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Modelling biomechanics of bark patterning in grasstrees
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† Background and Aims Bark patterns are avisually important characteristic of trees, typicallyattributed to fractures
occurring during secondary growth of the trunk and branches. An understanding of bark pattern formation has been
hampered by insufficient information regarding the biomechanical properties of bark and the corresponding difficul-
ties in faithfully modelling bark fractures using continuum mechanics. This study focuses on the genus Xanthorrhoea
(grasstrees), which have an unusual bark-like structure composed of distinct leaf bases connected by sticky resin. Due
to its discrete character, this structure is well suited for computational studies.
† Methods A dynamic computational model of grasstree development was created. The model captures both the
phyllotactic pattern of leaf bases during primary growth and the changes in the trunk’s width during secondary
growth. A biomechanical representation based on a system of masses connected by springs is used for the surface
of the trunk, permitting the emergence of fractures during secondary growth to be simulated. The resulting fracture
patterns were analysed statistically and compared with images of real trees.
† Key Results The model reproduces key features of grasstree bark patterns, including their variability, spanning
elongated and reticulate forms. The patterns produced by the model have the same statistical character as those
seen in real trees.
† Conclusions The model was able to support the general hypothesis that the patterns observed in the grasstree bark-
like layer may be explained in terms of mechanical fractures driven by secondary growth. Although the generality of
the results is limited by the unusual structure of grasstree bark, it supports the hypothesis that bark pattern formation is
primarily a biomechanical phenomenon.

Key words: Functional–structural plant modelling, bark pattern, fracture mechanics, primary growth, secondary
growth, biomechanical model, phyllotaxis, Xanthorrhoea, grasstree.

INTRODUCTION

Xanthorrhoea, commonly known as the grasstree (Fig. 1), is a
genus of monocots native to Australia. There are 28 species of
grasstrees, some of which (e.g. Xanthorrhoea johnsonii,
glauca and latifolia) develop an arborescent trunk (Lamont
et al., 2004). The main apex of the grasstree periodically pro-
duces terminal inflorescences; consequently, vegetative growth
is sympodial, with an auxiliary bud taking over further develop-
ment (Gill and Ingwersen, 1976). The production of an inflores-
cence can create bends or kinks in the trunk (Bülow-Olsen et al.,
1982) that modify the otherwise cylindrical appearance of the
trunk.

The morphology of grasstrees is adapted to withstand and
respond to frequent fires. Their leaves are arranged into dense
spiral phyllotactic patterns (Staff, 1968). During fires, leaves
are burnt back to their bases, resulting in the melting of a
sticky resin produced by the plant. The solidification of this
resin cements the burnt leaf bases together, forming a ‘stem
sheath’ (Colangelo et al., 2002) or bark-like layer of diamond-
shaped leaf bases (Fig. 2) that protects the tree from diseases
and future fires (Lamont et al., 2004).

Grasstrees have an unusual characteristic for monocots in that
they have a secondary thickening meristem (Rudall, 1991). This
leads to the growth of the trunk in diameter, which, as a geometric
necessity, increases the distances between the leaf bases. As a

result, the regular lattice of interconnected leaf bases may
break into patches that resemble bark patterns observed in
other trees. In our study, we have focused on old (hundreds of
years) and large (reaching 5 m in height) grasstrees on Mount
Kiangarow in the Bunya Mountains National Park, Queensland,
Australia, in which such bark patterns are common. The dominant
pattern consists of highly elongated, predominantly vertical
patches of interconnected leaf bases (Fig. 2C). In some trees, or
tree regions, the pattern has a more reticulate character. In this
case, patches are smallerand less anisotropic (Fig. 2B). The differ-
ence in patterns appears to be correlated with the observed differ-
ence in leaf base shape between the two areas (Fig. 2D–H).

Here we show that the development of grasstree bark patterns
can be explained as a result of mechanical fractures that emerge
in the resin connecting leaf bases as the trunk grows in girth. To
demonstrate this, we have constructed a virtual grasstree that
combines a geometric model of primary and secondary tree
growth with a mechanical model of fractures. The natural grid
resulting from the phyllotactic arrangement of leaf bases offers
a unique opportunity to simulate fractures using a simple discrete
model. By changing model parameters, we have been able to re-
produce the range of patterns observed in the grasstrees used in
our study.

Historically, fractures in different materials have been simu-
lated using both discrete and continuous models. Skjeltorp and
Meakin (1988) introduced a mass-spring model to simulate
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fractures in an elastic layer under tension. They used a triangular
mesh of masses connected by springs and attached each mass to
an underlying substrate layer by another spring. To simulate
shrinking in the material, their simulation started with the top
layer stretched isotropically (already under tension) and the con-
necting springs were broken probabilistically depending on the
difference between the actual length of the spring and the rest
length. These fracture patterns were further analysed by
Morgenstern et al. (1993) for a one-dimensional grid and Bohn
et al. (2005) for continuous media. To model fractures in tree
bark, Federl and Prusinkiewicz (1996) adopted the system pro-
posed by Skjetorp and Meakin. They modelled the bark as a
bi-layered system with the outer layer of the tree being stretched
radially by the inner live tissue. In contrast to the work presented
here, they considered the mass-spring model as an (imperfect)
discrete approximation of bark that consisted of a homogeneous
material. Improving this approximation, Federl and Prusinkiewicz
(2004) modified their previous model by replacing the masses and
springs with a finite-element method. The resulting model pro-
duced plausible bark patterns, but the question of whether real
bark is adequately approximated as a continuous, homogeneous
sheet was not addressed.

MATERIALS AND METHODS

Grasstree simulation

Our work focused on the emergence of fractures that transform
the initial phyllotactic arrangement of leaf bases into a structure
with a bark-like appearance.

Phyllotactic pattern generation. The simplest method for generat-
ing the initial arrangement of leaf bases would make use of the

geometric characterization of phyllotaxis as a regular lattice on
the surface of a cylinder (Erickson, 1983; Van Iterson, 1987;
Prusinkiewicz and Lindenmayer, 1990). However, our model
also incorporates the dome-shaped apical part of the trunk that
supports leaves. This dome is modelled as a surface of revolution,
obtained by rotating a graphically defined profile curve around
the tree axis (Fig. 3). At its base, the dome is connected to the cy-
lindrical trunk. All leaves were positioned using the Ridley
(1986) model of phyllotaxis, previously applied to computation-
al modelling by Prusinkiewicz et al. (2001). Ridley’s model
packs organs on the supporting surface byassuming afixed diver-
gence angle and by displacing the organs vertically according to
the area that they occupy. In our implementation, Ridley’s model
operates dynamically, with new leaves inserted at the tip of the
apical dome as the space becomes available for them. This in-
crease is a joint effect of primary and secondary growth.

Growth simulation. Primary growth is simulated by increasing the
height of the tree linearly as a function of time. Secondary growth
is simulated by assuming that the area of the trunk cross-section
increases linearly with time, and thus the radius increases as the
square root of the plant’s age. This assumption is loosely moti-
vated by the pipe model (Shinozaki et al., 1964a, b), according
to which a linearly growing number of vascular strands connect-
ing leaves to the base of the tree would result in linear growth in
the cross-sectional area of the trunk. We obtained the same
results by increasing the trunk radius, rather than cross-section,
linearly with age. We limited our simulations to older trees, as
our data only show bark patterns in such trees.

We calibrated the length and time variables used in our model
by assuming that approximately 412.5 leaves grow per year
(Bülow-Olsen et al., 1982) and the trunk typically elongates by

FI G. 1. Young and mature grasstrees.
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FI G. 2. Sectionof a grasstree trunk with a bend in the trunk. (A) The two areas enclosed in coloured boxes have different leaf base geometries.Theyellow box indicates
a region with reticulate fractures and the blue box indicates a region with elongated fractures. (B, C) Isolated images of a reticulate pattern (B) and an elongated pattern
(C). (D–H) Leaf bases in the region with elongated fractures are more equilateral (D, G), whereas leaf bases at the bend of the trunk are severely deformed (E) and leaf

bases in the region with reticulate fractures are horizontally stretched (F, H).
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10–20 mm per year (Lamont et al., 2004). In the context of these
data, one time unit in our model is equivalent to 88.5 d and one
length unit corresponds to 0.3 m. Our virtual tree started at a
height of 1.62 m and reached a height of 2.52 m. This corre-
sponds to a 60-year simulation period with the tree starting at
the age of 110 years and reaching 170 years.

According to our observations, the divergence angle, w, in
young grasstree seedlings (Fig. 1) is close to 137.58, the golden
angle value found in many plant species, and we assumed this di-
vergence angle in our model. The radius of the tree trunk during
the simulation increased from 11 to 29 cm, the latter value ap-
proximating that observed in trees. We assumed that leaf bases
had an area of �30 mm2, which is consistent with the reported
size of grasstree leaves (Lamont et al., 2004). We measured
the number of leaf bases that a horizontal line drawn across
the trunk intersected and found �37 bases (Fig. 4E, F), and the
angle between parastichies approximated the measured angle
of 578 (Fig. 4A–D).

We simulated irregularities in the trunk form, possibly related
to the sites of inflorescences, as a periodic increase in the trunk
diameter (‘bulging’) below the apical dome, yielding different
leaf base aspect ratios (Fig. 4G–I). This was done by increasing
the radial position of the affected masses according to a piece-
wise sinusoidal function, taking a single maximum at the site
of the bulge and a value of zero away from the bulge. The
non-zero portion of the function was a squared sine function
with period scaled to match the extent of the bulging region

along the trunk, thus guaranteeing a smooth transition to zero
at the edges of the functions support.

Fracture simulation. Secondary growth pushes leaf bases out-
wards, which was modelled by gradually increasing the distance
of the leaf bases from the tree axis. For the purpose of fracture
pattern formation, we represented leaf bases as masses and the
resin connections as (Hookean) springs, connecting each base
to its four nearest neighbours. Figure 5A shows the neighbouring
leaf bases represented as green masses connected by springs. In
addition, each mass was connected to its original position on the
surface of the trunk by an ‘anchor’ spring, restricting the range of
possible displacements of the mass (Fig. 5B). As the tree grew in
radius, the springs between leaf bases (and possibly some anchor
springs) stretched. Whenever the tension of a spring connecting
two leaf bases exceeded a critical value, fmax, the springs would
break. Broken springs were removed from the simulation, leading
to the formation of cracks, and bark patches were formed by the
leaf bases interconnected by the remaining springs.

The force with which a spring attached to a leaf base at a point
xp acts on a leaf base q positioned at xq is given by

f q,p = −
k lq,p − xp − xq

∥∥ ∥∥( )
xp − xq

( )
xp − xq

∥∥ ∥∥ (1)

where k is the elasticity constant for neighbouring springs. The
rest lengths of the springs, lq,p, between the adjacent leaf bases
was assumed to be equal to the distances between the bases at
the time of their transition from the apical dome to the trunk.
This implies that leaf bases initiated later in the simulation,
when the radius of the tree trunk was larger, and those occurring
in the bulging regions had larger rest lengths. Anchor springs
were assumed to have zero rest length, which simplified the
above formula to

fq,s = −c(xs − xq) (2)

where c is the elasticity constant for secondary growth springs
and xs is the original position of the leaf base on the trunk. The
damping force is given by the equation

fq,d = −bvq (3)

where vq is the velocity of mass q and b is the damping constant.
Due to the physical nature of our system (leaf bases glued by
resin), we assumed that the system was over-damped
[b.2

p
(kmq), where mq is the mass of element q].

The total force acting on the leaf base q is the sum of the spring
and the damping forces:

Fq = fq,s + fq,1 + fq,2 + fq,3 + fq,4 + fq,d (4)

where fq,j ( j ¼ 1,2,3,4) correspond to the springs connecting q to
the adjacent bases.

Although grasstree growth is a slow process, numerically we
considered it as a dynamic system. The positions of each of the
masses in the system were simulated by solving the system of

Generating
curve

Apical
dome

Cylindrical
trunk

FI G. 3. Geometry of the tree trunk and a sample distribution of leaf bases gen-
erated using Ridley’s (1986) model. For clarity, leaf bases are larger and less nu-
merous than in the actual grasstree and the full model. The profile of the apical
dome is defined by a generating curve. The dome is smoothly connected to the
cylindrical trunk. The division between these two regions is marked by the

dashed line.
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differential equations

mq

dvq

dt
= Fq (5)

dxq

dt
= vq (6)

using the Euler–Cromer method (Giordano and Nakanishi,
2005):

vq(t + Dt) = Fq(t)
mq

Dt + vq(t) (7)

xq(t + Dt) = vq(t + Dt)Dt + xq(t) (8)

The mass index q runs from q ¼ 1 to n(t), where n(t) is the total
number of leaf bases present in the trunk at a given time; Dt is a
time step used for integration and chosen so that the system is able
to reach convergence. Each mass q was constrained to lie on the
surface of the trunk. This constraint was enforced by updating
xq(t) according to

xq(t) � C + ri + G
�
t

√( ) (xq(t) − C)
xq(t) − C

∥∥ ∥∥ (9)

where C is the position along the trunk axis at the height of leaf
base q, ri is the initial radius of the trunk and G controls the
rate of secondary growth. The anchor points that connect leaf
bases to the trunk were constrained to the trunk surface in the
same manner. Parameter values used in the model are summar-
ized in Table 1.

A B G

H

I

C

E

F

D

FI G. 4. Estimation of the parameters and geometryof the phyllotactic pattern. (A–D) Measurements of the angle between parastichies (�578) for four different trees/
tree sections. (E–F) Comparison of the number of leaf bases intersected by a horizontal line in a grasstree (E) (�37) and in the model (F) (�40). (H) Calibrated dis-
tribution of leaf bases in the regular (blue) and bulged (yellow) segment of the trunk. Leaf bases at the bulge are stretched horizontally (I) compared with regions away

from the bulge (G).
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Visual presentation of the model. For visual completeness, full
leaves were incorporated into the model. Leaves were modelled
as generalized cylinders with the area of the diamond-shaped
cross-section decreasing towards the endpoints. The shape and
size of the leaf bases were calculated so that the mesh of
masses and springs completely partitioned the surface of the
trunk into rhomboids (Fig. 5C, D) at the moment when the leaf
bases moved from the apical dome to the trunk. Leaf bending
due to gravity was approximated by gradually turning the leaf
downwards along its axis (Prusinkiewicz and Lindenmayer,
1990). As the leaves aged, they turned brown and to simulate
the role of a forest fire the majority of the older leaves were even-
tually removed, leaving only the base.

Statistical analysis of observed and simulated patterns

Materials. We analysed 30 photographs of grasstrees (taken on
Mount Kiangarow, Queensland, in December 2009) and magni-
fied certain segments of their trunks. The bark patterns were
clearly visible in most trees, but the individual patches were
often partially weathered or covered by an outgrowth of
mosses or lichens, which made the precise identification and
the recording of individual leaf bases difficult. Consequently,
we have focused on different areas of a single tree, in which all

bases are remarkably visible. We have complemented these
results with an analysis of the distribution of bases and fractures.

Data acquisition. The observed patches were digitized manually
from the photographs, using custom software devised for this
purpose (Fig. 6). Positions of leaf bases were specified by
placing a point at the centre of each leaf base using a mouse,
and recording the (x, y) coordinates of this point in the plane of
the image. In order to minimize the impact of projective distor-
tions, we only considered areas of the trunk approximately
facing the camera. This approximation was possible because
the horizontal spread of individual patches was much smaller
than the diameter of the trunk. The clustering of leaf bases into
patches was estimated by visual inspection, with all bases
assigned to the same patch indicated by the same point colour
(Fig. 6A, D). This assignment was straightforward in the case
of patches separated by large gaps. Narrow gaps were more dif-
ficult to classify, often raising the question of whether the small
patches were connected to other patches or not. In order to avoid a
possible impact of ambiguous patches, we ignored them in our
analysis.

For simulated data (Fig. 7), patches were extracted computa-
tionally, based on the graph of connections (unbroken springs)
between leaf bases. Each patch corresponded to a single

A B

C D

FI G. 5. Mass-spring representation of grasstree bark. (A) Leaf bases are approximated as masses (circles) and the resin connections as springs (white connecting
lines). (B) Each mass (red sphere) is connected by springs to four neighbours (green spheres) and to an anchoring point (yellow sphere). (C) Masses and springs
are arranged into a lattice. (D) The surface of the trunk is partitioned into individual leaf base elements, and the four vertices of each leaf base are placed half the distance

between the red mass and a blue mass.
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TABLE 1. Parameter values used in the grasstree model

Parameter Symbol Value

Force threshold for breaking in the straight sections of the trunk fmax: straight 0.005 force units
Force threshold for breaking in the straight sections of the trunk fmax: bulge 0.006 force units
Initial radius ri 0.35 (10 cm)
Vertical displacement for the initial cylindrical trunk. h 0.00012 (0.036 mm)
Index offsets to neighbouring masses (green masses in Fig. 3) +55, +89
Index offsets to masses used to partition the surface into leaf bases
(blue masses in Fig. 3C, D)

+34, +144

Time step Dt 0.01 (21 h)
Elasticity constant for neighbouring springs k 1.0 force/distance units (1.3 force m– 1)
Elasticity constant for secondary growth springs c 0.03 force/distance units (0.1 force m– 1)
Damping constant b 2.0 force/velocity units
Constant for secondary growth on the straight sections G: straight 0.04 distance/(time unit)1/2

Constant for secondary growth G: bulge 0.04 (ends) – 0.02 (peak of the bulge) in distance/
(time unit)1/2

Spring mass mq 1.0 mass units

mq= 47·3 (SD = 34·4, SE = 8·6)
mR= 0·498 (SD = 0·147, SE = 0·037)

Anisotropy
B C

E F

Number of leaf bases

Anisotropy Number of leaf bases

mq= 85·3 (SD = 9·3, SE = 3·1)
mR= 0·739 (SD = 0·213, SE = 0·071)

6 4 2

240·8 0·6 0·4 0·2

0·8 0·6 0·4 0·2

A

D

FI G. 6. Digitized bark patches from two photographs of a grasstree trunk (A, D), along with statistics characterizing these patches (B, C, E, F). Image (A) has 16
digitized patches and (B) has nine. Leaf base positions (coloured disks), mean position (coloured disks with black borders) and principal components (white lines) are
shown for each patch (A, D). The same colour is used for all leaf bases in a given patch. Radial plots (B, E) show the orientation (angle) and anisotropy (radius) of
each patch. Angles are measured with respect to the up-direction of the trunk (u¼ 908). Anisotropy values range from 0 to 1, with the increments of 0.1 marked by
ticks. The colour of each data point matches the corresponding patch in (A) or (D). Numerical values for the mean orientationmu [computed using the procedure described
by Fisher (1985)] and anisotropymR are provided for each plot along with their standard deviation and error. The histograms in (C, F) show the orientations of individual

patches grouped into 10 bins of 188 each. The radius of each bin shows the number of patches within each bin (one-patch increments are marked).
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connected component of the graph. Consistent with the method
for acquiring experimental data, we mapped each patch into a
tangent plane passing through the centroid of the patch and
recorded the coordinates of leaf bases in this plane. We
focused our analysis on the models in which the spread of
patches in the horizontal direction was limited, although
patches with spreads commensurate with the diameter of the cy-
linder could also be generated for some parameter values.
Furthermore, we disregarded patches with fewer than seven
leaf bases in order to be consistent with the elimination of am-
biguous patches in the analysis of observational data.

Pattern characterization. We recorded the size (in number of leaf
bases) of each observed or simulated patch, and computed the
orientation and anisotropy of each patch by performing a princi-
pal component analysis (Jolliffe, 2012) on the positions {(x0, y0),
(x1, y1), . . . , (xk, yk)} of leaf bases within this patch. To this end,
we computed the pairwise covariances of the spatial components
of leaf base positions and arranged them into the covariance
matrix

S = cov(X,X) cov(X, Y)
cov(Y,X) cov(Y, Y)

[ ]
(10)

From S, we extracted the eigenvalues of the covariance matrix,
l1 and l2, and their corresponding eigenvectors: a1 and a2.
The eigenvectors are the principal components (PCs) of the
spatial distribution of leaf bases, and the eigenvalues character-
ize the portion of the total variance of the point set along each PC.
In this setting, the first (larger) PC, l1, describes the primary
orientation in which the leaf bases within a patch are distributed.
We visualize this orientation as a line aligned with the first PC,
passing through the mean of the leaf base positions (Fig. 6A, D).
The second principal component, l2, characterizes the spread of
the leaf bases in the direction orthogonal to the first PC. The ratio

A = l1

l1 + l2

(11)

describes the anisotropy of this patch, ranging from A ¼ 1/2 for a
perfectly isotropic patch (the same spread in the first and the

second principal direction) to A ¼ 1 for a perfectly anisotropic
patch (all bases aligned in the principal direction) (Pauly et al.,
2002).We map thesevaluesto the interval [0,1] using the reassign-
ment A � 2A – 1 to make the differences in anisotropy more
clearly represented in plots. A similar measure was recently
used to quantify anisotropy of patterns (of road networks) by
Courtat et al. (2011).

Pattern comparisons. The key objective of this analysis was to ob-
jectively verify that our models of elongated and reticulate bark
patterns were close to those observed in grasstrees, while being
relatively distant from each other. Specifically, we compared
four classes of pattern: real elongated patterns, simulated elon-
gated patterns, real reticulate patterns and simulated reticulate pat-
terns. To this end, we employed quartet analysis (Bandelt and
Dress, 1986; Schmidt et al., 1996; Strimmer and von Haeseler,
1996), which provides a method for inferring qualitative relations
from quantitative measurements (Bandelt and Dress, 1986) and
can be used to compare shapes (Huang et al., 2013). To compare
distances d between four patterns, P, Q, R and S (Fig. 8A), we
formed a graph connecting the three closest pairs of patterns
with edges (Fig. 8B, C). If the two closest pairs (coloured green)
were disjoint, a reliable proximity of patterns in each pair could
be inferred. For instance, in the case shown in Fig. 8B, the
quartet analysis indicates that the pairs PQ and RS were relatively
close compared with the distance between the pairs. In contrast, a
reliable pairing could not be established in the example shown in
Fig. 8C, because pairs PQ and PR were not disjoint.

As the distance d required for quartet analysis, we employed
the Hellinger distance between two normal distributions
(Korostelev and Korosteleva, 2011). Given distribution P with
mean mP and standard deviation SDP, and distribution Q with
mean mQ and standard deviation SDQ, this distance is defined as

d(P,Q) = √(1 − beg) (12)

where

b =
���������������
2(SDP)(SDQ)
SD2

P + SD2
Q

√
(13)

Number of leaf bases

AnisotropyA B

C

ED G

F

H

I

Anisotropy Anisotropy

Largest
cluster

Smallest
cluster

Relative
cluster

size

36 27 18 9

0·8 0·6 0·4 0·2

Number of leaf bases Number of leaf bases

24 18 12 6 24 18 12 6

mq= 83·1 (SD = 22·0, SE = 2·1)
mR= 0·738 (SD = 0·173, SE = 0·016)

mq= 50·0 (SD = 35·5, SE = 3·3)
mR= 0·577 (SD = 0·207, SE = 0·019)

mq= 1·2 (SD = 28·3, SE = 3·2)
mR= 0·606 (SD = 0·209, SE = 0·023)

0·8 0·6 0·4 0·20·8 0·6 0·4 0·2

FI G. 7. Simulated patterns produced by the varying parameters between the two regimes of pattern formation described in the text (A, D, G) and statistics computed
from these patterns (B, C, E, F, H, I). The radial plots (B, E, H) show orientation and anisotropy as for Fig. 6 with two exceptions. First, corresponding data points in the
upper and lower half-planes are no longer connected by a line. Second, the colour of each data point indicates the number of leaf bases in the corresponding patch,
according to the colour ramp shown at the right of the figure. The histograms (C, F, I) show the number of patches falling into each angular bin as in Fig. 6 (with three-
patch increments marked). (A–C) The patches (n ¼ 110) in a simulation of the first regime (A) produce the radial plot in (B) and the histogram in (C). (D–F) The
patches (n ¼ 115) in a simulation using the parameters between those of the first and second regimes (D) produce the radial plot in (E) and the histogram in (F).

(G–H) The patches (n ¼ 80) in a simulation of the second regime (G) produce the radial plot in (H) and the histogram in (I).
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and

g = − 1

4

(mP − mQ)2

SD2
P + SD2

Q

(14)

The Hellinger distance increases from 0 to 1 as the differences
between distributions increase.

We further analysed the relation between the four distributions
by comparing the pairwise distance between means measured in
terms of the standard error of each distribution. More precisely,

for each distribution P we computed the difference between its
mean mP and that of each remaining distribution Q, mQ, in
terms of the standard error SEP at P:

dP(P,Q) =
|mQ − mP|

SEP

(15)

The distance dP(P, Q) measures the difference between the two
means in terms of the standard error of the mean of P, and is

P QP Q

R S R S

P Q

R S

A

D E

F G

B C

0·031

SD = 34·4
mθ = 47·3

SD = 35·5
mθ = 50·0

SD = 22·0
mθ = 83·1

SD = 9·3
mθ = 85·3

mθ = 47·3mθ = 50·0

mθ = 83·1 mθ = 85·3

SD = 0·173

SD = 0·208
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FI G. 8. Inference of qualitative relationships from quantitative data using quartets. (A) Quartet analysis depends on the pairwise distances between P, Q, R and S, as
described in the text. (B) Example of a valid quartet. (C) Example of an invalid quartet. In both examples, the three longest edges have been removed. Of the three
remaining edges, the two shortest are coloured green and the remaining edge is red. (D, E) Quartet analysis applied to the distribution of orientations (D) and anisotropy
values (E). The data in yellow boxes were obtained from the simulations in Fig. 7 (D–F for top left and A–C for bottom left), and the data in orange boxes were obtained
from the digitized patches in Fig. 6 (A–C for top right and D–F for bottom right). The pairwise distance between distributions is shown adjacent to each edge. In both
columns, the two shortest edges (green) pair the simulated and observed patterns of the same type, while the third shortest edge (red) spans the two pairs. The three
longest edges are depicted using dotted lines. (F, G) Differences dP between the means of the distributions from (D, E), expressed as multiples of the standard errors. The
directed edge from P to Qusesthe standard errorof P (and vice versa). The outgoingedge from each box with the smallest numericalvalue is coloured green, and induces

a pairing between simulated and observed patterns of the same type.
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thus inversely related to the probability that the meanmQ could be
generated by the same probability distribution as P. The advan-
tage of this measure is its intuitive character, stemming from
the direct relation between standard error and statistical signifi-
cance. However, in contrast to the Hellinger distance, this differ-
ence dP is asymmetrical [dP (P, Q) = dQ (Q, P)] and thus does not
formally satisfy the definition of distance, which is assumed in
the quartet analysis.

RESULTS

Parameter space exploration

The effect of parameters on leaf base patches produced by the
model was examined in a simplified setting, with a trunk
segment consisting of 3000 leaf bases growing radially as
described by eqn (9). An exploration of the model parameters
in this setting revealed a range of patterns spanning two
extreme regimes (parameters are given in Table 2).

The first regime was characterized by a pattern of patches that
were predominantly vertical (perpendicular to the main direc-
tion of trunk growth) (Fig. 7A–C, Supplementary Data Video
S1). Pattern formation began with a large number of small,
mostly vertical cracks, which subsequently connected. As a
result, the bark layer was partitioned into predominantly vertical
patches. The patches that departed from a strictly vertical orien-
tation split into smaller sub-patches that were more vertical. The
overall orientation of patches thus became increasingly vertical,
the larger patches being more vertical than the smaller ones
(Fig. 7B, C).

The second regime resulted from an increase in the threshold
for springs to break (parameter fmax), combined with a decrease
in the growth rate (parameter G). These changes imply that leaf
bases are more likely to be significantly displaced before being
divided by cracks into separate patches. A pattern of approxi-
mately diamond-shaped patches resulted (Fig. 7G, H,
Supplementary Data Video S2). This pattern was initiated by a
small number of long diagonal cracks that wound around the
trunk in the direction of the steeper parastichy (fractures

between bases connected by the shallow parastichy) and
divided the leaf bases into oblique strips. The strips subsequently
split along the shallow parastichy, forming numerous diamond-
shaped patches. The average orientation of the first principal
component,a1 (i.e. the axis along which the patch was most elon-
gated), was 1.28, which is approximately horizontal. Almost all
of the individual orientations fell within 458 of the average. As
the trunk grew further, this initial pattern was hierarchically ela-
borated by the alternate splitting of patches along the parastich-
ies. This hierarchy preserved the approximately horizontal
orientation of the first PC (Fig. 7H, I), the longest patches align-
ing with the direction of the shallow parastichy.

We also observed that independently varying each of the two
parameters responsible for the change between the two regimes
had distinct, and continuous, effects on the characteristics of the
final pattern (Fig. 9). Decreasing the growth rate, G, transforms
predominately vertical fractures into fractures that tend to run
diagonally, along the parastichies. Increasing the force threshold
for breaking, fmax, increases the size of patches. Particular
choices of these parameters suffice to reproduce the class of pat-
terns exhibited by grasstrees in nature.

TABLE 2. Parameter values used in test simulations

Parameter Symbol Value

Force threshold for breaking fmax 0.0028: vertical (Fig. 7A–C)
0.005: reticulate (Fig. 7D–F)
0.008: diamond (Fig. 7G–I)
in force units

Initial radius ri 0.2 (6 cm)
Vertical displacement H 0.0005
Index offsets to neighbouring masses +21, +34
Time step Dt 0.01 (21 h)
Elasticity constant for
neighbouring springs

k 0.4 force/distance units
(0.12 force m– 1)

Elasticity constant for
secondary growth springs

c 0.1 force/distance units
(0.03 force m– 1)

Damping constant b 5.0 force/velocity units
Constant for secondary growth G 0.014: vertical (Fig. 7A–C)

0.011: reticulate (Fig. 7D–F)
0.007: diamond (Fig. 7G–I)
in distance/(time unit)1/2

Spring mass mq 1.0: mass units
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0·0050

0·0080

F
or
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 th
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0·014
Growth rate

0·011 0·007

FI G. 9. A 2-D parameter space exploration of the simplified model. The growth
rate G is increased for each column from left to right, but is constant for each
column. The force threshold fmax is increased for each row from bottom to top,
but is constant for each row. The bottom left image uses the same parameters
as Fig. 7A, the middle image (second column, second row) uses the same para-
meters as Fig. 7D and the top right image uses the same parameters as

Fig. 7G–I. These parameter values are provided in Table 2.

Dale et al. — Modelling biomechanics of bark patterning in grasstree638

Downloaded from https://academic.oup.com/aob/article-abstract/114/4/629/2769089
by University of Calgary user
on 08 May 2018

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcu156/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcu156/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcu156/-/DC1


Comparison of real and simulated patterns

Visual comparisons and statistical analysis showed that
patches emerging in the first regime were similar to the elongated
forms observed in the grasstrees in our study (compare Fig. 6D–
F with Fig. 7A–C). In particular, both the observed and the simu-
lated patches were highly elongated and almost vertical. In
contrast, the pattern generated in the second regime (Fig. 7G–
H) was visually similar to the reticulate patterns observed in
grasstrees. This visual similarity occurred in spite of a difference
in the statistical properties of the two patterns: the average orien-
tation of patches in the model was nearly horizontal, while in the
tree it was approximately 478 with respect to a horizontal refer-
ence axis. We observed, however, that linearly varying para-
meters between those defining the first and the second regime
resulted in continuous variation in the produced patterns (Fig. 9).
A pattern of patches with parameters set intermediately between
those for the first and second regime, at 43 % of the difference,
represents a good fit to the data obtained for the reticulate patterns
(Fig. 7D–F, Supplementary Data Video S3).

To further understand the relations between the patterns and
their models, we performed separate quartet analyses of the distri-
butionsoforientations (Fig.8D)andanisotropy values (Fig.8E)of
the patterns observed in grasstrees (elongated in Fig. 6D–Fand re-
ticulate in Fig. 6A–C) and their models (elongated in Fig. 7A–C
and reticulate in Fig. D–F). Furthermore, we performed the corre-
sponding quartet-like analyses using the asymmetrical differences
dP (Fig. 8F, G), comparing the outgoing edges for each box. The
four analyses yielded the same qualitative results, indicating that
the models of elongated and reticulate patterns were close to the
corresponding observed patterns, while the distances between
elongated and reticulate patterns were comparatively larger.

Integrative model

Based on the preceding parameter exploration, we implemen-
ted a model of the entire above-ground part of the grasstree

(Fig. 10). The model accounts for primary growth, which
includes the arrangement of leaves in a spiral phyllotactic
pattern, phyllotactic and secondary growth, which leads to the
fractured pattern of the bark-like layer of leaf bases. Bulges
were introduced to represent irregularities in the trunk. This
had a secondary effect of producing stretched leaf bases and a
change in leaf base shape similar to that observed in our data
from actual grasstrees (Fig. 2B, C). This change in geometry,
however, was insufficient to reliably reproduce the different frac-
ture patterns we had observed. Incorporating the results of the
parameter space exploration made it possible to reproduce both
elongated and reticulate patterns in the same tree. This was
achieved by increasing the force threshold for breaking and
decreasing the growth rate in the bulging regions (making the
magnitude of the bulge decrease with time). Figure 11 shows a
comparison of the bark fracture patterns obtained in the model
compared with images of the real tree (same images as Fig. 2)
showing the two different fracture regimes.

DISCUSSION

We have analysed the patterns of leaf bases forming the bark-like
outside layer of the trunks of old grasstrees. These patterns result
from a partitioning of leaf bases, initially arranged into a spiral
phyllotactic pattern, into patches. Within each patch, the bases
are interconnected by resin. Across the crevices these connec-
tions are missing.

We observed two variants of these patterns. The first variant is
characterized by vertically elongated bark patches and crevices.
The second variant is a reticulate pattern of patches and crevices.
We used a principal component analysis to characterize both var-
iants quantitatively in terms of the orientation and degree of an-
isotropy of their constituent patches. Our analysis confirmed the
visual observation that patches in the first variant of the pattern
are highly anisotropic and have a mean orientation close to
vertical, and that the orientation of individual patches is close

FI G. 10. Selected images from the grasstree simulation showing various stages of development. The left image starts with 45 000 leaf base elements and corresponds
to an age of 110 years, and the final image contains 70 000 leaf base elements and corresponds to an age of 170 years. Parameter values are summarized in Table 1.
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to the mean. In contrast, patches in the second variant of
the pattern are more isotropic, have a mean orientation of
�478with respect to a horizontal reference axis, and the orienta-
tions of individual patches have greater variance (SD ¼ 34.48,
compared with 9.38 for the first variant).

Addressing the question of the developmental origin of the
observed patterns, we hypothesized that they may result from
the mechanical fracturing of the resin between some leaf bases,
while the stresses acting on the resin are induced by the expansion
of the bark-like layer due to the secondary growth of the trunk. To
explore the plausibility of this hypothesis, we constructed a
simple biomechanical simulation model. We have shown that,
for different model parameters, this model produces patterns
that are visually and statistically similar to both the elongated
and the reticulate patterns observed in real trees.

In particular, decreasing the growth rate and increasing the
force threshold for the springs to break results in a transition
from elongated fractures to a more reticulate pattern. An initial
physical analysis of the modelled equations elucidates the

impact of these parameters (see Supplementary Data Extended
Results) and indicates that the rate of energy dissipation plays a
significant role in patterning. This analysis shows that the
damping constant has a significant effect on the number of
initial fractures occurring on the surface of the trunk and, to-
gether with the growth rate, determines the energy dissipation
rate. The number of initial fractures is indicative of the system
preferring straight fractures (with a large number of initial frac-
tures) or diagonal fractures (with a smaller number of initial frac-
tures). Interestingly, the number of fractures appears to obey a
power law relationship with the energy loss rate (see
Supplementary Fig. S1), indicating that the model of grasstree
leaf bases behaves like a brittle material. This initial work is
promising, but further work is required to fully characterize the
relation between the patterns and the physical parameters.

Due to the simplicity of the model, it is difficult to attribute a
specific meaning to these parameter changes, but they neverthe-
less point to physical differences in the two regions as the cause
of the different patterns. For example, protrusions on the tree

FI G. 11. Bark patterns in the simulation compared with those observed in a real grasstree (the same images as in Fig. 2B, C). Regions near bulges or kinks in the trunk
(yellow boxes) have horizontally stretched bases and more diagonal fractures compared with the regions away from the kinks (blue boxes), which have primarily ver-
tical fractures. The inset images of the simulated bark patterns shown on the left are segments of the regions outlined on the tree model and have been rotated and

colour-adjusted to better match the real images on the right.
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arising from sympodial growth may experience different rates of
secondary growth. Furthermore, regions with larger leaf bases
may exhibit different fracturing patterns due a larger area of
contact between neighbouring bases, leading to a higher force
threshold for breaking.

Our model was devised under strong simplifying assumptions.
For example, the one-dimensional springs used in our model
cannot capture shear stresses that may occur in the resin
between leaf bases. Furthermore, all springs in our model are
linear (they obey Hooke’s law up to the point of breaking),
although grasstree resin may exhibit a more complicated
non-linear, plastic and/or viscoelastic (Gross and Seelig, 2011)
behaviour. Also, the resin can behave differently at different loca-
tions on the tree (Bray, 1905) and vary among species (Birch and
Dahl, 1974). Constructing a model of the bark-like patterning in
grasstrees based on measured mechanical properties of resin and
accounting for the geometry of leaf bases is an open problem,
interesting at least from the methodological point of view.

The appeal of using the grasstree as a model for bark-like
pattern formation lies in the discrete structure of its layer of
leaf bases, which we have abstracted as a simple mass-spring
model. This model was adequate to support our general hypoth-
esis that the patterns observed in the grasstree bark-like layer –
and, perhaps, in the bark of other trees – may be explained in
terms of mechanical fractures driven by secondary growth.
Although the generality of our result is limited by the unusual
structure of grasstree bark, it supports the hypothesis that bark
pattern formation is primarily a biomechanical phenomenon.
From a broader perspective, our results increase the spectrum
of morphogenetic phenomena in which biomechanics and prop-
erties of space, rather than detailed genetic patterning, play a key
role (Prusinkiewicz and de Reuille, 2010).

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford
journals.org and consist of the following. Video S1: develop-
ment of a pattern with vertically elongated patches and fractures
(Fig. 7A–C). Video S2: development of a pattern with diamond-
shaped patches and fractures (Fig. 7G–I). Video S3: develop-
ment of a reticulate pattern (Fig. 7D–F). Extended Results: a
discussion presenting further physical analysis of the parameter
space, representing an extension of the section ‘Parameter space
exploration’ in the Results.

ACKNOWLEDGEMENTS

Thanks to Jim Hanan, Peter Room and Birgit Loch for introducing
P.P. to the beauty of grasstrees and for help in acquiring grasstree
data. This work was supported by an Undergraduate Student
Research Award (H.D.) and a Discovery Grant (P.P.) from the
National Sciences and Engineering Research Council of Canada.

LITERATURE CITED

Bandelt HJ, Dress A. 1986. Reconstructing the shape of a tree from observed dis-
similarity data. Advances in Applied Mathematics 3: 309–343.

Birch AJ, Dahl CJ. 1974. Some constituents of the resin of Xanthorrhoea pre-
issii, australis and hastile. Australian Journal of Chemistry 27: 331–344.

Bohn S, Platkiewicz J, Andreotti B, Adda-Bedia M, Couder Y. 2005.
Hierarchical crack pattern as formed by successive domain divisions. II.
From disordered to deterministic behavior. Physical Review E 71: 046215.

Bray J. 1905. Grasstree resin. Sydney Morning Herald, 15 December, p. 15.
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