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Abstract--In this paper, established geometric models of phyllotaxis are used to generate realistic images of 
flowers and fruits with spiral patterns. Two approaches to the placement of organs are considered: spiral 
arrangement on a plane and spiral arrangement on the surface of a cylinder. Images of sunflowers, daisies 
and zinnias have been synthesized using the planar model, while the cylindrical model is illustrated by pine 
cones and a pineapple. 

I .  I N T R O D U C I ' I O N  

The term phyllotaxis means leaf arrangement; how- 
ever. it is more generally used to denote the regular 
arrangement of lateral organs (leaves on a stem, cone 
scales on a cone axis, florets in a composite flower head) 
observed in most higher plants. Thus, spiral phyliotaxis 
refers to those arrangements which exhibit spiral pat- 
terns. The extensive literature generated by biologists' 
and mathematicians' interest in phyllotaxis is reviewed 
by Erickson[3] and Jean[6]. The proposed models 
range widely from purely geometric descriptions (for 
example, Coxeter[2]) to complex physiological hy- 
potheses tested by computer simulations (Hellendoorn 
and Lindenmayer [ 5 ], Veen and Lindenmayer [ 12 ], 
Young[ 14] ). This paper applies two existing models 
to synthesize realistic images of flowers and fruits which 
exhibit spiral phyllotactic patterns. 

Both models relate phyllotaxis to packing problems. 
The first one operates in a plane and was originally 
proposed by Vogel[13 ] to describe the structure of a 
sunflower head. A further detailed analysis was given 
by Ridley[9, I0]. The second model reduces phyllo- 
taxis to the problem of packing circles on the surface 
of a cylinder. Its analysis was presented by van Iter- 
son[l 1] and extensively reviewed by Erickson[3]. 

The mathematical models of phyllotaxis describe 
relative positions of organs, but are not concerned with 
their exact shapes. However, even when the component 
organs are relatively small, their individual appearance 
must be adequately modelled to produce a realistic 
synthetic image. The proposed approach is to represent 
each organ (such as a single floret or a petal) using a 
bicubic surface consisting of one or more patches. The 
exact surface shape is defined interactively with a 
graphical patch editor. A phyiiotaxis model is then ap- 
plied to assemble the predefined surfaces into a final 
structure. During this process, the surfaces are trans- 
lated and rotated in two or three dimensions until they 
reach their target positions; in some cases the required 
transformations also include scaling. In order to pre- 
vent excessive regularity, several variations of a par- 
ticular shape may be incorporated in a given structure. 

A related approach to the placement of organs was 
proposed by Prusinkiewicz[7] and Hanan[4]  for in- 
corporating leaves and flowers into developmental 
models of plants expressed in terms of L-systems. Many 
examples are presented by Prusinkiewicz, Lindenmayer 

and Hanan [ 8 ]. In contrast, the present paper employs 
phyllotactic models. As a result, much more intricate 
spiral patterns can be obtained. 

The area of phyllotaxis is dominated by intriguing 
mathematical relationships. One of them is the "re- 
markable fact that the numbers of spirals which can 
be traced through a phyliotactic pattern are predomi- 
nantly integers of the Fibonacci sequence" [ 3, p. 54 ]. 
For example, Coxeter [ 2 ] notes that the pineapple dis- 
plays 8 rows of scales sloping to the left and 13 rows 
sloping to the right. Furthermore, it is known [ 2 ] that 
the ratios of consecutive Fibonacci numbers Fk+,/F~ 
converge towards the golden mean • = ( ~  + 1)/2. 
The Fibonacci angle 360* r-2, approximately equal to 
137.5 °, is the key to the first model discussed. 

2. THE PLANAR MODEL 
In order to describe the pattern of florets (or seeds) 

in a sunflower head, Vogel [ 13 ] proposed the following 
formula: 

= n . 1 3 7 . 5  ° r = c ~ n  

where 

• n is the ordering number ofa floret, counting outward 
from the center; it is the reverse order of floret age 
in a real plant. 

• 4~ is the angle between a reference direction and the 
position vector of the n th floret in a polar coordinate 
system originating at the center of the capitulum. It 
follows that the divergence angle between the position 
vectors of any two successive florets is constant, a 
= 137.5 °, as illustrated in Fig. 1. 

• r is the distance between the center of the capitulum 
and the center of the n th floret, given a constant scal- 
ing parameter c. 

The square-root relationship between the distance r 
and the floret ordering number n has a simple geo- 
metric explanation. Assuming that all florets have the 
same size and are densely packed, the total number of 
florets which fit inside a disc of radius r is proportional 
to the disk area. Thus, the ordering number n of the 
most extremely positioned floret in the capitulum is 
proportional to r 2, or r ~ ~n. 

The divergence angle of 137.5 ° is much more dif- 
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ficult to explain. Vogel[13] derives it using two as- 
sumptions: 

• Each new floret is issued at a fixed angle a with re- 
spect to the preceding floret; 

• The position vector of each new floret fits into the 
largest existing gap between the position vectors of 
the older florets. 

Ridley[9] does not object to these basic assumptions, 
but indicates that they are insufficient to justify the 
occurrence of the Fibonacci angle, and points to several 
arbitrary steps present in Vogel's derivation. Ridley's 
own explanations proceed in two directions. In the pa- 
per[9] he shows that if Vogel's formula is parameter- 
ized: 

~ = n * ~  r=  c~n, 

an appropriately defined packing efficiency of equal- 
area elements reaches a maximum for a = 137.5 °. 
From this perspective, the distribution of florets reflects 
a plant's attempt to place the maximum number of 
florets in a head of a given size. A computer simulation 
explaining a causal mechanism by which this pattern 
may be produced is presented in [10]. The underlying 
concept that florets move and take final positions in 
response to the pressure they exert on one another was 
originally advanced by Adler [1]. 

Ridley [9 ] points out that although a comprehensive 
justification of Vogel's formula may require further 
research, the model correctly describes the arrangement 
of florets visible in actual composite capitula. The most 
prominent feature is two sets of spirals or parastichies, 
one turning clockwise, the other counterclockwise, 
which are composed of nearest neighbouring florets. 
The number of spirals in each set is always a member 
of the Fibonacci sequence; 21 and 34 for a small capit- 
ulum, up to 89 and 144 or even 144 and 233 for large 
ones. For example, in the image of a domestic sun- 
flower capitulum (Fig. 2), one can discern 34 spirals 
running clockwise and 55 spirals running counter- 
clockwise. The number of perceived spirals depends 
on the capitulum size expressed in terms of the number 
of component florets. If one limits their field of atten- 
tion to a circle approximately 2/3 the size of the entire 
sunflower capitulum in Fig. 2, the number of discern- 
ible spirals becomes 21 and 34. The capitulum of a 
daisy ( Fig. 3 ) also exhibits 34 clockwise spirals and 21 
counterclockwise spirals. 

A complete model of a flower head, suitable for re- 
alistic image synthesis, should contain several organs 
of various shapes. This is easily achieved by associating 
different surfaces with specific ranges of  the index n. 
Additionally, a random selection of similar surfaces 
can be employed to prevent excessive regularity of the 
resulting image. Other extensions to the basic model 
consist of varying organ orientation in space and 
changing their altitude from the plane of the head as 
a function ofn. For example, the dipped central portion 
of the daisy (Fig. 3 ) was obtained by lowering the po- 
sition of the first several florets. By changing the shape 

and colour of surfaces and adjusting the few parameters 
mentioned above, other types of flowers can be gen- 
erated using the same underlying model. This is illus- 
trated by the figures of common sunflowers (Fig. 4) 
and zinnias ( Fig. 5 ). 

Fig. 4 includes flowers in four developmental stages: 
buds, young flowers starting to open, open flowers and 
older flowers where the petals begin to droop. All flow- 
ers are generated using approximately the same number 
of florets. The central florets are represented by the 
same surface at each stage. The surfaces representing 
petals and their orientation vary. from one stage to an- 
other. The relative sizing of the flowers was achieved 
by scaling after the flowers were created. 

The zinnias (Fig. 5) illustrate the effect of changing 
a petal's altitude, size and orientation as a function of 
n. The height at which a petal is placed decreases by 
a small amount as n increases. The size of each suc- 
cessive petal is incremented linearly. The orientation 
is also adjusted linearly by a small angle increment. 
Thus, the petals with small values of index n are placed 
more vertically, while the petals with larger indices n 
are more horizontal. 

3. THE CYLINDRICAL MODEL 

The spiral patterns evident in elongated organs such 
as pine cones, fir cones and pineapples, can be described 
by models which position components, in this case 
scales, on the surface of a cylinder, van l te rson[ l l ]  
divides phyilotactic patterns on cylinders into simple 
and conjugate ones. In the case of a simple arrange- 
ment, all components lie on a single generative helix. 
In contrast, conjugate patterns consist of two or more 
interleaved helices. This paper discusses simple phyl- 
Iotactic patterns only. They are generally characterized 
by the following formula: 

---n*a r = c o n s t  H = h * n  (1) 

where 

• ¢, r and H are the cylindrical coordinates of scale n; 
• n is the ordering number of a scale, counting from 

the bottom of the cylinder; 
• a is the divergence angle between two consecutive 

scales; as in the planar case, it is assumed to be con- 
stant; 

• h is the vertical distance between two consecutive 
scales (measured along the main axis ofthe cylinder). 

In the planar model, the constant divergence angle 
a = 137.5 ° is found across a large variety of flower 
heads. The number of perceived parastichies is deter- 
mined by the capitulum size, and it changes as the 
distance from the capitulum center increases. In con- 
trast, a phyllotactic pattern on the surface of  a cylinder 
is uniform along the entire cylinder length. The number 
of evident parastichies depends on the values of pa- 
rameters a and h. The key problem, both from the 
viewpoint of understanding the geometD' of the pattern 
and applying it to generate synthetic images, is to ex- 
press the divergence angle a and the vertical displace- 
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Fig. I. Pattern of florets in a sunflower head, according to 
Vogvl's formula. Fig. 4. Common sunflowers. 

Fig. 2. Domestic sunflower head. 

Fig, 5. Zinnias. 

Fig. 3. Close-up of a daisy capitulum. 

ment h as a function of the numbers of evident paras- 
tichies encircling the cylinder in the clockwise and 
counterclockwise directions. A solution to this problem 
was proposed by van Iterson [ l l  ] and reviewed by 
Erickson [ 3 ]. Our presentation closely follows that of 
Erickson. 

The phyllotactic pattern can be explained in terms 
of  circles packed on the surface of  the cylinder. An 
evident parastichy consists of a S~luence of tangent 
circles, the ordering numbers of  which form an arith- 
metic sequence with difference m. The number m is 
referred to as the parastichy order. Thus, the circles on 
the cylinder surface may be arranged in two congruent 
2-parastichies, five congruent 5-patastichies, etc. The 
angular displacement betw~n two consecutive circles 
in an m-parastichy is denoted by ~m. By definition, ~m 
belongs to the range ( - , r ,  ,c] radians. The relation be- 
tween the angular displacement 6,, and the divergence 
angle ot is expressed by the formula: 

3,, = mo~ - A , .  2~" (2) 

where A,, is an integer which van Iterson calls the en- 
cyclic number. It is the number of turns around the 
cylinder, rounded upward or downward to the nearest 
integer, which the generative helix describes between 
two consecutive points of the m-parastichy. 
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Fig. 6. Parastichies on the surface of a cylinder and on the 
unrolled cylinder. A 5-parastichy is shown by red disks and 
an 8-perastichy by green disks. Yellow disks are common to 
both parastichies. Disk number 0 (bottom left) is repeated on 
the right side of the unrolled cylinder (as in Erickson[3, 

Fig. 3.11). 

. /  

Fig. 9. A pineapple. 

Fig. 7. An opposite parastiehy triangle. The base is formed by 
the circumference of the cylinder. The other two sides are 

formed by the parastiehies (as in Eriekson[3, Fig. 3.8]). 

Fig. 8. Patterns of tangent circles drawn on the surface of a 
cylinder as a function ofcirele diameter. Top left: Each circle 
has six tangent circles; 2, 3 and 5-parastichies can be discerned. 
Top right: As the circle diameter decreases, the 2-parastichy 
disappears. Bottom left: as the circle diameter decreases even 
further, an 8-parastichy is formed. Bottom right: the 3-paras- 

tichy disappears (as in Erickson[3, Fig. 3.9]). 

Fig. 10. Pine cones. 

Usually, one can perceive two series of parastichies 
running  in opposite directions (Fig. 6). The second 
parastichy satisfies an equation analogous to (2):  

6,, = n a  - An2~r. (3) 

Consider the m- and n-parastichies starting at the circle 
0. In their paths across the cylinder, they will intersect 
again at the circle m n .  Assume that m and n are rel- 
atively prime; otherwise the phyllotaetie pattern would 
have to contain several circles lying at the same height 
H and, contrary to the initial assumption, would not  
be simple. Thus, the circle m n  is the first point of  in- 
tersection between the m-parastichy and the n-paras- 
tichy above circle 0. Consequently, the path from circle 
0 to m n  along the m-parastichy, and back to 0 along 
the n-parastichy, encircles the cylinder exactly once. 
The section of m-parastichy between circles 0 and m n  

consists o f n  + 1 circles ( including the endpoints),  so 
the angular distance between the circles 0 and m n  is 
equal to n 6 m .  Similarly, the distance between circles 0 



Modelling spiral phyllotaxis 

and m n  measured along the n-parastichy can be ex- 
pressed as m6,'. As a result: 

n6,,, - m6,, = ±2a-. (4) 

The signs in the above equation correspond to the as- 
sumption that the spirals encircle the cylinder in op- 
posite directions; thus one of  the values fi is positive 
and the other one is negative. Substituting the right 
sides of Eqns. ( 2 ) and ( 3 ) for ¢,. and ~. yields: 

hA,, -- mA,, = _+!. (5) 

To further analyze the pertinent geometric relation- 
ships, cut the cylinder along the vertical line passing 
through the center of circle 0, and "unroll" the resulting 
surface (Fig. 6 ). The two parastichies and the circum- 
ference of the cylinder passing through point 0 form a 
triangle as shown in Fig. 7. The perpendicular to the 
base from point m n  divides this triangle into two right 
triangles. If d denotes the diameter of  the circles, then: 

(n~,,,) 2 + ( m n h )  z = (nd)  2, (6) 

and 

(rntS,,) 2 + ( m n h )  2 = (rod) 2. (7) 

The above system of  equations can be solved with re- 
spect to h and d: 

h = V(62,,, - 62,')/(n 2 - m 2 ) ,  (8) 

d = V(n26~  - m262 . ) / ( n  2 - m 2 ) ,  (9) 

or, taking into consideration Eq. (4),  

d = V2r(nfim + m r n ) / ( n  2 - m 2 ) .  ( 1 0 )  

Now, the problem is to determine values of 6,, and 
6,'. They are not simply functions ofparameters m and 
n. Fig. 8 shows that, for given m and n, the values of 
6 ,  and ~f," can be chosen from a certain range, yielding 
parastichies which are of differing steepness. In order 
to determine this range, observe that at each range limit 
a change ofphyllotactic pattern occurs: one previously 
evident parastichy disappears, and another is formed. 
Thus, at the range limit three  evident parastichies co- 
exist. It follows from Fig. 8 that at one end of the range 
the third parastichy has order I m - n I, and at the 
other end it is an (m + n)-parastichy. Furthermore, 
three coexisting parastichies imply that each circle is 
tangent to six other circles, as seen on the left of  the 
diagram, or all circles lie in the vertices of a regular 
hexagonal grid, as seen on the right. Consequently, the 
angle ~ + ~, at vertex m n  (Fig. 7) is equal to 2 r / 3 .  
Expressing the base of the triangle in terms of  its two 
sides and their included angle results in: 

( 2 r )  2 = ( n d )  2 + ( rod )  2 

- 2 ( n d ) ( m d ) c o s ( 2 r / 3 ) ,  ( 11 ) 

295 

or, after simplification, 

d = 2 r / V m  2 + m n  + n 2. ( 1 2 )  

A comparison of Eqns. (12) and (10) yields: 

nr,,  + mt~," = 2 r (n  2 - m 2 ) / ( m  2 + m n  + n:) .  (13) 

Solving the system of Eqns. (4) and ( 13 ) with respect 
to/f,,, and 6," produces: 

~,,, = l r (m  + 2 n ) / ( m  2 + m n +  nZ) ,  ( 1 4 )  

tS. = 7r(2m + n ) / ( m  2 + m n  + nZ).  ( 1 5 )  

Given the values of~,~ and 6., the divergence angle 
ct can be found from either one of the Eqns. (2) or 
(3),  assuming that the encyclic numbers Am or/x," are 
known. From the definition of encyclic numbers, it 
follows that they are the sma l l e s t  positive integers sat- 
isfying Eq. (5).  A systematic method for solving this 
equation, based on the theory of continuous fractions, 
is presented by van I te rson[ l l ] .  Erickson[3] points 
out that in practice the solution can often be found by 
guessing. Another possibility is to look for the smallest 
pair of numbers ( A . ,  A.) satisfying ( 5 ) using a simple 
computer program. 

In summary, a phyllotactic pattern characterized by 
a pair of numbers (m, n) can be constructed as follows: 

1. Find Am and A," from Eq. (5). 
2. Find the range of admissible values of the angular 

displacements ~,~ and t~.. The limits can be obtained 
from Eqns. ( 14 )and ( 15 )using the originally given 
values of m and n for one limit, and the pair 
(min { m, n }, I m - n I ) for the other. 

3. For a chosen pair of admissible displacement values 
~,~ and t~,', calculate the divergence angle a from 
Eq. (2) or ( 3 ) and the vertical displacement h from 
Eq. (8). 

4. Find the diameter d of the circles from Eq. (9). 

The diameter d does not enter directly in any for- 
mula used for image synthesis, but serves as an estimate 
ofthe size of surfaces to be incorporated in the model. 
As in the case of the planar model (Section 2), their 
exact shapes are defined interactively using a surface 
editor. 

Fruit images synthesized using the cylindrical model 
are shown in Figs. 9 and 10. The pineapple (Fig. 9) is 
an example of a pattern where a given scale has six 
neighbours, which belong to 5, 8 and 13-parastichies. 
The corresponding divergence angle a is equal to 
138.1395 °. The pine cones (Fig. 10) were generated 
using the values m = 5. n = 8 and ct = 137.5 ° (the 
divergence angle ct for a ( 5.8 )-parastichy pattern must 
belong to the interval from 135.9184 ° to 138.1395 o ). 
From these values, h and d were calculated as a function 
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of the radius of the cylinder. The effect of closing the 
bottom and top of the pineapple and pine cones was 
achieved by decreasing the diameter of the cylinder 
and the size of the scales. 

4. CONCLUSIONS 
In this paper, two models of phyllotactic patterns 

have been applied to create realistic images of plant 
organs. The first model describes phyllotaxis on a plane 
and is particularly suitable to generate images of com- 
posite flowers, such as sunflowers and daisies. The sec- 
ond model operates on the surface of a cylinder and 
provides a convenient  approach to the synthesis of 
elongated organs with spiral patterns, for example 
pineapples and pine cones. The shapes of the com- 
ponent  elements, such as florets, scales or seeds, are 
defined interactively using a parametric surface editor. 

One problem open for further research is related to 
the modelling of organ parts the shape of which cannot  
be approximated adequately by disks or cylinders. For 
example, the diameter of a pineapple and a pine cone 
decreases at the base and at the top of the fruits. The 
mathematical model of phyllotaxis on a cylinder does 
not take this effect into account. The gradual decrease 
of the diameter of the cylinder and the size of the scales 
does not  produce fully satisfactory results. 

Another  problem is related to collisions between 
elements of the modelled objects. For example, it would 
be difficult to avoid intersections between the tightly 
packed surfaces representing petals of roses or peonies. 
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