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Movies (In all movies, the simulated leaf is dynamically
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viewed. The scale bar indicates reference length.)

Movie S1. Simulation of the development of a generic
simple leaf (corresponds to Fig. 6a-f).

Movie S2. Simulation of the development of a leaf
with compound teeth (corresponds to Fig. 7g).

Movie S3. Simulation of a generic palmately lobed
leaf (corresponds to Fig. 8a-e).

Movie S4. Simulation of the development of a repre-
sentative leaf from the 2D morphospace in Fig. 9
(row 3, column 4).

Movie S5. Simulation of the development of a generic
palmate leaf with sequential emergence of lobes
(corresponds to Fig. 10a).

Movie S6. Simulation of the development of a pin-
nately compound leaf (corresponds to Fig. 12d).

Table S1 (additional file). Parameter values used in simu-
lations.

The source code and parameter files for the model are avail-
able from the authors’ web site (algorithmicbotany.org/
papers/leaves2017.html). Simulations can be executed
and visualized using the Virtual Laboratory software envi-
ronment (algorithmicbotany.org/virtual_laboratory).
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Supplementary Figure S1
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Figure S1: Selected terms pertinent to leaf morphology.

Notes S1. Image sources and credits
Figure 1a. Quercus imbricaria by Jan De Langhe, cour-

tesy of Foundation Arboretum Wespelaar (www.
arboretumwespelaar.be).

Figure 1b. Garcinia spicata by Irène Bouguerra and Nico-
las Lagarrigue, Pitchandikulam Forest Virtual Herbar-
ium (www.pitchandikulam-herbarium.org), licensed
under CC-Attribution-NonCommercial-ShareAlike 4.0.

Figure 1c. Catalpa bignonioides by W. Mark and J.
Reimer, courtesy of SelecTree (www.selectree.
calpoly.edu).

Figure 1d. Populus tremula (commons.wikimedia.org), li-
censed under CC-Attribution-Share Alike 3.0.

Figure 1e. Crataegus marshallii by John Pickering, cour-
tesy of Discover Life (www.discoverlife.org).

Figure 1f. Fatsia japonica (commons.wikimedia.org), li-
censed under CC-Attribution-Share Alike 3.0.
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Figure 1h. Acer saccharinum by Renn Tumlison, Hen-
derson State University (www.hsu.edu/Academics/
ARNatureTrivia/), used with permission.

Figure 1i. Pueraria montana var. lobata by JK Marlow,
courtesy of Native and Naturalized Plants of the Car-
olinas and Georgia (www.namethatplant.net).

Figure 1j. Cannabis sativa (commons.wikimedia.org), im-
age in public domain.

Figure 1k. Handroanthus sp. by Karen Blixen (www.
flickr.com), licensed under CC-Attribution-Non-
Commercial-ShareAlike 2.0.

Figure 1l. Robinia pseudoacacia by JK Marlow, courtesy
of Native and Naturalized Plants of the Carolinas and
Georgia (www.namethatplant.net).

Figure 2a. Image from (Hay et al., 2006) adapted with per-
mission from Development.

Figure 2b. Image adapted from (Bilsborough et al., 2011).

Figure 2c. Image kindly provided by Gemma Bilsborough.

Figure 7h. Platanus occidentalis by Brian Bale (www.
treeplantflowerid.com), used with permission.

Figure 8f. Acer macrophyllum by Dan Anderson (www.
tree-species.blogspot.com), adapted under fair use.

Figure 8g. Acer campestre, photograph from the Mid-
dle European Woods dataset (Novotný and Suk,
2013) (zoi.utia.cas.cz/node/662), licensed under
CC-Attribution-ShareAlike 3.0

Figure 8h. Acer grandidentatum by Dean Hueber (www.
pbase.com), adapted under fair use.

Figure 11. Morus alba by Evelyn Fitzgerald (www.flickr.
com), adapted under fair use.

All remaining images are by the authors.

Notes S2. Model details

S2.1. Maintenance of leaf lamina

The leaf lamina is represented by a trianglular mesh con-
strained by the leaf margin and the vasculature. It is im-
plemented as a vertex-vertex data structure (Smith et al.,
2004).

During simulations the lamina may increase in size by one
or two orders of magnitude. This growth is accompanied by
significant changes in the form of the leaf. Together, these
aspects of the simulation necessitate the use of a dynamic
mesh (i.e. a mesh with the number, positions and connec-
tivity of vertices modified over time). Dynamic meshing also
permits the faithful approximation of veins and samples on
the leaf margin which are dynamically introduced during
simulations.

At the beginning of the simulation, the initial mesh is
generated as a triangle strip connecting sample points on
the two sides of the leaf primordium. During the simulation,
the mesh is updated to reflect changes in the margin and
the vascular system. The vertices and edges of the mesh
that lie on the veins or the margin are moved with the veins
and the margin as they grow. Topological changes — the
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Figure N1: Updating the mesh representing a leaf blade.
(A,B) Addition of a new sample point to the margin. The
corresponding vertex is added to the mesh, and the incident
edge and triangle of the mesh are split. (C,D) Insertion of
a new vein (blue line) connecting to an existing vein. As
the vein intersects the mesh, the corresponding vertices and
edges are added to the mesh. Orange edges split the result-
ing quads into triangles.

addition of new convergence points or other sample points
on the margin, and the insertion of new veins — modify the
mesh as shown in Figure N1. Mesh quality is ensured by
following these changes with incremental remeshing (Botsch
et al., 2010), constrained to preserve mesh edges that lie on
the leaf margin or on the veins.

S2.2. Webbing

Let P0, P2, . . . , Pn denote the sequence of sample points
defining the margin. To simulate webbing and capture
growth directions that do not coincide with veins we iter-
atively displace each sample point Pi by vector ∆Wi calcu-
lated as a weighted sum of four terms:

∆Wi = αS∆Si + ακ1∆κ1i + ακ2∆κ2i + αNNi. (S1)

The first three of these terms are geometric fairing terms
that smooth the margin by reducing its length and bend-
ing. We employ two discrete approximations of curvature
to measure bending: the notion of curvature is not uniquely
defined in the discrete case, and approximating it using two
different terms provides an additional flexibility in control-
ling details of the margin. The fourth term displaces sample
points in the normal direction, thus broadening features of
the leaf. The marginal position of vein tips are not modified
by webbing as veins are assumed to be rigid compared to
other tissues.

To calculate displacements ∆Si , ∆κ1i and ∆κ2i , we con-
struct energy terms ES , Eκ1 and Eκ2 for the entire margin,
and move vertices to reduce the sum of these terms. The
stretch energy ES is calculated as

ES =

n∑
i=1

‖Pi − Pi−1‖2. (S2)

The first approximation of curvature at vertex Pi represents
it by the turning angle θi (Desbrun et al., 2006), yielding

Eκ1 =

n−1∑
i=1

θ2i . (S3)

In the second approximation, curvature at vertex Pi is rep-
resented by a weighted second finite difference about this
point, yielding

Eκ2 =

n−1∑
i=1

‖wilPi−1 − wicPi + wirPi+1‖2. (S4)
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Figure N2: Diagram showing the discrete quantities min-
imized by webbing. Components of the diagram related to
stretching are shown in red, the first curvature approxima-
tion κ1 in blue, and the second curvature approximation κ2

in white.

We employ the standard second finite difference weights
wil = wir = 1/2, wic = 1, although other weightings are pos-
sible (Fornberg, 1988; Desbrun et al., 1999). These weights
are chosen so as to produce the vector connecting vertex Pi
to the mid-point of the line between Pi−1 and Pi+1 (Fig.
N2). Webbing is then performed by moving each vertex in
the direction that minimizes the above energies, and adding
a displacement in the normal direction. As vein tips are not
displaced, curvature at these points is minimized by sub-
tracting ∆κ1i/2 and ∆κ2i/2 from the corresponding terms
at adjacent points prior to performing this displacement.

The coefficients αS , ακ1, ακ2 and αN in Equation S1 de-
pend on the morphogens present at Pi and control the rel-
ative contribution of the corresponding four factors to web-
bing. As these coefficients control growth of the leaf blade
(via webbing), they also depend on the distance from the leaf
base (as measured along the veins) in the same manner as
the growth of the vascular system (see Growth of the vascu-
lar system in the main text). Furthermore, the displacement
in the normal direction is proportional to the average length
of the margin edges incident to Pi:

1

2
(‖Pi+1 − Pi‖+ ‖Pi − Pi−1‖) . (S5)

This displacement thus approximates the effect of an internal
pressure acting on the leaf boundary.

S2.3. Visualization of vasculature and the leaf blade

To facilitate visual comparison of real and simulated forms
we employed specialized techniques that enhance the visual
representation of the models. Visualization of simulation
results requires the determination of vein widths and colors
for the leaf blade. The width of veins is determined using
Murray’s law (Murray 1926, see also Runions et al. 2005).
Specifically, we use the extension of this law proposed by
MacDonald (1983), which relates the radii of veins before
and after branching as follows

rnparent =

k∑
i=0

rnchildi , (S6)

where rparent is the radius of the parent, rchildi are the radii
of child veins, and the power n is a species-specific parame-
ter. The applicability of this law to leaf venation was initally
supported by tests in sunflower leaves (Roth-Nebelsick et al.,

2001). More recently, this law was shown to broadly apply
to the vascular patterns of leaves (Price et al., 2014). Fol-
lowing (Runions et al., 2005), vein widths are also increased
along the length of veins (moving towards the leaf base), to
account for higher-order veins that are not explicitly repre-
sented. In Figures 7i, 8f-i, 11 and 12e-g, leaf texture was sim-
ulated by specifying a color for vertices coinciding with veins
and then stochastically assigning different shades of green to
the remaining vertices of the mesh. These colors were then
blended to produce continuous changes in the color of the
blade.

Notes S3. Branching angle and resistance
In the main text we claimed that introducing a vein so as to
minimize resistance to transport causes it to meet an existing
vein at a constant branching angle or attach to a branching
point. A proof of this claim is given below.

Let b and v be the resistances to transport per unit dis-
tance in the leaf blade and vasculature, respectively (b ≥ v ≥
0). The total resistance to transport from the convergence
point to leaf base is then

τ = bA+ vB, (S7)

where A is the length of the inserted vein, and B is the
length of the path from the attachment point to the leaf
base (see Figure 5e in the main text). As the length A
uniquely determines θ we proceed by finding A minimizing
τ . Note that D ≤ A ≤ F , where D and F are the respective
distances from the CP to the pre-existing vein, and closest
branching point towards the leaf base (or the leaf base if no
such branching point exists).

Then by Pythagoras’ theorem we have

τ = bA+ v(E −
√
A2 −D2), (S8)

where E = C +B. The length A minimizing τ must satisfy
dτ
dA

= 0. From this we obtain

dτ

dA
= b− vA/

√
A2 −D2 = 0. (S9)

Then, as C =
√
A2 −D2, we have

C

A
=
v

b
, (S10)

or cos(θ) = v
b
. Thus

θ = arccos(
v

b
). (S11)

Consequently, the vein minimizing τ meets the existing vein
at a constant branching angle θ = arccos( v

b
) or at a branch-

ing point (when θ causes A to exceed F ).
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