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Association mapping studies have enabled researchers to identify candidate loci for many important environmental tolerance
factors, including agronomically relevant tolerance traits in plants. However, traditional genome-by-environment studies such as
these require a phenotyping pipeline which is capable of accurately measuring stress responses, typically in an automated high-
throughput context using image processing. In this work, we present Latent Space Phenotyping (LSP), a novel phenotyping
method which is able to automatically detect and quantify response-to-treatment directly from images. We demonstrate
example applications using data from an interspecific cross of the model C4 grass Setaria, a diversity panel of sorghum
(S. bicolor), and the founder panel for a nested association mapping population of canola (Brassica napus L.). Using two
synthetically generated image datasets, we then show that LSP is able to successfully recover the simulated QTL in both simple
and complex synthetic imagery. We propose LSP as an alternative to traditional image analysis methods for phenotyping,
enabling the phenotyping of arbitrary and potentially complex response traits without the need for engineering-complicated
image-processing pipelines.

1. Introduction

Developing crop varieties that maintain a consistent yield
across different environmental conditions is an important
target for plant breeding as weather patterns become more
variable due to global changes in climate. Breeding for yield
stability requires characterization of an individual plant’s
response to biotic and abiotic stress [1] relative to a breeding
population. Treatment studies, where some individuals are
subjected to different growing conditions than a control
group, play an important role in uncovering the genetic
potential for tolerance of stress. Such experiments include
genotype-by-environment (G × E) studies, where the treat-
ment is often abiotic stress, such as water-limited growing
conditions, or genotype-by-management (G ×M) studies,
where the treatment is a different application of inputs, such
as herbicide application to assess herbicide tolerance or
nitrogen application to assess nitrogen use efficiency. A core
challenge for this broad class of experiments is the ability to

quantify and characterize the physical changes observed in
the treated plant population relative to the control popula-
tion, i.e., to phenotype a plant’s response-to-treatment. A
number of factors make response-to-treatment a difficult
phenotype to quantify. In general, stress affects multiple
plant traits simultaneously. Stressors can also have a substan-
tially different type and magnitude of effect on different plant
species and different cultivars within the same species.
Finally, quantifying response and recovery to stress is sensi-
tive to the timing of observations and often requires repeated
observations over a plant’s life cycle in order to capture
important phenological features. An accurate and quantita-
tive assessment of response-to-treatment is particularly
important for genomic association studies.

The use of association mapping techniques, such as
genome-wide association studies (GWAS), has yielded many
candidate loci for agronomically important quantitative
traits in plants [2]. For food crops, genome-wide analysis of
susceptibility or tolerance to abiotic stress factors such as
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drought [3], nitrogen deficiency [4], salinity [5], or other
factors leads to the discovery of genetic differences underly-
ing these agronomically important characteristics. These
treatment-based GWAS studies are capable of identifying
tolerance alleles which could result in a tolerance to a wider
variety of environmental conditions if, for example, intro-
gressed into commercial cultivars. GWAS studies, however,
require large datasets of phenotypic data in order to map
associations with genomic data [6].

High-throughput phenotyping (HTP) technologies have
advanced rapidly in the past five years to meet the demand
for large phenotypic datasets. Recently, image-based HTP
has gained popularity, because photographing plants in
greenhouses or fields with robots and drones has allowed
data collection at yet larger scales. The phenotyping bottle-
neck has shifted from collecting images, which can now be
done routinely, to making sense of those images in order to
extract phenotypic information. Although there is a wide
selection of software tools available for extracting phenotype
information from images [7, 8], the design and implementa-
tion of specific phenotyping pipelines is often required for
individual studies due to inconsistencies between datasets.
This is true of both traditional image analysis where
thresholds and parameters need to be adjusted and more
recent machine learning techniques which require the time-
consuming manual annotation of training data. In addition,
some phenotypes are difficult to measure from images, and
ad hoc solutions tailored to a particular imaging modality
or dataset are often required in place of more general ones.

To overcome the many challenges associated with image-
based phenotyping, we propose the Latent Space Phenotyp-
ing (LSP), a novel image analysis technique for automatically
quantifying response to a treatment from sequences of
images in a treatment study. LSP is related to a broad family
of techniques known as latent variable models. These models
have been previously used for modelling variation in image
data via variational inference, using variational autoencoders
(VAEs) [9]. LSP instead constructs a latent representation
that best discriminates between image sequences of control
and treated samples of a plant population and then measures
differences among individuals within the latent space to
quantify the temporal progression of the effect of the treat-
ment. The key characteristic of LSP in comparison to existing
image-based phenotyping methods is that the phenotype
estimated using an image analysis pipeline is replaced with
an abstract learned concept of the response-to-treatment,
inferred automatically from the image data using deep learn-
ing techniques. In this way, any visually consistent response
can be detected and differentiated, whether that response is
a difference in size, shape, color, or morphology. By abstract-
ing the visual response to the treatment, LSP is able to detect
and quantify complex morphological changes and combined
changes of multiple phenotypes which would not only be
extremely difficult to quantify using an image processing
pipeline, but may not even be apparent to a researcher as
correlating with the treatment. In this study, we use a combi-
nation of natural and simulated datasets to demonstrate that
LSP is effective across different plant species (Setaria,
sorghum, Brassica napus L., and simulated Arabidopsis

thaliana) and different types of treatment studies (drought
stress, nitrogen deficiency, simulated changes in leaf eleva-
tion, and simulated changes in growth rate).

2. Materials and Methods

Latent Space Phenotyping consists of a three-stage process as
illustrated in Figure 1. First, we train an embedding network
to classify samples as either treated or control based on a
sequence of images captured over their growth cycle
(Figure 1(a)). During the training process, the embedding
network learns image features that best capture how the
plants in the dataset respond to the experimental treatment,
e.g., drought stress or nitrogen deficiency. These embeddings
form an n-dimensional latent space, where individual plant
images are embedded as abstract n-dimensional points.
Second, we train a decoding network to perform the
reverse process of projecting embedded points from the
latent space back to images, in order to obtain a meaningful
representation of the latent space (Figure 1(b)). Finally, we
measure response-to-treatment for individual accessions by
tracing their path through the latent space from the initial
to final time points in their growth cycle. Treated and control
replicates of the same accession are expected to have different
paths through the latent space. For example, a drought-
stressed individual may have a “shorter” path than its control
counterpart, or the paths for a treated and control sample
may start at similar locations in latent space but diverge by
the final time point in their growth cycle due to visual differ-
ences caused by the treatment. Importantly, the embedded
paths for control and treatment samples of the same acces-
sion are traced and measured in image space (by mapping
the path through the decoder) so that these differences are
physically meaningful (Figure 1(c)). The differences between
treated/control samples represent a phenotype for response-
to-treatment that is derived directly and automatically from
the original image dataset for the experiment. The
response-to-treatment phenotype can be used as a trait value
with any existing genome-wide association software tool or
interpreted as an objective response rating, e.g. herbicide tol-
erance, to inform plant breeding decisions. A complete
implementation of LSP, called LSP-Lab, is provided at
https://github.com/p2irc/lsplab.

2.1. Dataset Requirements. Performing an LSP analysis
requires an image dataset, comprised of images taken at an
arbitrary number (U) of time points during cultivation for
each individual in each of the treatment and control condi-
tions. There should be no missing time points; otherwise,
the entire sequence cannot be included. Although sequences
of differing length within the same experiment could be used
in principle, this has not yet been observed and so we do not
support this in our implementation to avoid unspecified
behavior. The initial time point should ideally be zero days
after stress (DAS), in order to establish this as the baseline
for determination of the effect of the treatment. The provided
implementation is capable of splitting the analysis into sec-
tions of time, for multiphase experiments. Controlled imag-
ing (using imaging booths, stages, or growth chambers) is
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recommended in order to maintain consistency in image
characteristics such as distance from the camera and the
position of the specimen in the frame. However, the method
is robust to noise in the images (such as variations in lighting)
as long as the noise is consistent between both treatment and
control samples, not specific to one condition.

2.2. Embedding Network. In order to measure a plant’s
response-to-treatment, it is first necessary to determine
which visual characteristics in the images indicate the pres-
ence of this effect. To learn the visual features correlating
with treatment, LSP utilizes a learned projection of images
from a population into an n-dimensional latent space, a pro-
cess known as embedding. The embedding is shaped by a
supervised learning task, which trains a convolutional neural
network (CNN) to extract visual features relevant to the dis-
crimination of treatment and control samples.

Performing this embedding allows the method to learn
the latent structure of the response and gives the method
the ability to overlook any morphological or temporal char-
acteristics that may be different between accessions but do
not correspond to response to the treatment.

The process of training the embedding network requires
only treatment/control labels for each sample. The input to

the training process is a sequence of images taken for each
individual in the treatment and control conditions. The
genotypes are divided into training and validation sets with
a random 80-20 split. Images are standardized by subtracting
the mean pixel value and dividing by the standard deviation
and then used as input to a CNN. For each time point image,
the activations of the last fully connected layer in this CNN
are used as the input to a Long-Short Term Memory (LSTM)
network (Figure S1).

We describe both CNNs and LSTMs briefly here but
refer to the literature for more detailed summaries of deep
learning in general and these network variants in particu-
lar [10–12]. A CNN can be used to learn local feature
extractors from image data. The capability of a CNN to
learn a complex representation of the data in this way
allows the technique to perform well in many complicated
image analysis tasks, such as image classification, object
detection, semantic and instance segmentation, and many
other application areas [10].

CNNs have been used extensively in the recent literature
on image-based plant phenotyping, showing promise in sev-
eral areas, including disease detection and organ counting
[12–16]. For the process of learning an embedding, we imple-
ment a simple four-layer convolutional neural network as
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Figure 1: Overview of the processed technique. The process consists of three phases, which take place in sequence. First, an embedding
process projects images into latent space. Second, a decoder is trained to convert these embeddings back into the input space. Lastly, the
decoder is used to calculate a geodesic path between the embeddings for the initial and final time points.
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described in Table S1. Larger architectures were tested and
found to show no difference in the experiments reported in
this study. Recurrent neural networks (RNNs) are an
extension to neural networks which allows for the use of
sequential data. RNNs are a popular tool for time series,
video, and natural language problems, for which sequence
is an important factor. Briefly, RNNs maintain an internal
state which is updated through the sequence, allowing them
to incorporate information about the past into the current
time point. LSTMs are an extension to RNNs which
incorporate a more complicated internal state which is
capable of selectively retaining information about the past.
LSTMs have also appeared in the plant phenotyping
literature, demonstrating that they are able to successfully
learn a model of temporal growth dynamics in an accession
classification task [11]. LSTMs have also been used as a
model of spatial attention in the segmentation of individual
leaves from images of rosette plants [17].

The final time point of the LSTM feeds into a two-layer
feed-forward neural network, the output of which uses the
treatment/control labels of the training images as classifica-
tion targets, using a standard sigmoid cross entropy loss for
training. The loss on the validation set is monitored during
training to detect whether the embedding network has
learned a general concept of the response to the treatment,
as opposed to simply overfitting the training data. For the
purposes of our application, we prefer embeddings which
create only the minimum variance in the latent space neces-
sary for performing the supervised classification task. That is,
we prefer embeddings for which variance in most dimensions
is close to zero. This helps the subsequent phase of training
(Section 2.3) to recover differences in the images which cor-
respond to a generalized concept of response-to-treatment,
instead of learning features which are specific to one sample
or to a group of samples. To incentivize this, we include an
additional loss term for the embedding process alongside
the cross entropy loss and L2 regularization loss, called the
variance loss (Lv),

C = ETE
mU

,

Lv = det Cð Þ,
ð1Þ

where E is the mean-centered matrix of embeddings for a
batch of m sequences of U images.

The result is sometimes called the generalized variance
[18]. In addition, we add a small constant λv to the diagonal
of C. This is for two reasons—first, it prevents the case where
zero variance in a dimension causes C to be noninvertible,
stopping training. Secondly, it stops the optimization from
shrinking the variance in one dimension to an infinitesimally
small value, effectively pushing the determinant to zero
regardless of the variance in the other dimensions and allow-
ing the optimization to ignore the Lv term altogether. Ordi-
narily, we would find it necessary to restrict the
multidimensional variance in the latent space by constrain-
ing the size of the latent space n to the minimum size neces-
sary for convergence. We find that using the variance loss

term allows us to use a standard latent space size of n = 16
for all experiments, and individual datasets will utilize as
few of these available degrees of freedom as necessary as dic-
tated by this term in the loss function. A value of λv = 0:2 was
used in all experiments. The Adam optimizationmethod [19]
is used for training with an initial learning rate of 1e − 3.

After the network has finished training, the images of the
training and validation sets are then projected into latent
space. This embedding is given by the activations of the final
fully connected layer in the CNN. In this way, each of the
images in each of the treatment and control sequences can
be encoded as n-dimensional points in the latent space. The
final result of the embedding step is all images projected into
the same n-dimensional space, which can be visualized using
a dimensionality reduction technique (here we use PCA).
The embedding plot is used only for visualization purposes,
since distances on the embedding plot do not correspond to
semantic distance between samples, an issue discussed in
Section 2.4. Creating an embedding plot with exact distances
between accessions would require calculating on the order of
ðUmÞ2 pairwise paths in the latent space, which is intractable.
However, generating the embedding plot using Euclidean
distances between embeddings often illustrates stratification
of samples in the latent space, albeit with approximate
accuracy.

2.3. Decoding Network. The second phase of the method
involves training a decoder which performs the same func-
tion as the embedding process described in Section 2.2, but
in reverse. The purpose of the decoder is to define the map-
ping from latent vectors to image space, discovering the
latent structure in the image space, and allowing us to calcu-
late paths in the latent space during the subsequent phase
(Section 2.4). The structure of the decoder network consists
of a series of convolutional layers followed by transposed
convolution layers, which increase the spatial resolution of
the input (Table S2). This architecture is similar to those
used in other generative tasks, with the exception that there
is no linear layer before the first convolutional layer, to
prevent the decoder from overfitting. Samples in the
training set are projected by the finalized embedding CNN
into the latent space, and then the decoder projects these
latent space vectors back into the input space (Figure S2). A
reconstruction loss function quantifies the difference
between the original image and its reconstruction provided
by the decoder in terms of mean squared error (MSE).
Compared to training the embedding network, a lower
learning rate of 1e − 4 is used for training the decoder.
Since the embeddings are derived from the supervised
classification task, the only features which are encoded in
the latent representation are those which are correlated
with the response to the treatment. For example, in
Figure S2 (middle), the induced angle of the synthetic
rosette (the plant leans slightly to the left) is not reflected in
the decoder’s prediction, since plant angle is not encoded in
the latent space due to it not being correlated with the
simulated response-to-treatment. The leaf elevation angle,
however, does match between the real and predicted
images. More examples of encoded and decoded images are
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shown in Figure S3. In practice, the decoder’s output for an
input with support in the latent space will tend towards the
mean of all images which embed to a point near this
location. This mean image should be free of the specific
characteristics of any particular accession or individual. The
use of MSE creates decoded images which appear
blurry—this is an expected result and helps produce
smooth interpolations in the image space when calculating
paths in the latent space as described in Section 2.4.

2.4. Measuring Response-to-Treatment Using the Latent
Space. In the third and final part of the process, we seek to
quantify the change in the decoder’s output as we travel in
the latent space over time, with respect to the embeddings
of the images at each time point for a given individual. In
other words, we are interested in characterizing the semantic
distance between decoded images at the initial and final time
points—that is, the distance between these images in terms of
stress propagation. This characterization of semantic dis-
tance needs to be considered in terms of the geodesic path
on the latent space manifold, rather than Euclidean distance
in the latent space or in the image space. Figure S4 illustrates
the difference between the Euclidean distance and the
geodesic distance in a hypothetical latent space for a toy
example.

In Section 2.3, we defined a decoder (or a generator func-
tion) g : Z⟶ X where Z is the latent space and X is the
input space of the CNN (Figure S2). Since g is trivially
nonlinear, this implies that Z is not a Euclidean space, but a
(pseudo-) Riemann manifold [20]. The geodesic distance of
a path γ on a latent space Riemann manifold mapped
through a generator g in the continuous case is given by

Length γtð Þ =
ð1
0
Jγt

dγt
dt

����
����dt, Jγt =

δg
δz

����
z=γt

, ð2Þ

mapping the path through g via the Jacobian Jγ [20].
Minimizing this path in the discrete case can be
accomplished by optimizing the squared pairwise distance
between a series of intermediate path vertices, minimizing

arg min
z

〠
j

i=1
h g zið Þ, g zi−1ð Þð Þ2, ð3Þ

where h is a difference function [21]. Performing this
optimization on the latent spaces generated by LSP is
possible using a standard choice for h such as the L2
distance in the image space, since this distance in the image
space of the decoder is what we seek to optimize when
determining paths through the latent space. Using the
embeddings of the images for the initial and final time
points provide the start and end points for a path through
the latent space. The embeddings of the intermediate time
points are also computed, and these are used as stationary
vertices on the path. Since more vertices mean a more
accurate discrete approximation of the geodesic path, we
interpolate additional intermediate vertices between the
stationary vertices. These vertices are calculated by

optimizing Equation (3). For all experiments, we use as
close to, but not more than, 30 vertices for the path, with
an equal number of intermediate vertices between each pair
of stationary vertices. In general, the choice of the number
of vertices is limited by GPU memory. Instead of
performing progressive subdivision as in [21], we start from
a linear interpolation between stationary vertices. This
allows us to perform the optimization all at once, instead of
dividing the task into multiple successive optimizations
which is potentially more expensive. Calculating the total
path length as in the sum in Equation (3) describes the
individual in a single unitless scalar value, indicating the
difference in semantic distance travelled over the course of
the treatment.

Intuitively, the process can be thought of as tracing a path
through latent space from where the initial time point
embeds to where the final time point embeds. In order to find
this path, the current position in latent space is decoded into
image space by the decoder. Then, the position is moved in
the direction which creates the smallest change in this
decoded image. As the path is traced in this way, watching
the output of the decoder reveals a smooth “animation”
where the number of animation frames corresponds to the
number of path vertices. The trait value corresponds to
how much change there is between each frame and the next,
summed up over the entire path. It is important to note that
the distance travelled in latent space is irrelevant—the mea-
surement occurs in the output space of the decoder.

When tracing the geodesic path between the first and
final time points as described, we refer to this as the longitu-
dinal mode. However, it is also possible to perform a cross-
sectional analysis for populations where there is one treated
and one control sample for each accession by tracing a path
between the final time point for the treated sample and the
final time point for the control sample. Results for both of
the experiments on synthetic data presented here are per-
formed in cross-sectional mode, although longitudinal mode
also provides significant results on these datasets. The natural
datasets are run in longitudinal mode to match the format of
the original study design.

3. Results

We evaluated the proposed method using three natural data-
sets across different plant species and different treatment
types, including a population of recombinant inbred lines
of Foxtail grass (Setaria) treated with drought stress [3], a
panel of sorghum treated with nitrogen deficiency [22], and
the founders of a nested association mapping population of
canola Brassica napus treated with drought stress. We per-
formed two additional experiments using synthetic datasets,
including a model of Arabidopsis thaliana, where ground
truth candidate loci were verified.

3.1. Setaria RIL (S. italica x S. viridis). We used a published
dataset of a recombinant inbred line (RIL) population of
the C4 model grass Setaria (Figure S7) [3, 23]. The dataset
includes drought and well-watered conditions and has been
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used to detect QTL relevant to water use efficiency and
drought tolerance [3, 24].

The dataset was used as provided by the authors of the
original study [3] with a few modifications. The image data
was downsampled to 411 by 490 pixels, to allow for a more
practical input size for the CNN. Since the camera varies
levels of optical zoom over the course of the trial, it is also
necessary to reverse the optical zoom by cropping and resiz-
ing images to a consistent pixel distance. In order to mini-
mize the effect of perspective shift, the plants were cropped
from the top of the pot to the top of the imaging booth,
between the left and right scaffolding pieces. This effectively
removes the background objects and isolates the plant on a
white background. Removing the background is not neces-
sary in the general case—that is, if the background does not
change over time. However, since the optical zoom creates
differences in background objects, it is practical to remove
the background to remove this potential source of noise.
The February 1st time point was selected as the initial time
point, since many of the earlier time points were taken before
emergence. In total, 1,138 individuals representing 189 geno-
types and six time points were used. The SNP calls were used
as provided by the authors, resulting in a collection of 1,595

SNPs for this experiment. The latent distance values gener-
ated by the proposed method were used as trait values for
the multiple QTL biparental linkage mapping pipeline pro-
vided by the authors of the dataset, in order to replicate the
methodology used in the published results.

A histogram of latent distance values for individuals in
each of the water-limited and well-watered conditions is
shown in Figure 2(a). A total of four QTL were detected with
respect to the ratio of the trait under the control condition to
the trait under the treatment condition. However, we discard
these QTL as potentially spurious under the guidance of the
original paper, which found that most of the QTL found
using the ratio of the trait values were not also recovered
using the difference in trait values [3]. For the difference in
trait values between conditions, we identified two QTL asso-
ciated with drought tolerance in the Setaria RIL population
(Figure 2(c)). These loci are reported by Feldman et al. as cor-
responding to plant size and water use efficiency ratio (5@15,
within the 95% confidence interval of the reported peak of
5@13.7) and plant size and water use efficiency model fit
(7@34). Although we were only successful in replicating
two of the genotype-by-environment QTL from the pub-
lished study, many of these previously reported QTL
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correspond to a water use model incorporating evapotranspi-
ration; not a single trait derived directly from the images such
as vegetation area. The normality criterion for ANOVA is
violated, and so we use a nonparametric Kruskal-Wallis test.
Running this test, we observe high significance for the effect
of genotype on the trait (p = 3:77−9). The same was found
for the interaction (p = 2:2−16).

3.2. Sorghum (S. bicolor). For this experiment, we used an
existing study of nitrogen deficiency in sorghum [22]. The
authors of the dataset applied a nitrogen treatment to a panel
of 30 different sorghum genotypes. Individuals were placed
into the control condition with 100% ammonium and 100%
nitrate (100/100), 50% ammonium and 10% nitrate condi-
tion (50/10), or 10% ammonium and 10% nitrate condition
(10/10). Images were analyzed with respect to various shape
and color features to detect the presence of a response to
the treatment. No association mapping was performed in
the published study, and so GWAS results are not provided
here. Due to the small size of the dataset, we use data aug-
mentation to help prevent overfitting. This involves intro-
ducing random horizontal flips, randomly adjusting
brightness and contrast, and cropping to a random area of
the image during the training of the embedding network.
Images were downsampled to 245 by 205 pixels.

In the published study, the authors found that a PCA of
17 different shape features was able to distinguish the control
condition (100/100), the high-intensity treatment (10/10),
and the low-intensity treatment (50/10). A PCA of various
hue and intensity features of segmented vegetation pixels
was able to distinguish between the 100/100 and 10/10 treat-
ments but unable to distinguish between the 50/10 and 10/10
conditions. An LSP analysis of the same dataset was able to
distinguish between the 100/100 and 10/10 conditions
(Figure 3) but failed to converge when tasked with differenti-
ating between the 50/10 and 10/10 treatments. This implies
that differences between the two lower nitrogen conditions
were too subtle to be detected by either LSP or the collection
of pixel intensity features. The LSP method could be adapted

to analyze all three conditions in a single experiment by
replacing the sigmoid cross entropy operation in the encoder
with a softmax cross entropy operation. However, the analy-
sis was split into pairs of conditions because the nonconver-
gence of the 50/10-10/10 pair also prevents convergence of
the three-condition experiment.

3.3. Canola (Brassica napus). Next, we performed validation
on the founder panel of a nested association mapping popu-
lation of B. napus (Figure S8). In total, 50 genotypes were
used in three replications in each of the treated and control
conditions, for a total of 300 individuals. Images were taken
daily during the early growth period and subsequently every
other day and were downsampled to 245 by 205 pixels. As
with the previous datasets, the plants were imaged in a
LemnaTec indoor plant imaging system for a total of 40
days and treated individuals were subjected to a drought
treatment. In contrast to the Setaria RIL experiment, the
canola study involved three phases. First, an initial growth
phase which lasted 14 days where no treatment was applied.
Next, a 20-day drought phase was applied where watering
was reduced from 100% to 40% field capacity, while the pots
were imaged every two days. Lastly, a 6-day recovery phase
took place where individuals were again watered uniformly
across conditions. The results of the LSP analysis are shown
in Figure 4. Because this experiment involved three distinct
treatment phases, the analysis was performed on each of the
three relevant portions of the latent space path in series.
This gives a separate set of results for each phase, where the
performance of individuals can be assessed within each
phase. Interpolation was not used on this dataset as it
already contains the target number of 30 path vertices. As
with the sorghum trial, the NAM panel of B. napus is too
underpowered to find QTL underlying tolerance to drought.
However, the trait value output by the proposed method
distinguishes between the two conditions in the treatment
phase. Phenotypic response as measured by geodesic
distance was also readily observed when inspecting
additional factorial variables, such as flowering time
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(Figure 4(b)). It has been established that drought affects
productivity in canola differently depending on the
developmental stage [25–28], with the onset of flowering
time being one of the most sensitive stages. Most of the late
flowering varieties only started to flower after the drought
treatment was complete, and we thus expected to see a
difference in their drought response. There were 15
genotypes in the early flowering time category, 18 genotypes
in the intermediate flowering time category, and 17
genotypes in the late flowering time category. Observations
of flowering time for these genotypes were conducted in
replicate in controlled growth conditions in 2012 at the
Agriculture and Agri-Food Canada research facility. Only
one genotype consistently produced outliers and only
during the posttreatment recovery phase.

In order to determine whether multiple replications of
the same line were clustered together in the output, a one-
tailed F test was performed using the within-group variance
for each of the 100 genotype-treatment pairs. For the pre-
treatment, treatment, and posttreatment stages, we found
that 26, 34, and 29 of the 100 groups were significantly
grouped in the output, respectively (p < 0:05). We also
explored the effect of treatment by running two-way ANO-
VAs for the interaction of genotype and treatment on the
trait value (p = 6:9−4) as well as flowering time group and
treatment on the trait value (p = 2:29−8).

3.4. Synthetic Arabidopsis thaliana Model. Synthetic images
of rosettes [29] and roots [30] have been used previously to
train models for phenotyping tasks. Here we used syntheti-
cally generated image data as it allows us to introduce specific
variance in the imagery based on a simulated casual SNP and
then investigate the method’s ability to recover that variance

on the other end by running a GWAS on the simulated pop-
ulation. We use FaST-LMM [31] to perform this analysis and
generate the Manhattan plots.

For this purpose, we used an existing L-system-based
model of an A. thaliana rosette [29], based on observations
and measurements of the development of real A. thaliana
rosettes [32]. The model was run in the lpfg simulation pro-
gram [33], which simulated the development of the plant
over time, and rendered the resulting images. We selected
seven of these images corresponding to different time points
of the simulation for the LSP analysis.

To generate the synthetic A. thaliana genetic dataset, we
begin from a real A. thaliana genotype database known as the
A. thaliana polymorphism database [34]. This dataset
includes 214,051 SNPs for 1,307 different accessions of A.
thaliana. A single causal SNP was chosen at random, and
we let that SNP represent a polymorphism which confers tol-
erance to a hypothetical treatment that affects the plant’s leaf
elevation angle. The elevation angle of the plant’s leaves is
sampled from a normal distribution which is parameterized
according to whether the sample is untreated, treated-and-
resistant, or treated-and-not-resistant. Figure S5 shows the
effect of the simulated treatment where the angle of the
leaves on the treated plant is increased relative to the
untreated sample. Other parameters in the model, such as
growth rate, are normally sampled for each accession. It
should be noted that, the growth rate of the simulated A.
thaliana plant is completely uncorrelated from the
treatment, as are multiple other model parameters. This
means that, although the effect of the treatment is still
visually apparent, the embedding network must learn a
complex visual concept and cannot rely on measuring the
number of plant pixels to discriminate between treated and
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untreated samples. Since the leaf elevation is modulated as a
function of plant maturity, the effect of the treatment is not
visible in plants with a low growth rate, adding
considerable noise and further increasing the complexity of
the task. Also note that performing phenotyping on this
image dataset would be challenging, since estimating leaf
angle from images is a nontrivial image processing task,
especially in the absence of depth information [35, 36].

The method is able to successfully determine the simu-
lated causal locus on chromosome one with no false positives
(Figure 5). Figure S6 shows a comparison between the
proposed method and a naive solution where the image
distance (Euclidean distance in the pixel space) is calculated
between each pair of images, with no embedding or
decoding step. Such an approach would be successful on
the simple synthetic imagery described in Section 3.5 but
fails in this more complex case.

3.5. Synthetic Circle Model. Lastly, we performed an experi-
ment with synthetic imagery intended to show how the LSP
method performs under basic conditions and how its outputs
relate to manually measured phenotypes in this case. For this
purpose, we use a simple model of the A. thaliana rosette
which depicts individuals as white circles on black back-
grounds, with a hypothetical treatment causing a decreased
growth rate of the circle over time in this simple model.

For each of the control and treatment conditions, a
sequence of six time points is generated, with images
representing a circle growing from an initial diameter
(sampled from a normal distribution) to a final diameter.
The growth rate of the diameter is drawn from a normal
distribution, parameterized according to condition. Addi-
tionally, the growth rate under the treated condition is
influenced by seven hypothetical QTL drawn from a Ber-
noulli distribution, as well as the presence of the minor
allele at a randomly chosen locus in the SNP data. The
ground truth growth rate values were used to generate
the synthetic imagery. Performing an LSP analysis of this
dataset allows us to forego phenotyping and use the syn-
thetic image data directly. The embedding plot represent-
ing the learned embedding of the image data as well as
the Manhattan plot is shown in Figure 6. LSP is able to
recover the simulated causal locus with no false positives
in this simple application. Relating LSP to the established
method of using image processing to extract the growth
rate phenotype, we examine the correlation between pair-
wise distances in the latent space and differences in mea-
sured phenotype between the same accessions. There is
significant correlation between calculated geodesic dis-
tances in the latent space and the relative growth in the
number of white pixels in the synthetic circle dataset
(R = 0:93, p < 0:01).
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4. Discussion

The Latent Space Phenotyping method as described has some
limitations, including increased computational requirements
compared to the majority of image-based phenotyping tech-
niques. Since the method involves multiple deep neural net-
works, the use of GPUs is advisable to perform these
optimizations in a tractable amount of time. The experiments
presented here were performed on two NVIDIA Titan V
GPUs, and the time required per experiment ranged from
two to eight hours depending on the number of accessions
and the number of time points in the dataset. Beyond compu-
tational requirements, another limitation of the method is a
substantial difference in interpretability compared to GWAS
using standard image-based phenotyping techniques. The
traits measured with these standard techniques often have a
direct and interpretable relationship with the response to
the treatment—for example, it has been shown that the num-
ber of plant pixels in an image can be used as a proxy for bio-

mass [37]. Therefore, the measured phenotype can be
directly interpreted as the biomass of the sample and QTL
can be found which correlate with the effect of the treatment
on biomass. In the case of LSP, the individual’s response to
the treatment is abstracted and quantified only relative to
other individuals in the dataset. Interpretability techniques
such as saliency maps [38] (Figure S9) can help to elucidate
relevant regions in the images, but the measurements still
lack a direct biological interpretation in the same way as
measurements of biomass. Therefore, candidate loci
obtained through LSP must be interpreted differently, and
biological explanations must be inferred from the function
of the detected loci. In addition, since the method is
nondeterministic due to randomized initial weights and
random minibatching (as with all deep learning methods),
repeating the same experiment may output different results.
Although there is no guarantee that the trait values
reported by the method will be consistent between runs, we
found the reported QTL to be consistent across runs for
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both synthetic datasets. However, a repeat of the Setaria RIL
experiment resulted in a similar histogram and a between-
condition p value on the same order as the results reported
in Figure 2, but both previously detected QTL fell below the
significance threshold. This is an inevitable consequence of
using a nondeterministic method. However, it should be
noted that deterministic methods are not inherently
repeatable either—different thresholds, outlier detection
methods, and data transformations affect the detected loci
in these cases. It should also be noted that, although we
have endeavoured to present a range of datasets in this
work, we have still only scraped the surface of plant
phenotyping image data. It remains to be seen how the
method responds to other plants with significantly different
architectures to those shown here. Of particular interest for
future work are plant and root structures with highly
branched and articulated forms. Also, although the method
is theoretically designed to be robust to the visual
differences between genotypes, it is unknown how the
method responds if these differences are significantly larger
than the differences due to treatment. The testing of LSP in
less controlled imaging contexts such as in outdoor field
conditions is an important direction for future work. LSP
should also be validated in experiments with larger natural
datasets, involving thousands of genotypes. Since the
computational expense scales linearly with the number of
individuals, such experiments should be feasible.

This work is related to previously described methods
which are capable of automatically quantifying differences
in morphology between individuals, notably the persistent-
homology (PH) method [39]. While PH is focused on auto-
matic shape description, LSP instead learns temporal models
of stress which can be dependent on, or independent from,
shape. Additionally, PH techniques usually involve the
design of a unique system for each shape description task;
LSP aims to provide a completely general technique which
is not tailored to any particular dataset.

Finally, performing the embedding step can be seen as a
type of dimensionality reduction, from the high-
dimensional image space to a lower-dimensional embedding
space. Doing dimensionality reduction in images has been
performed before using techniques such as principal compo-
nent analysis (PCA) or autoencoders. By performing dimen-
sionality reduction on images, it is possible to recover factors
which correspond to pixel variance in the images. For exam-
ple, the Eigenface technique [40] uses PCA on small, grey-
scale images of faces to learn a series of principle
components (PCs). A new image of a face can be encoded
as a linear combination of these PCs, and this representation
can be used to compare the new face against a database of
examples to determine similarity. While methods such as
Eigenfaces provide a feature vector describing the most major
points of variance in the image space, LSP specifically avoids
this approach. This is because the most major variations in
the images are likely to be from sources completely unrelated
to the treatment. For example, the emergence of a new organ
creates significant variance in the images, even if the emer-
gence of that organ is not due to the treatment. Using
methods such as PCA or autoencoders results in an arbitrary

number of features, some or none of which may be useful to
the description of the effect of the treatment. Attempting to
embed images using other manifold learning techniques such
as Multidimensional Scaling (MDS) or Locally Linear
Embedding (LLE) suffers from a similar problem—they will
attempt to preserve likely meaningless pairwise relationships
in the pixel space.

Let us imagine that one is able to accept the above short-
comings of dimensionality reduction methods such as PCA
and autoencoders. Performing the analysis on the full dataset
is likely to mostly identify features related to maturity, since
this is often the largest cause of variance in the images (and
using the full dataset with techniques such as PCA which
do not use minibatching is likely intractable due to memory
restrictions). To circumvent this, one could imagine taking
the high-dimensional features provided by such methods in
separate analyses at each time point. Although most of these
features are likely irrelevant, one could use nonparametric
significance testing to determine which of the features are
correlated with the presence of the treatment. This was vali-
dated on both synthetic datasets and the B. napus dataset
using a Mann-Whitney U test. Various PCs were shown to
contain information relevant to the condition and even
appeared as describing the most variance (PC1 and PC2)
during most of the treatment phase of the B. napus trial.
However, a more subtle problem with a simplistic latent
model and lack of a temporal component is that there cannot
be a measurement of the progress of a single, continuous,
nonlinear process through time, especially if that process
contains multiple different stages (such as wilting, followed
by senescence). Both PCA and autoencoders are able to
encode images and provide reconstructions, making it possi-
ble to determine difference in the pixel space given two
encoded samples. However, differences in the pixel space
can only be calculated between two individuals at discrete
time points, and the evolution of these differences across time
points cannot be assessed. LSP, on the other hand, integrates
stress and maturity in a single continuous space which can be
smoothly interpolated through. This space can represent
complex, continuous, and nonlinear changes in different
regions. Although PCA was able to detect the presence of
the treatment in both the synthetic datasets and the B. napus
experiment, the scores on these significant PCs predictably
failed to discriminate between the treatment and control con-
ditions across time.

The results of five experiments demonstrate the capabil-
ity of LSP to automatically form accurate learned concepts
of response-to-treatment from images and recover QTL with
a very low false positive rate. As an automated system, the
proposed method is exempt from the considerable challenges
which arise in developing and deploying image analysis pipe-
lines to first measure phenotypes from images. It is also free
from a priori assumptions about which visually evident fea-
tures are caused by the treatment, automatically detecting
area, leaf angle, drought stress, and nitrogen stress in five dif-
ferent experiments. Replicating more candidate loci from
existing studies will help continue to validate the technique
and encourage further study on latent space methods in the
biological sciences.
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Supplementary Materials

Figure S1: the deep network used in learning an embedding.
A CNN takes a sequence of images at various time points and
feeds outputs to an LSTM, which in turn is used to predict the
treatment. The LSTM is removed and the CNN is retained to
embed new samples. Figure S2: real images from the Setaria,
synthetic Arabidopsis, and sorghum datasets (left) and the
same images predicted from their latent space encodings by
a decoder network (right). Figure S3: additional examples
of synthetic Arabidopsis rosettes (left) decoded from their
latent space vectors (right). Table S1: architecture details for
the convolutional neural network used in the embedding.
All pooling layers are followed by batch normalization. Table
S2: architecture details for the decoder network. The upsam-
ple blocks refer to transposed convolutions. Figure S4: dis-
tance between embeddings of images of lines at different
angles in a hypothetical latent space. Here, the semantic dis-
tance is the difference in the interior angle. The Euclidean
distance between images in the image space is constant, and
the Euclidean distance (dotted arrow) between their encod-
ings in the latent space is evidently not representative of the
semantic distance. However, the geodesic path (solid arrow)
between images represents the semantic distance well. Figure
S5: untreated (left) and treated nonresistant (right) synthetic
Arabidopsis plants at the final time point, showing differences
in leaf elevation angle. Figure S6: ablation experiment using
Euclidean image distance between each pair of images in
the sequence for the synthetic Arabidopsis dataset. The naive
solution fails to recover the simulated tolerance QTL on
chromosome 1. Figure S7: well-watered (left) and water-
limited (right) examples of a particular line from the Setaria
RIL population [12]. Figure S8: well-watered (left) and water-
limited (right) examples of a particular line from the B. napus
L. NAM population. Figure S9: example images from the
Setaria, synthetic Arabidopsis, and synthetic circle datasets

(left) and corresponding saliency maps generated using
guided backpropagation (right). Intensity is higher for the
pixels which have high saliency with respect to the latent
space embedding of the image. The Setaria image is from
an experiment carried out without cropping to include the
background in the saliency demonstration. Table S1: archi-
tecture details for the convolutional neural network used in
the embedding. All pooling layers are followed by batch nor-
malization. Table S2: architecture details for the decoder net-
work. The upsample blocks refer to transposed convolutions.
(Supplementary Materials)
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