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1. Introduction
1.1. Symmetry and Organ Numbers in Plants

According to Weyl (1952), the word symmetry commonly has two different mean-
ings. In one sense, symmetry is defined as a group of transformations that map an
object into itself. This usage is reflected in expressions such as bilateral or rotational
symmetry. In a broader sense, “symmetric means something like well-proportioned,
well-balanced, and symmetry denotes that sort of concordance of several parts by
which they integrate into a whole. Beauty is bound with symmetry” (Weyl, 1952).
We will use the word symmetry in this broader sense.

A conspicuous aspect of symmetry in plants is the number of organs of a parti-
cular type (meristic character) in flowerheads and flowers. The preference for a
certain number is called numerical canalization (Huether, 1968; Bachmann, 1983,
Vlot et al., 1992) and is often closely related to the phyllotaxis of flowers and
flowerheads. For example, flowers of the Brassicaceae have whorls of two or four
organs, and the numbers of organs of different types are usually multiples of two
(Endress, 1992). Similarly, flowerheads from the Asteracean genus Mikania have
four florets per flowerhead inserted in two decussate pairs (King and Robinson,
1987).  In contrast, the numbers of different floral organs in flowers of the
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Ranunculaceae frequently vary among Fibonacci numbers (Endress, 1987). This
preference for Fibonacci numbers occurs together with a Fibonacci-type spiral phyl-
lotaxis of the flower (Meicenheimer, 1979). An equally tight relationship between
spiral phyllotaxis and organ numbers exists in flowerheads of the Asteraceae (Weisse,
1897; Church, 1902; Hirmer, 1931; Battjes et al., 1993). A distribution curve of
the number of ray florets or phyllaries (involucral bracts) in a sample of heads
from the same Asteracean species often has one or more peaks at Fibonacci
numbers, and lower frequencies between these peaks (Ludwig 1887; later literature
summarized in Battjes and Bachmann, in press). Only organs that are inserted
in a single row at the rim of flowerheads show these remarkable non-random dis-
tributions (Battjes and Bachmann, in press). The preferred numbers of organs in
predictable positions are thought to give Asteracean flowerheads their symmetric
appearance (Hirmer, 1931; Dormer, 1972; Leppik, 1977).

A developmental explanation for numerical canalization is that the mechanism
responsible for the formation of phyllotactic patterns in flowers or flowerheads is
capable of dampening the effect of genetic and environmental variation on organ
numbers. An indication of the validity of this hypothesis is the fact that whorled
flowers exhibit less variation in numbers among and within species than flowers
with spiral phyllotaxis (Endress, 1990). This suggests that different phyllotactic
patterns may have different capacities for keeping organ numbers constant. The
aim of this chapter is to clarify the relationships between the phyllotaxis of flow-
ers and flowerheads, the preferred number of organs, and the degree of meristic
variation. We focus on flowerheads of the Asteracean genus Microseris because
their phyllotactic patterns are relatively easy to analyze, and their meristic varia-
tion has been extensively documented.

1.2. Previous Work on the Relationship between Spiral
Phyllotazis and Numerical Canalization

1.2.1. Hirmer’s Work and the Collision Model

In many whorled flowers and in decussate flowerheads there is an obvious relation-
ship between patterns of organ insertion and organ numbers, since each organ has a
clearly defined position and associated identity. On the other hand, in flowerheads
with spiral phyllotaxis it is more difficult to see why the numbers of organs at the pe-
riphery are canalized towards Fibonacci numbers, and when deviations from these
numbers occur. Although several authors discussed the relationship between Fi-
bonacci numbers of organs and spiral phyllotaxis in flowerheads (reviewed in Battjes
and Bachmann, in press), Hirmer (1931) was the first to propose a convincing expla-
nation. Selected ideas of Hirmer were captured and formalized in the collision model
of phyllotaxis (Fowler et al., 1992; Battjes, 1994), which is summarized below:

e Consecutive primordia are placed on the receptacle with a constant divergence
angle of 137.5° with respect to each other, as seen from the receptacle’s center.
This value is assumed a priori in the model.
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e Initially, primordia are placed on the circular rim at the circumference of the
receptacle. This process takes place as long as there is enough space, that
is, the distance between a new primordium and its closest previously placed
neighbor exceeds a predefined threshold.

e A primordium that does not fit on the rim is translated radially towards the
center or the apex of the receptacle, so that the distance between the new
primordium and its closest neighbor is equal to the threshold value. This
process continues until there is no space available on the receptacle.

e The developmental fate of primordia is determined by their position on the
receptacle. Ray florets or inner phyllaries develop from primordia positioned
on the rim of the receptacle.

Hirmer (also see Dormer, 1972) observed that the distance between neighbor-
ing primordia can become smaller than a critical threshold only after a Fibonacci
number of primordia have been placed on the rim. This observation holds for any
values of rim radius and threshold distance (see Appendix A for an elementary
proof). Consequently, the collision model implies that the number of organs result-
ing from primordia placed on the rim will always be a Fibonacci number.

1.2.2. Confirmation of the Collision Model

It is not immediately obvious that the collision model is sufficient to explain the
arrangement of primordia into smooth opposite parastichies. Nevertheless, com-
puter simulations demonstrate the emergence of spiral patterns on receptacles of
various shapes for a wide range of primordia sizes (Fowler et al., 1992).

One implication of the collision model is that primordia are placed in circular
rings, starting at the rim of the receptacle. In contrast, most other models of
spiral phyllotaxis assume a continuously decreasing distance between consecutive
primordia and the midpoint of the receptacle (e.g. Vogel, 1979; Erickson 1983; Jean,
1994). Observations confirm that Asteracean flowerheads exhibit some of the ring-
like properties postulated by the collision model. Three-dimensional measurements
of organ positions in Micro seris pygmaea have shown that there are sudden
decreases in distance to the midpoint between primordia 13 and 14 and between
primordia 26 and 27, numbered from the rim inwards. These decreases are
significantly larger than the decrease between subsequent primordia within the
outermost rings of 13 (Battjes et al., 1993).

The collision model also postulates that the position of primordia with respect to
the rim of the receptacle, rather than the ontogenetic order of initiation,
determines the developmental fate during their differentiation. Again there are
indications that this assumption is realistic. For flowers it is known that genes
determining the de-velopmental fate of floral organs (sepals, petals, stamens,
carpels) are expressed in rings. These expression patterns are thought to be
independent of floral phyllotaxis, and thus of the ontogenetic order of primordia,
because the identity of the organs
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may change as a consequence of mutations, while the arrangement and number
of organs remains constant (Coen and Carpenter, 1993). For flowerheads, Hirmer
(1931) and Bachmann and Chambers (1990) postulated that the differential de-
velopment of peripheral versus central primordia is determined by a concentration
gradient that indicates the distance of a primordium from the rim. No gene ex-
pression patterns confirming this hypothesis have yet been found, but the existence
of a gradient that provides positional information is likely. For example, during
the early development of M. pygmaea flowerheads, primordia on the rim subdivide
into an inner phyllary and a floret. This subdivision appears to be controlled by
the distance from the rim rather than the strict ontogenetic order of the primordia
(Battjes et al., 1992).

1.2.3. Discrepancies between Flowerhead Development and the Model

Although the assumptions of the collision model discussed above are realistic, the
model does not accurately capture several aspects of flowerhead phyllotaxis and
meristic variation.

The divergence angle in the model is assumed to be constant, but observed angles
vary considerably. For instance, Microserts exhibits divergence angles much lower
than 137.5° at transitions between rings of 13 primordia. This phenomenon can be
explained by assuming that a new primordium attempts to minimize the distance
to both of its closest neighbors (Battjes et al., 1993), rather than simply preserving
a threshold distance to its nearest neighbor. Similar deviations from the aver-
age divergence angle after Fibonacci or Lucas numbers of florets were observed in
Helianthus heads (Ryan et al, 1991), although in that study numerical canalization
was not considered. In vegetative shoots, regular deviations from the average diver-
gence angle have been found as well, for example in subdecussate shoots (Dormer,
1972).

Another unrealistic assumption of the collision model is the absence of growth of
the surface on which the phyllotactic pattern is generated. Flowerheads usually grow
considerably in size during the initiation of involucral bracts and florets (Popham
and Chan, 1952; Rauh and Reznik, 1953; Horridge and Cockshull, 1979; Palmer and
Steer 1985; Sharman and Sedgley, 1988; Brown and Menary, 1994). For example, in
a variety of sunflower the capitulum radius increased fivefold during the initiation of
about 1500 bracts and florets (Palmer and Steer, 1985). In the much smaller flow-
erheads of Microseris douglasii with only 80 florets, the increase in circumference
during floret initiation alone is almost twofold (Battjes and Bachmann, 1994). The
diameter of the individual primordia also increases over time, although the measured
growth rates are lower than those of the receptacle (Battjes et al., 1994).

Finally, the collision model yields a strict preference for Fibonacci numbers
of inner phyllaries, whereas observed numbers are canalized less rigidly. Organ
numbers are more variable than numbers of parastichies (Battjes and Bachmann,
in press), which in Asteracean flowerheads are almost always Fibonacci numbers
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(Ryan et al., 1991; Battjes et al., 1993; Szymanowska-Pulka, 1994). Consequently,
non-Fibonacci numbers of ray florets or inner phyllaries may occur in flowerheads
with Fibonacci numbers of parastichies (Weisse, 1897). This aspect of flowerhead
phyllotaxis is not captured by the collision model, although it is essential for an
understanding of meristic variation in flowerheads.

1.3. Objectives of the Current Work

In the present paper we analyze in detail the relationship between spiral phyllotaxis
and the number of organs in flowerheads. The central questions are:

e how can a non-Fibonacci number of inner phyllaries arise in a Microseris
flowerhead with a Fibonacci number of parastichies, and

e what is the relationship between the ontogenetic order of primordia and their
chance of developing into inner phyllaries.

We hypothesize that the answers to these questions can be found by introducing two
modifications into the collision model, inspired by observations listed in Sec. 1.2.3.
The first modification is the incorporation of receptacle growth during floret ini-
tiation. The second is the adjustment of divergence angles that maximizes local
density of primordia packing on the suface of the receptacle. The model predicts
that:

e receptacles with higher growth rates have more variable numbers of organs,
and

e when the number of inner phyllaries is not a Fibonacci number, some primor-
dia are likely to develop into inner phyllaries out of the ontogenetic order.

Two modes of receptacle growth were simulated and analyzed: uniform and non-
uniform; the latter is characterized by a slower growth rate at the periphery of the
head. To test the validity of the model, we compared floret and inner phyllary
positions measured in M. pygmaea with the results of simulations. In both cases, the
model is in agreement with observations of the positions of inner phyllaries in the
flowerheads of M. pygmaea. The non-uniform growth model leads, however, to a more
realistic distribution of organs on the receptacle.

2.The Modified Collision Model
2.1. Placement of Primordia with Adjustments in the

Divergence Angle

In this paper, we consider two-dimensional, circular receptacles. We also concep-
tualize primordia as being circular, with a constant radius r. The position of

Primordium i at time ¢ is specified by the radius p; , ( distance between the center of
the primordium and the center of the receptacle) and azimuth ;. ( angle between
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the position vector and a predefined direction). Time is measured in plastochrons,
defined as intervals between the addition of consecutive primordia.

The placement algorithm attempts to maximize the local density of primordia
on the receptacle while approximately preserving the divergence angle of 137.5°
between subsequent primordia. The algorithm can be described most easily in
terms of an outward motion of primordia seeking a stable position as far as possible
from the receptacle’s center. The azimuth of a new primordium 4 > 1 is initially
set to ¥ = (i — 1)137.51°, and the distance p;,; is set to 0. The primordium is
(conceptually) moved outward (p;: gradually increases), until it reaches the rim or
collides with a previously placed primordium (the distance between the centers of
the new and the old primordium is equal to 27). In the first case the placement
of primordium 1 is completed. In the second case the radius p; ; is further increased
while the azimuth %, is adjusted to keep the distance between primordium i and
the old primordium equal to 2r. Intuitively, primordium ¢ can be viewed as rolling
along the edge of the colliding primordium. This process may be repeated for the
subsequent colliding primordia encountered by primordium ¢ during its motion, and
continues until primordium i reaches the rim or assumes a stable resting position
on two older primordia. By definition, a stable position is characterized by two
conditions:

e primordium i is tangent to two older primordia, and

e the position vector of primordium 1 lies inside the wedge formed by the position
vectors of these two older primordia.

The example shown in Fig. 1 clarifies the placement process. In its initial out-
ward motion, primordium 4 first collides with primordium a (position 1), then rolls
on a until a collision with primordium b occurs. The resulting position 2 is unstable,

£
28

Fig. 1. Explanation of the algorithm for the positioning of primordia. A new primordium moves
away from the center of the receptacle O towards the rim. After a collision with primordium a

rim

(position 1), the new primordium rolls over a until it collides with primordium b, then rolls on b
until it collides with ¢. The resulting position 3 is stable and terminates the placement.
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because the position vector of primordium 2 lies outside the wedge formed by the
position vectors of primordia @ and b. Consequently, primordium 4 rolls further
on primordium b, until a collision with primordium c occurs. Position 3 achieved
at this point is stable, because the position vector of primordium 3 lies inside the
wedge formed by position vectors of primordia b and ¢. Notice that position 3 can
be interpreted as the result of displacing primordium 7 #nward with respect to its
neighbors b and c, due to the lack of sufficient space between b and c on the rim.
Thus, if we abstract from the details of the placement algorithm, the filling of the
receptacle begins at the rim and proceeds in the general direction of the center of
the receptacle, as observed in nature.

Figures 2-7 further illustrate the placement of primordia in the case of a non-
growing receptacle. Filling the receptacle starts at the rim (Fig. 2). Primordia on
the rim are subdivided into a floret and an inner phyllary. Initially, the divergence
angle between consecutive primordia is equal to 137.5° (Fig. 3). Primordia are
added to the rim until a collision between a new and existing primordium occurs
(Fig. 4). The new primordium is then placed in a more inward position (Fig. 5),
and the divergence angle is adjusted so that the new primordium rests stably on two
older primordia (Fig. 6). The simulation stops when the receptacle is full (Fig. 7).

2.2. Growth of the Receptacle

The modified collision model makes it possible to incorporate expansion of the
receptacle into the simulations (Figs. 8-11). We assume that the receptacle has a
radius of R; at the beginning of primordia placement, and that the radius increases
by a constant value ¢ during each plastochron:

Rpt1=R,+c for n>1. (1)

Linear growth of the receptacle with the plastochron number has been assumed
without a solid observational basis. Simulations indicated, however, that alternative
formulas (for example, postulating multiplication of the radius by a constant factor
rather than addition of a constant increment) lead to qualitatively similar results.
Furthermore, note that the radius of the receptacle expressed by Eq. 1 may be a
non-linear function of real time, if the duration of the plastochron changes.

Due to the rotational symmetry of a disk, the relative increase in circumference
at a certain distance from a disk’s center is equal to the relative increase in the
radius at that distance. Consequently, specification of the radial growth is sufficient
to characterize the expansion of the entire disk. The radial velocity dp/dt of a point
P on a growing disk is equal to the integral of the relative elementary rate of radius
expansion d(dp/dt)/dp, taken between the center of the disk and the point under
consideration (Erickson and Sax, 1956; Green and King, 1966). In the simplest case
of uniform growth, the relative elementary rate of radius expansion is assumed to
be constant all over the disk. Consequently, the distance p p,t between point P and

the disk center remains in constant proportion to the disk radius R; as the disk
grows:
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Figs. 2-7. Pattern formation on a static (non-growing) receptacle according to the modified
collision model. (2) Like all primordia on the rim of the receptacle, the first primordium is divided
into an inner phyllary (ip) and a floret (fl). (3) Initially, the divergence angle between subsequent
primordia is equal to 137.5°. (4) After eight primordia have been placed on the rim, there is no
space for the next primordium (*). (5) Primordium 9 is placed in a more inward position. (6) The
position of primordium 9 is adjusted so that it rests on its two closest neighbors. As a result, the
divergence angle deviates from 137.5°. (7) Receptacle filled with primordia.

Ppt+1 PPt
= 2
Rt+1 Rt ’ ( )

We also consider non-uniform growth, assuming that the relative elementary
growth is slower in the outer zone of the receptacle, where primordia have already
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Figs. 8-11. Pattern formation on a growing receptacle. (8) The first primordium. (9) Primordium
9 is placed in a more inward position as in Fig. 6. (10) Due to the growth of the receptacle,
primordia 12 and 13 fit again on the rim. (11) Receptacle filled with primordia.

been formed, than in the remaining inner part. In the extreme case of no growth in
the zone with primordia, the distance between any point in this zone and the disk
border is constant in absolute terms:

Ry —ppi+1 = Re —ppy - (3)

The growth of the inner part of the receptacle is described as in the uniform case
(Eq. 2). The above equations describe the growth of any point on the
receptacle
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and thus apply, in particular, to the points that represent the centers of primordia
which are of focal interest in this paper.

3. Evaluation of the Modified Collision Model

In order to evaluate the modified collision model, we compared the results of simu-
lations with the observations of Microseris pygmaea heads using three criteria:

e spatial arrangement of florets on the receptacle,
e numbers of inner phyllaries and their canalization, and
e ontogenetic order of inner phyllary positions.

The methods used for comparisons and the results are presented below.

3.1. Spatial Arrangement of Florets on the Receptacle
3.1.1. Methods for Flowerhead Observations

Immature flowerheads of M. pygmaea strain C9b ranging from 1.5 mm to 4 mm
in diameter were collected in the greenhouse of the University of Amsterdam in
1991 and fixed in alcohol (Battjes et al., 1992). The number of inner phyllaries per
flowerhead ranged from 7 to 16, with the Fibonacci numbers 8 and 13 represented
most frequently. A non-random sample of 47 heads with the numbers of inner
phyllaries distributed as evenly as possible between 8 and 13 were embedded in
glycol methacrylate, sectioned and stained using the PAS reaction, according to
standard anatomical techniques (Fig. 12). The heads were then projected on graph
paper using a camera lucida and drawn by hand. The floret and inner phyllary
primordia were numbered in the ontogenetic order, determined by drawing opposite
parastichies over primordia positions and counting the numbers of parastichies in
each direction. In all heads, except one that was excluded from further analysis,
these numbers were consecutive Fibonacci numbers. The ordering numbers were
then assigned to primordia using the Bravais-Bravais theorem (Jean, 1994), which
states that the ordering numbers of adjacent primordia on an n-parastichy differ by
n. Since the Bravais-Bravais theorem characterizes differences between primordia
numbers rather then their absolute values, an additional assumption was made that
number 1 would denote the first floret with associated inner phyllary (Fig. 13).

The estimated positions of the centers of all primordia were recorded in
Cartesian coordinates. Each inner phyllary was assumed to have the same
number in the ontogentic order as the floret in its axil (Battjes et al., 1992;
also see Fig. 13). Positions of outer phyllaries were measured separately, since they
do not have florets in their axils. These positions were not included in the further
analysis of the spatial arrangement of florets on the receptacle, because the outer
phyllaries are inserted below the rim of the receptacle, whereas our model is
limited to the layout of primordia on a planar receptacle.
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Figs. 12-13. Section through a flowerhead of Microseris pygmaea. (12) Identification of the
organs: outer phyllaries (op), inner phyllaries (ip) and florets (fl). The inner phyllaries have
florets in their axils, the outer phyllaries are not associated with florets. (13) The same head
with superimposed symbols indicating measured organ positions. Florets are numbered in the
ontogenetic order, starting at 1. The first eight florets are associated with the inner phyllaries.
The outer phyllaries have been assigned numbers 0 to —4 by extending the ontogenetic order
beyond the florets.

3.1.2. Methods for Simulations

Simulations were performed on a Silicon Graphics workstation using an in-house
software implementation of the modified collision model. Different phyllotactic pat-
terns were created by systematically varying three parameters described in Sec. 2.2:
the initial radius of the receptacle R;, the growth constant ¢, and the mode of
receptacle growth (uniform or non-uniform). The ranges of the initial radius
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(0.4 to 2.1 length units) and growth constant (0 to 0.06 length units) were chosen to
yield floret numbers that correspond to those observed in Microseris. In one series
of 20,000 simulations, each interval was represented by 100 evenly spaced samples,
yielding simulated flowerheads with all the numbers of florets from 18 to 60. In
another experiment, the results of 5000 simulations were used to visually represent
the quality of pattern approximation, the number of florets, and the number of
inner phyllaries as functions of growth parameters. In all simulations presented in
this paper, r (the primordium radius) was set at 0.25 length units.

3.1.3. Methods for Comparing Observed and Modeled Flowerheads

Visual inspection is the most straightforward technique for comparing observed
phyllotactic patterns with their models. To make it easier, we superimposed a
modeled pattern on a measured pattern of primordium distribution, and interac-
tively adjusted position, orientation, and scale of the model on the screen of a
graphics workstation to achieve as good a fit as possible (Fig. 14). By making these
adjustments, we abstracted from the position, orientation, and size of the flower-
heads, and focused on the relative distances and angles, which are the essential
attributes of the patterns. Differences in primordium positions which remain after
fitting indicate discrepancies between the observations and the model.

Fig. 14. A simulated head (light) superimposed on a measured head (dark) after the position,
orientation, and scale of the model have been adjusted to achieve as good a fit as possible. Organ
symbols are as in Fig. 12.

In order to speed up the process of fitting and to evaluate the results of the
comparisons more objectively, we introduced the sum of squared distances (SSD)
between corresponding primordium positions as a measure of discrepancy. We also
developed an algorithm that minimizes the SSD automatically, by applying opti-
mum transformations without human intervention (Appendix B). This algorithm
was used to systematically compare families of simulated patterns with the observed
flowerheads. The numbers of florets in the observed flowerheads ranged from 19
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to 58, (Sec. 3.1.1) but not all intermediate numbers were present. Consequently,
we subdivided the range of 18 to 60 florets into 14 equal intervals, and selected one
flowerhead as the representative for each interval. Thus, the simulated patterns in
the 18-60 floret range were compared to heads that had at most two florets more
or less than the simulated pattern. The representative heads were characterized by
small values of the SSD with respect to most other heads of a similar size, and in
this sense they could be considered typical.

Different numbers of florets can be incorporated in the calculation of the SSD.
We experimented with numbers ranging from 13 to the maximum number not ex-
ceeding the number of florets in the simulated or observed pattern (see Appendix
B).

3.1.4. Comparison Results

To evaluate the overall similarity between simulated and observed patterns we in-
corporated the maximum number of primordium positions in the calculation
of the SSD. Small deviations between simulated and observed heads were
frequently found when the growth constant was larger than zero. Thus, the
incorporation of receptacle expansion in the model leads to a simulated pattern
that more closely approximates the observed phyllotactic pattern. Figure 15
illustrates this phe-nomenon using simulated phyllotactic patterns with 47 florets,
all compared to the same flowerhead.
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Fig. 15. Deviation (SSD) between an observed flowerhead with 47 primordia and simulated
patterns, also with 47 primordia. Light circles represent values obtained for uniformly growing
receptacles; dark circles represent values obtained for non-uniformly growing receptacles.

In virtually all size classes, patterns generated using the non-uniform growth
mode] resemble the observed distributions of primordia more closely than patterns
generated using the uniform model. This difference is particularly pronounced at
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higher growth rates, as indicated in Fig. 15. A possible explanation of this effect
is suggested by Figs. 16-18. In the case of uniform growth (Fig. 17), packing
of primordia is much less dense at the periphery than in the center of the head.
In contrast, the simulated pattern obtained using the non-uniform growth model
(Fig. 18) exhibits a more even distribution of florets and in this respect resembles
the observed pattern (Fig. 16) more closely.

N (16)
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Fig. 16—18. Comparison of floret distribution in heads with equal numbers of florets. (16) A
measured Microseris head. (17) Simulated head obtained using the uniform growth model (initial
radius: 0.91 length units, growth constant: 0.026 length units per plastochron). (18) Simulated

head obtained using the non-uniform growth model (initial radius = 1.03 length units, growth

constant = 0.026 length units per plastochron).

Figure 19 collects the results of comparisons limited to the outermost 13 primor-
dia for all size classes. These primordia play the dominant role in determining the
inner phyllary numbers. The large peaks on the right side of Fig. 19 indicate that
combinations of small initial radii with large growth constants lead to unrealistic
patterns. Primordia distributions generated using larger initial sizes of the recep-
tacle approximate the observed heads more closely, although there still is much
variation in the value of the SSD. Inspection of observed and modeled patterns
superimposed on each other gives an insight into some of the reasons for this vari-
ation (Figs. 20, 21). Figure 20 presents a good fit between the observed head and
the model. In this case, both patterns have 8 inner phyllaries. Further analysis
demonstrates that the SSD is also low when both patterns have 13 inner phyllaries.
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Fig. 19. Deviations (SSD) between the positions of 13 outermost primordia in measured flower-

heads and in patterns generated using the modified collision model with non-uniform receptacle
growth.

Figs. 20 and 21. Comparisons of the distribution of primordia in a measured Microseris head
(dark) and in two simulated heads with the same number of primordia. (20) Good fit (SSD =
0.0075) obtained for a simulated head with 8 inner phyllaries (initial radius = 1.0 length units,
growth constant = 0.011 length units per plastochron). (21) Poor fit (SSD = 0.0183) obtained for

a simulated head with 10 inner phyllaries (initial radius = 0.706 length units, growth constant =
0.0292 length units per plastochron).

In contrast, Fig. 21 illustrates a case of a larger SSD. The modeled head has
10 inner phyllaries, and primordia 12 and 13 are too close to the rim in compa-
rison to the observed head. The efects of this discrepancy propagate towards the
center of the modeled head. In conclusion, the predictions of inner phyllary positions
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are most realistic for modeled flowerheads with Fibonacci numbers of inner
phyllaries.

3.2. Numbers of Inner Phyllaries and Numerical Canalization
3.2.1. Observations

Eight inbred lines of Microseris pygmaea have been used to study naturally
occurring genetic variation in meristic characters of flowerheads (Bachmann et al.,
1985; Bachmann, 1991). Each inbred line expressed considerable phenotypic
plasticity. The number of inner phyllaries per flowerhead was canalized towards
Fibonacci numbers while the number of florets varied in a continuous manner.
A similar phenotypic plasticity has been found in other species of Microseris
(Bachmann and Battjes, in press).

The developmental causes of the phenotypic plasticity were studied in two of the
inbred lines of M. pygmaea by Battjes and Bachmann (1994). In both cases, larger
numbers of florets per flowerhead were the result of larger receptacle meristems at
the onset of floral initiation. The size of floret primordia was much less variable. The
size of the receptacle increased significantly during phyllary and floret formation.

3.2.2. Simulations

Figure 22 shows the numbers of inner phyllaries generated by the model for different
values of the starting size and the growth constant of the receptacle. Predictably,
only Fibonacci numbers of inner phyllaries fit on the rim of a non-growing re-
ceptacle. Larger receptacles have higher numbers of phyllaries. With increasing
growth constants the preference for Fibonacci numbers of inner phyllaries decreases
until, at a growth constant of 0.06 length units per plastochron, no preference for
Fibonacci numbers remains. The number of florets increases gradually and shows
no preference for Fibonacci numbers (Fig. 23).

3.2.3. Comparison Results

The simulation results agree with the records of phenotypic plasticity in Microseris
flowerheads in the following points:

e the number of inner phyllaries is canalized to Fibonacci numbers whereas the
number of florets shows a continuous variation,

e the same (Fibonacci) number of inner phyllaries can occur in receptacles of
different initial sizes,

e a considerable growth rate of the receptacle is associated with a frequent
occurrence of non-Fibonacci numbers of inner phyllaries.

The model also predicts that receptacles with lower growth rates have more constant
numbers of organs on the rim, but we do not yet have the experimental data
to verify this prediction.
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inner phyllaries
per head

Starling size 0.74

Fig. 22. Number of inner phyllaries per head in 2500 patterns generated using the
modified collision model with non-uniform growth of the receptacle.
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Fig. 23. Numbers of florets per head in 2500 patterns generated using the modified collision
model with non-uniform growth of the receptacle. Only values less than 60 are displayed.

3.3. Ontogenetic Order of Inner Phyllary Positions
3.3.1. Observations

Figure 24 shows the ontogenetic order of inner phyllary positions in the same
flowerheads of M. pygmaea as described in Sec. 3.3.1. Flowerheads with 8 or 13
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(24)
Ontogenetic positions

8 9 10 11 12 13

Number of inner phyllaries

(25) (26)
Ontagenetic posltions Ontogenetic positions

8 13 8 13

Number of inner phyllaries

Fig. 24-26. Preferred ontogenetic positions of inner phyllaries. Horizontal axis: number of
inner phyllaries per head. Vertical axis: ontogenetic positions occupied by inner phyllaries (dark
squares). (24) Results of observations. Each column represents one flowerhead. (25) Summary
of observations: the most frequently occupied positions in the observed flowerhead. (26) Inner
phyllary positions according to the modified collision model.

inner phyllaries have all first 8 or 13 ontogenetic positions occupied by these phyl-
laries. An example of a flowerhead with 8 inner phyllaries is shown in Figs. 12
and 13. For numbers of inner phyllaries between 8 and 13, positions 9 and 10 are
more often occupied by a phyllary than 11 to 13. Within each of these two groups,
however, inner phyllaries at primordium positions higher in ontogenetic order occur
more frequently. The most frequently observed positions of inner phyllaries are
shown in Fig. 25.

3.3.2. Simulations

The ontogenetic order of inner phyllaries simulated with the modified collision model
follows a peculiar pattern as well (Fig. 26). Patterns with 8 or 13 inner phyllaries
have all of the first 8 or 13 ontogenetic positions occupied by the phyllaries. When
the number of inner phyllaries is equal to 9, all first 8 positions and position 13 are
occupied. With increasing numbers of inner phyllaries, the intermediate positions
from 12 to 9 are occupied by inner phyllaries in descending order. Figures 8-11
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explain this phenomenon. The first eight primordia fit on the rim and form inner
phyllaries. Primordia 9, 10, and 11 do no fit and are displaced toward the center
of the receptacle (Figs. 9 and 10). However, since the receptacle increases while
the size of primordia remains constant, gaps between primordia become larger as
the receptacle expands, and primordia 12 and 13 fit on the rim again (Fig. 11).

3.3.3. Comparison Results

The inner phyllaries in the observed flowerheads and the simulated patterns share
a tendency to occupy positions of higher ontogenetic order while skipping some
positions of lower order, if a non-Fibonacci number of inner phyllaries is present.
The agreement of simulations with observations is not complete, because positions
10 and 9 are preferred over 13 to 9 in the observed heads, while positions 13 to 11
are occupied with continuously decreasing preference in modeled heads.

4. Discussion

4.1. New Insights in Meristic Variation

The introduction of a growing receptacle and variable divergence angles has made
it possible to generate a wider range of phyllotactic patterns than was possible with
the original collision model (Fowler et al., 1992). By varying the initial size of the
receptacle and the growth rate, we can mimic many patterns of meristic variation
observed in Microseris and other Asteracean flowerheads (Battjes and Bachmann,
in press). Below we discuss these results in detail.

4.1.1. Spatial Arrangement of Florets on the Receptacle

We proposed to explain meristic variation in Microseris heads as a consequence of
the growth of the receptacle during floret initiation. The patterns generated on an
expanding receptacle often resembled the observed flowerheads better than patterns
generated on a static receptacle.

In order to gain a further insight into the effects of receptacle expansion, we
compared two growth modes: uniform growth with a constant relative
elementary rate of radius expansion, and non-uniform growth with a growth
rate decreasing to zero in the region of the receptacle already occupied by
primordia. Phyllotactic patterns generated using the non-uniform model exhibit a
higher density of primor-dia distribution at the periphery of the receptacle, and
better approximate observed Macroseris heads. The differential growth appears
to be essential in maintaining dense packing of florets across the entire flower
head. Nevertheless, the decrease of the elementary growth rate to zero at the
periphery is probably unrealistic, and the real values fall between zero and the
growth rate characterizing the inner part of the receptacle. Direct measurement
of these rates in Microseris heads is difficult, because the receptacle is protected
by involucral bracts, hairs and leaves during its development.



300 Battjes and Prusinkiewicz

4.1.2. Canalization of Inner Phyllary Numbers

The size of the Microseris receptacle may vary while the number of inner phyllaries
remains constant. Simulations using the modified collision model agree with this
observation. Similarly, variation in growth rate in the model often does not result in
a change in the number of organs on the rim. Thus, the modeled algorithm for phyl-
lotactic pattern formation is able to buffer meristic characters against considerable
variation in developmental parameters of the receptacle.

The modified collision model also predicts that for smaller ratios of the
receptacle growth rate to the primordium initiation rate, the numbers of organs
on the rim of the receptacle show less variation. At present we only have a
circumstantial confirmation of this prediction. In many whorled flowers the
petals appear very quickly one after another in the same sequence as is usually
found in flowerheads with spiral phyllotaxis. The meristem growth rate relative
to the petal initiation rate is probably low. These flowers often exhibit a
Fibonacci number of petals and other floral organs (Endress, 1990). In light of
our simulations, we speculate that these two phenomena are connected: the
fairly constant number of petals is the consequence of their rapid spiral
initiation, combined with slow growth of the meristem. More variable numbers of
petals would be a consequence of higher growth rates of the meristem or longer
intervals between the initiation of subsequent petals.

4.1.3. Ontogenetic Order of Inner Phyllaries

As described in Sec. 3.1.1, inner phyllaries on the M. pygmaea flowerheads are
distributed in a highly predictable manner. Specifically, position 10 is occupied by
a phyllary more frequently than 9, and positions 13 to 11 are occupied in a
decreasing order of frequency. The modified collision model exhibits a similar
preference for positions higher in ontogenetic order, although the sequence of
position occupation is not the same. This preference is a result of packing non-
growing primordia on a growing receptacle. Thus, the variation in the positions
of inner phyllaries can be largely attributed to geometric relationships between
primordia on a growing receptacle.

Although the geometric aspects of incorporating non-growing areas into a grow-
ing surface should be further analyzed, there are good reasons for keeping the size of
primordia constant during the simulations. Floret primordia of M. pygmaea mea-
sured during several consecutive days of flowerhead development do not show a
significant increase in size, although the receptacle expands considerably (Battjes
and Bachmann, 1994). This indicates that rates of expansion may indeed be differ-
ent between florets and the receptacle. Furthermore, the developmental mechanism
that creates phyllotactic patterns on the receptacle may be of a chemical rather than
mechanical nature. If this is the case, the primordium size used in the model could
be re-interpreted as the radius of an inhibitory field created by the primordium,; the
size of this field may be independent of the actual primordium size and receptacle
growth.
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Suggestions for Future Work

present study suggests several topics for future research that may

contribute to a better understanding of the geometric aspects of meristic variation
and spiral phyllotaxis.

The proposed model postulates that the distribution of florets on the recepta-
cle and the canalization of inner phyllaries are influenced by the growth of the
receptacle, with differential growth rates leading to a better agreement be-
tween the model and the observations ot the Microseris flowerheads. A direct
confirmation of this relationship by measurements of the relative elementary
growth rate in different zones of the receptacle over time would significantly
contribute to model validation.

It is an interesting question, how the developmental fate of primordia can
be controlled by apparently very small deviations in their positions. A more
detailed analysis of these positions, for example expressed in relation to the
closest neighboring primordia rather than in absolute coordinates, may pro-
vide a useful insight.

The modified collision model does not predict the observed difference in chance
to become an inner phyllary between primordia 10-9 and 13-12. Also, for a
non-Fibonacci number of the inner phyllaries, some inner phyllary primordia
in the model are too close to the rim (see Sec. 3.1.4). These shortcomings re-
quire an explanation. For example, our view of collisions between neighboring
primordia may be too simplistic, and more complicated interactions involving
several neighboring primordia may have to be considered. Such a different
approach might lead to other divergence angles and collision patterns, and
consequently to other arrangements of the inner phyllaries.

An important question is the applicability of the results of the present study
to a wide range of Asteracean species. Although there is no indication that the
described distribution of inner phyllaries and florets is specific to Microseris,
it is important to confirm that other species can be characterized by the same
model, possibly with different values of parameters.

The divergence angle of 137.5° between sequentially placed primordia is as-
sumed both in the original collision model and its modification presented in
this paper, although in the latter case the angle is adjusted as a result of inter-
actions between neighboring primordia. Ideally, this value should not be given
a priori, but should result from the model. Models in which the divergence
angle is an emergent property have been described in literature (Mitchison,
1977; Douady and Couder, 1992; Van der Linden, 1994; Yotsumoto, 1993;
Koch and Meinhardt, 1994), but they are in turn limited in their capability
of explaining meristic variation. It would be of great importance to develop
a model of phyllotaxis, in which:
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the sequence of primordia placement and the divergence angie are not
assumed, but resuit from simulations, and

the power of the modified collision model to explain the meristic variation
and the departure from the ontogenetic order in inner phyilary
formation is preserved.

4.3. Concluding Remarks

Spiral phyllotactic patterns have often been idealized as extremely regular, with
the divergence angle constant or changing gradually, and the distance from the pri-
mordia to the center decreasing in a continuous manner (e.g. Erickson, 1983). In
the same manner, larger flowerheads have been viewed as differing from smaller
ones only by the addition of extra florets at the periphery (Vogel, 1979; Bursill
and Fan Xudong, 1988; van der Linden, 1990). Although these approximations
may be adequate for many purposes, they promote a simplified view of phyllotaxis.
Divergence angles in flowerheads are not constant but show regular, non-random

deviations from the average (Ryan et al., 1991, Battjes et al., 1993). The distances
from primordia to the head center change discontinuously (Battjes et al, 1993). In
the present study we have further shown that primordia on the rim of a Microseris
head have different chances of developing into an inner phyllary, which are out of
step with the ontogenetic order. These deviations from abstract spiral or helical
patterns are typical properties of flowerhead phyliotaxis rather than exceptions. We
believe that they can be best understood by taking ontogenesis of the phyllotac-
tic pattern into account, integrating postulated developmental mechanisms into a
computer model, and carefully comparing the results with observations.
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Appendix A: Proof of Hirmer’s Conjecture

Hirmer (1931) proposed an explanation for the canalization of the numbers of
organs n found at the perimeter of flowerheads. His explanation was based on the
postulate that n is the maximum number of primordia of a given size that fit on
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the circular rim of a receptacle without intersecting each other. Hirmer observed
that if the divergence angle between consecutively placed primordia is equal to the
golden angle ¢ (approximately 137.5°), n is a Fibonacci number for any ratio of
the primordium radius 7 to the rim radius R. Although this observation was later
supported by calculations of special cases and computer simulations (Battjes 1994),
to our knowledge it has not been formally proved. The purpose of this appendix is

to present such a proof.

Let us consider a set P(™ of n distinct points representing the centers of primor-
dia placed on the rim of a receptacle. We will arrange this set into two sequences.
The ontogenetic sequence, denoted {P;} describes the order in which the sequen-
tially generated points Py, Ps,..., P, have been placed on the rim. It is assumed
that pairs of consecutive points P; form a constant divergence angle ) when seen

from the rim center O:
/POP; 1= for 1=1,2,...,n—1. (4)

The partitioning sequence, denoted {P,,}, is a permutation of the sequence {P;}
such that P, = P, and P, Pp,, ..., P,, are consecutive points encountered while

traversing the rim counterclockwise:

0< 4P, 0P, < LPyOP,; < -+ < LP,, OP, < 360°. (5)

We will denote by E;,'ﬂo :{1,2,...,mn} — {1,2,...,n} the function that converts
the index p; of a point P in the partitioning sequence {Pp;} to the index 7 of the

same point in the ontogenetic sequence {P;}.
The partitioning sequence divides the full angle into n partition angles:

LPy,OP,, , LP,,OP,, ,..., LP, _,OP, , /P, OP,,. (6)

We will denote the set of (different) values of these angles by A(™). The notions
introduced above are illustrated in Fig. 27.

Lemma 1. Let S be an infinite ontogenetic sequence of points Py, Pa, Ps, ...
generated using a divergence angle ¥:

ZPOP;y, = for 1=1,2,3,.... (7)

If ¥ is an irrational number, there exists an infinite set of integers A such that for
any n € N, the set of points P(*) satisfies the conditions:

1. P(™ consists of n initial elements of the sequence P,
2. the set A(™ of the values of partition angles has two elements,

3. the two partition angles sharing the vertex P,, = P, are different: Z P, , O P,,
:'é ZPPl OPP'.! -
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Fig. 27. The ontogenetic sequence (labeled inside the rim) and the partitioning sequence (labeled

outside) of » = 12 points, generated using the divergence angle 1 = 137.5°. The function =(12)

=5
converts the indices of points in the partitioning sequence to the indices of points in the ontogenetic

sequence; for example, E;l_z.z,(l) =1, Sglf.)o(Q) =9, Egl_z.z,(ﬁ) = 2. The set AC?) of partition angle

values has three elements a, 8 and 7.

Proof: by induction on n.

Initial step. For n = 2 the set P(™ consists of two points P, and P;. There are two
Mgles, /ZP,OP; and ZP,OP;, which have different values (otherwise the
divergence angle ¥ would have been equal to 180°, which is a rational number) and
share point P;.

Inductive step. Assume that the thesis is true for some n > 2. Let ZP, OP,, =
and ZP,,OP,, = [, with @ > f (the opposite case can be considered in a sim-
ilar way). Rotate P, P,,..., P, with respect to the receptacle center O by an-
gle 8 and label the resulting points Q1,Qs,...,Q,, respectively. Denote the set
{Q1,Q2,...,Qn} by 9™ . Refer to Fig. 28 for an illustration of the proof.

1. Observe that the rotation of point P, by 3 makes the resulting point Qi
coincide with the point P,,. Denote by k +1 (k > 1) the index of the point
P,, in the ontogenetic sequence:

k+1= Eg,"_).o(Pz) : (8)



Modeling Meristic Characters 305

Fig. 28. Illustration of the proof of Lemma 1. Small circles represent points of the set
P(5), generated using the divergence angle of 137.5°. Dots represent points of the set Q%)
obtained by rotating points P; € P(®) by angle 8 with respect to the receptacle center 0,
as indicated by the dashed arrows.

Since the divergence angle between consecutive points in the sequences {Q;}
is the same as in the sequence {P;}, we obtain:

Qi=Py1,Q2=Peyz,..., Quit=Pn,..., @n=Poys. (9)

The first n — k points of the sequence {Q;} coincide with the last n —k points
of the sequence {P,} included in the set P(™. The remaining k > 1 points
of the sequence {Q;} are equal to the elements P,4), Paya,..., Poty of the
sequence S not included in P(™. Consequently, the set P(™) Uy Q™) = p(n+k)
consists of n + k > n initial points of the sequence S.

. Consider the merged sequence

Pquplaszanzy'"7Ppn7Qp" (10)

and assume formally that P,y = P, ,, and Qp, = Qp,,,. From the con-
struction of points Qp,,,@p,,...,@p, it follows that ZP, 0Q,, = 8 for any
t=1,2,...,n. On the other hand, from the inductive assumption it follows
that /P, OP, ., € {a,B} for any i = 1,2,...,n. Two cases may occur:
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e if /P, OPF,,,, = a then point Qp, lies between points P,, and P, ,, and
the angle ZP,,OPF,,,, is divided into two smaller angles:
LP,,0Qp =8 and ZQpOF, K =a-p=17. (11)
o if ZP,,OP,,,, = B then points Qp; and P, , coincide;

Consequently, the merged sequence (10) consists of points of the set P("+5) =
Py listed in the partitioning order, although some points may be listed
twice. From the equalities (11) it follows that the set A(®**) of partition angles
for the set of points P(*t*) has two elements: 8 and 7.

3. According to the partitioning sequence (10), the vertex Pp, is shared by the
angles £Q,, OP,, and ZP, 0Q,,. From the assumptions ZP, OF,, = o and
L P, OP,, = (3 it follows that

£Qp, 0Py, = LPp OF,, = LPp,0Qp, == =7,
(12)
LP;0Q4; = 8.

The angles 5 and <y are not equal; otherwise the divergence angle i and the
full angle 360° could be both expressed as integer multiples of 4 and 3 would
be a rational number. Thus, the set P("*¥) satisfies conditions 1 — 3 of the
thesisforn +k >n. O

We will now focus on the special case in which the divergence angle 9 is equal
to the golden angle ¢ = 360°(1 —7). The golden ratio 7 is defined by the equations:

= or 7T2=1-7. (13)

Lemma 2. If §; = 360°r, 0, = 360°(1 — 1), and 6;4; = 0;_; — 0; for i > 2, then
; = 360°7* for any 7 > 1.

Proof: by induction on 3.

Initial step. Obviously, 8; = 360°7 = 360°7! and §, = 360°(1 — ) = 360°72.
Inductive step. Assume that the thesis is true for some 7 > 2. For ¢ + 1 we obtain:
Oiv1 = 6i_1 — 6; = 360° (7"~ — 1) = 360°7° "1 (1 — 1)

=360°r" 172 = 360°7*t. O (14)

Lemma 3. If the divergence angle ¥ is equal to the golden angle ¢, then:

1. the set N of integers n; < ny < n3 < --- satisfying Lemma 1 consists of
consecutive elements of the Fibonacci sequence: fi = fo =1, fiy2 = fitr1 +Ffi
for 7 > 1, starting with n; = f3 = 2;
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2. for any 7 > 1 the partitioning sequence of points in P(*) divides the full angle
into fi+1 angles 6; = 360°7* and f; angles 6;4; = 360°7*+1.

3. for any 0 < m < m;4+; — ni, the partitioning sequence of points in P™+™
divides the full angle into f;+; — m angles 8; = 360°7*, f; + m angles 8;,1 =
360°7t1 | and m angles 6;;2 = 360°7*2, with all three angle values occurring

at least once.

Proof: by induction on 3.

Initial step. By definition, the set P(1) consists of f3 = 2 points P, and P, such
that

LP,OP, =p=20 and LP,OP, = 360 — o = 6, (15)
There is no integer m satisfying the inequality 0 < m < ny —n; =3 -2 =1, thus
part 3 of the thesis also holds.

Inductive step. Assume that the thesis is true for some ¢« > 1. Construct the set
p(nitk) as described in the proof of Lemma 1. From Lemma 2 it follows that
6, > B;41, thus the partitioning sequence of points in P(***) divides the full angle
into f; + fix1 = fiy2 angles 6;4y and fiy) angles 6; — 6;4; = 6i42. For any
0 < m < fi+1, the partitioning sequence of points in P(**™) subdivides only
m of the fi1 angles ; into 6,4, and 6;4+2, thus the full angle is subdivided into
fiy1 — m angles 6;, f; + m angles 6;1+,, and m angles ;2. Consequently, the
sequence NV has no elements between n; = fiy2 and n;41 = fiyo + fiy1 = fivz. O

Theorem (Hirmer’s conjecture). Let D be a circle with center O and radius
R. Consider the largest set of circles cn) = C1,Cs,...,C,, with the set of centers
P = (P, P,...,P,}, such that:

1. all points P; € P(n) lie on the circumference of the circle D,
2. forany:=1,2,...,n — 1, the divergence angle ZP;OPF;4, is the golden angle
w,

3. all circles C; € C(™ have the same radius 7 < R,
4. no two different circles C;,C; € C intersect.

The number n of circles in the set (™ is a Fibonacci number.

Proof. .Circles C:,Cj; € C™) will not intersect if the distance between their cen-
ters satisfies the inequality |P,P;| > 2r, or £P,OP; > ¢ = 2arcsin § (Fig. 29).
é‘et f.+1 be the smallest element of the sequence {6;} (see Lemma 2), such that
b;lof> (.- Acco.rdu'lg to Lemm.a 3, a Fibonacci number n; is the largest num-

Points satisfying assumptions 1 and 2 above, such that the partitioning se-
quence of points in P(™) does not include an angle less than or equal to (. O
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Fig. 29. Definition of angle ¢.

Appendix B: Minimizing the Sum of the Squared Distances between
Corresponding Primordium Positions

In the scope of this paper, we are interested in the layout of primordia on receptacles,
and we abstract from differences in position, orientation, and size of the resulting
patterns. Consequently, when comparing two patterns, we select one as a template,
and transform the other until the best match possible has been achieved. In this
appendix, we derive parameters of transformations that result in the optimal match.

The quality of the match is measured as the sum of squared distances (ssd)
between the corresponding primordia in the template pattern a and the transformed
pattern b':

n
ssd = Z [(Zai — z)® + (Yai — ¥i)’] (16)
i=1

The coordinates z,; and y,; indicate positions of floret primordia in pattern a, and
zp; and Yy ; indicate positions of primordia in pattern b after the transformation.
The upper summation limit n determines the number of primordia being compared
and must not exceed the total number of primordia in either pattern. A smaller
value of n is used when we are interested in comparing only a limited number of
primordia in the lowerheads. The index: = 1,2, ..., n identifies primordia numbers
in the ontogenetic sequence. It is assumed that in both patterns all primordia from
1 to n are present (in other words, all coordinates z,;,¥.; and zs;, ys; are defined).
The cumulative effect of any combination of translations, rotations, and scalings
can be expressed as the composition of a translation by vector k along the z axis
of the underlying coordinate system, a translation by vector I along the y axis, a
rotation by angle a around the origin of the coordinate system, and scaling by factor
s with respect to the same point. This composite transformation is then captured

by the formulae (see Foley et al., 1990, Chapter 5):
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Tyi = (Toi + k)scosa — (yy; + 1)ssina,
(7)
Yp'i = (ZTpi + k)ssin o + (ypi + )scosa .

After substituting the right hand sides of Eq. 17 for zy; and y; in Eq. 16, the ssd
becomes a function of parameters k,{, @, and s. Since the purpose of transforming
pattern b is to determine the best match possible between a and the resulting
pattern ¥, we seek parameter values for which the ssd reaches minimum. According
to elementary calculus, the necessary condition is that the partial derivatives of the
ssd with respect to all parameters are equal to zero. To simplify the calculations,
we assume that the center of gravity of pattern a lies at the origin of the coordinate

Zzaizzyai:(]- (18)
i=1 =1

Since it is always possible to position pattern a in such a manner that this assump-
tion is satisfied, no generality is lost.
Considering the translations first, we obtain:

system:

RS ;w +k), (19)
thus, disregarding the degenerated case s = 0,
Ossd . 1 —
—EZO if kz‘ﬁ;zbi- (20)
Similarly,
Ossd 1 &
— =0 if =~ i
6! 1 l n Izzl Yo (21)

The derivative with respect to the angle «a is equal to:

Ossd

Ay = 2ssin a Z(Iaixbi + Yailpi) — 25cosa Z(zbiyai — Tailpi) (22)

1=1 =1

thus, assuming that s 7 0 and that no division by zero is performed, we obtain:

Ossd =0 if a=arctan [Sic1(T0ivai — Taswis) | : (23)
da lZ?zl(zai??bi + Yail¥i)
If the denominator in the above formula is equal to 0, we use the value @ = %,
determined directly from Eq. 22.
In order to calculate the derivative of Eq. 16 with respect to the scale s, we
introduce auxiliary variables:

Tvi = (Tpi + k) cosa — (§bi + ) sina,
(24)
Ybi = (Tpi + k) sina + (Fpi + 1) cos .
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From Eq. 17 it follows that z}; = sZ,; and y;; = s§s:. By substituting the right-hand
sides of these formulae into Eq. 16, we obtain:

Ossd - - - -
w = 28 ;(zbi + ybi) -2 ;(zaizbi + yaiybi) . (25)
As a result,
Jssd D iy (TaiTyi + Yailibi)

D 5N €
Further inspection reveals that the ssd reaches the minimum for the values of
parameters k, [, and s determined by Eqs. 20, 21, and 26 respectively. The value
of o obtained using Eq. 23 corresponds to either a minimum or a maximum of the
ssd. In the case of a maximum, 7« should be added to & to obtain the minimum.
In the paper, we often refer to a normalized version of the ssd, defined by the
equation:

(26)

ssd
SSD = .
radius(e) radius(b) n

(27)

The purpose of dividing the ssd by the radii of patterns ¢ and b and the number n
is to make the resulting value more suitable for comparisons involving receptacles
of different sizes and with different numbers of primordia.
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