
Modeling plant development with L-systems

Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Abstract Since their inception in 1968, L-systems have become a key conceptual,
mathematical and software tool for modeling plant development at different levels
of plant organization spanning molecular genetics, plant physiology, whole plant
architecture, and plant communities. The models can be descriptive, directly reca-
pitulating observations and measurements of plants; mechanistic, explaining higher-
levels processes in terms of lower-level ones; or they may combine features of both
classes. We present the basic idea of L-systems, motivate and outline some of their
most useful extensions, and give a taste of current techniques for modeling with L-
systems. The sample models progress in the scale of organization from a bacterium
to a herbaceous plant to a tree, and simulate different forms of information transfer
during the development, from communication between adjacent cells to bidirec-
tional information exchange with the environment.

1 Genesis of the idea

The discovery of the structure and functioning of DNA placed molecular genet-
ics in the center of modern biology, and opened the door for reducing diverse bi-
ological processes to their biochemical (and, ultimately, physical) basis. However,
the sequencing of the genome of numerous organisms, including humans, has also

Przemyslaw Prusinkiewicz
Department of Computer Science, University of Calgary, e-mail: pwp@ucalgary.ca

Mikolaj Cieslak
Department of Computer Science, University of Calgary, e-mail: msciesla@ucalgary.ca

Pascal Ferraro
Department of Computer Science, University of Calgary, e-mail: pferraro@ucalgary.ca

Jim Hanan
Centre for Horticultural Science, University of Queensland, e-mail: j.hanan@uq.edu.au

1

2 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

highlighted the gap between knowing the genome and understanding how it regu-
lates the development and form of an organism. This regulation is not direct; in-
stead, genes and molecular-level processes establish local rules for the spatially dis-
tributed dynamic processes of morphogenesis, from which the developing forms
arise. The emergence of global patterns, forms or behaviors through the local in-
teraction of their components is the defining feature of self-organization and high-
lights the inherent difficulty in studying and understanding development: properties
of self-organizing systems are often non-intuitive and difficult to analyze. Compu-
tational models and simulations facilitate studies of self-organizing phenomena by
revealing the consequences of different hypothetical rules, explicitly specified by
the modeler. A series of computational experiments, in which the model is mod-
ified and refined until the emerging developmental dynamics approximates reality
with sufficient accuracy, leads to insights into the plausible processes underlying the
analyzed processes, patterns and forms.

The use of computational models raises the question of how they should be con-
ceptualized, specified and executed to effectively support the process of scientific
discovery. Similar questions can be raised in any application of computing, but in
the case of morphogenesis the answers are particularly elusive. This is due to the
discrepancy between the standard view of computation that underlies commonly
used programming languages on the one hand, and the nature of the problems of
morphogenesis on the other.

The standard view of computation is related to the classical (von Neumann)
model of computer architecture. According to this model, computation is organized
around a central processing unit (CPU), which executes a sequence of operations on
a set of numbers in a well-defined order. The geometric concept of space is not part
of this model. In contrast, morphogenesis involves multiple processes taking place
in parallel, and it is an inherently geometric phenomenon. Spatial relations between
components of the developing organism play a key role in defining which specific
processes take place in each component at each point of time. Further complicating
the matter, the number of components and processes may change as the organism
grows. Because of these changes, the standard mathematical framework of dynami-
cal systems, in which temporal evolution of a system is described using a predefined
set of variables and equations, becomes too limiting (Giavitto et al, 2002).

In view of these discrepancies, nonstandard models of computation, program-
ming languages and computational devices have been proposed to specify morpho-
genetic processes and implement simulations effectively. A well-known example
is that of cellular automata (also called cellular spaces), invented in the 1950s by
von Neumann and Ulam. Their early applications included a biologically-inspired
model of self-replication (von Neumann, 1966), and — of particular importance to
the history of computational studies of morphogenesis — the first simulations of
growing branching structures (Ulam, 1962, 1966).

With cellular automata, space is represented as an array of cells, each of which
houses an automaton that indicates, depending on its state, whether the cell is empty
or occupied by a component of the modeled structure. The automata change their
states in parallel (synchronously) to simulate a uniform progress of time within the

Modeling plant development with L-systems 3

entire structure. Transition functions governing state changes can be conveniently
specified using declarative statements (rules), which characterize the next state of
each automaton/cell as a function of its current state and the state of its neighbors.
An example of such a rule for a one-dimensional cellular automaton defined over
the set of states {0,1} might be “a cell in state 1, situated between cells in state 0 to
the left and state 1 to the right, will change its state to 0.”

L-systems (Lindenmayer, 1968) were inspired by cellular automata, and in some
simple cases are indistinguishable from them. Using the terminology of L-systems,
the above rule would be termed a production that replaces the strict predecessor,
symbol 1, occurring in the context of symbol 0 to the left and symbol 1 to the
right, with the successor 0. Such a production can be written as 0 < 1 > 1→ 0
(here symbols < and > do not denote inequalities, but simply separate the strict
predecessor from the left and right contexts). Four sample L-systems inspired by
cellular automata are specified in Table 1, and the first 32 steps of their operation
are shown in Figure 1.

Figure a b c d
Axiom 0321032 A00100B
Predecessor Successor
0 < 0 > 0 0 0 0 0
0 < 0 > 1 1 1 1 1
0 < 1 > 0 0 0 1 1
0 < 1 > 1 0 0 0 1
1 < 0 > 0 1 1 1 1
1 < 0 > 1 0 0 1 0
1 < 1 > 0 0 0 0 0
1 < 1 > 1 0 0 0 0

A — A0 A0 A0
B — 0B 0B 0B

Table 1: Sample L-systems inspired by cellular automata. L-system a rewrites symbols of the ini-
tial string (axiom) without changing its length, as typical of cellular automata (the power notation
032 denotes a string of 32 zeroes). In L-systems b–d, productions operating on symbols A and B
gradually extend the generated strings.

The L-system in Figure 1a most closely mimics the operation of a cellular au-
tomaton, in the sense that the space in which it operates — a row of 65 cells —
is given in advance. In the course of the simulation, the states of individual cells
may change, but their number and spatial configuration are fixed. In contrast, the L-
systems in Figures 1b–d employ productions A→ A0 and B→ 0B operating on ad-
ditional symbols A and B (colors used for emphasis) to gradually expand the strings
of symbols that grow from the short L-system axiom (initial string) A00100B. The
ability to expand (or contract) the modeled structure over time is a distinctive feature
of L-systems.

There is also a more subtle distinction between cellular automata and L-systems.
Cellular automata describe a quantity (state) associated with (discrete) points of

4 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

a b

c d

Fig. 1: Operation of L-systems from Table 1. White cells represent the symbol 0, black cells the
symbol 1. In each simulation, the top row represents the initial state, and the subsequent rows
represent the results of each simulation steps. The space in which simulations operate is fixed in
model a and gradually expands in models b–d, in which colored cells produce new white cells.
These examples also show that small differences in productions may result in qualitatively differ-
ent patterns, including self-similar (a, b), repetitive (c) and chaotic (d) patterns (Wolfram, 1984,
2002). These differences highlight the need for the modeling and simulations in the studies of
self-organization. The rules used in the above examples are commonly referred to as Rule 18 (a,
b), Rule 54 (c) and Rule 30 (d). These names result from interpreting the list of successors in the
respective columns of Table 1, read from the bottom up, as binary numbers, e.g. binary 00010010
equals 30 in common decimal notation.

space. This space-centered perspective is known as Eulerian. In contrast, L-systems
focus on the developing structure itself, a perspective known as Lagrangian. The
difference between these perspectives comes to light when the modeled structure
grows over time, and is particularly evident when new components are added not
only at the structure boundary, but in its interior as well. Some components then
change their position and “flow” through space as they are pushed by other compo-
nents that need room to fit. It makes a difference whether this process is described
from the perspective of points of space or individual components (Prusinkiewicz
and Runions, 2012). The latter perspective, afforded by L-systems, is often natural
and convenient in the description of development.

2 Modeling cell division patterns

A model of vegetative segments of the filamentous blue-green bacterium Anabaena
catenula provides a simple example illustrating the capability of L-systems to sim-
ulate growth and cell division patterns in one dimension. A vegetative Anabaena
segment consist of sequences of longer and shorter cells that appear to be arranged
at random, but in fact divide deterministically (Mitchison and Wilcox, 1972). Dur-

Modeling plant development with L-systems 5

ing the development, short cells elongate, and long cells divide asymmetrically into
a short and long cell. A short daughter cell is always produced on the side of the
older wall separating the mother cell from its neighbours. The following L-system
captures these principles, with symbols S and L denoting a short and a long cell, re-
spectively, and symbols W denoting cell walls that delimit cells within the filament:
Compared to the L-systems in Table 1, this L-system incorporates two extensions.

Axiom: W (0)LW (1)
Productions: p1 : W (a)→W (a+1)

p2 : W (al)< L >W (ar) : al ≥ ar → SW (0)L
p3 : W (al)< L >W (ar) : al < ar → LW (0)S
p4 : S→ L

Table 2: L-system modeling the development of a vegetative segment of Anabaena.

The first one is the introduction of a numerical parameter a representing wall age.
It is incremented in every derivation step by production p1. The second extension
is the introduction of conditions that guard production application according to the
parameter values. Specifically, conditions al ≥ ar and al < ar determine whether
a long cell L will divide into a short cell S followed by a long cell L (production
p2) or into a long cell L followed by a short cell S (production p3). The choice
depends on the age of the walls surrounding L. The remaining production, p4, rep-
resents the growth of a short cell S into a long cell L. The first five simulation steps,
beginning with a single long cell bound by walls with the age set arbitrarily to 0
and 1 in the axiom, are shown in Figure 2. As this example illustrates, numerical
parameters and conditional application of productions are very useful in modeling
practice. They first appeared as a programming construct in the L-system-based
simulator CELIA (Baker and Herman, 1970, 1972; Lindenmayer, 1974) and were
subsequently formalized by Prusinkiewicz and Hanan (1990), Prusinkiewicz and
Lindenmayer (1990), and Hanan (1992).

Experimenting with the L-system in Table 2 provides insights beyond the origi-
nal objective of simulating the development of the vegetative segment of Anabaena.
For instance, Figure 3a shows the developmental sequence obtained by removing
production p4. Cell L, present in the axiom, is then the only cell that divides. Cells
S, created by L in consecutive derivation steps, appear on both of sides of L and “in-
ternalize” it near the filament center. A similar mechanism, operating in two dimen-
sions, explains the distribution of stomata in the leaf epidermis. As in the linear case,
a dividing cell — precursor of a stoma — produces new cells towards its older walls.
This process results in the internalization of the precursor cell and, consequently, the
separation of one stoma from another by non-stomatal cells: a fundamental feature
of stomata distribution (Robinson et al, 2011).

6 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

S

S

S S

S S S

SSSSS

L

L

L L

L LL

L L L L L

L L L L L L L L

Fig. 2: The first five steps of the simulation of the development of a vegetative filament of An-
abaena, simulated using the L-system in Table 2. The size and color of bars between the cells and
on the outside of the filament indicates the age of the walls (0, 1, or ≥ 2). Arrows indicate how the
walls propagate from one simulation step to the next.

A further modification reverts conditions in productions p2 and p3 as follows
(color added for emphasis):

p′2 : W (al)< L >W (ar) : al ≤ ar→ SW (0)L
p′3 : W (al)< L >W (ar) : al > ar→ LW (0)S

The resulting L-system creates a drastically different developmental sequence, in
which the dividing cell L is positioned at the end of a growing structure, extending it
in one direction only (Figure 3b). A similar process is commonly observed in plants,
from filamentous algae to mosses, ferns and higher plants, where an apical cell (or
multicellular apical meristem) creates an axis of plant development. The contrast
between the development of a filament with multiple dividing cells, the division of
a single cell leading to its internalization, and the maintenance of an axis with the
dividing cell situated at an apex shows that even very simple L-systems can shed
light on nontrivial relations between the local rules of development and the global
characteristics of the resulting structures.

3 Programming with L-systems

The L-system in Table 2 has been specified using a syntax inspired by the notion of
rewriting, as studied in mathematics and theoretical computer science (in particular,
formal language theory, where it underpins the concept of formal grammars). The
relation of L-systems to rewriting systems was first recognized by Lindenmayer
(1971). With the subsequent extensions to parametric L-systems, production such
as those shown in Table 2 are written as:

Modeling plant development with L-systems 7

4 2 0 1 3 5

3 1 0 2 4

2 0 1 3

1 0 2

0 1

0

a

5 4 3 2 1 0

4 3 2 1 0

3 2 1 0

2 1 0

1 0

0

b

Fig. 3: Two developmental sequences generated by modifying the L-system for the vegetative
segment of Anabaena. The size and color of bars between the cells and on the outside of the
filament indicates the age of the walls (0, 1, or ≥ 2), as in Figure 2. As the long cell divides, the
daughter short cell is positioned on the side of the older (a) or younger (b) wall of the mother cell.
Numbers and colors of the short cell indicate their age.

le f t context < strict predecessor > right context : condition→ successor

for instance

A(u)< B(x,y)>C(v)D : u < v→ E(x+ sin(u),y+ cos(v))

For simple L-systems, this mathematically-inspired syntax works well; in particular,
its conciseness makes it easy to specify and modify productions, an inherent com-
ponent of developing models in an interactive computing setting. Unfortunately, it
does not easily scale up to more complex L-systems (Prusinkiewicz, 2004). For in-
stance, sequences of single-letter symbols associated with multiple parameters look
cryptic, making model specifications difficult to read and maintain, and there are no
constructs for evaluating conditions and parameter values programmatically. Exten-
sions to the mathematical notation addressing some of these limitations have been
proposed and are useful (Prusinkiewicz and Lindenmayer, 1990), but a fundamental
solution is to combine L-system constructs with a programming language. Exist-
ing systems include binding L-systems with C/C++ (Karwowski and Prusinkiewicz,
2003; Prusinkiewicz et al, 2007), Java (Kniemeyer, 2004; Kniemeyer et al, 2007),
and Python (Boudon et al, 2012). For instance, the basic format of productions in
the L+C language (Karwowski and Prusinkiewicz, 2003; Prusinkiewicz et al, 2007)
is:

le f t context < strict predecessor > right context : {statement block}.

The statement block is (relatively unrestricted) C++ code, allowing for the speci-
fication of arbitrarily complex computations involving module parameters, and ex-
tended with produce statements , which precede the specification of a successor.
A single production may include several produce statements, which provides a

8 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

means of specifying alternative outcomes to production execution, depending on
the evaluation of conditions. Furthermore, modules may have parameters of differ-
ent types, including entire data structures. This use of structures improves the clarity
of L-system specification if numerous parameters are involved, and implies that in
L+C modules are declared.

4 Incorporating a genetic regulatory network into an L-system
model

The next model illustrates L+C language constructs and provides an example of an
L-system incorporating a genetic regulatory network (GRN). This example returns
to Anabaena, but focuses on an additional element of its development: the differen-
tiation of a special type of cell, the heterocyst.

In an Anabaena filament grown in an environment without nitrogenous com-
pounds there is a division of functions: vegetative cells assimilate carbon from the
atmosphere in the process of photosynthesis, while heterocysts fix nitrogen (Adams
and Duggan, 1999; Herrero et al, 2016). These functions are performed by different
cells because the enzyme involved in nitrogen fixation, the nitrogenase, disintegrates
in the presence of the oxygen produced during photosynthesis. On the average, het-
erocysts are separated by approximately 10 vegetative cells (Haselkorn, 1998). New
heterocysts differentiate as the distance between existing heterocysts increases due
to the division of the vegetative cells in-between. The mechanism controlling this
differentiation has been of interest for a long time, and has included the construction
of L-system models both to address the biological problem itself and to illustrate
model construction with L-systems (e.g. (Baker and Herman, 1970, 1972; Linden-
mayer, 1974; de Koster and Lindenmayer, 1987; Prusinkiewicz and Lindenmayer,
1990; Giavitto et al, 2002; Coen et al, 2004; Prusinkiewicz and Lane, 2013)).

It was initially thought that heterocyst differentiation is triggered by low con-
centration of nitrogeneous compounds (Fogg, 1949), which are synthesized in the
heterocyst and diffuse into vegetative segments where they are used. The concen-
tration of these compounds would decrease as the length of a vegetative segments
increases, and eventually would fall below a threshold near the centre of the vegeta-
tive segment, triggering the differentiation of a new heterocyst (Fritsch, 1951). Ad-
vances in molecular biology have shown that, while the general idea of a diffusing
substance controlling the differentiation of heterocysts is correct, the morphogenet-
ically active diffusing substance is a small protein, PatS, acting as a proxy for the
nitrogenous compounds (Yoon and Golden, 1998). The production of PatS is regu-
lated by another protein, HetR, which is present in high concentration in heterocysts
and defines their identity (Buikema and Haselkorn, 1991). The interaction between
PatS and HetR is qualitatively depicted in Figure 4.

To incorporate these interactions into an L-system model it is necessary to
give them a mathematical form. Following (Wilcox et al, 1973; Hammel and
Prusinkiewicz, 1996; Giavitto et al, 2002), we cast it as an activator-inhibitor model

Modeling plant development with L-systems 9

PatS

HetR

PatS

HetR

PatS

HetR

PatS

HetR

PatS

HetR

Fig. 4: Interaction between HetR and PatS in an Anabaena filament. Arcs with arrows denote up-
regulation, arcs with bars downregulation, and horizontal arcs diffusion of the respective proteins.
Color intensity indicates concentration of HetR and PatS in the heterocyst (circular cell) and the
neighbouring vegetative cells. Adapted from (Coen et al, 2004).

(Gierer and Meinhardt, 1972; Meinhardt, 1982): a type of reaction-diffusion model
in which the interaction between the intervening substances is qualitatively consis-
tent with the interaction between PatS and HetR (Adams and Duggan, 1999). The
equations for an arbitrary cell in the filament then have the form:

d[HetR]
dt

= ρ
[HetR]2

[PatS]
+ρ0−µ[HetR], (1)

d[PatS]
dt

= ρ[HetR]2 + ρ0−ν [PatS]+Φ . (2)

Symbols [HetR] and [PatS] denote the concentration of the corresponding proteins,
µ and ν control their turnover (use and decay), ρ and ρ0 control production rates,
and Φ represents the flux of PatS into the cell under consideration from its neigh-
bouring cells (for simplicity, we assume that all cells have a unit volume, and the
walls between them have a unit area). Given the diffusive character of PatS trans-
port, this flux is proportional to the difference in concentration of PatS in the cell
under consideration and its left and right neighbours, here identified by subscripts l
and r (Fick’s law):

Φ = D(([PatS]l− [PatS])+([PatS]r− [PatS])) . (3)

The coefficient of proportionality D controls the rate of diffusion through cell walls.
The specification of an L+C model corresponding to these equations begins with

definitions of the simulation parameter values. These definitions are given in the
standard C/C++ format:

3 /* Definition of constants used in simulation */
4 #define rho 1.0 // controls rate of the production of HetR and PatS
5 #define rho0 0.01 // controls basic production of HetR and PatS
6 #define mu 0.1 // turnover rate of HetR
7 #define nu 1.0 // turnover rate of PatS
8 #define D 2.0 // diffusion constant for PatS
9 #define thr 20 // threshold HetR concentration defining a heterocyst

10 #define dt 0.05 // time step

10 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

In addition to parameters controlling the biochemical aspects of the simulation, the
parameter list includes geometric parameters that control the dimensions and growth
rates of the cells:

12 #define gr1 0.004 // relative elementary growth rate of vegetative cells
13 #define MAX 1.0 // threshold length at which a vegetative cell divides
14 #define L 0.61804 // length of the longer daughter cell after division
15 #define S 0.38196 // length of the shorter daughter cell after division
16 #define TW 0.5 // target width of vegetative cells
17 #define TD 0.7 // target diameter of heterocysts
18 #define gr2 0.015 // rate of cell dimension adjustment towards target

The genetic regulatory network is then specified as a system of two functions that
determine the rates of expression (production) of proteins HetR and PatS, given their
concentrations in the cell:

20 /* Functions defining the genetic regulatory network */
21 float hetR(float HetR, float PatS) // HetR production rate
22 {
23 return rho*HetR*HetR/PatS + rho0;
24 }
25

26 float patS(float HetR) // PatS production rate
27 {
28 return rho*HetR*HetR + rho0;
29 }

The data structures involved in the simulation are specified next, following standard
C/C++ syntax:

31 /* Declaration of data structures characterizing cells and walls */
32 struct CellData
33 {
34 float HetR, PatS; // concentration of HetR and PatS
35 float l, w; // cell length and width
36 };
37

38 struct WallData
39 {
40 float flux; // PatS flux through the well
41 float age; // wall age
42 };

The L+C-specific code begins with the declaration of module types and the initial
state (axiom) of the simulation:

44 /* Initial values */
45 CellData icd1 = {0.02, 100, S, TW}; // HetR, PatS, length, width
46 CellData icd2 = {0.01, 100, L, TW}; // HetR, PatS, length, width
47 WallData iwd = {0, 0}; // flux, age
48

49 /* Declaration of module types used in the model */
50 module Cell(CellData);
51 module Wall(WallData);
52

53 /* Defintion of the initial structure and state of the simulation */
54 axiom: Right(90) Wall(iwd) Cell(icd1) Wall(iwd) Cell(icd2) Wall (iwd);

Module Right orients the filament horizontally on the screen, cf. Section 5. The
key part of the model is specified using two type of rules. Ordinary productions are
associated with the progress of time by interval dt. The production for walls simply
advances the age of walls, as in the L-system in Table 2:

Modeling plant development with L-systems 11

58 production:
59 Wall(wd) : // advance wall’s age in each simulation step
60 {
61 wd.age += dt;
62 produce Wall(wd);
63 }

The production for cells has two components. The first component (lines 67–76)
represents a numerical solution to the initial value problem given by Equations 1
and 2 using the forward Euler method. For clarity, different components of this solu-
tion (protein diffusion, production, and turnover of proteins) are split (MacNamara
and Strang, 2016) into separate statements. The second component (lines 78–86)
uses ad-hoc rules to simulate cell growth. A vegetative cells elongates with the rel-
ative elementary growth rate gr1, while its width tends to target TW. A heterocyst
asymptotically tends to a rounded shape with diameter TD.

65 Wall(wdl) < Cell(cd) > Wall(wdr) : // update cell state
66 {
67 // Diffusion of patS
68 cd.PatS += (wdl.flux - wdr.flux) * dt;
69

70 // Gene expression
71 cd.HetR += hetR(cd.HetR,cd.PatS) * dt;
72 cd.PatS += patS(cd.HetR) * dt;
73

74 // Decay of proteins
75 cd.HetR -= mu*cd.HetR * dt;
76 cd.PatS -= nu*cd.PatS * dt;
77

78 // Growth
79 if (cd.HetR < thr) { // vegetative cell...
80 cd.l += cd.l * gr1 * dt; // grows in length;
81 cd.w += gr2 * (TW - cd.w) * dt; // width is adjusted towards target
82 }
83 else { // heterocyst...
84 cd.l += gr2 * (TD - cd.l) * dt; // grows towards target in length
85 cd.w += gr2 * (TD - cd.w) * dt; // and in width
86 }
87 produce Cell(cd);
88 }

These productions are followed by decomposition rules (Prusinkiewicz et al, 2000;
Karwowski and Prusinkiewicz, 2003), which are applied immediately after the pro-
ductions (in the same derivation step) and perform computations that do not involve
advancing time. The decomposition rule for walls computes the flux of PatS through
each wall according to Equation 3:

93 /* Determine the flux of PatS through the wall */
94 Cell(cdl) < Wall(wd) > Cell(cdr) :
95 {
96 wd.flux = D * (cdl.PatS - cdr.PatS); // Fick’s law
97 produce Wall(wd);
98 }

The decomposition rule for cells specifies asymmetric division of vegetative cells
according to the age of the incident walls in a manner similar to the L-system in
Table 2, except that the rule is applied when the mother cell reaches the thresh-
old length rather than threshold age. Cell division is assumed to be instantaneous,

12 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

because in the context of a continuous-time simulation it represents a somewhat ar-
bitrarily chosen moment of the completion of the division process. Note that both
patterns of division, with the shorter cell located on the left or on the right side of the
mother cell, are specified within the same production, using alternative produce
statements (lines 107 and 109).

100 /* Cell division (assumed to be instantaneous in the model) */
101 Wall(wdl) < Cell(cd) > Wall(wdr) :
102 {
103 if (cd.l > MAX) { // if cell length exceeds limit
104 CellData shorter = cd, longer = cd; // daughters inherit mother’s state
105 shorter.l = S; longer.l = L; // ... except for length
106 if (wdl.age > wdr.age) // wall age sets division polarity
107 produce Cell(shorter) Wall(iwd) Cell(longer);
108 else
109 produce Cell(longer) Wall(iwd) Cell(shorter);
110 }
111 }

The model is completed by interpretation rules that specify the visual output of the
simulations. Snapshots of the simulation are shown in Figure 5.

a b c d e f

g h i

j

Fig. 5: Simulation of the development of an Anabaena filament with vegetative cells (green) and
heterocysts (red). Bars above cells indicate the concentrations of HetR, and bars below indicate the
concentrations of PatS, both on a logarithmic scale. The simulation begins with a short assembly
of vegetative cells (a), in which a heterocyst quickly differentiates (b). As the filament grows and
vegetative cells further divide (c), the concentration of PatS decreases away from this heterocyst
(d), which eventually triggers the differentiation of the second heterocyst (e). This process repeats,
producing a growing filament in which the average distance between heterocysts is approximately
10 cells (f–j). Note that vegetative cells distant to previously formed heterocysts may compete to
become a heterocyst (g,h), until one of them eventually wins (i). This competitition increases the
robustness of heterocyst patterning by reducing the likelihood of heterocysts differentiating next to
each other (Wilcox et al, 1973).

Modeling plant development with L-systems 13

0.5 1.0 1.5 2.0 2.5 3.0 3.5
log [PatS]ext

-0.5

0.5

1.0

1.5

2.0 log [HetR]

-0.5

-1.0

a

0.5 1.0 1.5 2.0 2.5 3.0 3.5
log [PatS]ext

-0.5

1.0

1.5

2.0

2.5

3.0

3.5 log [PatS]b

Fig. 6: Response of a single Anabaena cell to changing concentration of external PatS. Arrows
indicate directions of changes. As the concentrations of external PatS decrease, the cell switches
from the vegetative state characterized by low concentration of HetR (a) and PatS (b) to the hete-
rocyst state characterized by high concentration of both proteins. It then remains in the heterocyst
state in spite of the subsequent increases in [PatS]ext .

An intriguing aspect of the development of an Anabaena filament, highlighted
by the simulation, is that the concentration of PatS — an inhibitor of heterocyst
differentiation — is highest in the heterocysts themselves. This observation leads to
the question of why heterocysts do not inhibit themselves from being heterocysts:
a problem known as the refractory behaviour of heterocysts (Adams and Duggan,
1999; Gerdtzen et al, 2009). An explanation is given in Figure 6, which shows how
concentrations of HetR and PatS change within a single cell when the concentrations
of PatS external to it ([PatS]ext) decrease or increase. The plot reveals a bistable
region in which the concentrations of HetR and PatS can both be low or high for
the same value of [PatS]ext , depending on the history of the system. This form of
bistable behaviour (hysteresis) is the key to maintaining the heterocyst state: once
the switch from the vegetative to the heterocyst state has occurred, the cell remains
in the heterocyst state in spite of subsequent increases in [PatS]ext .

5 Geometric interpretation of L-systems

In the examples considered so far we have not discussed the geometric aspects of
generated structures. This follows the spirit of the original definition of L-systems,
which was focused on the topology of organisms — the pattern of connections be-
tween cells or larger modules — rather than their size and shape. Nevertheless, the
incorporation of geometry greatly extends the modeling power of L-systems. Dif-
ferent geometric interpretations of L-system-generated strings have been proposed.
Among them, an interpretation based on the notion of turtle geometry (Abelson
and diSessa, 1982; Papert, 1980) turned out to be particularly useful in diverse
implications, including developmental modeling of plants (Prusinkiewicz, 1986;
Prusinkiewicz and Lindenmayer, 1990). In this interpretation, a number of prede-
fined L-system symbols act as commands that control a three-dimensional cursor

14 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

— conceptualized as a “turtle” — that moves in space and traces the skeleton of a
branching structure. The key commands to which the turtle responds are listed in
Table 3 and further illustrated in Figure 7. Many other operations are also useful in
plant modeling, for examples see Algorithmic Botany (2018).

Turtle command Symbol L+C keyword
draw line segment F F
move without drawing a line f f
turn left | right + − Left Right
bend up | down ∧ & Up Down
roll to the left | right \ / RollL RollR
start | end branch [] SB EB
set line width # SetWidth
set line color , SetColor

Table 3: Basic turtle commands in a symbolic notation and
in the L+C language.

RightLeft
DownUp

RollL RollR

+ −
∧ &

/\

Fig. 7: Specification of turtle rota-
tions in three dimensions.

For example, the following L-system with turtle interpretation generates the devel-
opmental sequence of branching structures shown in Figure 8.

Axiom: #(0.4)A
Productions: p1 : A → I(1)[+A][−A]I(1)A

p2 : I(s) → I(2∗ s)
Interpretation rules: h1 : A → ,(1) f (0.2)F(0.8)

h2 : I(s) → ,(2) f (0.2)F(s−0.2)

Table 4: L-system modeling the development of the branching structure in Figure 8.

In this example, all branching angles are assumed to have a globally specified
magnitude of 45◦. In contrast, the length of internode segments I is specified as a
numerical parameter s. Production p1 sets its initial value to 1, whereas production
p2 multiplies it in each simulation step by 2, thus simulating the growth (exponential
elongation) of the internodes.

The L-system in Table 4 also includes two interpretation rules, h1 and h2. The
interpretation rules (Kurth, 1994; Prusinkiewicz et al, 2000; Karwowski and Pru-
sinkiewicz, 2003) are similar to decomposition rules, discussed previously, in that
they are applied immediately after ordinary productions, in the same simulation
step. In contrast to decomposition, however, the successor of an interpretation rule
is substituted for the predecessor only temporarily, for the purpose of calculating the
geometric, graphical representation of the predecessor symbol. In Table 4, the inter-
pretation rules state that both the apices A and internodes I are visualized as line seg-
ments F preceded by short invisible segments f . The invisible segments highlight
the composition of the branching structure by separating its individual components.
The modules A and I continue to exist as the predecessor of productions p1 and p2
in the subsequent simulation steps.

Modeling plant development with L-systems 15

Fig. 8: The first five stages of the developmental of a simple branching structure modeled using
the L-system in Table 4. The inset shows a graphical representation of the productions.

An L+C program equivalent to the symbolic notation in Table 4 is shown below:

1 module A; // apex
2 module I(float); // internode (length)
3

4 Axiom: SetWidth(0.4) A;
5

6 A : produce I(1) SB Left(45) A EB SB Right(45) A EB I(1) A;
7

8 I(s) : produce I(2*s);
9

10 interpretation:
11 A : produce SetColor(1) f(0.2) F(0.8);
12 I(s) : produce SetColor(2) f(0.2) F(s-0.2);

6 Descriptive modeling of plant architecture

Bracketed parametric L-systems with turtle interpretation are well suited to model
plant development at the architectural level. In this case, L-system modules do not
correspond to individual cells, but represent higher-level plant components, such as
apices (apical meristems), internodes, leaves, flowers and fruits (Room et al, 1994).
Architectural models include both descriptive and mechanistic models. Descriptive
models recreate plant development according to direct observations and measure-
ments of growth, whereas mechanistic models aim at simulating and explaining
development in terms of the underlying lower-level biological processes. In both
cases, hypothetical parameter values can be used to test predictions, fill gaps in data,
or explore the range of forms that the model can theoretically generate. Below we

16 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Fig. 9: A photograph of a mature Lychnis coro-
naria plant. The inset shows the characteristic
sympodial branching pattern. The architecture of
the whole plant results from iterating this motif.

present a model of the perennial herbaceous plant Lychnis coronaria as an example
of a descriptive model. The appeal of Lychnis stems from the contrast between the
apparent complexity of the mature plant (Figure 9) and the simplicity of its architec-
tural development. Its key feature is repetitive sympodial branching, in which each
axis is terminated by a flower, and the main thrust of development is transferred to
a pair of lateral branches (Figure 9, inset).

The entire model has approximately 160 lines of L+C code, thus we limit the
model description to the key constructs. The main modules are declared as follows:

1 module A(float); // apex (age)
2 module I(float,float,float); // internode (target length, width, age)
3 module L(float); // leaf (age)
4 module K(float); // bud/flower/fruit (age)
5 module B(float); // branching point (age)

The first four modules represent components of the plant. The fifth one, B, repre-
sents branching points, and is introduced to specify time-varying branching angles.
All modules are parametrized by age t, measured with respect to the time of their
creation.

In each simulation step the age of each module is advanced by increment dt,
which can be made arbitrarily small (as in the model of Anabaena with heterocysts)
to simulate development in continuous time. The age of apices, leaves, flowers, and
branching points is advanced by simple productions:

82 A(t) : produce A(t+dt);
83 L(t) : produce L(t+dt);
84 K(t) : produce K(t+dt);
85 B(t) : produce B(t+dt);

The age of internodes is advanced by more complex productions that also update
the width of internodes and are discussed later.

Modeling plant development with L-systems 17

The sympodial branching structure results from the activity of shoot apices,
which give rise to a flower in the terminal position and create a pair of new lat-
eral apices. This process is modeled by the following decomposition rule:

95 decomposition:
96 A(t):
97 {
98 if (t > 0 && T < BRANCHING_ENDS) produce
99 I(LEN1,0,t)

100 SB RollR(PHI) B(t) SB L(t) EB A(D1+t) EB
101 SB RollL(PHI) B(t) SB L(t) EB A(D2+t) EB
102 I(LEN2,0,t) K(t);
103 }

According to this production, an apex reaching the threshold age of zero creates
an internode I, a pair of lateral apices A in the axils of leaves L, and a flower bud
K subtended by another internode I. The age values t associated with the active
apices are always negative: they indicate the time leading to the production of lat-
eral branches. The branches are initiated after unequal delays D2<D1<0, resulting
in an asymmetric branchning structure (cf. Figure 9, inset). The pattern of repetitive
production of lateral apices and branches repeats until the overall plant age repre-
sented by a global variable T (also incremented by dt, statement not shown) reaches
the threshold age BRANCHING_ENDS.

The apex also creates two modules B, which specify the magnitude of the branch-
ing angles via the interpretation rule:

105 interpretation:
106 B(t) : produce Down(br_angle(t)); // branching angle changes over time

According to this rule, in each simulation step module B will turn a lateral branch
down by the modeler-specified function of time br_angle(t). Meanwhile, mod-
ule B will continue to exist as the object of the time-advancing production in line 85.
The development of leaves, flowers and fruits (pods) is modeled in a similar way.
For example, leaves are modeled using the production:

120 L(t) :
121 {
122 produce Down(leaf_angle(t)) RollToVert() CurrentTexture(LEAF_TEXTURE)
123 SetColor(leaf_color(t)) Surface(LEAF_SURFACE, leaf_length(t));
124 }

The turtle command Surface(LEAF_SURFACE, leaf_length(t)) visu-
alizes a leaf as the surface identified by its name. The shape of this surface is pre-
defined by the modeler using an interactive editor, and the size is determined by the
scaling function leaf_length(t), which allows for a coarse approximation of
growth over time. (More powerful techniques for modeling organ growth include
anisotropic scaling capable of capturing allometric dependencies of organ propor-
tions on size (Huxley, 1924, 1932; Niklas, 1994, 2004), and interpolation between
shapes modeled at key developmental stages (Hanan, 1992; Prusinkiewicz et al,
1993; Owens et al, 2016).) The remaining modules specify the orientation, texture
and color of the leaf.

The above description highlights the need for defining numerous constants and
functions as a part of the model. In principle, the constants could be defined directly

18 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

in the L-system code, as in lines 1–18 of the Anabaena example, and the functions
could be given by mathematical expressions, for example resulting from statistical
data analysis. For the sake of model conceptualization, presentation and manipula-
tion it is useful, however, to organize and describe its input graphically. A timeline
editor — a concept borrowed from computer animation — can be applied for this
purpose. A screenshot of a timeline editor open on the Lychnis model is shown in
Figure 10. A modeler can use it to interactively modify all time points and function
domains, and invoke the graphical editor of specific functions.

The last element of the model is a set of the productions characterizing the in-
ternodes:

89 I(l,w,t) >> SB I(l1,w1,t1) EB SB I(l2,w2,t2) EB I(l3,w3,t3) :
90 produce I(l, w1+w2+w3, t+dt);
91 I(l,w,t) >> SB I(l1,w1,t1) EB I(l2,w2,t2) : produce I(l, w1+w2, t+dt);
92 I(l,w,t) >> I(l1,w1,t1) : produce I(l, w1, t+dt);
93 I(l,w,t) >> K(t1) : produce I(l, width(t), t+dt);

The complicated form of these productions, compared to those describing the aging
of the other modules (lines 82-85), stems from the need to determine the internode
diameter, which is not simply a function of age. We follow MacDonald (1983) by
assuming that, at every branching point, the diameter d0 of the parent internode is
related to the diameters d1, d2 and d3 of the child internodes by equation

dη

0 = dη

1 +dη

2 +dη

3 . (4)

To satisfy this equation, we assume that the diameter of the terminal internodes
(supporting a bud, flower or fruit K) is determined directly as a function of their age
(line 93), whereas the diameter of the remaining internodes is calculated by setting
the width measure w = dη in the parent internode to the sum of measures wi in the
supported internodes. The productions in lines 89–92 capture this propagation in the
case of three, two and one supported internodes. The symbol >> in the production
predecessors indicates fast information transfer, a variant of context sensitivity that
makes it possible to propagate information in one direction (from the extremities of
a branching structure towards the base or vice versa) in a single derivation step (Kar-
wowski and Prusinkiewicz, 2003). The basipetal propagation of width information
is a version of the pipe model (Shinozaki et al, 1964), which relates the diameter
of each branch in a tree to the number of leaves it supports. The specification of
internodes is complemented by the interpretation rule:

111 I(l,w,t) :
112 {
113 nproduce SetColor(br_color(T)) SetWidth(pow(w, 1/eta));
114 for (int i=0; i < N_SEG; i++)
115 nproduce F(l*int_length(t) / N_SEG);
116 produce;
117 }

The loop in lines 114 and 115 divides the internode into N_SEG segments of length
l*int_length(t). This division makes it possible to simulate gravitropism by
slightly reorienting the turtle towards the vertical at each junction between consecu-
tive segments (Prusinkiewicz and Lindenmayer, 1990). (A more advanced model of

Modeling plant development with L-systems 19

Fig. 10: A snapshot of the timeline editor controlling the Lychnis model. In addition to the function
domains (green lines with blue labels above) and time points (black squares with red labels below)
related to branching and leaf development discussed in the text, the editor controls the development
of the flowers, fruits (pods) and internodes. The timeline editor also makes it possible to invoke
a function editor, here open on three sample functions shown at the bottom. The default domain
[0,1] of each function is mapped onto the domain indicated by its timeline, e.g. [0,30] in the case
of BRANCHING ANGLE. Outside their default domains the functions are assumed to be constant:
f (x) = f (0) for x < 0, and f (x) = f (1) for x > 1. Note that, within the Lychnis L-system, the
AGING and BRANCH COLOR timelines and their associated time points are defined over the whole
lifetime T of the plant, whereas the remaining timelines and points are defined relative to the age
t of the modules they describe. This difference is not visualized by the editor.

tropisms is presented by Bastien et al (2013), commented on by Dumais (2013)
and expanded by Bastien et al (2015); Chelakkot and Mahadevan (2017).) The
nproduce statement used in lines 113 and 115 differs from the produce state-
ment introduced previously in that it does not terminate the production application,
making it possible to successively append modules to the successor (Karwowski
and Prusinkiewicz, 2003). The productions in line 113 sets the internode color ac-

20 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

cording to plant age T (a global variable) and determines the internode diameter as
a function of the width measure w using the equation d = w1/η .

The operation of the complete Lychnis model is illustrated in Figure 11. A com-
parison with Figure 9 shows that the model correctly captures the architecture of
Lychnis coronaria plants, although it does not reach branch density of a plant grown
over many seasons. Modeling of dense plant structures requires incorporating colli-
sions between plant organs and is a topic of current research (Owens et al, 2016).

Descriptive models have many applications. For example, they can be used
as a synthetic representation of our knowledge of plant form and development
(Prusinkiewicz et al, 1994b; Fournier and Andrieu, 1998; Mündermann et al, 2005),
as a vehicle for exploring the range of forms that plants in a given class can poten-
tially attain (McGhee, 1999) (such explorations may find practical applications in
plant breeding), or as the source of ground truth for training artificial intelligence
programs intended to automatically recognize plant traits from images (Ubbens et al,
2018). A distinctive feature of plant development is, however, their phenotypic plas-
ticity: the ability of plants with the same genotype to assume different forms de-
pending on the environment in which they grow. We describe the incorporation of
environment into L-system plant models next.

Fig. 11: Selected steps in the development of a Lychnis coronaria shoot. In the initial shoot axis
(a,b,c), lateral apices supported by leaves initiate first one (d), then another (e) lateral branch. In
the meantime, the apex terminating the main axis undergoes a transition from the vegetative to
the flowering stage, producing a flowering bud (b) that gives rise to an open flower (c–e) and,
eventually, matures into a seed pod (f–k). This branching pattern repeats, producing branches of
increasingly high order (e–h). Upon reaching a threshold age (simulating the end of the growing
season), further branching stops (i), and the plant gradually reaches maturity (j,k). Its seeds give
rise to the next generation of plants (a).

Modeling plant development with L-systems 21

7 Modeling phenotypic plasticity

Plant Environment

Reception

Internal processes

Response

Response

Reception

Internal processes Fig. 12: Information flow in a simulation of
a plant interacting with its environment. The
plant and the environment are modeled by
separate communicating programs.

Irrespective of the diversity of environmental factors that affect plant development,
including space, light, water, nutrients, and pathogens, a unified method for model-
ing plants in the context of their environment is available. The idea is to model the
plant and its environment as separate programs that run concurrently and commu-
nicate using standardized programming constructs (Měch and Prusinkiewicz, 1996)
(Figure 12). In general, this communication is bilateral — the environment affects
the plant while the plant reciprocally affects the environment — but simple models
may focus on the unilateral influence of the environment on the plant.

An example of such influence is the dependence of the growth rate on temper-
ature. Within some range, this rate is known to be proportional to the difference
between the actual temperature τ and a base temperature τbase characteristic of a
given plant species, below which growth does not occur (Hanan, 1997; Wardlaw,
1999). For instance, Figure 13 shows forms created by the Lychnis model extended
to include the influence of temperature, under the assumption that the temperature
of each organ is determined by its position within the canopy. The plant shape is
affected by temperature distribution in the environment in which it grows.

Fig. 13: A model of phenotypic plasticity. The simulated Lychnis plant grows relatively faster in
regions with higher temperatures. Temperature distribution in the plant canopy is defined by the
heat map laid on the ground, where yellow indicates warmer regions and blue indicates colder.

22 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Specifically, the environmental program returns temperature as defined by an
image (texture map): points above yellow regions are warmer than points above blue
regions (Figure 13). Information between the plant and its environment is exchanged
using predefined communication modules (Prusinkiewicz et al, 1994a; Měch and
Prusinkiewicz, 1996). In the L+C language, these modules are named E1, E2, E3,
etc., depending on the number of parameters they carry. In the Lychnis model only
the E1 module is used. First, it is inserted into the L-system string at the locations
at which the temperature will be queried. This is accomplished by modifying the
decomposition rule that controls Lychnis branching (lines 95–103 in the original
Lychnis model) as follows:

95 decomposition:
96 A(t):
97 {
98 if (t > 0 && T < BRANCHING_ENDS) produce
99 E1(0) I(LEN1,0,t)

100 SB RollR(PHI) E1(0) B(t) SB E1(0) L(t) EB E1(0) A(D1+t) EB
101 SB RollL(PHI) E1(0) B(t) SB E1(0) L(t) EB E1(0) A(D2+t) EB
102 E1(0) I(LEN2,0,t) E1(0) K(t);
103 }

The value (0) of the parameter passed to the communication modules E1 is here
irrelevant: there is no information transferred from the plant to the environment
other than the location of each module E1, which is passed on automatically. This
parameter is needed, however, as a placeholder for the temperature information that
the environmental program returns to the plant model. With the local temperatures
known, the dependence of plant growth on temperature is captured by replacing
constant time increments dt with the increments DD(temp)*dt, a product of the
temperature above the threshold measured in Degree Days, and the time increment.
For instance, for apices and leaves this dependence is simulated be replacing lines
82 and 83 in the original Lychnis model with productions:

82 E1(temp) < A(t) : produce A(t+DD(temp)*dt);
83 E1(temp) < L(t) : produce L(t+DD(temp)*dt);

The advancement of time in the remaining modules is controlled in a similar manner,
resulting in the simulation of plastic behavior shown in Figure 13.

8 Modeling the development of trees

In a recursive branching pattern with all internodes of approximately the same
length, the number of branches increases exponentially, while the canopy radius
— the reach of branches — grows only linearly with time. Eventually, there is
not enough room in the canopy for all these branches (Borchert and Slade, 1981;
Prusinkiewicz and de Reuille, 2010). The shortage of space is a critical factor in the
development of trees due to the high number of branches they could potentially pro-
duce during their long life. Borchert and Honda (1984), and Sachs and Novoplansky
(1995) proposed that the necessary limitation of branch proliferation in trees results

Modeling plant development with L-systems 23

from their competition for space or light. This competition is not merely a manifes-
tation of tree plasticity, but an essential component of the development in most trees
(we exclude here non-branching palms and tree ferns, for example) (Palubicki et al,
2009). Below we show how such competition can be implemented with L-systems,
by simulating bilateral communication between the plant and its environment.

The key components of the model and the initial state of the simulation are spec-
ified as follows:

25 struct internode_data {
26 float l; // internode length
27 float w; // internode width
28 int age; // needed to know when to shed
29 };
30

31 module A(int); // apex (0: dead, 1: alive)
32 module I(internode_data); // internode
33

34 internode_data trunk_init = {1.0, w_init, 0};
35

36 Axiom: I(trunk_init) A(1) E1(1) GetHead(0,0,0);

The axiom describes the initial configuration of the simulated structure as an apex
A supported by an internode I. The apex is followed by two modules, E1 and
GetHead. The predefined module GetHead, inserted with arbitrary parameter
values — here (0,0,0) — returns the current direction of the turtle. Its role in the
model is described further down. The communication module E1 provides an in-
terface between the plant model and the environmental program, which in this case
tests whether the apex is in proximity of other apices. (Obviously, there is no other
apex at the beginning of simulation, but the same sequence of modules is produced
as the plant develops and new apices are formed.) The parameter passed to mod-
ule E1 — in the axiom, it is a 1 — represents apex vigor, and is an input to the
environmental program. If the distance of a given apex to all other apices (or envi-
ronmental modules indicating the presence of branches) is greater than a predefined
threshold d, the same module E1 will return 1, indicating that this apex is not domi-
nated by any other tree component. On the other hand, if this distance is less than d,
the environmental program will return 1 or 0, depending on whether the given apex
has the highest vigour among all the nearby apices or not. A given apex is thus not
dominated if there is enough free space around it, or it has higher vigor than all the
modules with which it competes for space (if two or more colliding apices have the
same high vigor, all of them are considered dominated). This environmental infor-
mation affects the development of the simulated tree via the following production:

57 I(sl) < A(alive) E1(not_colliding) GetHead(x,y,z) : {
58 internode_data s1 = {sl.l*r1, w_init, 0};
59 internode_data s2 = {sl.l*r2, w_init, 0};
60 if (alive && not_colliding && y > GrowDown) {
61 produce E1(1)
62 SB Left(a1) RollL(phi) I(s1) A(1) E1(v1) GetHead(0,0,0) EB
63 SB Right(a2) RollL(phi-180) I(s2) A(1) E1(v2) GetHead(0,0,0) EB;
64 }
65 else
66 produce A(0);
67 }

24 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

According to Line 57, the production predecessor consists of three modules, A, E1
and GetHead, in the context of a supporting internode I. Line 60 states that the
fate of an apex depends qualitatively on three factors: whether it is “alive” (i.e.,
was never dominated), whether it is dominated now, and what orientation it has. An
apex that has never been dominated and is not oriented too steeply down gives rise
to two branches (lines 62 and 63). Their length is reduced with respect to that of the
supporting internode (sl.l) by predefined factors r1 and r2 (lines 58 and 59). The
apices of the new branches are followed by modules E1 and GetHead, allowing for
the application of the same production and repetition of the same decision process
in the next simulation step. The vigor values 0 < v1 < v2 < 1 are predefined
constants. The additional environmental module with argument 1 (maximum vigor),
introduced in line 61, marks the branching point itself to assure that no apex will
ever grow into a previously formed branch. The modules specified in lines 61–63
are not produced, however, if the condition in line 60 is not satisfied. In that case,
the apex changes its state to “dead” (A(0) in line 66), and it will produce no further
branches.

The effect of the detection and response to overcrowding is illustrated by Figure
14. The branching structure in Figure 14a was generated by a model in which de-
tection of overcrowding was disabled (the condition in line 60 was replaced by the
always-true statement if(1)). The produced structure is then exceedingly dense,
with apices and branches running into each other and overlapping. In contrast, the
structure in Figure 14b was generated with the condition in line 60 present. Pre-
dictably, it is much more sparse: overcrowding has been prevented.

In nature, branches that have ceased growing are often shed by the tree. A simple
instance of this process is illustrated in Figure 14c. The shedding criterion used here
is the age of a non-growing branch: the time since the last apex supported by it
has become dominated. Shedding is implemented by the following production and
decomposition rules:

77 production:
78 I(s) >> A(alive) : // advance branch age if apex is dead
79 {
80 if (!alive)
81 s.age += 1 ;
82 produce I(s);
83 }
84

85 I(s) >> SB I(sr) EB SB I(srr) EB : // propagate girth and age
86 {
87 s.w = sr.w + srr.w;
88 s.age = min(sr.age, srr.age);
89 produce I(s);
90 }
91

92 decomposition:
93 I(s) : // tag branch for shedding if too old
94 {
95 if(s.age >= ShedAge)
96 produce I(s) Cut();
97 }

The first production (lines 78–83) increments the age of an internode followed by a
dominated apex. The second production (lines 85–90) propagates the age informa-

Modeling plant development with L-systems 25

tion basipetally. When branches that meet at a given branching point have different
age values, the supporting internode is assigned the smaller value of the two (line
88); consequently, each internode “knows” the age of the youngest internode it sup-
ports. The actual shedding is implemented by the decomposition rule in lines 93–97.
When the age of an internode exceeds threshold ShedAge, this rule inserts a pre-
defined module Cut, which (in the next simulation step) removes the entire branch
that follows it.

The production in lines 85–90 also includes the assignment in line 87 that propa-
gates a measure of the internode diameter according to the pipe model as discussed
for Lychnis. Proper modeling of the girth of branches is an important element of the
visually realistic modeling of trees. Remarkably, the inclusion of these two princi-
ples: the competition for space combined with shedding (extended from two to three
dimensions by changing the phyllotaxis-defining parameter phi from 0 to 90◦ in
lines 62 and 63) and the assignment of branch width according to the pipe model
suffice to generate a visually plausible tree architecture (Figure 14d,e) resembling
Dracaena draco (the dragon tree).

The use of separate programs to model the plant and its environment (Figure 12)
facilitates simulation of different plants in the same environment or, conversely, the
same plant in different environments. For instance, Figure 14f shows the result of
substituting competition for light for competition for space in the simulation of tree
development. The required modification of the tree model itself was limited to a
single production in lines 57–67 (compare the original listing with the code below):

57 I(sl) < A(alive) E1(light) GetHead(x,y,z) : {
58 internode_data s1 = {sl.l*r1, w_init, 0};
59 internode_data s2 = {sl.l*r2, w_init, 0};
60 if (alive && light>Th && y > GrowDown) {
61 produce
62 SB Left(a1) RollL(phi) I(s1) A(1) E1(R) GetHead(0,0,0) EB
63 SB Right(a2) RollL(phi-180) I(s2) A(1) E1(R) GetHead(0,0,0) EB;
64 }
65 else
66 produce A(0);
67 }

The module E1 passes the size of leaf clusters to the environment (predefined con-
stant R in lines 63 and 64) and receives information about the intensity of light
reaching each cluster in return (variable light in line 57). An apex is not domi-
nated and can produce new branches (provided that the remaining conditions in line
60 are satisfied) if this intensity is greater than a predefined threshold Th (condition
light>Th). Note the absence of module E1 at the branching point of the light-
driven model (compare lines 61 in both listings): this module is now not needed,
because there are no leaf clusters at the branching points. A comparison of Fig-
ures 14d and f shows that the tree forms generated assuming competition for space
or competition for light may substantially differ, even though the underlying tree
model is basically the same. Not surprisingly, the environment has a significant im-
pact on tree development and must be modeled carefully when a faithful simulation
of develpmental processes in nature is sought.

26 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Fig. 14: Elements of tree modeling. a) A planar structure developing with branch proliferation
unchecked. The “tree” crown is clearly overcrowded. b) A modification of the tree from Figure a,
in which dominated branches die. Dead apices and internodes are shown in grey. The structure is no
longer overcrowded. c) A modification of the model from Figure b, in which older dead branches
are shed. d) A three-dimensional modification of the model from Figure d, in which phyllotaxis
has been changed from distichous (ϕ = 0) to decussate (ϕ = 90◦), and leaves grow at the tips
of branches. The difference in the diameter of branches results from the application of the pipe
model. e) The tree from panel d seen from the bottom. Note the plausible architecture resulting
from the competition of branches for space. f) A variant of the model from Figure d, in which
the environmental program simulates competition for light rather than for space. A light source is
positioned above and to the left of the tree, resulting in an asymmetric crown, leaning to the left.

Modeling plant development with L-systems 27

9 Conclusion

In the 50 years since its inception, the formalism of L-systems has become a pow-
erful research tool in developmental biology. Remarkably, it was not imported from
another discipline, but created specifically for developmental biology. With their
many extensions, L-systems can be and have been applied to an ever-increasing va-
riety of problems spanning a wide range of scales, from sub-cellular to whole plants
and plant ecosystems (Lane and Prusinkiewicz, 2002), as well as modeling styles,
from descriptive to mechanistic. The key limitation of L-systems is their restriction
to linear (filamentous) and branching structures. Nevertheless, the topological ap-
proach to modeling development, inherent in L-systems, has also inspired research
and the establishment of practical methods for modeling growing cellular layers and
volumetric structures (Prusinkiewicz and Lindenmayer, 1990; Smith, 2006; Lane,
2015). L-systems, their extensions, and applications continue to be an active and
fascinating area of research.

Acknowledgements We thank John Hall for the prototype version of the timeline editor featured
in Figure 10, Andrew Owens for help with Figure 11, and Lynn Mercer for insightful discussions.
The authors’ research on the L-system-based modeling methods, specific models, and the Virtual
Laboratory (vlab) software used in the preparation of this paper was supported by the Natural
Sciences and Engineering Research Council and the Plant Phenotyping Imaging and Research
Centre / Canada First Research Excellence Fund. This support is gratefully acknowledged.

References

Abelson H, diSessa AA (1982) Turtle Geometry. M.I.T. Press, Cambridge
Adams D, Duggan P (1999) Heterocyst and akinete differentiation in cyanobacteria.

New Phytologist 144(1):3–33
Algorithmic Botany (2018) The Virtual Laboratory / L-studio software distribution.

http://algorithmicbotany.org/virtual laboratory
Baker R, Herman GT (1970) CELIA — a cellular linear iterative array simulator.

In: Proceedings of the Fourth Conference on Applications of Simulation (9–11
December 1970), pp 64–73

Baker R, Herman GT (1972) Simulation of organisms using a developmental model,
Parts I and II. International Journal of Bio-Medical Computing 3:201–215 and
251–267

Bastien R, Bohr T, Moulia B, Douady S (2013) Unifying model of shoot gravit-
ropism reveals proprioception as a central feature of posture control in plants.
Proceedings of the National Academy of Sciences 110(2):755–760

Bastien R, Douady S, Moulia B (2015) A unified model of shoot tropism in plants:
photo-, gravi-and propio-ception. PLOS Computational Biology 11(2):e1004,037

Borchert R, Honda H (1984) Control of development in the bifurcating branch sys-
tem of Tabebuia rosea: A computer simulation. Botanical Gazette 145:184–195

28 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Borchert R, Slade N (1981) Bifurcation ratios and the adaptive geometry of trees.
Botanical Gazette 142(3):394–401

Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C (2012) L-Py: an L-
system simulation framework for modeling plant architecture development based
on a dynamic language. Frontiers in Plant Science 3:76

Buikema W, Haselkorn R (1991) Characterization of a gene controlling heterocyst
differentiation in the cyanobacterium Anabaena 7120. Genes & Development
5(2):321–330

Chelakkot R, Mahadevan L (2017) On the growth and form of shoots. Journal of
The Royal Society Interface 14(128):1–6

Coen E, Rolland-Lagan AG, Matthews M, Bangham A, Prusinkiewicz P (2004)
The genetics of geometry. Proceedings of the National Academy of Sciences
101:4728–4735

de Koster CG, Lindenmayer A (1987) Discrete and continuous models for hetero-
cyst differentiation in growing filaments of blue-green bacteria. Acta Biotheoret-
ica 36:249–273

Dumais J (2013) Beyond the sine law of plant gravitropism. Proceedings of the
National Academy of Sciences 110(2):391–392

Fogg G (1949) Growth and heterocyst production in Anabaena cylindrica Lemm. in
relation to carbon and nitrogen metabolism. Annals of Botany 13(51):241–259

Fournier C, Andrieu B (1998) A 3D architectural and process-based model of maize
development. Annals of Botany 81:233–250

Fritsch F (1951) The heterocyst: A botanical enigma. Proceedings of the Linnean
Society of London 162(2):194–211

Gerdtzen Z, Salgado J, Osses A, Asenjo J, Rapaport I, Andrews B (2009) Modeling
heterocyst pattern formation in cyanobacteria. BMC Bioinformatics 10(6):S16

Giavitto JL, Godin C, Michel O, Prusinkiewicz P (2002) Computational models
for integrative and developmental biology. LaMI Rapport de Recherche 72-2002,
CNRS — Université d’Evry val d’Essonne

Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik
12:30–39

Hammel M, Prusinkiewicz P (1996) Visualization of developmental processes by
extrusion in space-time. In: Proceedings of Graphics Interface ’96, pp 246–258

Hanan JS (1992) Parametric L-systems and their application to the modelling and
visualization of plants. PhD thesis, University of Regina

Hanan JS (1997) Virtual plants — integrating architectural and physiological mod-
els. Environmental Modeling & Software 12:35–42

Haselkorn R (1998) How cyanobacteria count to 10. Science 282:891–892
Herrero A, Stavans J, Flores E (2016) The multicellular nature of filamentous

heterocyst-forming cyanobacteria. FEMS Microbiology Reviews 40(6):831–854
Huxley JS (1924) Constant differential growth ratios and their significance. Nature

114:895–896
Huxley JS (1932) Problems of Relative Growth. MacVeagh, London
Karwowski R, Prusinkiewicz P (2003) Design and implementation of the L+C mod-

eling language. Electronic Notes in Theoretical Computer Science 86(2):134–152

Modeling plant development with L-systems 29

Kniemeyer O (2004) Rule-based modelling with the XL/GroIMP software. In: The
Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living
Systems; Proceedings of the 6th German Workshop on Artificial Life, April 14-
16, 2004, Bamberg, Germany, AKA Akademische Verlagsgesellschaft, Berlin, pp
56–65

Kniemeyer O, Buck-Sorlin G, Kurth W (2007) GroIMP as a platform for functional-
structural modelling of plants. In: Vos J, et al (eds) Functional-Structural Model-
ing in Crop Production, Springer, Dordrecht, pp 43–52

Kurth W (1994) Growth Grammar Interpreter GROGRA 2.4: A Software Tool for
the 3-dimensional interpretation of stochastic, sensitive growth grammars in the
context of plant modeling. Introduction and reference manual. Forschungszen-
trum Waldökosysteme der Universität Göttingen, Göttingen

Lane B (2015) Cell complexes: The structure of space and the mathematics of mod-
ularity. PhD thesis, University of Calgary

Lane B, Prusinkiewicz P (2002) Generating spatial distributions for multilevel mod-
els of plant communities. In: Proceedings of Graphics Interface 2002, pp 69–80

Lindenmayer A (1968) Mathematical models for cellular interaction in develop-
ment, Parts I and II. Journal of Theoretical Biology 18:280–315

Lindenmayer A (1971) Developmental systems without cellular interaction, their
languages and grammars. Journal of Theoretical Biology 30:455–484

Lindenmayer A (1974) Adding continuous components to L-systems. In: Rozenberg
G, Salomaa A (eds) L Systems, Lecture Notes in Computer Science 15, Springer-
Verlag, Berlin, pp 53–68

MacDonald N (1983) Trees and Networks in Biological Models. J. Wiley & Sons,
New York

MacNamara S, Strang G (2016) Operator splitting. In: Glowinski R, Osher S, Yin W
(eds) Splitting Methods in Communication, Imaging, Science, and Engineering,
Springer, Berlin, pp 95–114

McGhee G (1999) Theoretical Morphology: The Concept and its Applications.
Columbia University Press

Meinhardt H (1982) Models of Biological Pattern Formation. Academic Press, Lon-
don

Mitchison G, Wilcox M (1972) Rules governing cell division in Anabaena. Nature
239:110–111

Mündermann L, Erasmus Y, Lane B, Coen E, Prusinkiewicz P (2005) Quantitative
modeling of Arabidopsis development. Plant Physiology 139:960–968

Měch R, Prusinkiewicz P (1996) Visual models of plants interacting with their en-
vironment. In: Proceedings of SIGGRAPH 1996, pp 397–410

von Neumann J (1966) Theory of Self-reproducing Automata. University of Illinois
Press, Urbana, edited by A. W. Burks

Niklas KJ (1994) Plant Allometry: The Scaling of Form and Process. The University
of Chicago Press, Chicago

Niklas KJ (2004) Plant allometry: Is there a grand unifying theory? Biological Re-
views 79(4):871–889

30 Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Owens A, Cieslak M, Hart J, Classen-Bockhoff R, Prusinkiewicz P (2016) Modeling
dense inflorescences. ACM Transactions on Graphics 35(4):136

Palubicki W, Horel K, Longay S, Runions A, Lane B, Měch R, Prusinkiewicz P
(2009) Self-organizing tree models for image synthesis. ACM Transactions on
Graphics 28:58

Papert S (1980) Mindstorms: Children, Computers and Powerful Ideas. Basic
Books, New York

Prusinkiewicz P (1986) Graphical applications of L-systems. In: Proceedings of
Graphics Interface ’86 — Vision Interface ’86, pp 247–253

Prusinkiewicz P (2004) Art and science for life: Designing and growing virtual
plants with L-systems. Acta Horticulturae 630:15–28

Prusinkiewicz P, Hanan J (1990) Visualization of botanical structures and processes
using parametric L-systems. In: Thalmann D (ed) Scientific Visualization and
Graphics Simulation, J. Wiley & Sons, Chichester, pp 183–201

Prusinkiewicz P, Lane B (2013) Modeling morphogenesis in multicellular structures
with cell complexes and L-systems. In: Capasso V, et al (eds) Pattern Formation
in Morphogenesis, Springer, Berlin, pp 137–151

Prusinkiewicz P, Lindenmayer A (1990) The Algorithmic Beauty of Plants. Sprin-
ger-Verlag, New York, with J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M.
de Boer, and L. Mercer

Prusinkiewicz P, de Reuille PB (2010) Constraints of space in plant development.
Journal of Experimental Botany 61:2117–2129

Prusinkiewicz P, Runions A (2012) Computational models of plant development and
form. New Phytologist 193:549–569

Prusinkiewicz P, Hammel M, Mjolsness E (1993) Animation of plant development.
In: Proceedings of SIGGRAPH 1993, pp 351–360

Prusinkiewicz P, James M, Měch R (1994a) Synthetic topiary. In: Proceedings of
SIGGRAPH 1994, pp 351–358

Prusinkiewicz P, Remphrey W, Davidson C, Hammel M (1994b) Modeling the ar-
chitecture of expanding Fraxinus pennsylvanica shoots using L-systems. Cana-
dian Journal of Botany 72:701–714

Prusinkiewicz P, Hanan J, Měch R (2000) An L-system-based plant modeling lan-
guage. In: Nagl M, Schürr A, Münch M (eds) Applications of Graph Transfor-
mations with Industrial Relevance, Lecture Notes in Computer Science 1779,
Springer-Verlag, Berlin, pp 395–410

Prusinkiewicz P, Karwowski R, Lane B (2007) The L+C plant-modeling language.
In: Vos J, et al (eds) Functional-Structural Modeling in Crop Production, Springer,
Dordrecht, pp 27–42

Robinson S, de Reuille PB, Chan J, Bergmann D, Prusinkiewicz P, Coen E (2011)
Generation of spatial patterns through cell polarity switching. Science pp 1436–
1440

Room PM, Maillette L, Hanan J (1994) Module and metamer dynamics and virtual
plants. Advances in Ecological Research 25:105–157

Sachs T, Novoplansky A (1995) Tree form: Architectural models do not suffice.
Israel Journal of Plant Sciences 43:203–212

Modeling plant development with L-systems 31

Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant
form — the pipe model theory. I. Basic analyses. Japanese Journal of Ecology
14(3):97–104

Smith C (2006) On vertex-vertex systems and their use in geometric and biological
modeling. PhD thesis, University of Calgary

Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I (2018) The use of plant models
in deep learning: an application to leaf counting in rosette plants. Plant Methods
14:6:1–10

Ulam S (1962) On some mathematical properties connected with patterns of growth
of figures. In: Proceedings of Symposia on Applied Mathematics, American
Mathematical Society, vol 14, pp 215–224

Ulam S (1966) Patterns of growth of figures: Mathematical aspects. In: Kepes G
(ed) Module, Proportion, Symmetry, Rhythm, Braziller, New York, pp 64–74

Wardlaw I (1999) Thermal time. In: Atwell B, Kriedemann P, Turnbull (eds) Plants
in Action: Adaptation in Nature, Performance in Cultivation, Macmillan Educa-
tion Australia, Melbourne

Wilcox M, Mitchison GJ, Smith RJ (1973) Pattern formation in the blue-green alga,
Anabaena. I. Basic mechanisms. Journal of Cell Science 12:707–723

Wolfram S (1984) Universality and complexity in cellular automata. Physica D:
Nonlinear Phenomena 10(1-2):1–35

Wolfram S (2002) A New Kind of Science. Wolfram Media / Cambridge University
Press, Champaign, IL

Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible
peptide. Science 282:935–938

