3 and are
examined in detail.

Super elliptic blending allows the modeler to con-
trol the amount of blending using the method intro-
duced in Ricci (1973), and it achieves a large range
of blends. Standard blending is referred to as Ba +
Bb (i.e. the sum of the functions fBa and fBb). Super
elliptic blending will be denoted as Ba 
n Bb and is
defined as:

fBa
n Bb = (
fBa

n + fBb
n
) 1

n . (4)

The standard blending operator + is a special case of
Eq. (4) with n = 1. Moreover:

lim
n→+∞

(
fBa

n + fBb
n
) 1

n = max
(

fBa, fB
)

. (5)

Thus, when n varies from 1 to infinity, it creates a set
of models interpolating between blending A + B and
union A ∪ B. Figure 4 shows a series of blends where
n is varied between n = 1 and 10, which illustrates
this effect.
This generalized blending is associative, i.e.
f(Ba
n Bb)
n Bc = fBa
n(Bb
n Bc). Figure 3 shows the
nodes to be binary or unary, but the binary nodes can
easily be extended using the above formulation to
n-ary nodes.

Controlled blending allows us to blend one BlobTree,
Ba with another BlobTree, Bb, and to blend Bb with
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Fig. 3. A Sample BlobTree
Fig. 4. Super-elliptic blending

a third BlobTree, Bc, without blending Ba with Bc,
as described in Guy and Wyvill (1995). It is defined
here as

c(b1, b2, . . . , bn)(B1, B2, . . . , Bm) ,

bi = ( ji, ki), ji, ki ∈ {1, . . . , m} ∀i ∈ {1, . . . , n} ,
(6)

where m BlobTrees are being included in the con-
trolled blend, and each bi defines a blend between
BlobTree Bji

and BlobTree Bki
. In the current imple-

mentation blends within a controlled blend are lim-
ited to pairwise blends and super-elliptic blending is
not available; however these can easily be added to
the BlobTree.

3 Modeling Murex cabritii

To model Murex cabritii requires a description of
the parts of the shell. The model is derived from ob-

servations made from Fig. 1, and from a textual de-
scription of the shell found in Rehder (1981) which
describes the following features:

• A smallish, oval aperture in a strongly convex
body whorl.

• A long slender canal below the main body whorl,
narrowly open, with three axial rows of four to
five spines.

• Each whorl has three varices (ridges) which bear
several sharp-curving spines.

• Beaded axial riblets (or small bumps) are present
between varices.

For the remainder of this paper a whorl is defined
as a part of the main body formed by a rotation
about the axis of the shell, beginning immediately af-
ter a varix, and ending after three varices have been
formed. From Fig. 1 we have estimated that a whorl
corresponds to a rotation of 348◦ about the axis of
the shell, thus the angle between successive varices is
equal to 116◦.
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The shell was modeled with seven whorls. Five to
six spines were modeled in the axial rows rather than
four to five as described above. The bumps occur
periodically both parallel and perpendicular to the
helico-spiral. Five sets of bumps were added along
the helico-spiral between each pair of varices. The
y-axis in the standard coordinate system is defined
as the axis of rotation of the shell for the remainder
of this paper. The following parameters were used to
define the helico-spiral for the model:

β = 22.5◦ ,

ρ = 1.3 ,

R0 = 0.2 ,

D(θ) = R(θ)

sin β

ρ−1

ρ+1
= 0.341 · R(θ) . (7)

Construction of the implicit model of Murex cabritii
will be discussed next. Section 3.1 describes building
the main body whorl of the shell. Adding the spines
and bumps to the shell is discussed in Sect. 3.2.
Creating an opening in the shell is described in
Sect. 3.3, and the application of 2D textures is dis-
cussed in Sect. 3.4.

3.1 Main body whorl

The formulas in Sect. 2.1 can be used to calculate
position [Eqs. (1) and (2)] and size Eq. (3) of a gen-
erating curve along a helico-spiral, so that succes-
sive curves placed along the helico-spiral and con-
nected in a polygonal mesh approximate the surface
of a shell. Fowler et al. (1992) used piecewise Bezier
curves to construct generating curves, which were
applied to model a great variety of shells.
We used a similar method to create the implicit
model. A generating implicit surface was described
using a skeletal implicit point primitive. The place-
ment of an instance of the generating surface on the
helico-spiral at any angle, θ, was performed in three
steps:

1. Scale by D(θ) Eq. (3).
2. Translate by (R(θ),H(θ),0) [Eqs. (1) and (2)].
3. Rotate by θ about the y-axis.

Equation (8) defines the function Bθ = P(B, θ)
which takes an arbitrary BlobTree, B, and returns
a new BlobTree, Bθ , which tranforms B as described

above.

Bθ = P(B, θ) ,

P(B, θ) = r(Y, θ)
(
T(B, θ)

)
,

T(B, θ) = t
(
R(θ), H(θ), 0

)(
S(B, θ)

)
,

S(B, θ) = s
(
D(θ), D(θ), D(θ)

)
(B) . (8)

Equation (9) describes the BlobTree for a whorl Bw
b
a,

where θs is the interval between adjacent instances
of the generating surface defined by the BlobTree Bg,
a and b define the start and end of the whorl, and b−
a+1 is the number of generating surfaces used in the
whorl:

Bw
b
a =

b∑

i=a

Bgi ,

Bgi = P(Bg, θs ∗ i) . (9)

The symbol
∑

is used to represent the blend of
multiple BlobTrees. Consecutive surfaces along the
whorl are automatically blended together. Figure 5
shows a series of point primitives placed along
a helico-spiral: as the field defined by each primi-
tive is increased, the resulting surface tends toward
a shell whorl with a circular aperture.
To avoid unwanted blending between consecutive
whorls, controlled blending was used. A whorl con-
sists of three sections, each of which is contained
between two successive varices and corresponds to
a 116◦ rotation about the axis of the shell. A section
was created by placing six instances of the gener-
ating surface on the helico-spiral using Bw

a+5
a from

Eq. (9) with θs = 116
6

◦
. To create the whole body Bm

with seven complete whorls, 21 sections are com-
bined using controlled blending Eq. (6), as shown in
the following:

Bm = c(Lblendpairs)(LBlobtrees) ,

Lblendpairs = {(i, i +1) , i ∈ {1, 2, . . . , 20}} ,

LBlobtrees = {Bw
i+5
i , i ∈ {0, 6, 12, . . . , 120}} . (10)

Thus, each section is blended with its two immedi-
ate neighbours, but not with any other sections. The
resulting surface is smooth along the helico-spiral,
but adjacent whorls do not blend together. Figure 6
shows the effect of controlled blending, using a point
primitive as the generating surface.
To incorporate the long slender canal below the main
body whorl, a cone primitive, bent with a warp op-
erator, was placed below the point primitive. The
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Fig. 5. Six point primitives placed on a helico-spiral. As the
size of the field produced by each primitive increases, the
resulting surface forms part of the main body whorl of a shell
Fig. 6. Each whorl of a shell is composed of three sections
(shown in Fig. 5). On the left all sections blend with all
other sections; on the right controlled blending constrains
each section to blend only with its two neighbours along the
helico-spiral
Fig. 7. On the left is the generating surface used for the
model of Murex cabritii; on the right is the whorl this sur-
face defines

generating surface and the resulting whorl it defines
are shown in Fig. 7. To reduce the complexity of the
model, the canal was only modeled in the last 1 1

3
whorls where it could be seen.

3.2 Adding varices, bumps and spines

Varices are the spiny ridges extending out from the
main body whorl at even intervals of 116◦ around
the axis of the shell. The varix Bv was modeled as
a series of curving spines of varying size, with the
relative size and location of each spine within a varix

determined separately for each whorl (Table 1). In-
dividual spines were modeled using cone primitives
bent by 30◦ using a warp operator. The placement of
each spine is given by

Bs =
n∑

i=1

r(Z, αi)
(
Tk(Bk)

)
,

Tk(Bk) = t(xk, 0, 0)
(
Sk(Bk)

)
,

Sk(Bk) = s(δi, δi, δi)(Bk) , (11)

for a series of spines Bs, where n defines the number
of spines, Bk defines a spine lying on the x-axis with
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Table 1. Relative size [δi in Eq. (11)] of curving spines at each
of 3 varices per whorl in the model of Murex cabritii. An-
gle indicates rotation in the plane of the generating curve from
a horizontal orientation

Whorl
Angle (◦) 1 2 3 4 5 6 7

−90 0.55
−80 0.64
−70 0.55
−60 1.14
−50 0.55
−40 1.92
−30 0.55
−20 0.82
−10 0.55 0.55

0 0.8 1.44
10 1.55 0.64
20 0.9 0.64 0.64
30 0.7 0.7 0.55
40 0.8 1.5 0.55 1.62
50 0.8 0.9 1.5 0.64 0.96 0.72
60 0.7 1.06 0.6 0.64
70 0.55
80 0.5

its base at the origin and the tip bent in the direction
of the positive y-axis, xk is the distance to the edge of
the shell, and αi and δi are given by Table 1.
Most of the spines in the varix of Murex cabritii
are not free standing, but are blended together in
a ridge. Two concentric torus primitives were added
to connect the spines to each other near the shell
surface. To make the shorter spines stand out from
the ridge, they were modeled with a thicker top, and
when scaling the spines by the δi (from Table 1),
δmax (the maximum value of all δi from Table 1)
was used to scale each spine along the z-axis to in-
crease the width of spines across the varix. Equa-
tion (12) shows these operations. Bki is a bent spine
with a variable width of tip and defines the BlobTree
for a varix Bv; Br is the BlobTree for the two tori.
The effect of each of these operations can be seen
in Fig. 8.

Bs =
n∑

i=1

r(Z, αi)
(
Tk(Bki)

)
,

Tk(Bki) = t(xk, 0, 0)
(
Sk(Bki)

)
,

Sk(Bki) = s(δi, δi , δmax)(Bki) ,

Bv = Bs + Br . (12)

Fig. 8. Creation of a varix. Top left: bent cones are placed
as curved spines. Top right: two concentric tori blend
spines together. Bottom left: smaller spines are modeled
with wider tips. Bottom right: All spines scaled by δmax
along helico-spiral Eq. (12)

To include a varix at an arbitrary position along the
helico-spiral, Bv is placed using Eq. (8):

Bvθ = P(Bv, θ) . (13)

Bumps were modeled using single point primitives
which were scaled by (ζx, ζy, ζz +0.8), where ζd =
n(s, s

10), d ∈ {x, y, z}, s is the default size of a bump
and n(µ, σ) returns a pseudo-random number with
a normal distribution in which µ is the mean and
σ is the standard deviation. The number of bumps
in each set of bumps is determined by the num-
ber of spines defined for the current whorl. One
bump was placed for every second curved spine us-
ing the same method employed to place the curved
spines Eq. (11).
Super-elliptic blending was employed to blend the
bumps with the surface of the shell. This was re-
quired to avoid the tendency of the whorl surface to
blend too smoothly with the bumps, as can be seen in
Fig. 9. To create a much more abrupt blend, a value
of n = 400 was used in Eq. (4). Such a high value of
n was required due to the fact that the implicit prim-
itives defining the whorl defined a much larger and
stronger field than that produced by the bump prim-
itives. Figure 9 shows two whorl sections with five
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Fig. 9. Creation of bumps. Left: similar bumps blended to shell using the + operator. Right: randomly scaled bumps blended
to shell with 
400 operator. The value 400 was required due the great disparity in strength and extent of field between the large
whorl and small bumps
Fig. 10. Axial rows of 5–6 spines. Left: spines are straight. Right: each spine randomly bent 3◦ to 9◦ 1–3 times

sets of bumps on them, one with regular blending
and no random scaling, and the other employing both
super-elliptic blending and random scaling.

The axial rows of spines protruding from the lower
canal were modeled using cone primitives. There is
one row of spines below each of the three varices on
the last whorl of the shell. The spines were placed at
even intervals from each other along the canal. Three
instances of the spines were then transformed using
Eq. (8) using the same angle at which the last three
varices are formed on the main body of the shell. The
relative sizes and number of spines were determined
separately for each row, as specified in Table 2.
The spines are not perfectly straight in nature, so
each spine was randomly bent by 3◦ to 9◦ one to
three times using a warp operator. The spines can be
seen in Fig. 10 with and without the random bending
warps.

3.3 Creating an opening

Combining the elements described thus far provides
a good approximation of the exterior of a Murex
cabritii shell. To construct an opening in the shell,
a solid model, Bopening, was constructed which
matched the shape of the hollow portion of the shell.
A CSG difference operation removed Bopening from
the model of the shell, creating the interior space.

Table 2. Relative size of axial spines below last 3 varices in the
model of Murex cabritii. Varix number corresponds to the order
in which they were formed (e.g. varix 3 is the last varix formed
and is at the opening of the shell)

Varix
Spine 1 2 3

1 0.96 0.95 1.00
2 0.92 0.99 0.90
3 0.84 0.76 0.92
4 0.68 0.51 0.70
5 0.45 0.35 0.60
6 0.25 0.28

Bopening was created using the same method de-
scribed for the main body whorl. A similar generat-
ing surface was created which was slightly smaller
in each dimension orthogonal to the helico-spiral.
The basis of the generating surface was formed from
a single point primitive, slightly smaller than that of
the main whorl. The inner canal was modeled by four
slender cones, bent as in the main body whorl’s gen-
erating surface. Four cones were required because
a single cone was too slender to describe a suffi-
cient arc of the whorl. Four additional cones were
used to extend the inner edge of the surface to the
edge of the previous whorl. Equation (14) shows how
the opening was carved out of the shell. Bshell is the
complete shell without the opening; Binside defines
a whorl generated with the generating surface for the
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13a 13b 13c 13d

Fig. 11. On the left is the generating surface used for the inside
of Murex cabritii; in the center is the whorl this surface defines;
and on the right is the final surface which will be cut out of the
main shell to create the opening

Fig. 13a–d. Textures and their corresponding uses in the model
of Murex cabritii: a Main body whorl; b Spines in varices;
c Axial rows of spines; d Bumps on main whorl

Fig. 12. On the left is the opening which is carved out by
Eq. (14); on the right is the final shape of the opening after
adding in Binside wall as in Eq. (15)

inside of the shell; and Bw
b
a is from Eq. (9):

BMurex = Bshell − Bopening ,

Bopening = Binside − Bw
108
94 . (14)

The previous whorl is subtracted from the inside
whorl to create Bopening, which in turn is subtracted
from the main body whorl. This keeps the previous
whorl intact. The generating surface used to create
the hollow portion of the shell, the whorl it defines,
and the surface which is used to cut out the opening
from the main shell are shown in Fig. 11.
Observation of sea shells similar to Murex cabritii
(Murex troschel) reveal that the opening is roughly
circular. The opening which is carved out in Eq. (14)
is not circular. An inside wall was modeled sepa-
rately then added into the model after carving out the

opening. Equation (15) shows the final combination
which was used to define BMurex, where Binside wall is
the BlobTree for the interior wall. The opening with
and without the inside wall is shown in Fig. 12.

BMurex = (Bshell − Bopening)∪ Binside wall . (15)

3.4 Texturing the shell

The model captures most of the form of Murex cabri-
tii, but to get a more realistic image four 2D textures
and two separate texturing methods were applied to
the model. The textures are shown in Fig. 13, and
were all created using standard paint programs.
The main body whorl is textured in parts using the
method introduced in Tigges and Wyvill (1998).
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This method works by first mapping the texture to
a bounding parametric surface, S, with a known 2D
parameterization. The uv coordinates for texturing
on any point pi on the implicit surface I are deter-
mined by following a combination of the gradient of
the field, and a vector normal to S, towards S. When
S is reached at point ps, the uv coordinates for point
ps are used for texturing pi.
Figure 13a shows the texture applied to each sec-
tion in LBlobtrees [defined in Eq. (10)]. The parts of
the main body whorl where two textured sections are
blending are positioned so that they are covered by
a varix. This conceals discontinuities in the pattern
resulting from by the blending of two sections sepa-
rately textured with the same texture map.
The texturing method described above is computa-
tionally expensive, but was required to achieve the
desired effect on the main whorl. A faster method
of texturing was used for all of the other textured
parts of the model. These include the spines in the
varices, the spines below the main body whorl and
the bumps on the main body whorl. In this method
textures are mapped to a known 2D parameterization
of each of the primitives. When blending two or more
textured BlobTrees, the resulting colour at a point, P,
in space is determined using a linear combination of
the colour of each BlobTree scaled by its field value
at point P. This method is fully described in Tigges
(1999).
An inherent feature of the texturing methods imple-
mented in the BlobTree is that all of the textures are
automatically blended with each other. This gives
our model a natural look where separately textured
parts of the model are joined. The use of all of these
textures can be seen in Fig. 14.

4 Results and conclusion

We have presented an application of a structured
modeling technique that combines implicit surfaces
(CSG) and 2D texture mapping. This combination
of techniques is incorporated in an implementation
of the BlobTree developed at the University of Cal-
gary (Wyvill et al. 1998). A procedural interface is
available for the description of models, allowing ex-
act and concise definition of models which are eas-
ily manipulated. Specifically the equations for Blob-
Trees shown in this paper were implemented in the
Python programming language, which allowed us to
create functions that defined each individual part of

Fig. 14. Model of Murex cabritii

the shell and then combine these functions in other
functions until we had a function which defined the
entire sea shell.
Using the BlobTree, a realistic model of Murex
cabritii was built (Fig. 14). This model not only
demonstrates that implicit surfaces are a valid choice
for modeling natural forms, but that they are capable
of creating models where traditional methods fail.
Specifically, large protrusions on a sea shell’s surface
have been captured by switching from a parametric
to an implicit definition of the shell form.
Our model does not rely on polygon mesh opera-
tions, it is resolution independent and can be ren-
dered directly using ray tracing. Figure 14 took ap-
proximately 2 h to ray trace on a cluster of fourteen
500 MHz DEC Alphas. This represents a significant
amount of computation. Work is under way to im-
prove the efficiency of our rendering methods.
The following areas of the model remain open to
improvement: the opening was modeled by observ-
ing the opening on similar shells (Murex troschel);
the position and number of spines and bumps were
based on a single view of the shell; the number and
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placement of these features were arbitrary and sud-
denly change from one whorl to another; the textures
were created in a paint program and pasted on to give
a good approximation only; the varices do not extend
to the lower canal.
The controlled blending used in the current model
does not allow much flexibility. The blends can only
be specified between two objects at once, and super
elliptic blends are not allowed. An exploration of this
area might prove quite fruitful. A major extension of
the model would be to use reaction–diffusion tech-
niques to place spines and bumps on the shell.
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