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Abstract 

The modeling of growing multicellular structures is of fundamental importance in inves-
tigating plant development. A distinctive feature of plants is that, with rare exceptions, 
cells do not move with respect to each other; the only differences in tissue topology are 
due to cell divisions. Corresponding features are found in other application domains, 
such as geometric modeling. Models from these diverse domains, taken together, con-
stitute the field of developmental modeling. This dissertation is concerned with devising a 
mathematical and computational formalism for such modeling. 

Examining simple examples of one-dimensional models shows that the mathemati-
cal structure of the cell complex is ideal for developmental modeling. The cell complex 
consists of mathematical cells of different dimensions, letting physical quantities of dif-
ferent inherent dimension sit in their proper place in the structure. A cell complex can be 
represented in an index-free manner, and topological operations on it, including the im-
portant case of cell division, can be effected in a local manner. Finally, the cell complex 
is built on neighbourhood relations which let developmental rules easily access values in 
neighbouring cells. 

A novel data structure, the flip, records a single adjacency between cells in a cell com-
plex; a flip table, the collection of all flips in the complex, is in turn sufficient to represent 
the complex itself. This representation is used to build the Cell Complex Framework, a 
C++ API which can be used for computational modeling of development in any num-
ber of dimensions. The framework provides basic operations such as iterating over a 
cell complex, adding, removing, dividing, and merging cells, and computing geometric 
information such as orientation, measure, and centroid. Some developmental models 
from the existing literature, in both two and three dimensions, are reproduced using the 
Cell Complex Framework, demonstrating its workability and expressiveness; these in-
clude both geometric models as well as models of biological systems. New models are 
also shown, including a model of turtle geometry on the surface of a 2D mesh and a 
three-dimensional model of the apex of the moss Physcomitrella patens. 
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𝑐𝑘+
𝑐𝑘 𝑐′ 𝑘. 
𝑐𝑘− 

flip operation Applying the flip operation flip(𝑘) to the cell tuple (𝑐, … , 𝑐𝑘−, 𝑐𝑘, 𝑐𝑘+, … , 𝑐𝑛) 
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the interior is cell 𝑐𝑘+. 

joint The joint is the lowest-dimensional entry in a flip; in the flip ⟨𝑐𝑘−, 𝑐𝑘 ↔ 𝑐′ 𝑘, 𝑐𝑘+⟩, 
the joint is cell 𝑐𝑘−. 

manifold A manifold is a mathematical object locally homeomorphic to Euclidean space. 
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mathematical cell A mathematical 𝑘-cell is a topological entity homeomorphic to a 
closed 𝑘-dimensional ball. A 𝑘-cell is defined by the set of (𝑘 − 1)-cells which make 
up its boundary. 

membrane When splitting a 𝑘-cell 𝑐 into two child 𝑘-cells 𝑐𝐿 and 𝑐𝑅, the membrane is 
the new (𝑘 − 1)-dimensional cell which separates the two child cells. 

neighbourhood The neighbourhood of a 𝑘-cell 𝑐 is the set of all 𝑘-cells adjacent to 𝑐. 

neighbouring See adjacent. 

relative orientation The relative orientation between a 𝑘-cell 𝑐𝑘 and an incident (𝑘 − 1)-
cell 𝑐𝑘− is a number equal to either +1 or −1. 

simplex A simplex is the generalization of the notion of a triangle or tetrahedron to 𝑛 
dimensions. Each 𝑘-simplex is uniquely defined by a set of (𝑘 + 1) vertices. 

vv vv is a modeling system based on the vertex-vertex algebra and graph rotation sys-
tems (Smith 2006). 
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1 Introduction 

This dissertation deals with computer simulation of dynamic processes, of change through 
space and over time. Change over time has been extensively studied, from discrete-
system simulation to difference equations to numerical and analytic solution of differ-
ential equations. Change through space, however, has not been studied nearly so thor-
oughly. Simulating change over space is not unknown, of course: we can analytically 
solve partial differential equations, or convert them into a set of ordinary differential 
equations coupled through space. Such techniques involve discretizing space, just as we 
discretize time. 

A discretization imposes a structure on space. Each discrete element represents a 
piece of space. Moreover, the discrete adjacencies of the elements reflect the topological 
relationships within space. This means that the discretization defines a discrete topological 
space. (For the purposes of this thesis, a discrete topological space is a set 𝑋 of objects, 
where each object 𝑥 has a neighbourhood 𝑁 (𝑥) ⊆ 𝑋 . The elements of 𝑁 (𝑥) are said to be 
adjacent to 𝑥.1) These discrete elements of space can then carry information and computa-
tion according to both the subdivision of space they represent and to the neighbourhood 
relationships between them. In converting a partial differential equation into a set of cou-
pled ordinary differential equations, for example, we assign parameters to each element, 
assumed to be valid on the subdivision that element represents; the parameters change 
according to ODEs that are coupled with the corresponding ODEs in the adjacent ele-
ments. 

We might adaptively change the discretization of time, for example making it finer 
as a differential equation becomes stiffer. In the same way, we must be able to change 
the discretization of space as the needs of the simulation dictate. This may be adaptive, 
subdividing space to obtain numerically more precise results near a region of interest. It 
may be structured by the problem, subdividing the space representing a plant cell when 
that cell divides. Even if the discretization itself does not change, the topological space 
might; the fracturing of a material alters the neighbourhood relations between elements. 

Many processes can be simulated by creating a dynamic subdivision of space. The 
finite element method (Braess 2007) can solve a large family of partial differential equa-
tions over space by subdividing that space into elements. Some applications of the finite 

1A discrete topological space is distinct from the discrete topology, in which 𝑁 (𝑥) = {𝑥}. 
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element method adaptively refine this subdivision for improved accuracy (e.g. Federl 
(2002)). In the field of geometric modeling, a polyline or mesh is a discrete subdivision 
of a curve or surface, and changes dynamically when the representation is refined by 
subdivision (Smith, Prusinkiewicz, and Samavati 2003). 

In processes involving multicellular development, a dynamic subdivision of space is 
inherent in the problem. The modeling of growing multicellular structures is of fun-
damental importance in investigating plant development. In creating the framework 
described in this dissertation, I am guided by Prusinkiewicz’s (2009) concept of develop-
mental computing, which draws inspiration from the computational modeling of plant de-
velopment. Prusinkiewicz extends ideas from the field of plant development into other 
fields which share the same characteristics: 

1. A plant is a dynamic system with a dynamic structure: it consists of dis-
crete components (modules), the number and states of which change 
over time. 

2. Development takes place in a topological space, which determines the 
neighboring relations between components. 

3. The development is symplastic: the neighborhood relations can only 
be changed as a result of the addition or removal of components (in 
contrast to animal cells, plant cells do not move with respect to each 
other). 

4. The state of each component advances over time as a function of its 
own state and the state of the neighboring components, i.e., according 
to temporally and spatially local rules or equations. 

5. There is feedback between the topology of the system and the state 
of its components. On one hand, changes in topology (the addition 
or removal of components and connections between them) are con-
trolled by the state of the components. On the other hand, the state 
of each component depends on the input from its neighbors. 

These characteristics are familiar from the discussion above: the spatial subdivision de-
fines a topological space for simulating a dynamic process and may change over time. 
One addition is symplasticity (item 3); this seems to limit how the subdivision can change, 
but in fact any change to the subdivision can be captured by a series of symplastic changes 
(Rosenfeld and Strong 1969). A more important addition by developmental computing 
is the requirement that the rules governing behaviour be local (item 4). The locality re-
quirement means that the behaviour of spatial elements is modular: it depends only on 
the element’s own history and neighbourhood. Thus, calling the elements modules in 
item 1 is justified. Requiring that rules be local might seem to be overly limiting; a large 
number of dynamic processes, however, feature local behaviour, including mechanical 
and chemical systems, biological processes, and geometric subdivision. 

A key requirement of the framework developed in this dissertation is to represent the 
topological structure of a dynamic spatial subdivision. The representation I use is the cell 
complex. A cell complex is a mathematical structure that can represent a subdivided space; 
its key feature is that not only are there subdivisions, or cells, of the same dimension 
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Figure 1.1: A two-dimensional cell complex representing a biological tissue. Two-dimensional 
mathematical cells, or “2-cells” (blue), represent biological cells; 1-cells (green) form the bound-
ary of 2-cells and represent biological cell walls; 0-cells (red) form the boundary of 1-cells and 
represent the junctions between biological cell walls. 

as the space represented, but there are also cells representing the boundaries between 
them (of one lower dimension), the boundaries between these (one dimension lower still), 
and so on. Thus, for instance, a two-dimensional representation of a biological tissue 
(Figure 1.1) contains two-dimensional mathematical cells representing biological cells,2 

one-dimensional mathematical cells representing biological cell walls, and zero-dimen-
sional mathematical cells representing the junctions between biological cell walls. 

In order to explore how cell complexes are a good fit to the class of problems consid-
ered within developmental computing, in the remainder of this chapter I will discuss the 
simplest case: developmental computing with cell complexes in one spatial dimension. Through 
the development of some one-dimensional examples, I will show the advantages of the 
cell complex approach: first, that they are a natural data structure for representing phys-
ical quantities that are inherently of different dimensions, such as “position”, “flux”, or 
“pressure”; and second, that a topological representation built on cell complexes is inher-
ently modular and lets us refer to neighbours and divide cells locally. 

1.1 Diffusion 

The first one-dimensional example is a model of diffusion. Diffusion is a physical process 
in which random molecular motion results in a flow of a substance within a medium from 
areas of high concentration toward areas of low concentration; see, for example, Crank 
(1975). Despite the randomness of the motion of any particular molecule, the change in 
the distribution of the substance is coordinated; the amount of substance leaving some 
region of the medium is on average proportional to the concentration of substance within 
that region in the first place (Figure 1.2). The net flux 𝐽 across some notional boundary 
is the difference between the amount of substance entering a region across the boundary 
and the amount of substance leaving across this boundary, and is thus proportional to 

2The word “cell” can refer to a biological entity or a mathematical structure; as these uses are long-
standing within both biology and mathematics, in this dissertation I will use the word with both meanings. 
Hopefully the particular meaning will usually be clear from context; in other cases, I will explicitly dis-
tinguish between “mathematical cells” and “biological cells”. 
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Figure 1.2: Random motion of particles across a notional boundary between two areas, one of 
high concentration (red particles) and one of low concentration (blue particles). The number of 
particles leaving the high concentration area is greater than the number of particles entering it. 

the difference in the concentration 𝑐 of the substance on either side of the boundary: 

𝐽𝑖→𝑗 ∝ 𝑐𝑖 − 𝑐𝑗. (1.1) 

In a continuous space, the difference between (infinitesimally) adjacent regions is the 
gradient, and the flux at a point is given by Fick’s law: 

�⃗� (𝒙) ∝ ∇𝑐(𝒙), (1.2) 

where 𝑐(𝒙) is the concentration of the substance at position 𝒙. The accumulation or de-
pletion of the substance at any point is the divergence of the flux, so Fick’s law gives us 
the diffusion equation: 

𝜕 𝑐 
𝜕 𝑡 = 𝐷 ∇𝑐, (1.3) 

where the coefficient of proportionality 𝐷 is called the diffusion coefficient. 
Here, however, we will consider diffusion within an inherently discrete structure, 

a filament of uniformly-sized biological cells numbered {… , 𝑖 − 1, 𝑖, 𝑖 + 1, …}. We assume 
that the concentration 𝑐 of the substance is approximately constant within each cell (Fig-
ure 1.3); this is reasonable if the cell walls pose the greatest barrier to diffusion within 
the filament. Instead of re-discretizing Equation 1.3, we proceed directly from Equa-
tion 1.1; if we use 𝑘𝑖 for the coefficient of proportionality for diffusion between cells 𝑖 
and 𝑖 + 1, then 

𝐽𝑖→𝑖+ = 𝑘𝑖 (𝑐𝑖 − 𝑐𝑖+) . 
Because the change of concentration in cell 𝑖 is the sum of the flux entering on the left 
and the flux leaving on the right, 

𝑑𝑐𝑖
 
𝑑𝑡 = 𝐽𝑖−→𝑖 − 𝐽𝑖→𝑖+,
 

we see that 
𝑑𝑐𝑖 
𝑑𝑡 = 𝑘𝑖− (𝑐𝑖− − 𝑐𝑖) − 𝑘𝑖 (𝑐𝑖 − 𝑐𝑖+) . (1.4) 

This is a family of equations, one for each cell except for the cells at the left and right 
sides of the filament, with indexes 1 and 𝑁; with only one neighbour each, the equations 
for these cells are 

𝑑𝑐 𝑑𝑐𝑁 

𝑑𝑡 = −𝑘 (𝑐 − 𝑐) and 𝑑𝑡 = 𝑘𝑁 (𝑐𝑁 − − 𝑐𝑁 ) . 
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𝐱
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𝐱

𝑐

𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2

𝑐𝑖−
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𝑐𝑖
𝑐𝑖+

𝑐𝑖+

Figure 1.3: Plots of the concentration of a diffusing substance in one dimension. Left: The con-
centration varies continuously along a continuous filament. Right: The concentration along a 
filament of cells is approximately constant within each cell and changes discontinuously on the 
boundaries between cells. 

This family of equations is all we need to simulate the diffusion of the substance 
within the filament. There are a couple of points to make, however, regarding the form 
of these equations: their repeated terms and their use of indices. In addressing these points, 
we will see how one-dimensional cell complexes form a natural structure for this diffu-
sion problem. 

1.2 Repeated terms 

The first point to take note of in Equation 1.4 is the repeated terms; not in any single 
equation itself, but in the equations for neighbouring cells: 

𝑑𝑐𝑖
 
𝑑𝑡 = 𝑘𝑖− (𝑐𝑖− − 𝑐𝑖) −𝑘𝑖 (𝑐𝑖 − 𝑐𝑖+) (1.5a)
 

𝑑𝑐𝑖+ = 𝑘𝑖 (𝑐𝑖 − 𝑐𝑖+) − 𝑘𝑖+ (𝑐𝑖+ − 𝑐𝑖+) . (1.5b)𝑑𝑡 

The quantity 𝑘𝑖 (𝑐𝑖 − 𝑐𝑖+) represents the substance leaving cell 𝑖 and the substance entering 
cell 𝑖 + 1, so it makes sense that it appears in both equations. The question that imme-
diately arises is when do we actually compute this quantity? At first sight, computing 
this value twice, once to calculate 𝑑𝑐𝑖/𝑑𝑡 and once to calculate 𝑑𝑐𝑖+/𝑑𝑡, may seem merely 
redundant, or possibly inefficient. Unfortunately, there is a deeper problem with evalu-
ating this value twice. 

Nothing has yet been said about the diffusion coefficients 𝑘𝑖; in fact, these can be 
constants, or depend on time, position, or concentration. Remembering that diffusion is 
caused by random molecular motion, it is reasonable that they can also be random variables; 
indeed, constant diffusion coefficients are only a large-number approximation, and ran-
dom coefficients are to be expected if the number of diffusing molecules is small (Gille-
spie 1976). But if 𝑘𝑖 is a random variable and the term 𝑘𝑖 (𝑐𝑖 − 𝑐𝑖+) is calculated twice 
(once in Equation 1.5a, once in Equation 1.5b), the values will likely be different. This 
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⋯ 𝐽𝑖− 𝑐𝑖− 𝐽𝑖− 𝑐𝑖 𝐽𝑖 𝑐𝑖+ 𝐽𝑖+ ⋯

Figure 1.4: Representing a filament by interleaved cells (black) and walls (red). The concentration 
𝑐 is a property of cells, while the flux 𝐽 is a property of walls. 

means that the computed amount of the substance leaving cell 𝑖 for cell 𝑖 + 1 will differ 
from the computed amount of substance entering cell 𝑖 + 1 from cell 𝑖. This contradicts 
the conservation of mass by non-physically creating or destroying the substance. 

The basic problem with the repeated term is that we are computing its value both 
when changing the concentration 𝑐𝑖 and the concentration 𝑐𝑖+; that is, when updating 
both cell 𝑖 and cell 𝑖 + 1. However, it is clear that the amount of substance travelling 
between cells 𝑖 and 𝑖 + 1 is not a property of either cell; instead, it is a property of the 
interface between them. This means that a sequence of cells alone is not an adequate 
representation for the diffusion problem; we also need to consider the interfaces, leading 
us to a sequence of cells separated by walls (Figure 1.4). 

Each equation 1.4 will then be replaced by two equations, one describing the change 
of flux through walls and one describing the change of concentration in cells: 

𝐽𝑖−→𝑖 = 𝑘𝑖− (𝑐𝑖− − 𝑐𝑖) 
𝑑𝑐 (1.6)𝑖 

𝑑𝑡 = 𝐽𝑖−→𝑖 − 𝐽𝑖→𝑖+ 

Equations 1.6 computes fluxes and changes in concentrations in a manner similar to Equa-
tion 1.4, but the computation of each flux is carried out only once, so mass is conserved 
even if the coefficients 𝑘𝑖 are random variables. 

By explicitly incorporating walls in our description of diffusion, we have a place to 
compute and store all of the important quantities: concentration in cells, and flux in 
walls. Introducing the (zero-dimensional) boundaries between (one-dimensional) cells 
turns the representation into a cell complex, and we can now see one significant advantage 
of cell complexes in developmental modeling: that physical quantities representing a 
problem have different inherent dimensionalities, and cell complexes offer places to store 
these quantities. 

1.3 Indices 

Three cells are referred to in Equation 1.4: cells 𝑖− 1, 𝑖, and 𝑖+ 1. These indices describe an 
adjacency between the cells: a cell 𝑖 has two neighbouring cells, cell 𝑖−1 and cell 𝑖+1. This 
neighbour relationship, where each cell has one neighbour in the “positive” direction and 
one neighbour in the “negative” direction, defines the one-dimensional topological space 
of the diffusion model. Equations 1.4 implicitly define the topological space through 
index arithmetic; the cells of the filament are numbered 1 through 𝑁, and a cell with index 
𝑗 ∈ {2, 3, … , 𝑁 − 1} has one neighbour in the negative direction, with index 𝑗 − 1, and one 
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(a)
⋯ ⋯

⋯ L R ⋯
(b)
⋯ 7 8 9 10 11 ⋯

⋯ 7 8 9 42 10 11 ⋯
(c)
⋯ 7 8 9 10 11 ⋯

⋯ 7 8 9 10 11 12 ⋯

Figure 1.5: (a) The change in neighbourhood relationships when a cell in a filament divides. (b) Giving a 
new index to a child cell breaks index arithmetic. (c) Index arithmetic can be maintained by a non-local 
operation: renumbering all cells to the right. 

neighbour in the positive direction, with index 𝑗 + 1. The use of indices in this way is 
nearly ubiquitous in mathematics; for example, Crank (1975), in discussing solutions 
to the diffusion equation, introduces indices representing neighbourhood relationships 
without comment. 

The use of indices, however, introduces two properties to the topological space 
which are not inherent in the problem of diffusion in a filament. The first is that the 
use of index arithmetic to find neighbours means that repeated arithmetic finds neigh-
bours of neighbours. This means that cell (𝑖 + 4) is always four cells to the right of cell 𝑖. 
The problem can be seen as soon as cells are allowed to divide. When a cell divides in two, 
its child cells each inherit one neighbour (Figure 1.5a); the “negative”, or left child has 
the parent cell’s left neighbour, while the “positive”, or right child has the parent’s right 
neighbour. The child cells are also neighbours of each other; the left cell is the left neigh-
bour of the right cell, and vice versa. Now, if the cells are all numbered, what numbers 
do the child cells receive? One option is to give them new numbers, or possibly to have 
one keep the parent’s number and the other a new number (Figure 1.5b). This choice, 
however, breaks index arithmetic; we can no longer add 1 to find the cell to the right, or 
subtract 1 to find the cell to the left, and cell (𝑖 + 4) is no longer four cells to the right of 
cell 𝑖. The other option is to maintain index arithmetic by renumbering other cells. One 
way to do this is to give the left child the parent’s old number, then reassign numbers 
to the remaining cells to the right (Figure 1.5c). The index arithmetic still defines the 
topology; however, the cost is that the division operation is no longer local, since cells 
even far to the right of the division must be renumbered. This contravenes the locality 
requirement of developmental computing. 

If we don’t use index arithmetic, how else can we describe the topological space? In 
one dimension, this is particularly easy: we can use a string. For the diffusion problem, 
we can use a parametric string (Prusinkiewicz and Lindenmayer 1990; Hanan 1992), a 
sequence of modules of the form Cell(𝑐), where 𝑐 is the concentration. The filament 
itself would then be represented by a string of the form 

⋯ Cell(𝑐) Cell(𝑐) Cell(𝑐) ⋯ . 

In Section 1.2, we introduced a cell complex representation by explicitly considering 
walls between the cells. In the string, we can represent a wall by a module Wall(𝐽 ). The 
entire string will then have the form 

⋯ Wall(𝐽 ) Cell(𝑐) Wall(𝐽 ) Cell(𝑐) Wall(𝐽 ) ⋯ . 

The second of the two unnecessary properties introduced by indices is introduced 
by the topological space of a string as well. This is the fact that one of the neighbours 
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of a module has been identified as the “left” neighbour, while the other is the “right” 
neighbour. This in turn implies a left-right orientation of the entire filament. An implied 
orientation of the space is also introduced in two-dimensional representations such as vv 
(Section 2.1.4), but can be avoided using cell complexes. 

With a string representation of the filament, we are ready to write a purely local, 
index-free version of Equation 1.4. 

1.4 L-systems 

To operate on the string representing our filament, we will use a context-sensitive L-system 
(Prusinkiewicz and Lindenmayer 1990). An L-system provides rules (productions) of the 
form 

ℓ𝑚 ⋯ ℓ < a > r ⋯ r𝑛 → b ⋯ b𝑘. 

This production states that module a (the strict predecessor), when found in the string with 
substring ℓ𝑚 ⋯ ℓ to its left and substring r ⋯ r𝑛 to its right, is replaced by the successor 
string b ⋯ b𝑘. Each module in the string is rewritten by the first applicable production, 
and all of the applicable productions are used in parallel. 

Because of this parallel application of productions, a derivation step is unambiguously 
defined; each step can then be considered as advancement in time (Lindenmayer 1968). 
This means that, just as the symbols < and > denote neighbourhood in space, → denotes 
neighbourhood in time; any L-system production is thus local in both. 

Assuming sufficiently small time steps 𝛥𝑡, Equations 1.6 can be solved numerically 
by the forward Euler method: 

𝐽 𝑡𝑖−→𝑖 = 𝑘𝑡 𝑖− − 𝑐𝑡−𝑖− 𝑐𝑡− 𝑖 (1.7)
𝑐𝑡 = 𝑐𝑡− + 𝛥𝑡 𝐽 𝑡 𝑖→𝑖+𝑖 𝑖 𝑖−→𝑖 − 𝐽 𝑡

which has a clear translation into productions: 

Cell(𝑐𝐿) < Wall(𝐽 ) > Cell(𝑐𝑅) → Wall (𝑘 (𝑐𝐿 − 𝑐𝑅)) (1.8a) 
Wall(𝐽𝐿) < Cell(𝑐) > Wall(𝐽𝑅) → Cell (𝑐 + 𝛥𝑡 (𝐽𝐿 − 𝐽𝑅)) . (1.8b) 

Because Production 1.8b depends on the current flux values, these productions must be 
applied in two alternating phases: first, Production 1.8a is applied to the entire string to 
calculate the fluxes, then Production 1.8b is applied to calculate the new concentrations. 

A sample run of a simulation using these two productions is shown in Figure 1.6. 
Starting from an initially unbalanced distribution of the substance, diffusion rapidly 
spreads the substance over the entire filament. 

1.5 Heterocyst differentiation in Anabaena 

The diffusion simulation shown in Figure 1.6 has a fixed number of cells. To see how 
to adapt the simulation to dividing cells, in this section I consider a simulation of the 
development of the cyanobacterium Anabaena catenula. 
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(a) (b) 

(c) (d) 

Figure 1.6: Sample run of a diffusion simulation using Productions 1.8a and 1.8b. A filament of blue cells 
extends from left to right. The concentration in each cell is indicated by a red vertical line. (a) Starting from 
an initial concentration of 10 units of the substance in the middle cell and none in the rest of the cells, the 
substance diffuses out to the entire filament. (b) Time 𝑡 = 0.5. (c) Time 𝑡 = 2. (d) Finally, after some time 
(𝑡 = 10), the substance is evenly distributed. For this simulation, the diffusion coefficient 𝑘 is 1 everywhere. 

Anabaena is a simple organism that grows in multicellular filaments containing two 
types of cells. Vegetative cells are capable of photosynthesis and produce sugars. Hetero-
cysts fix nitrogen from the atmosphere to produce the nitrogen compounds needed for 
growth. Nitrogen fixation can only take place in the absence of oxygen, which is a prod-
uct of photosynthesis, so Anabaena separates the two processes by restricting them to 
different cells (Haselkorn 1978). Heterocysts appear in the filament at regular intervals; 
they cannot divide, but vegetative cells grow and divide, causing the filament to elongate. 
New heterocysts differentiate when the dividing vegetative cells need nitrogen to grow 
further but are too far from the existing heterocysts. This differentiation is controlled 
by the diffusion of a small protein called PatS which is produced by the heterocysts and 
inhibits the differentiation of vegetative cells into heterocysts (Yoon and Golden 1998). 
As the vegetative cells divide and existing heterocysts move further apart, the concen-
tration of PatS in the vegetative cells far from the heterocysts gradually decreases and 
eventually drops below a threshold in a cell near the center of the segment. This drop 
triggers the genetic mechanism which causes the cell to differentiate into a heterocyst. 

A simple L-system which illustrates this process is given in Algorithm 1.1. The values 
of various parameters are given in the #define section at the top; note that the diffusion 
coefficient 𝑘 in this example is a random variable. The Axiom is the initial string: a 
filament of three Cells separated by two Walls. The first and last cells are heterocysts, 
while the middle cell is vegetative. The Wall module is the same as in the diffusion 
example. The Cell module in this model has three parameters: the first is either 𝐻 or 𝑉 , 
indicating the cell type (heterocyst or vegetative); the second parameter 𝑠 is the length 
of the cell, always 1 for heterocysts; and the third parameter 𝑐 is the concentration of 
inhibitor in the cell. 

The computation is divided into two alternating phases. In the first phase, produc-
tion 𝑝 sets the flux in all Wall modules; this is the same as Production 1.8a from the 
diffusion example. In the second phase, extending Production 1.8b, the state of each 
Cell is altered. Productions 𝑝–𝑝 use logical guards which limit the conditions under 
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Algorithm 1.1 L-system model of heterocyst differentiation in Anabaena.
 
#define 𝐻 0 // Heterocyst cell type 
#define 𝑉 1 // Vegetative cell type 
#define 𝑘 ran(2.0) // Diffusion coefficient 
#define 𝜈 0.5 // Inhibitor turnover rate 
#define 𝑅 1.1 // Cell expansion rate 
#define 𝛩 0.1 // Threshold for heterocyst differentiation 
#define 𝑠𝑀𝐴𝑋 0.8 // Cell size at division 
#define 𝛥𝑡 0.01 // Time step 

Axiom: Cell(𝐻 , 1, 1) Wall(0) Cell(𝑉 , 1, 1) Wall(0) Cell(𝐻 , 1, 1) 
phase 1:
 
𝑝: Cell(𝑎𝐿, 𝑠𝐿, 𝑐𝐿) < Wall(𝐽 ) > Cell(𝑎𝑅, 𝑠𝑅, 𝑐𝑅) → Wall (𝑘 ⋅ (𝑐𝐿 − 𝑐𝑅))
 
phase 2:
 
𝑝: Cell(𝑎, 𝑠, 𝑐) ∶ 𝑎 = 𝐻 → Cell(𝐻 , 1, 1) 
𝑝: Wall(𝐽𝐿) < Cell(𝑎, 𝑠, 𝑐) > Wall(𝐽𝑅): 

𝑐 + 𝑐 + ((𝐽𝐿 − 𝐽𝑅) − 𝜈𝑐) 𝛥𝑡; 𝑠 + 𝑠𝑅𝛥𝑡;  
𝑐 < 𝛩 → Cell(𝐻 , 1, 1) // Differentiate into heterocyst 

𝑝: Wall(𝐽𝐿) < Cell(𝑎, 𝑠, 𝑐) > Wall(𝐽𝑅): 
𝑐 + 𝑐 + ((𝐽𝐿 − 𝐽𝑅) − 𝜈𝑐) 𝛥𝑡; 𝑠 + 𝑠𝑅𝛥𝑡;  
𝑠 > 𝑠𝑀𝐴𝑋 → Cell(𝑉 , 𝑠/2, 𝑐) Wall(0) Cell(𝑉 , 𝑠/2, 𝑐) // Divide 

𝑝: Wall(𝐽𝐿) < Cell(𝑎, 𝑠, 𝑐) > Wall(𝐽𝑅): 
𝑐 + 𝑐 + ((𝐽𝐿 − 𝐽𝑅) − 𝜈𝑐) 𝛥𝑡; 𝑠 + 𝑠𝑅𝛥𝑡;  
→ Cell(𝑉 , 𝑠, 𝑐) // Expand 
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which they are applied.3 Production 𝑝 has a guard 𝑎 = 𝐻 ;4 this means that it will only 
be executed if the cell is of type 𝐻, that is, a heterocyst. In this case, 𝑝 merely sets the size 
and concentration to 1. All heterocysts will be caught by this production, so productions 
𝑝–𝑝 will only affect vegetative cells. 

The vegetative cell productions 𝑝–𝑝 all have the same code block5 

𝑐 + 𝑐 + ((𝐽𝐿 − 𝐽𝑅) − 𝜈𝑐) 𝛥𝑡; 𝑠 + 𝑠𝑅𝛥𝑡;  , 

which computes the new values of 𝑐 and 𝑠. The computation of the new concentra-
tion takes place in the first statement in the block; the formula is the same as in Produc-
tion 1.8a plus an additional term, representing the turnover of a fraction 𝜈 of all of the 
inhibitor in the cell. The second statement in the block computes the new size of the 
cell. According to this statement, each cell expands exponentially with rate 𝑅. 

The productions now use the newly computed concentration and size to determine 
the fate of the cell. Productions 𝑝 through 𝑝 are tried in order; if a production’s condi-
tion is not satisfied, the next production is tried, until 𝑝, which is applied to the remain-
ing modules unconditionally. Production 𝑝 is applied if the concentration is less than 
the differentiation threshold 𝛩, and turns the vegetative cell into a heterocyst. Produc-
tion 𝑝 is applied if the cell is larger than the size threshold 𝑠𝑀𝐴𝑋 ; if so, then it divides. 
The division replaces the single Cell with two new vegetative cells, each half the size of 
the old cell but with the same concentration of inhibitor. These cells are separated by a 
new Wall. Finally, if neither of the previous cases applies, production 𝑝 simply updates 
the Cell module with the new concentration and size. 

Figure 1.7 shows some steps of a simulation using this L-system. As the vegetative 
cells expand and divide, the heterocysts are pushed apart. The concentration of the in-
hibitor in the vegetative cells decreases with their distance from the heterocysts, and 
when the heterocysts become far enough apart, the threshold in the cell halfway between 
them drops below the differentiation threshold and it becomes a heterocyst. The average 
distance between the heterocysts is thus maintained despite the growth of the filament. 

In the Anabaena model, we have easily adapted the diffusion productions 1.8a and 
1.8b to a growing filament of cells. Because of the topological nature of the rules, which 
refer to cells only through neighbourhood relations, the form of the productions is the 
same in the growing filament as in a filament where the number and neighbourhoods 

3These productions are written in the extended notation described in Měch (2005): 

left context < predecessor > right context ∶ 
{ code block } guard → successor 

where the code block is a block of C-like code which can be used to compute new values based on the 
parameters of the modules, and the guard is a logical statement which may depend on parameters or new 
values. Both the code block and guard are optional. If the guard is present, the production will be applied 
only if it evaluates to true. 

4Note that here, and in all Algorithms, the sign = denotes logical equality, as in if (𝑎 = 𝐻 ), while 
assignment is denoted by +, as in 𝑐 + 𝑐 + 𝐽 𝛥𝑡. 

5The repetition of this block can be avoided using, for instance, the L+C language; in that language, 
the conditional semantics described here can be implemented in a single production. 
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Figure 1.7: Snapshots of a simulation of heterocyst differentiation in a growing Anabaena filament. Non-
differentiated vegetative cells are shown in green and heterocysts are shown in red. Vertical bars indicate 
concentration of a diffusing inhibitor produced by the heterocysts. The blue horizontal line indicates the 
threshold of heterocyst differentiation. 

of cells does not change. The rule governing cell division, production 𝑝, is local in na-
ture. The Anabaena example thus demonstrates the use of cell complexes for a complete 
developmental computing model. 

1.6 Moving beyond one dimension 

I have shown two examples of computing in one-dimensional cell complexes: simple 
diffusion in a filament, and heterocyst differentiation in Anabaena. Both work on a topo-
logical space modeled in an index-free manner with a one-dimensional cell complex. We 
have seen that this choice has several advantages for developmental modeling. First, cell 
complexes let physical quantities of different inherent dimension sit in their proper place 
in the structure, on mathematical cells of the corresponding dimension. In these models, 
concentration of a substance is a property of one-dimensional cells, while the flux of the 
substance is a property of zero-dimensional cells. Second, the index-free structure lets 
all of the operations, including cell division, remain inherently local. Third, neighbour-
hood relations let developmental rules easily access values in neighbouring cells. 

Motivated by these advantages, in this dissertation I develop and explore the use of 
cell complexes as a modeling framework for problems in developmental computing. The 
text is divided into two parts: Part I deals with the theory and implementation of this 
modeling framework, while in Part II I show examples of its application to problems in 
geometric computing and biological modeling. 

Part I continues in Chapter 2, where I discuss previous work in this area, focusing on 
systems which operate in more than one dimension. I also review data structures used to 
model cell complexes and similar structures in more than one dimension. In Chapter 3, 
I introduce the mathematics of cell complexes, both as an abstract topological space and 
with the geometric interpretation of the divided manifold. I then derive the combinatorial 
map, the powerful structure upon which my modeling framework is built. In Chapter 4 
I describe the Cell Complex Framework; I discuss the algorithms underlying its atomic 
operations, the theoretical basis behind them, and their computer implementation. 

In Part II, I present modeling with the Cell Complex Framework and show some 



25 CHAPTER 1. INTRODUCTION 

specific developmental models created using it. In Chapter 5, I describe some basic tech-
niques which are common to many models. These include methods for iterating over 
cells in the cell complex, for subdividing cells, and for computing and incorporating ge-
ometric information such as a cell’s orientation, size, or centroid. The examples in this 
chapter also serve as an introduction to modeling with the Cell Complex Framework. 

Chapters 6 and 7 cover the two problem domains of geometric modeling and bio-
logical modeling, respectively. In these chapters, I describe models which apply the Cell 
Complex Framework to these two domains. Most of these examples are taken from 
the literature and have been previously implemented in other developmental comput-
ing frameworks. My reimplementations with cell complexes serve to demonstrate the 
workability and expressiveness of the Cell Complex Framework. In addition, the power 
of CCF as a modeling system is illustrated using several original models. Specifically, in 
Chapter 6 I discuss the geometric modeling of surfaces and volumes, including global 
mesh subdivision in two and three dimensions, polygonization of implicit surfaces, and 
a method for finding geodesics on surfaces. In Chapter 7, I cover biological modeling 
with the Cell Complex Framework, including models of cell growth and division. I also 
present two models of the moss Physcomitrella: a two-dimensional model of its leaves, and 
a three-dimensional model of its apical development. Finally in Chapter 8 I discuss the 
current state of the Cell Complex Framework, modeling with cell complexes, and future 
directions in this area. 



2 Previous Work 

The work described in this chapter comes from two areas. First is previous work in de-
velopmental computing; in the broad sense defined in Chapter 1, this is a recent field, but 
in the sense of computational models of plant development, the field has been around for many 
decades. In the modeling of one-dimensional structures (including branching structures) 
the field has been dominated by L-systems, a variant of sequential grammars. The influ-
ence of L-systems has been so pervasive that even in more than one dimension, develop-
mental models are often based on grammars or seen as higher-dimensional extensions of 
L-systems. 

The second field of work described in this chapter is data structures for cell complexes 
and similar topological objects, such as polygon meshes. This work comes largely from 
geometric modeling and includes representations intended for different purposes, with 
various strengths and limitations. Special attention will be paid to data structures based 
on the combinatorial map, which the Cell Complex Framework described in this disserta-
tion is built on. 

2.1 Languages for developmental computing 

2.1.1 One-dimensional grammars 

The L-system formalism was introduced by Lindenmayer (1968), based on sequential gram-
mars (Chomsky 1956) and sequential machines (Ginsburg 1960). Lindenmayer’s original 
conception was of a number of cells, each of which was at in one of a number of states 
representing physiological or morphological conditions. In a discrete time step, each cell 
may change to a different state and produce one of a discrete set of outputs, representing 
diffusing chemicals or the like. Both the output and state change are deterministic, and 
the transition rules depend on the cell’s previous state and outputs of the cell’s neigh-
bours. 

In most of the models described by Lindenmayer (1968), the outputs are identified 
with the states; a cell’s output is the same as its state, and so the transition rules are func-
tions of the states of the cell and its neighbours. This is the interpretation which has been 
carried forward in work on L-systems. The first topological space — a set of objects and 
neighbourhood relations between them — described by Lindenmayer is that of the string. 
The cells are arranged in a sequence, and a cell’s neighbours are those cells preceding and 
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succeeding it in the sequence. This means that, as discussed in Section 1.4, the transition 
rules, or productions, can be written in the form 

1ℓ𝑚 ⋯ ℓ < a > r ⋯ r𝑛 → b ⋯ b𝑘.

This rule states that a cell in state 𝑎 (the predecessor), preceded by 𝑚 cells in states ℓ𝑚 ⋯ ℓ 

(the left context) and succeeded by 𝑛 cells in states r ⋯ r𝑛 (the right context), can be replaced 
by 𝑘 cells (the successor) in states b ⋯ b𝑘. The death of the predecessor cell is represented 
by an empty successor, while the division of the predecessor is represented by a successor 
of more than one cell. Lindenmayer (1968) also describes models with a tree topology, 
represented by a bracketed string; the form of productions is the same, with a branch 
being enclosed in brackets []. 

The formalism of L-systems as described by Lindenmayer (1968) has been extremely 
successful in biological modeling, and has been used to model everything from cellular 
filaments (Prusinkiewicz, Hammel, and Mjolsness 1993) to herbaceous plants and trees 
(Prusinkiewicz and Lindenmayer 1990). In later formulations, each symbol, or module, 
does not necessarily represent a single biological cell. Modules could directly correspond 
to plant organs, such as leaves and flowers; or these could be represented by a number 
of modules, which divide its behaviour into different functions (Cieslak et al. 2011); 
modules might even represent subcellular elements, such as an interface between cells, 
as in the L-systems described in Chapter 1. 

Most subsequent formalisms for developmental modeling have been influenced by L-
systems and their success. Indeed, many have been explicitly formulated as an application 
of L-systems to multidimensional topological spaces. 

2.1.2 Graph grammars 

One early approach to rewriting systems on multidimensional structures is graph gram-
mars. For instance, Pfaltz and Rosenfeld (1969) define a formalism for rewriting “webs”: 
directed graphs with labelled vertices. In a string, the assignment of neighbourhoods 
to new modules is clear; the left neighbour of the old module is the left neighbour of 
the leftmost new module, and the right neighbour of the old module is the right neigh-
bour of the rightmost new module. In a graph, however, reassigning neighbourhoods 
is ambiguous. Because of this, a production in a web grammar must include not only 
predecessor, context, and successor, but also an “embedding”, a description of how to 
attach the old neighbourhood to the new modules. Pfaltz and Rosenfeld (1969) consider 
both acyclic and cyclic directed graphs; on acyclic graphs their embeddings are simple, 
and usually of the form “if there was an edge from a node 𝑥 to predecessor node 𝑎 in the 
old graph, there will be an edge from 𝑥 to each of 𝑎’s successors in the new graph”. On 
directed graphs with cycles, the question of embedding is more complex, and Pfaltz and 
Rosenfeld do not answer it. 

A related publication (Rosenfeld and Strong 1969) discusses in more detail the prob-
lem of embedding in “map grammars”; that is, grammars on planar graphs with a planar 

1Older publications on sequential grammars use varying, inconsistent notation; for simplicity I use 
here the notation for productions described by Prusinkiewicz and Lindenmayer (1990). 
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Figure 2.1: Cell division defined by a map L-system. (a) The initial state of the cell. (b) Walls 
have been altered according to the one-dimensional productions {𝑎 → 𝑏𝑏, 𝑏 → 𝑎}. (c) The cell 𝐶 
has been split according to the two-dimensional production 𝐶 → ((𝑏𝑎𝑏, 𝐶), (𝑏𝑎𝑏, 𝐶), 𝑎). 

embedding. To create an embedding, Rosenfeld and Strong (1969) use what they call 
the “map multigraph”, which records at each vertex a cyclic ordering of the neighbour-
ing vertices. This structure is more commonly called the graph rotation system; Edmonds 
(1960) showed that this information uniquely identifies the graph’s planar embedding. 
The graph rotation system is a convenient local specification of the graph, and as such 
it is used in many grammars and developmental computing formalisms, in particular vv 
(Section 2.1.4). Rosenfeld and Strong (1969) demonstrate that in a split of one vertex 
into two, the vertex’s cyclic neighbourhood must be split into exactly two parts which 
may only overlap on the endpoints; two adjacent vertices whose neighbourhoods have 
this structure can be merged. They also show that any graph alteration can be performed 
by a succession of binary splits and merges; the problem of the embedding of an arbitrary 
production is thus reduced to splitting and merging the cyclic neighbourhoods of a num-
ber of single vertex divisions. 

Graph rotation systems only uniquely identify planar graphs, which are two-dimen-
sional structures; in higher dimensions, another solution must be found. Mayoh (1974) 
pointed out that the surface of any polyhedral volume is itself a planar graph, and can 
thus be represented and manipulated by graph rotation systems, but did not pursue this 
further. 

2.1.3 Multidimensional extensions to L-systems 

A more direct two-dimensional successor to L-systems is provided by map L-systems (Lin-
denmayer and Rozenberg 1979). Map L-systems act on subdivisions of the plane; each 
two-dimensional division is a cell, and their boundaries are walls. The development of 
the system is broken into two phases: a one-dimensional step, in the style of L-systems, 
operating on walls, then a two-dimensional step which divides the cells. Walls are bro-
ken into segments, each represented by a symbol (Figure 2.1a); the one-dimensional step 
then modifies the walls using L-system productions (Figure 2.1b): 

𝑎 → 𝑏𝑏 
𝑏 → 𝑎. 

The two-dimensional step then describes the actual cell division. In this step, each cell
 
is represented by a symbol. A production specifies explicitly how the cyclic neighbour-
hood of the cell is split by giving the wall sequence of each child cell along with the
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Figure 2.2: Cell division defined by a map L-system with markers. (a) The initial state of the cell. 
(b) Walls have been altered according to the one-dimensional productions {𝑎 → 𝑏(𝑎)𝑏, 𝑏 → 𝑎}. (c) 
The markers (𝑎) are joined automatically to divide the cell into two, separated by a new wall with 
symbol 𝑎. 

child’s symbol, as well as the wall sequence of the new division wall (Figure 2.1c): 

𝐶 → ((𝑏𝑎𝑏, 𝐶), (𝑏𝑎𝑏, 𝐶), 𝑎). 

An extension of map L-systems to three dimensions (Lindenmayer 1984) adds a third 
phase, for the splitting of three-dimensional cells. Here, faces and cells do not have sym-
bols; rather, they are specified by listing their boundaries. Two-dimensional faces are 
denoted by their cyclic bounding edges, while three-dimensional faces are defined by a 
multiset of face descriptions. A three-dimensional production may have the form 

[(𝐴𝐵𝐴𝐵), (𝐵𝐶𝐵𝐶), (𝐴𝐶𝐴𝐶)] → [(𝐴𝐵𝐴𝐵), (𝐵𝐶𝐵𝐶), 𝐴𝐶𝐴𝐶, 𝐴𝐶𝐴𝐶], 

where a squared entity indicates two copies, and the underlined face is the new division 
wall. 

A different version of map L-systems, the edge-controlled formalism, or map L-systems 
with markers (Nakamura, Lindenmayer, and Aizawa 1986), also privileges edges over cells. 
Again, cells do not have symbols, but cell division is now controlled entirely by the edge 
productions. This is done by adding new marker symbols, which indicate the endpoint 
of a division wall. A pair of markers on the wall of a cell are matched up automatically 
to divide the cell. The productions describing the cell division in Figure 2.2 are 

𝑎 → 𝑏(𝑎)𝑏 
𝑏 → 𝑎 

where (𝑎) is a marker for the endpoint of a division wall with symbol 𝑎. 
Map L-systems, especially map L-systems with markers, are a powerful formalism for 

describing two-dimensional spaces of dividing cells. However, while they work well for 
specifying the division of regular arrangements of cells, they become less controllable 
and more complex as the shape of the cells becomes more irregular. Partly in response 
to this, cell systems, a cell-controlled formalism for dividing cells, were developed by de 
Boer, Fracchia, and Prusinkiewicz (1992). In cell systems it is cells, not edges, which are 
explicitly denoted by symbols and which control division. For example, a cell system 
production may have the form 

𝐶 → 𝐶 |(90∘, 0.6) 𝐶. 
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The notation |(90∘, 0.6) specifies a division wall; the first argument defines the angle the 
wall makes with an external vector field, the second gives the relative size of the two 
child cells. Thus, the described division takes place perpendicular to the vector field and 
creates two child cells which take up 60% (= 0.6) and 40% of the area of the parent cell. 
The external vector field may be constant or may depend on the cells themselves, for in-
stance as the gradient of some substance produced by the cells. The reliance on the exter-
nal vector field and the relative sizes of the child cells means that, unlike map L-systems, 
cell systems must have a defined geometry. In (de Boer, Fracchia, and Prusinkiewicz 
1992), this geometry was provided by a physical simulation on the cell structure, which 
assigned pressures to cells and tensions to walls and brought the arrangement of cells into 
mechanical equilibrium before each production step. While the particular geometrical 
realization could be changed, this could not be described within the formalism of cell 
systems itself. 

A different direction is taken by 3Gmap L-systems (Terraz et al. 2009). These also 
work by productions on cells, rather than walls, but the cells in question are three-dimen-
sional. The three-dimensional topology of the cells is recorded as a cell complex using 
a G-map, a data structure I will discuss in more depth in Section 2.2.3. Despite using 
a data structure that allows access to an entire cell complex, 3Gmap L-systems only use 
the adjacencies between 3-dimensional cells. 

In order to simplify productions, the shape of cells is restricted to prisms (Figure 2.3). 
Each prism has polygonal endcaps 𝐴𝑂 and 𝐴𝐸, the “origin” and “end” faces, and rectan-
gular side walls, denoted {𝐴𝐶, … , 𝐴𝐶𝑛}. These wall identifiers are used to describe adja-
cency; for example, the production 

𝐴 ∶ 𝐴𝑂 < 𝐵𝐸 → 𝐶 

means that cell 𝐴 is relabelled 𝐶 if its origin face is adjacent to the end face of a 𝐵 cell. New 
cells arise in one of two ways: either an existing cell is split parallel to one of its faces (Fig-
ures 2.3a, b), or the face of an existing cell is extruded to form a new prism (Figure 2.3c). 
Productions can also join together two faces and create an adjacency (Figure 2.3d). 

Geometrically, a prism has a specified size (height, width, and length) and rotation 
(yaw, pitch, and roll relative to its parent prism). Vertices which are shared between 
two or more prisms are placed at the average position of the corresponding vertices in 
“ideal” forms of those prisms. There is no mechanism to guard against self-penetration 
by non-adjacent prisms. 

2.1.4 Two recent formalisms 

Two recent formalisms for developmental computing in higher dimensions are mgs (Gi-
avitto and Michel 2001) and vv (Smith, Prusinkiewicz, and Samavati 2003). A contrast 
of these two systems will highlight some of the ideas that went into the development of 
the cell complex framework. 

mgs (Modèle Géneral de Simulation) is a general declarative programming language 
unifying computing in different topological spaces. Like L-systems, it is based on produc-
tions; the predecessor, however, can describe any pattern of adjacency between modules, 
while the successor is a transformation made on the matched pattern. The patterns are 
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Figure 2.3: Operations on a three-dimensional structure specified in 3Gmap L-systems. Each cell 
is identified by a letter and has an orientation, from origin to end faces, indicated by an arrow. 
(a) A prism-shaped cell is split along a plane parallel to its origin face (blue) (𝐴 →𝑂 𝐵𝐶) (b) A cell 
is split along a plane parallel to a side face (red) (𝐴 →𝐶 𝐵𝐶) (c) Having specified a face (green), 
a new cell can be produced either by splitting parallel to it (top, 𝐵 →𝐶 𝐵𝐹) or by extruding across 
it (bottom, 𝐵 → 𝐵[𝐹]𝐶) (d) After adding new cells across side faces (𝐴 → 𝐴[𝐹]𝐶), the new cells 
can be made adjacent by identifying the walls (𝐹 ∶ 𝐹𝐶 < 𝐹𝐶 → 𝐹𝐶|𝐹𝐶). 
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Figure 2.4: Some of the operations defined in vv. 

based on neighbourhood relations, but what “neighbourhood” means depends on the 
particular topological space used. Thus, the modules might be vertices in a graph, cells 
in a a grid, nodes in a tree, elements of a multiset, symbols in a string, and so on, with 
the corresponding definitions of “neighbourhood” between modules. A particular rule 
might be 

𝑥.𝑦.𝑧.𝑥 → op(𝑥, 𝑦, 𝑧), 

where the notation 𝑥.𝑦 means that module 𝑥 is adjacent to the module 𝑦. The pattern 
identifies all sets of three modules 𝑥, 𝑦, and 𝑧 such that 𝑥 is adjacent to 𝑦, 𝑦 is adjacent 
to 𝑧, and 𝑧 is adjacent to 𝑥, i.e. the three are mutually adjacent. The successor combines 
𝑥, 𝑦, and 𝑧 using some operator op. Used in a graph topology, this operation would be 
applied to all 3-cliques; on a hexagonal grid, to all triangular arrangements of three cells. 
In the topology of point sets with adjacency defined as adjacency of Voronoi regions, 
this pattern would identify all Delaunay triangles. 

A supported topology of particular interest is the cell complex (Spicher and Michel 
2007); in this case, the topological relations used are not mere adjacency, but incidence; 
that is, whether one cell lies in another’s boundary. If 𝑣 is in the boundary of 𝑒, then the 
relation is written 𝑣 ≺ 𝑒. The pattern matching a triangular face, for example, is 

𝑣 ≺ 𝑒 ≻ 𝑣 ≺ 𝑒 ≻ 𝑣 ≺ 𝑒 ≻ 𝑣, 
𝑒 ≺ 𝑓, 𝑒 ≺ 𝑓, 𝑒 ≺ 𝑓 

Unfortunately, the complexity of such pattern specifications increases as the dimension-
ality and the number of cells involved goes up. Consequently, to implement processes 
such as mesh subdivision in mgs, its creators have had to implement an interactive graph-
ical editor explicitly for specifying these adjacency patterns (Jullian 2005). 

Much of this difficulty comes from having to define adjacencies in a purely declar-
ative manner. The vv modeling system avoids this by changing to an imperative for-
malism. This formalism is based on the vertex-vertex algebra (Smith, Prusinkiewicz, and 
Samavati 2003), which defines operations on a graph rotation system. Recall that a graph 
rotation system is based on the cyclic ordering of the neighbours of a vertex. The opera-
tions provided by vv provide an interface for the modeler to examine and modify these 
cyclic orderings (Figure 2.4). The examination operations include nextto and prevto, 
which make it possible to iterate around a vertex’s cyclic neighbourhood; for instance, 
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𝑥 𝑦

𝑣 1.

𝑥 𝑦

𝑣 2.

𝑥 𝑦

𝑣 3.

𝑥 𝑦

𝑣

Figure 2.5: Inserting a new vertex 𝑣 between vertices 𝑥 and 𝑦 is a three-step process in vv. 
1.	 make [𝑥, 𝑦] nbof 𝑣 sets the cyclic neighbourhood of 𝑣 to [𝑥, 𝑦]. As 𝑣 is is not in the cyclic 

neighbourhood of either 𝑥 or 𝑦, this one-sided relation is depicted by a directed edge. 
2.	 replace 𝑥 by 𝑣 in 𝑦 replaces the entry for 𝑥 in 𝑦’s cyclic neighbourhood by 𝑣; now the neigh-

bourhood relation between 𝑣 and 𝑦 is mutual and the relations with 𝑥 are one-sided. 
3.	 replace 𝑦 by 𝑣 in 𝑥 replaces the entry for 𝑦 in 𝑥’s cyclic neighbourhood by 𝑣. The neighbour-

hood relationship is again symmetric and the graph is consistent. 

nextto 𝑥 in 𝑣 gives the vertex after 𝑥 in the neighbourhood of 𝑣. The modification op-
erations include erase, which removes a vertex from a cyclic neighbourhood; replace, 
which replaces one vertex with another in the cyclic neighbourhood; splice, which in-
serts a new vertex in the cyclic neighbourhood adjacent to a specified vertex; and make 
nbof , which replaces the existing cyclic neighbourhood with a new cyclic list. 

Operations in vv can be combined into an imperative program manipulating the 
topological structure. For example, inserting a new vertex 𝑣 between 𝑥 and 𝑦 is done 
by the sequence of operations shown in Figure 2.5: 

make {𝑥, 𝑦} nbof 𝑣 

replace 𝑥 by 𝑣 in 𝑦 

replace 𝑦 by 𝑣 in 𝑥. 

Using imperative operations, more complex manipulations are easier to specify in 
vv. Note, however, that the operations do not maintain the validity of the topology; 
after one or two of the operations depicted in Figure 2.5, the neighbourhood relation-
ship is not symmetric, and it is not until the third operation that the topology becomes 
consistent again. Further, a graph rotation system gives an explicit representation only 
of vertices; in vv edges are represented as vertex pairs, and faces have no built-in repre-
sentation at all. Finally, graph rotation systems and the vv algebra can only work in two 
dimensions; the theorem of Edmonds (1960) only applies to planar graphs, and a direct 
extension to three dimensions is impossible. 

2.1.5 Other approaches 

In addition to those describe above, several other environments that have been proposed 
or applied to model plant development should be mentioned here. The spatial dynamics 
of growth and development have been captured by a cellular Potts model of the root of 
Arabidopsis (Grieneisen et al. 2007). The topological entities in the cellular Potts frame-
work are points on a regular grid, each of which records which biological cell it is a part 
of. Biological cell interactions are then handled at the grid points between cells, flagged 
as “cell walls”. This approach implies that interactions between points within a cell are 
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implemented at the same level as interactions between different cells. In other words, 
qualitatively different entities such as cells and cell walls do not have qualitatively differ-
ent representations. Growth is modeled by changing the cell associated with a grid point 
as the growing tissue “flows” through space. A drawback of this technique in the context 
of plant modeling is that preventing relative motion of neighouring cells is quite diffi-
cult. For example, the cells in the model of Grieneisen et al. (2007) do not exhibit the 
symplastic growth characteristic of plant development; they can slide past one another 
and alter the topology of the cell arrangement during growth. 

Two more explicitly cell-based frameworks are CellModeller (Dupuy et al. 2008) 
and VirtualLeaf (Merks et al. 2011), which both seek to provide multicellular spaces 
to examine models of gene function in the context of cell growth, division, and inter-
cellular signalling. VirtualLeaf is the simpler of these two systems. The modeled two-
dimensional structure consists of polygonal cells separated by straight line segment walls. 
The built-in geometric evolution of the structure is physically-based; the structure seeks 
a balance between matching each cell’s preferred area with each wall’s preferred length, 
similar to the physically-based model behind the geometry of cell systems (de Boer, Frac-
chia, and Prusinkiewicz 1992). The biochemical networks within and between cells are 
modelled with ordinary differential equations. 

The CellModeller system is somewhat more complex, and includes an element of 
multiscale modeling. At the lowest of the three scales in this system are cell walls, and 
processes at this level include both membrane-bound processes and signalling between 
cells across walls. In the middle scale are individual plant cells; processes like a cell’s 
genetic regulatory network take place at this level. Finally, the topmost scale is an organ 
or tissue; modeled at this level are the interactions between organs or tissues. The system 
records both the neighbourhood relations within each scale (for example, which cells are 
adjacent) and the incidence relationships between the scales (for example, recording the 
walls of each particular cell). 

The incidence relationship between walls and cells is the same as the topological 
boundary relationship. It can therefore be useful in the same situations as described in 
Chapter 1; for instance, the differential equation for the accumulation of a diffusing 
substance within a cell simply adds the flux across the walls from the next scale down 
to contributions from the cell’s internal processes. However, the incidence relationship 
between cells and tissues seems to be more like “is part of ”/“contains”, not topological in 
character. More recent development of CellModeller, such as a model of biofilm growth 
(Rudge et al. 2012), has focused on these upper levels and interaction between cells and 
the tissues they are part of. 

Both of these systems support only a limited topological expressiveness: polygonal 
cells separated by cell walls, in the case of Virtual Leaf, or what amounts to the same, 
with the addition of tissue-level processes, for CellModeller. Neither system can easily 
be used for general developmental computing. 
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(c) Face-vertex list representation 
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simple mesh with two 𝑣 𝑓𝐵 ∶ ⟨𝑣, 𝑣, 𝑣⟩ 𝒜 𝑓𝐵 ∶ ⟨−, −, 𝑓𝐴⟩ 
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tices 𝑣 ∶ [𝑣, 𝑣] 

(e) Winged incidence representa-
(d) Vertex-vertex representation tion 

Figure 2.6: (a) A simple mesh and (b)-(e) several incidence-based representations of it 

2.2 Data structures for cell complexes and polygon meshes 

Structured topological representations are important in the fields of computer graphics 
and geometric modeling. This is especially true for modeling in two dimensions, where 
there are a large number of representations for polygon meshes. A polygon mesh is made up 
of points (the vertices of the mesh), one-dimensional curves connecting the points (the 
edges of the mesh), and polygons bounded by a curved sequence of edges (the faces of 
the mesh). In many representations, polygon meshes are equivalent to two-dimensional 
cell complexes, but some definitions may allow meshes which are not cell complexes, for 
example by allowing degenerate or self-intersecting polygons, or polygons with holes 
on the interior. 

The many different representations in the literature can largely be categorized by 
whether they are based on recording incidence between cells, or based on connecting han-
dles, data structures representing some combination of a small number of adjacent cells. 
An important class of the latter is representations based on the combinatorial map, upon 
which the Cell Complex Framework described in this thesis is based. 

2.2.1 Incidence-based representations 

The first class of mesh data structures to consider is incidence-based representations. These 
structures store the cell complex by recording incidence and adjacency between cells. A 
simple incidence-based representation is the incidence graph (Figure 2.6b). The boundary 
relation in a cell complex is a partial ordering (Section 3.2), and the incidence graph 
representation merely records this relation. This is enough information to represent the 
structure of the cell complex. 



36 CHAPTER 2. PREVIOUS WORK 

The incidence graph gives a complete list of all of the incidence relationships in a 
mesh. Some other incidence-based representations give only a subset of the complete 
incidence graph; the representation of the mesh is still unambiguous even with very few 
incidences marked, especially if these incidences are given with an implied ordering. For 
example, the face-vertex list (Botsch et al. 2010) explicitly defines vertices, then defines 
each polygonal face by the ordered list of vertices in its boundary (Figure 2.6c). This 
format is used by many mesh file formats, such as OBJ and VRML; polygonal meshes 
are sent to graphics hardware for rendering in a similar format. Note that this represen-
tation defines vertices (as primitives) and faces (as lists of vertices), but defines edges only 
implicitly, and multiply defines edges which are on more than one face. 

As the example of the face-vertex list shows, it is not necessary for a data structure 
to explicitly represent cells of every dimension. In the case of the vertex-vertex data 
structure used by vv (Section 2.1.4), only vertices are explicitly represented. Associated 
with each vertex is the cyclic list of adjacent vertices (Figure 2.6d), and this information 
is sufficient to uniquely define the topological structure (Edmonds 1960). 

Incidence-based representations can also include more structure than a basic inci-
dence graph. Storing this additional information can make tasks such as accessing neigh-
bourhoods or adding or removing cells easier. For example, the winged incidence graph 
(Paoluzzi et al. 1993) adds adjacency information to the incidence graph (Figure 2.6e). 
Associated with each vertex 𝑣 in the boundary of 𝑐 is the adjacent cell 𝑐′ which lies on 
the other side of the face opposite 𝑣. For instance, in the mesh shown in Figure 2.6a, 
the edge 𝑒 is opposite vertex 𝑣 in face 𝑓𝐴, and on the other side of that edge is face 𝑓𝐵; 
thus, in its winged incidence representation the adjacency to 𝑓𝐴 associated with 𝑣 (i.e. 
the first entry in the adjacency list) is 𝑓𝐵. This association relies on the duality between 
𝑘-cells and (𝑑 − 𝑘)-cells, and so is only defined for simplicial complexes (Section 3.1), for 
example, two-dimensional triangular meshes. 

2.2.2 Handle-based representations 

Another class of data structures for meshes is what I call handle-based representations. 
These are distinguished by the main entity, a handle, which in some way represents a po-
sition in the mesh; this is not (necessarily) a simple geometric object, and may encode an 
orientation or multiple incident objects. A small number of operations can be applied to 
a handle, each resulting in another handle; these are implemented as links between han-
dle data structures. A program can iterate around the mesh by following links between 
handles. 

One example of a handle-based representation can be created from the vertex-vertex 
path algebra, which was introduced by Smith (2006) as a shortened form for successive vv 
operations. The path algebra is based on three operations which can be applied to a pair 
of adjacent vertices (𝑣, 𝑤). The pair (𝑣, 𝑤) is distinct from the pair (𝑤, 𝑣), so each edge in 
the adjacency graph corresponds to two pairs; each pair is thus a half-edge. A number of 
handle-based representations are based on half- (or quarter-) edges or facets. 

The handle in the vv path algebra is a single half-edge (𝑣, 𝑤). The three operations 
which define the path algebra are (a) next, which changes 𝑤 to the next clockwise neigh-
bour of 𝑣; (b) prev, which changes 𝑤 to the next counterclockwise neighbour of 𝑣; and 



37 CHAPTER 2. PREVIOUS WORK 

𝑣

𝑤

(𝑣, 𝑤)

(a)

next (𝑣, 𝑤)

prev (𝑣, 𝑤)

swap (𝑣, 𝑤)

(b)

Figure 2.7: Vertex-vertex path algebra operations. (a) A planar graph with half-edge (𝑣, 𝑤) defined. 
(b) The action of the three operations next, prev, and swap. 

(c) swap, which interchanges 𝑣 and 𝑤. These operations are demonstrated in Figure 2.7. 
In a handle-based representation, if applying an operation op to a handle ℎ results 

in a handle ℎ′ , then there is a pointer from the data structure representing ℎ to the data 
structure for ℎ′ . A data structure representing a half-edge in the vv path algebra is then 

struct handle:
 
vertex v
 
vertex w
 
handle⋆ next
 
handle⋆ prev
 
handle⋆ swap
 

Applying an operation is simply performed by following the pointer to find the resulting 
handle. It is clear that the prevto and nextto operations of the standard vv algebra 
(Section 2.1.4) can be performed easily using prev and next. The other operations can 
also be converted into operations on handles. For example, Algorithm 2.1 removes an 
edge from the mesh. This is done by pointing the next and prev handles at each other 
for each half of the edge. For instance, the next operation applied to the prev handle 
should now bypass the deleted edge and give that edge’s own next handle. The isolated 
half-edges are then deleted. 

Algorithm 2.1 Deleting an edge in the vv path algebra 
Input: A half-edge ℎ 
1: procedure DeleteEdge(ℎ) 
2: ℎ′ +ℎ.swap 
3: ℎ.prev.next +ℎ.next 
4: ℎ.next.prev +ℎ.prev 
5: delete ℎ 
6: ℎ′ .prev.next +ℎ′ .next 
7: ℎ′ .next.prev +ℎ′ .prev 
8: delete ℎ′ 
9: end procedure 

An advantage of the handle-based representation over the implementation of vv 
based on adjacency is that operations which leave an inconsistent state, such as delet-
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Figure 2.8: In the quad-edge representation of a 
two-dimensional mesh, each edge corresponds to 
four handles (black, red, blue, green). The oper-
ations sym and flip are used to shift between the 
different handles on the same edge; the operation 
next moves to the next edge in the direction of the 
handle. 

ing only one half of the adjacency relation, can be detected immediately: one of the 
pointers will be invalid. On the other hand, it is simpler to confirm the validity of the 
entire mesh using the graph rotation system representation. Chen and Akleman (2003) 
combine the two, storing both a handle-based winged-edge representation with a graph 
rotation system to simplify the tasks of confirming that a mesh is valid and maintaining 
its validity. 

There are a variety of handle-based representations which also choose part-edges as 
handles, with different choices of operations. Some examples of these are the winged-edge 
representation (Baumgart 1975); the doubly-connected edge list (Muller and Preparata 1978); 
the half-edge representation (Weiler 1985); and the quad-edge representation (Guibas and 
Stolfi 1985). Unlike incidence-based representations, most of these data structures have 
been introduced in the context of computational geometry; they are proposed for use in 
algorithms in which the topological relations between objects is continually changing. 

The quad-edge representation is particularly relevant here, as it relates quite closely 
to representations based on the combinatorial map. In the quad-edge data structure, each 
edge is represented by exactly four handles (Figure 2.8). A single handle (“quad-edge”) 
represents the edge in one direction, next to one of the two adjacent faces. The opera-
tions on a handle are (a) sym changes the direction of the quad-edge; (b) flip changes the 
associated face of the quad-edge; and (c) next returns the next quad-edge found cycling 
around the face. 

There are a few handle-based representations for three-dimensional volumetric meshes. 
One example is the facet-edge representation (Dobkin and Laszlo 1987), designed as an ex-
tension of the quad-edge representation into three-dimensional meshes. Since an edge in 
a three-dimensional mesh may be incident to more than two facets, the handle changes 
from an oriented edge in quad-edge to an oriented facet-edge pair. There are two orien-
tations considered: the direction of the edge between its endpoints, and the orientation 
of the facet within the greater mesh (what Dobkin and Laszlo call “clocking”). There 
are thus four handles for each facet-edge pair, corresponding to all combinations of these 
orientations (Figure 2.9). A single handle then supports four operations: (a) rev changes 
the direction of the edge; (b) clock changes orientation of the facet; (c) enext changes 
the edge to the next in cycle about the facet; (d) fnext changes the facet to the next in 
cycle about the edge. The direction of the edge determines which edge is next under 
enext; the clocking determines which facet is next under fnext. 

Other three-dimensional handle-based representations tend to be based on the com-
binatorial map. As these representations are the inspiration for the system described in 
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rev

clock
(a) (b)

enext

fnext

Figure 2.9: The facet-edge representation for three-dimensional polyhedral meshes. (a) For a 
given facet and edge, there are four possible orientations; the facet can be oriented clockwise or 
counterclockwise (black or blue), and the edge can be oriented with or against the orientation 
of the facet (black or red). Navigation between these four handles is done with the operations 
rev and clock. (b) The next edge along the facet is chosen with operation enext. The next facet 
around the edge in a “positive” direction (determined by the orientation of the facet) is chosen 
with operation fnext. 

(a) (b) (c)

Figure 2.10: Constructing the combinatorial map of a two-dimensional mesh. (a) The vertices of the 
combinatorial map consist of vertex-vertices (red), edge-vertices (blue), and face-vertices (green), placed 
in the interior of cells of the corresponding dimension in the original mesh. (b) The vertices corresponding 
to incident cells are joined by an edge, forming a triangular subdivision of the original mesh. Each dart is 
a simplex with one vertex of each dimension. (c) For each dimension 𝑘, the dart has exactly one neighbour 
which shares all of the vertices except the vertex of dimension 𝑘. For example, the dart pointed to by the 
green arrow (𝜎) shares the vertex and edge vertices, but has a different face vertex. 

this thesis, they will be discussed separately in the next section. 

2.2.3 Representations based on the combinatorial map 

The two mesh representations described in this section, the cell tuple (Brisson 1990) and 
G-maps (Lienhardt 1991), are both based on the combinatorial map, a new cell complex 
built by subdividing the complex to be represented. The combinatorial map will be 
discussed more completely in Section 3.3; briefly, a combinatorial map is constructed 
from a given cell complex by placing a vertex in the interior of every cell (Figure 2.10a), 
then subdividing the highest-dimension cells into simplexes called darts (Figure 2.10b). 
In a 𝑛-dimensional cell complex, these darts will have 𝑛 + 1 vertices; one will be in the 
interior of an 𝑛-cell (an 𝑛-vertex), another in the interior of an incident (𝑛 − 1)-cell (an 
(𝑛 − 1)-vertex), and so on. 

Each dart is adjacent to 𝑛 + 1 others, and each adjacent dart shares all of the vertices 
with its neighbour except one. This means that, for each dart, exactly one of its neigh-
bours has a different 0-vertex; exactly one has a different 1-vertex, and exactly one has 



40 CHAPTER 2. PREVIOUS WORK 

a different 2-vertex (Figure 2.10c). Further, the unique 𝑘-neighbour of a dart’s own 
𝑘-neighbour is the original dart itself. We thus call these neighbourhood relationships 
“involutions”, and write the involution which produces the 𝑘-neighbour as 𝜎𝑘. 

This structure leads to an obvious definition of the handle: 
struct handle:
 

handle⋆ 𝜎
 

handle⋆ 𝜎
 

⋮
 
handle⋆ 𝜎𝑛
 

As with the other handle-based representations, a complete collection of darts and their 
corresponding involutions serves to completely define a cell complex; a proof of this is 
given by Brisson (1990) and is recapitulated in brief in Chapter 3. Darts and involutions 
are useful not only in representing the cell complex, but also in exploring and manipu-
lating it; some of these operations are described in Chapters 4 and 5. 

Both cell tuples (Brisson 1990) and G-maps (Lévy and Mallet 1999) have been im-
plemented with a handle of the above form. The primary difference between the two 
is the assumed underlying structure. While cell tuples assume an underlying manifold,2 

G-maps assume only the existence of a set of darts and involutions; this structure is not 
necessarily the combinatorial map of a divided manifold, but is the “generalized map” 
giving G-maps their name. Lienhardt (1994) defines the class of spaces which can be mod-
eled with G-maps as “quasi-manifolds”; this is a broader class than simple manifolds, and 
includes manifolds with singularities, as well as cells with discontinuous or nonspherical 
boundaries. 

Brisson (1990), on the other hand, starts from the assumption of a divided mani-
fold and from this develops the combinatorial map as a representation. While the more 
general G-maps can essentially only be modeled by an explicit representation of the in-
volution functions, an underlying manifold structure allows more freedom in the imple-
mentation of cell tuples. Brisson (1990) suggests several possible alternatives: a database 
of all possible cell tuples, with involutions determined by queries containing wildcards, 
or a direct representation of the combinatorial map using a graph data structure. Other 
alternatives described by Brisson rely on Theorem 3.3 (Section 3.3), that the involution
𝜎𝑘 depends only on the incident cells of dimensions 𝑘 − 1, 𝑘, and 𝑘 + 1. This fact can be 
leveraged to create a representation where each involution is described by the connec-
tion between (𝑐𝑘−, 𝑐𝑘, 𝑐𝑘+) and (𝑐𝑘−, 𝑐′ 𝑘, 𝑐𝑘+). The data structure I have used, described in 
Chapter 4, is similar to this proposed implementation. 

2Terms such as manifold and divided manifold will be defined more concretely in Chapter 3. For the 
distinction between cell tuples and G-maps, the key feature is that, like familiar Euclidean space, a manifold 
is a smooth space with a constant dimension. 



3 Mathematical background 

The characteristics of developmental computing given in Chapter 1 refer to the topological 
space represented; that is, the neighbourhood relations between the entities modeled. I have 
proposed the cell complex as a topological space which is well-suited to developmental 
computing, and in this chapter I present the mathematical foundations of cell complexes 
and their representation by combinatorial maps. 

While cell complexes are useful as an abstract topological space, within developmen-
tal computing we will usually use them as a model for a particular geometry. This chap-
ter therefore begins by discussing the underlying geometry which I assume in this work: 
the subdivided manifold. Cell complexes are introduced here as a representation for this 
subdivision. After demonstrating some properties of these particular cell complexes I 
will go on to present the properties of complexes in a more abstract setting, including 
the idea of geometry-independent orientation. Finally, I construct the combinatorial 
map and show how it is used to represent and manipulate cell complexes. This lays the 
groundwork for Chapter 4, where I use this structure to build the Cell Complex Frame-
work. 

Throughout this chapter, I will state a number of theorems about cell complexes. 
These theorems were originally proved rigorously by Brisson (1990); I state them here, 
along with Arguments which show the intuition behind each proof, to help explain some 
of the decisions made in the design of the Cell Complex Framework. 

3.1 Geometry and topology 

The topology modeled by the Cell Complex Framework (CCF) is that of the cell com-
plex. The underlying geometry assumed by the CCF, however, is the manifold (Hatcher 
2002). The defining feature of a manifold is that small portions are indistinguishable 
from flat space, a feature shared by geometric curves, surfaces, and cell layers, as well as 
objects in normal flat three-dimensional space. Representing a manifold computation-
ally is made easier if the manifold is subdivided by a cell complex; the local topology and 
geometry of each cell is simple, and the global topology described by the cell complex 
describes how these simple forms are combined into the manifold’s global geometry and 
topology. Of course, subdividing a manifold is also important in developmental model-
ing as the definition relies on interactions between neighbouring components. 

41
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(c)

(b)

(a)

Figure 3.1: a. Manifold surfaces: the surface of a sphere is a 2-dimensional manifold; the surface of a 
torus is also a 2-dimensional manifold; the loop is a 1-dimensional manifold. b. Nonmanifold surfaces: 
three sheets attached along a curve; two teardrops joined at a point; a loop with spokes. Points whose 
neighbourhoods are not locally Euclidean are indicated in red. c. Manifolds with boundary, indicated 
in blue: the truncated paraboloid is a 2-dimensional manifold with 1-dimensional boundary; the plane 
figure shown is a 2-dimensional manifold with 1-dimensional boundary in three parts; the solid cube is a 
3-dimensional manifold with 2-dimensional boundary. 
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Intuitively, a manifold is a collection of points that, at any point, looks like Euclidean 
space. More precisely, two spaces “look like” each other when there is a continuous 
mapping between them; such a mapping is called a homeomorphism, and such a mapping 
preserves topological properties. If 𝑀 is the manifold, then for any point 𝑝 ∈ 𝑀 there 
is an associated homeomorphism 𝜓𝑝 between the neighbourhood of 𝑝 and a subset of 

1𝑛-dimensional Euclidean space 𝐸𝑛. The dimension 𝑛 of the associated Euclidean space 
must be the same at all points 𝑝; it defines dimension of 𝑀. Each mapping 𝜓𝑝 is called 
a chart and the collection of all of the mappings is called an atlas for 𝑀. Some surfaces 
which are manifolds are shown in Figure 3.1a. 

If there are points where an otherwise manifold object 𝑀 is not locally homeomor-
phic to Euclidean space, these are called nonmanifold points. Some nonmanifold objects 
are shown in Figure 3.1b, with points which are not locally Euclidean indicated in red. 
For example, the leftmost example, of three sheets joined along a curve, is nonmani-
fold along the curve; in two-dimensional Euclidean space, such a curve would divide its 
neighbourhood in two, while here its neighbourhood is divided in three. The example 
in the middle, the teardrops joined at a point, is nonmanifold at that point because the 
surface is split by a single point, not a curve as would be the case with a two-dimensional 
manifold like the rest of the surface. The rightmost example, the wheel with spokes, is 
similar to the leftmost, with nonmanifold points where more than two curves meet. 

There is one important type of point which is not locally homeomorphic to Eu-
clidean space: the points in the boundary of an otherwise manifold space. We want to 
treat spaces with boundaries, so we extend our definition to the manifold with boundary. 
A manifold with boundary 𝑀 is a collection of points 𝑝, divided into two sets: the bound-
ary 𝜕𝑀 and the interior 𝑀⧵𝜕 𝑀. Interior points are locally Euclidean, just as in the case of a 
manifold; the neighbourhood of a point in the boundary is homeomorphic to a bounded 
Euclidean space.2 The boundary of an 𝑛-dimensional manifold is an (𝑛 − 1)-dimensional 
manifold (without boundary). Some manifolds with boundary are shown in Figure 3.1c; 
their respective boundaries are outlined in blue. 

A subdivision of an 𝑛-dimensional manifold 𝑀 is a set {𝑆𝑖 ⊂ 𝑀} of manifolds with 
boundary, where the submanifolds are all of the same dimension as 𝑀 and cover all of 
𝑀 (𝑀 = ⋃𝑖 𝑆𝑖), and any two submanifolds intersect only on their boundaries (𝑆𝑖 ∩ 𝑆𝑗≠𝑖 ⊂ 
𝜕 𝑆𝑖 ∩ 𝜕 𝑆𝑗). Figure 3.2 shows a manifold subdivided into submanifolds. 

The submanifolds of a divided manifold are discrete components which still describe 
the topology and geometry of the manifold. However, as Figure 3.2 suggests, a general 
subdivision of a manifold may still be too general to easily represent computationally. 
Indeed, without constraints on the form of the submanifolds, they may be even more 
complex than the original manifold; for instance, the submanifold marked by a star in 
Figure 3.2 has a boundary in two parts, unlike the undivided manifold. By constrain-

1Formally, 𝑝 is surrounded by an open set 𝑈 ⊂ 𝑀 with an associated open subset 𝑉 ⊂ 𝐸𝑛 related by 
the homeomorphism 𝜓𝑝 ∶ 𝑈 → 𝑉 . Without loss of generality, we can assume that 𝑉 is the open ball 
(𝑥, … , 𝑥𝑛 ) ∈ 𝐸𝑛 | ∑ 𝑥 < 1.𝑖 𝑖 

2Without loss of generality, the half-ball (𝑥, … , 𝑥𝑛) ∈ 𝐸𝑛 | 𝑥 >= 0, ∑ 𝑥 < 1. The half-ball is the same 𝑖 𝑖 
as the open ball, but with points in one dimension restricted to one side of the origin, giving a boundary 
at 𝑥 = 0. 
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⋆

Figure 3.2: A 2-dimensional manifold sub-
divided into eight submanifolds. Note 
that segments of the boundaries of each 
submanifold are either on the boundary 
of the entire manifold (black), or are on 
the shared boundary of two submanifolds 
(blue), except at discrete points where 
more than two submanifolds meet (red). 
Subdivided, however, does not mean sim-
pler; the starred submanifold (green) has 
a divided boundary, unlike the entire man-
ifold. 

ing the form of the submanifolds, however, the subdivision can be used to effectively 
represent the entire manifold. 

The first special subdivision to consider is the simplicial complex. A simplex is a gen-
eralization of the triangle or tetrahedron to an arbitrary dimension. Recall that three 
non-collinear points in a two-dimensional space uniquely identify a triangle, while four 
non-coplanar points in a three-dimensional space uniquely identify a tetrahedron. Gen-
eralizing this notion, we say that an 𝑛-simplex is uniquely defined by 𝑛 + 1 distinct points, 
or vertices. Thus, a single vertex is a 0-simplex; a 1-simplex, or edge, is uniquely defined 
by two vertices, its endpoints. A triangular 2-simplex is uniquely defined by three ver-
tices, a tetrahedral 3-simplex by four vertices, and so on.3 Figure 3.3 illustrates a single 
3-simplex and its boundary simplexes. Note that the boundary of a tetrahedron consists 
of four triangles, the boundary of a triangle is three edges, and the boundary of an edge is 
two vertices. In general, the boundary of an 𝑛-simplex consists of 𝑛 + 1 (𝑛 − 1)-simplexes, 
defined by the (𝑛+𝑛 ) = 𝑛 + 1 possible 𝑛-element subsets of its 𝑛 + 1 vertices. 

We denote the set of (𝑛 − 1)-simplexes which make up the boundary of 𝑛-simplex
𝑆 by 𝜕 𝑆, and say that the simplexes 𝑋 in the boundary of 𝑆 are incident to 𝑆, 𝑋 ≺ 𝑆. A 
boundary simplex 𝑋 is itself bounded by (𝑛 − 2)-simplexes 𝑌, 𝑌 ≺ 𝑋 , and so on. We 
extend the notion of incidence to all of these boundaries of boundaries; equivalently, all 
simplexes defined by any nonempty subset of the 𝑛 vertices of 𝑆 are incident to 𝑆, or the 
incidence operation is transitive, with 𝑌 ≺ 𝑋 ≺ 𝑆 implying 𝑌 ≺ 𝑆. 

A subdivision consisting of simplexes is a simplicial complex. We can construct a sim-
plicial complex on a manifold by iteratively joining (𝑛 − 1)-simplexes into 𝑛-simplexes. 
For example, consider the construction of a simplicial subdivision of a two-dimensional 
manifold: 

3The definitions of “triangle” and “tetrahedron” often require that the sides be straight; here I use them 
(and “polygon” below) to imply only the topological relationship between them and their sides, edges, and 
vertices (e.g. a triangle has three edges and three vertices; a tetrahedron has four triangular sides, six edges, 
and four vertices) and not their geometry. 
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1

2

3

4

𝑒 ∼ {1, 2}

𝑓 ∼ {1, 2, 3}

Figure 3.3: A 3-simplex is defined by four vertices, 
here numbered 1, 2, 3, 4. Its boundary contains four 
triangular faces (2-simplexes), defined by {1, 2, 3}, 
{1, 2, 4}, {1, 3, 4}, and {2, 3, 4}; note that these are the 
four three-element subsets of {1, 2, 3, 4}. The 3-
simplex contains six edges (1-simplexes), defined by
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, and {3, 4}, all of the two-
element subsets of {1, 2, 3, 4}. The triangle 𝑓, defined 
by {1, 2, 3}, has a boundary consisting of three edges, 
defined by {1, 2}, {1, 3}, and {2, 3}. The edge 𝑒, defined 
by {1, 2}, has a boundary consisting of those two ver-
tices. 

We start with a two-dimensional manifold with 
boundary. 

Several distinct points (red) are identified as ver-
tices (0-simplexes). 

Edges (blue) are added. These are curves on the 
manifold between vertices; there is at most one 
edge between any pair of vertices. Edges do 
not intersect vertices other than their own end-
points; they do not intersect other edges, except 
at shared endpoints. Since these edges are the 
boundaries of the submanifolds (triangles), the 
boundary of the manifold must be covered en-
tirely by edges. 
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Figure 3.4: An invalid simplicial subdivision of a two-
dimensional manifold. Each 2-simplex has three edges and 
three vertices, but some edges partly overlap. Overlapping 
edges have been moved apart slightly for illustration. 

In higher dimensions, we continue in the same vein; 3-simplexes are created from 
volumes of the manifold bounded by four triangles, and so on. The non-intersection 

Faces are created from non-overlapping patches 
of manifold bounded by exactly three edges. (If 
there are patches not bounded by three edges, 
they are further subdivided by adding edges.) 
These faces are then 2-simplexes defined by the 
three points delimiting the edges. Faces do 
not intersect with edges or vertices not in their 
boundary. 

requirement, in general, is this: 

Two simplexes do not intersect except on their shared boundaries, or where 
one lies entirely within the boundary of the other. 

This requirement rules out subdivisions like that shown in Figure 3.4. We can then 
see that the boundary of an 𝑛-dimensional manifold must be covered by entire (𝑛 − 1)-
simplexes, whose respective boundaries consist of (𝑛 − 2)-simplexes on the whole mani-
fold’s boundary. 

One very useful consequence of subdividing a manifold with a simplicial complex is 
Theorem 3.1: 

Theorem 3.1 (Lemma 4.2 from (Brisson 1990)). Let 𝕊 be a simplicial subdivision of 𝑛-dimensional 
manifold 𝑀, and 𝑆 be an (𝑛 − 1)-simplex in 𝕊. One of two cases is true: 

1. 𝑆 is in the boundary of 𝑀 and there is exactly one 𝑛-simplex with 𝑆 in its boundary. 
2. 𝑆 does not lie in the boundary of 𝑀 and there are exactly two such 𝑛-simplexes. 

Argument. Since 𝑀 is covered by 𝑛-simplexes, the interior of 𝑆 must intersect at least 
one of them, and by the non-intersection property, 𝑆 must therefore be in its boundary. 
Three cases can be seen in the following image: 

(a) (b) (c)
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Figure 3.5: A subdivided 2-dimensional manifold and the neighbourhood graph of 2-simplexes in 
the manifold. 

Edges on the boundary of 𝑀 are like the blue edge in (a); they are in the boundary of 
only one triangle. Edges in the interior of 𝑀 are like the green edge in (b); they are on 
the boundary of two triangles. The red edge in (c) is on the boundary of more than two 
triangles; however, if 𝑀 is a 2-dimensional manifold, the complex is nonmanifold on 
the red edge. In an 𝑛-dimensional manifold, then, the only two possibilities are (a) or 
(b). 

Theorem 3.1 tells us that we can identify pairs of 𝑛-simplexes which share a com-
mon (𝑛 − 1)-simplex. We say that these simplexes are neighbours. We can represent this 
relationship by a neighbourhood graph (Figure 3.5). A path on this graph corresponds to 
a path between 𝑛-simplexes which passes from neighbour to neighbour through (𝑛 − 1)-
simplexes. This leads to Theorem 3.2: 

Theorem 3.2 (Lemma 4.11 from (Brisson 1990)). If 𝑀 is a connected 𝑛-dimensional manifold 
subdivided by a simplicial complex 𝕊, then between any pair of 𝑛-simplexes 𝑆, 𝑆𝑘 there is a sequence 
of 𝑛-simplexes [𝑆, … , 𝑆𝑘−] such that 𝑆𝑖 and 𝑆𝑖+ are neighbours. 

Argument. Since 𝑀 is connected, there must be a curve connecting the two simplexes. If 
there were no neighbour-sequence, there would be some point where the curve is forced 
to cross between simplexes through a simplex of dimension less than 𝑛 − 1 (Figure 3.6). 
At this point, though, the complex would be nonmanifold. There must therefore be a 
neighbour-sequence. 

Theorem 3.2 is not immediately useful, but is vital for proving fundamental statements 
about combinatorial maps in Section 3.3. 

Simplicial complexes are a good choice as a topological structure for developmental 
computing: they have a well-defined geometry (as manifold subdivisions), a clear notion 
of neighbourhood, and can be easily represented digitally (as sets of vertices). However, 
the shapes we deal with in developmental computing are not necessarily as simple as sim-
plexes; in particular, an 𝑛-simplex has (𝑛 + 1) boundary faces, so can have no more than 
(𝑛 + 1) neighbouring simplexes. We may model geometric surfaces with quadrilaterals 
as well as triangles, though, and a three-dimensional plant cell may have more than four 
neighbours. Ideally, we would like a topological representation which allows more gen-
eral submanifold shapes and neighbourhood relations, while retaining the advantages of 
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Figure 3.6: The curve (blue) connecting two 𝑛-
simplexes (green, purple) cannot pass through an
(𝑛 − 1)-simplex (black) and must pass through a sim-
plex of dimension less than 𝑛 − 1 (red). On this sim-
plex, the complex is nonmanifold. 

simplicial complexes. For this purpose, we can move to the more general idea of cell 
complexes.4 

Like a simplicial complex, a cell complex is composed of objects of different dimen-
sions. These objects are called cells; just as for simplexes, a 0-cell is a single vertex, and a 
1-cell is an edge between vertices. The difference between simplexes and cells comes in 
higher dimensions: whereas an 𝑛-simplex is bounded by exactly 𝑛 + 1 (𝑛 − 1)-simplexes, 
an 𝑛-cell is a polytope bounded by at least two (𝑛 − 1)-cells. Thus, while a 2-simplex 
is a triangle, with three edges, a 2-cell is a polygon, with at least two edges. Naturally, 
this means that 𝑛-simplexes are just special cases of 𝑛-cells; however, while an 𝑛-simplex 
can be defined uniquely by its 𝑛 + 1 vertices, an 𝑛-cell is defined by the set of all of the 
(𝑛 − 1)-cells in its boundary. 

We can construct a cell complex in a similar way as we construct a simplicial com-
plex: 

0-cells (red) are identified on the manifold. 

Edges (blue) are added between distinct ver-
tices. There can be any number of edges be-
tween a given pair of vertices, though the non-
intersection property still holds; the edges can-
not intersect except at their shared vertices. 

4There are a number of similar mathematical structures. Most prominent is CW complexes (Hatcher 
2002), which differ from my definition of cell complexes by being more permissive in the choice of the 
boundary of a cell. I have not seen any definition of “cell complex” which corresponds exactly to the 
definition I use here. 
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Polygons are created from non-overlapping 
patches of manifold bounded by edges. Each 2-
cell can have any number of edges, and each is 
defined by the set of its bounding edges. 

Theorems 3.1 and 3.2 remains true for cell complexes. Because of this, the neigh-
bour relationship between 𝑛-cells sharing a (𝑛 − 1)-cell boundary is well-defined on any 
𝑛-dimensional cell complex. It is somewhat inconvenient that each cell requires the set 
of all of its boundary cells to be specified, but we can use some concepts from combina-
torial maps (Section 3.3) to both make defining cells somewhat simpler, and to make the 
operations we can use much more powerful. 

3.2 Abstract complexes 

This chapter has so far described simplicial and cell complexes as subdivisions of an un-
derlying manifold. There is another perspective on complexes, however. They can be 
defined abstractly, independent of an immediate geometric meaning. An abstract com-
plex can then be embedded in a manifold, giving each cell a geometric interpretation. This 
is in fact how the Cell Complex Framework models a subdivided manifold: as an abstract 
complex with an embedding. Abstract complexes are discussed in this section, while Sec-
tion 3.2.1 describes embeddings. 

Abstract complexes are defined purely combinatorially from lower to higher dimen-
sional cells, much like complexes defined as manifold subdivisions: 

1.	 Vertices are no longer points on a manifold; rather, they are just objects. 
2.	 Edges have no geometrical meaning; they are not curves. They are now merely 

objects whose boundary is a pair of vertices. In the case of a simplicial complex, 
we still require that edges are uniquely defined by these two vertices, but in a cell 
complex, we allow any number of edges sharing a single pair of vertices. 

3.	 𝑛-cells (and 𝑛-simplexes) are not subdivided pieces of manifold; they are, again, 
just objects with a set of (𝑛 − 1)-cells which define their boundary (or by 𝑛 + 1 
vertices, in a simplicial complex). 

As manifold subdivisions, the incidence relation ≺ between cells is defined geometrically; 
the 𝑚-cell 𝑐 is in the boundary of the 𝑛-cell 𝑐′ (where 𝑚 < 𝑛) if the points which make 
up 𝑐 are on the exterior of the closed manifold 𝑐′ . In an abstract complex, on the other 
hand, the incidence relation defines the complex. As before, if 𝑐 is in the boundary of 
𝑐′ , which is in turn in the boundary of 𝑐′′ , then 𝑐 is in the boundary of 𝑐′′ ; the relation is 
transitive. In addition, at most one of 𝑐 ≺ 𝑐′ or 𝑐′ ≺ 𝑐 is true, so the incidence relation is 
a partial order. We can therefore completely describe the topology of the complex with 
the Hasse diagram of this relation, otherwise called the incidence graph (Figure 3.7). 

With a few additions, we can extend the partial order into a lattice, which lets us 
define the operations meet (∧) and join (∨) (Figure 3.7c). The meet of two cells 𝑐 and 
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𝑣 𝑣 𝑣 𝑣

𝑒 𝑒 𝑒 𝑒 𝑒

𝑓𝐴 𝑓𝐵
⊤

⊥

(c)

𝑣 𝑣 𝑣 𝑣

𝑒 𝑒 𝑒 𝑒 𝑒

𝑓𝐴 𝑓𝐵(b)

𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵

(a)

Figure 3.7: (a) An abstract simplicial complex and (b) its incidence graph. (c) The incidence 
relation is extended to a lattice by adding pseudocells ⊤ and ⊥. meet and join relationships are 
illustrated: 𝑒 ∧ 𝑓𝐵 = 𝑣 and 𝑣 ∨ 𝑣 = 𝑒. 

𝑐 is the cell of highest dimension which lies in the boundary of both 𝑐 and 𝑐; in a 
subdivided manifold, it is the cell along which 𝑐 and 𝑐 meet. The join of 𝑐 and 𝑐, on 
the other hand, is the cell of lowest dimension which has both 𝑐 and 𝑐 in its boundary; 

5it is the cell which joins 𝑐 with 𝑐. In order for meet and join to be defined for all 
cells, we must add two pseudocells ⊤ and ⊥. ⊤ is the supremum; all cells lie in its boundary, 
while ⊥ is the infimum; it is in the boundary of all cells. While the addition of these 
two pseudocells may seem arbitrary, they become very useful in implementing the Cell 
Complex Framework in Chapter 4. 

3.2.1 Embedding 

We can assign geometric shapes to the cells of an abstract complex to turn it into a man-
ifold subdivision. Only geometric realizations that follow the rules described in Sec-
tion 3.1, especially the non-intersection requirement, are valid; we call these embeddings. 

One reasonable question is whether a given abstract complex can be embedded into a 
given manifold. In the extreme case, any simplicial complex with simplexes of dimension 
no greater than 𝑛 can be embedded in ℝ𝑛+ (Giblin 1977). In general, however, the 
embedding question is undecidable (Markov 1958). 

One embedding for complexes is so simple I call it the default embedding; it is used as 
the embedding for most of the models described in this thesis. A complex is embedded 
in ℝ𝑛 by (i) placing vertex 𝑣𝑖 at position ⃗𝑝𝑖; (ii) interpreting an edge from 𝑣𝑖 to 𝑣𝑗 as the 
line segment between 𝑝𝑖 and 𝑝𝑗; and (iii) interpreting a 𝑘-dimensional cell as the flat 𝑘-
dimensional subspace bounded by its (𝑛−1)-dimensional boundary cells. This embedding 
is defined for simplicial complexes. For general cell complexes, 𝑘-dimensional cells (for 
1 < 𝑘 < 𝑛) may not be realizable as flat 𝑘-dimensional spaces in a space of 𝑛 dimensions; 
for example, not all quadrilaterals in three dimensions are flat. This leads to ambiguity 
in the geometric interpretation of these cells. 

A distinction that comes up in relation to embedding is between intrinsic and extrinsic 

5Note that the symbols of these operations are the opposite of the shape they make on the incidence 
graph; the meet ∧ picks out a single lower-dimensional cell, while the join ∨ picks out a single higher-
dimensional cell. 
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(b)(a)

Figure 3.8: A cell complex in 
two isometric embeddings: (a) 
in the plane; (b) on the surface 
of a cylinder. 

geometric features. The distinction hinges on geometric qualities that depend only on 
the size of the embedded cells; these are intrinsic qualities, while all other geometric fea-
tures are called extrinsic. For instance, Figure 3.8 shows the same cell complex with an 
embedding in the plane and in the surface of a cylinder. Corresponding cells are of the 
same size: edges are of the same length, faces of the same area. We call such embeddings 
isometric. Extrinsic qualities, like the curvature of edges, depend on the particular embed-
ding; intrinsic qualities, like the angles between edges, depend only on the assignment 
of sizes. 

Two subdivided manifolds are isometric and have the same intrinsic qualities if there 
is a homeomorphism between them. 

3.2.2 Orientation and cell chains 

We have so far only touched on orientation with regard to the global orientation of a man-
ifold: for example, the inherent left-right orientation of a string, or the distinction in 
graph rotation systems between “clockwise” and “counterclockwise”. Orientation is 
important as it lets us compare numerical quantities on incident cells of different dimen-
sion. For example, recall the diffusion model from Section 1.1. A wall holds the flux 
between two cells. Because of the inherent left-right orientation, we know that this flux 
is positive if the flow is from left to right, and negative if from right to left. Without 
orientation, however, we could not know the direction of the flux. 

Orientation is a binary choice: in an embedding, it is the choice between right- and 
left-handed coordinate systems for the cell. The orientation of an edge is then a choice 
of the two possible directions along the edge (Figure 3.9a); the orientation of a face is a 
choice of the two-dimensional coordinate frame (Figure 3.9b); the orientation of a three-
dimensional volume is a choice of the three-dimensional coordinate frame (Figure 3.9c), 
and so on. 

The handedness of coordinate systems doesn’t hold in cell complexes without embed-
dings, but a concept of orientation exists in even abstract complexes. The orientation of 
an abstract edge is an assignment of a “from” vertex and a “to” vertex, while the orien-
tation of an abstract face is equivalent to an ordering of its edges (Figure 3.10ab). The 
orientation of an abstract cell of higher dimension is harder to visualize, but one possi-
bility is to see it as the combination of an orientation of one lower dimension, combined 
with a notion of “inside” (Figure 3.10c). 

Since the distinction between left-handed and right-handed coordinate systems is 
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(c)

𝑓

𝑓

(b)

𝑣 𝑣𝑒

𝑣 𝑣

𝑒

(a)

Figure 3.9: The two different orientations for cells of dimension 1, 2, and 3 correspond to a choice 
between right- and left-handed coordinate systems. 

(c)

𝑓𝑒

𝑒

𝑒

𝑒(b)

𝑣

𝑣(a)

Figure 3.10: (a) The orientation of an abstract edge is an assignment of “from” and “to” vertices 
(such as 𝑣 → 𝑣). (b) The orientation of an abstract face is equivalent to a circular ordering of 
its edges (such as [𝑒, 𝑒, 𝑒, 𝑒]). If there is a coordinate frame defined on the face, the circular 
orientation can be created by moving along the blue axis, then rotating in the direction of the red 
axis. (c) A helical orientation (brown) of a volume can be created by moving along the blue axis, 
rotating in the direction of the red axis, and moving in the direction of the green axis. Alternately, 
the helix can be created by starting with the purple face orientation and moving inwards along 
the green axis. Note that in all of these cases, the orientation of an 𝑛-cell is equivalent to the 
orientation of one of the (𝑛 − 1)-cells in its boundary moved inwards: trivially so in the case of (a) 
(the blue line is 𝑣 moved inwards), but also in (b) (the purple circle is the blue edge-orientation 
moved inwards) and (c) (the brown helix is the purple face-orientation moved inwards). 
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𝑓𝑓

𝑓

(d)

𝑒 𝑒

𝑒

(b)

𝑓𝑓

𝑓

(c)

𝑒 𝑒

𝑒

(a)

Figure 3.11: The relative orientation of adjacent cells. (a) 𝑒 and 𝑒 are of the same orientation, 
while both are of opposite orientation to 𝑒. (b) If the connectivity between edges is not one-
dimensional, relative orientations cannot be assigned consistently: 𝑒 is of the same orientation 
as 𝑒, but 𝑒 is of the same orientation as 𝑒, while 𝑒 is of opposite orientation to 𝑒. (c) 𝑓 and 
𝑓 are of the same orientation, while both are of opposite orientation to 𝑓. (d) If the connectivity 
between faces is not two-dimensional, relative orientations cannot be assigned consistently: 𝑓 

is of the same orientation as 𝑓, but 𝑓 is of the same orientation as 𝑓, while 𝑓 is of opposite 
orientation to 𝑓. 
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𝐶𝑒

𝑒

𝑒

𝑒𝑣

𝑣 𝑣

𝑣
(a) 𝜕𝐶 = 𝑒 + 𝑒 − 𝑒 − 𝑒 

(b)	 𝜕 (𝜕 𝐶) = 𝜕 𝑒 + 𝜕 𝑒 − 𝜕 𝑒 − 𝜕 𝑒 

= (𝑣 − 𝑣) + (𝑣 − 𝑣) − (𝑣 − 𝑣) − (𝑣 − 𝑣) 
= 0 

Figure 3.12: (a) The boundary chain of the face 𝐶 is the linear combination of its bounding edges, 
scaled by their orientation relative to 𝐶. 𝑒 and 𝑒 are oriented consistently with 𝐶; 𝜕 𝐶 therefore 
contains those edges with coefficient +1. 𝑒 and 𝑒 are oriented in the other direction, so 𝜕 𝐶 
contains those edges with coefficient −1. (b) The boundary chain operator can be applied to the 
boundary chain of 𝐶; the boundary of the boundary is zero. 

dependent on the particular embedding, the choice of the absolute orientation of a cell is 
arbitrary. We therefore look at the relative orientation between cells. First, can we mean-
ingfully compare the orientation between neighbouring cells? It may initially look that 
way: in one dimension (Figure 3.11a), edges are oriented either around in a clockwise di-
rection (𝑒 and 𝑒) or a counterclockwise direction (𝑒). In two dimensions (Figure 3.11c), 
faces are oriented either clockwise (𝑓 and 𝑓) or counterclockwise (𝑓). However, if the 
connectivity between 𝑛-cells is not 𝑛-dimensional, the orientations cannot be assigned 
consistently (Figure 3.11bd). 

What about the relative orientation between incident cells? Here we are immediately 
on better ground; recall that the boundary of an 𝑛-cell is an (𝑛 − 1)-dimensional space, 
so orientations can be assigned consistently to each of the (𝑛 − 1)-cells in that boundary. 
The only question left is how to relate these absolute orientations to the 𝑛-cell itself; 
but remember that one way we are thinking about the orientation of an 𝑛-cell is as the 
combination of the orientation of an (𝑛 − 1)-cell with an “inside” movement. This lets 
us consistently define the relative orientation between a 𝑛-cell 𝐶 and the (𝑛 − 1)-cells in 
its boundary: 

Definition 1. Let 𝜕 𝐶 be the (𝑛 − 1)-dimensional boundary of an 𝑛-cell 𝐶. Then the relative 
orientation 𝜌(𝐷, 𝐶) between 𝐶 and an (𝑛 − 1)-cell 𝐷 in its boundary is determined by finding 
the 𝑛-dimensional orientation defined by moving the orientation of 𝐷 “into” 𝐶; if this matches the 
orientation of 𝐶, then we say that 𝐷 is oriented consistently with 𝐶 (𝜌(𝐷, 𝐶) = +1); otherwise, 
𝐶 and 𝐷 are not oriented consistently (𝜌(𝐷, 𝐶) = −1). 

The relative orientation between a cell and all of the cells in its boundary can be 
succinctly represented in its boundary chain (Palmer and Shapiro 1993; Egli and Stewart 
1999). A chain is an assignment of a number to each cell in the complex; chains can be 
combined linearly, so the assignment of 20 to cell 𝐶 and 14 to 𝐶 (and zero to all other 
cells) is written 20𝐶 +14𝐶. An 𝑛-chain is a chain whose only nonzero values are assigned 
to 𝑛-cells. The boundary chain 𝜕 𝐶 of an 𝑛-cell 𝐶, is an (𝑛 − 1)-chain where elements of 
the boundary of 𝐶 are assigned either +1 or −1, corresponding to a positive or negative 
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𝑣

𝑤

(𝑣, 𝑤)

(a)

next

prev

swap

(b)
fi

fi

fi

(c)

Figure 3.13: (a) A planar graph with half-edge (𝑣, 𝑤) defined. (b) The action of the three operations 
next, prev, and swap on (𝑣, 𝑤) in the vv path algebra. (c) The operation fi = next ∘ swap can be 
applied repeatedly to iterate through all edges incident on a face. 

relative orientation to 𝐶, respectively: 

𝜕 𝐶 =  𝜌(𝐷, 𝐶)𝐷. 
𝐷∈𝜕𝐶 

(See Figure 3.12). 
Viewing the boundary in this way has several advantages. For one, the boundary 

operator 𝜕 can be applied to any chain; the operator distributes linearly to each cell. The 
operator can even be applied to a boundary chain (Figure 3.12b); this can be useful as a 
check that a boundary is valid. Recall that the boundary of an 𝑛-dimensional manifold 
is an (𝑛 − 1)-dimensional manifold without boundary; if a supplied chain 𝜒 is indeed the 
boundary of an 𝑛-cell, we expect that there are no cells in its own boundary, and the 
chain 𝜕 𝜒 ≡ 0. Because chains are such a useful representation of a boundary, we also use 
them to explicitly declare the boundary when constructing a cell (Section 4.5). 

3.3 Combinatorial maps 

While a cell is defined by the set of its bounding faces, this is not the most effective 
representation if we have to examine the boundary in some order. For example, we 
may have to look at the facets of a convex polytope which lie to one side of a given 
plane, or look at the sides of a polygon in order. Either of these problems can still be 
addressed using only unordered bounding faces, but they could be done more easily if 
the neighbourhood structure of the cells could be explored more explicitly. 

As an example of such a structure, recall the vertex-vertex (vv) path algebra from Sec-
tion 2.2.2. In a planar graph we identify a vertex 𝑣 and one of its neighbours 𝑤; this 
pair is the half-edge (𝑣, 𝑤) (Figure 3.13a). There are three operations which apply to 
each half-edge (Figure 3.13b): (a) next changes 𝑤 to the next clockwise neighbour of 
𝑣; (b) prev changes 𝑤 to the next counterclockwise neighbour of 𝑣; and (c) swap inter-
changes 𝑣 and 𝑤. We can move from any half-edge to any other by composition of these 
operations. We can also use these operations to visit vertices in a defined order. For ex-
ample, repeated application of next lets us visit every neighbour of a vertex in clockwise 
order. We can also visit all of the vertices around a polygon by applying the composite 
operation next ∘ swap repeatedly (Figure 3.13c). 

The vv path algebra, and graph rotation systems upon which it is based, rely on the 
clockwise ordering among a vertex’s neighbours. This structure only exists in one and 
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two dimensions; in three and more dimensions, there is no implicit ordering in these 
neighbourhoods. However, we can create a structure on a cell complex in any number 
of dimensions and use this to apply orderings to certain relationships, in addition to 
using operations to travel around the cell complex in a structured way. The particular 
structure I will discuss is the combinatorial map (Vince 1983), which I briefly discussed in 
Chapter 2. 

The combinatorial map of a cell complex is based on the barycentric subdivision of that 
complex. The complex is subdivided by the following process: 

We start with a cell complex ℂ.
 

In addition to the already-existing vertices (red), 
we add new vertices in the middle of each edge 
(“edge-vertices”, blue) and face (“face-vertices”, 
green). In general, a new vertex is placed at the 
interior of each cell of dimension greater than 
zero. A vertex representing a 𝑘-cell is called a 
𝑘-vertex. 

For each pair of incident cells 𝐶𝑖 ≺ 𝐶𝑗 we add an 
edge between their respective vertices. In gen-
eral, we add a 𝑘-simplex for each set of 𝑘 + 1 mu-
tually incident cells 𝐶𝑖 ≺ … ≺ 𝐶𝑗. If the cell com-
plex is embedded in a manifold and each cell is 
convex, then each simplex in this simplicial com-
plex is non-intersecting. 

The maximal-dimension simplexes are defined by 𝑛 + 1 vertices, representing a cell 
of each dimension from 0 to 𝑛. These simplexes are variously called flags, darts, or tuples. 
In this thesis, I will call the abstract 𝑛-simplexes darts, and will reserve the term tuple for 
their representation in the data structure described in Chapter 4. 

From Theorem 3.1 we know that for any dart 𝑆 with (𝑛 − 1)-simplex 𝐹 ≺ 𝑆, there is 
either exactly one other dart 𝑆′ with 𝐹 in its boundary, or there is no such dart. Consider 
the former case. As 𝑆 and 𝑆′ share all of the 𝑛 vertices in 𝐹, they must differ on only one 
vertex, the one representing a 𝑘-cell. Since there are 𝑛 + 1 faces, then, for any dimension 
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0 ≤ 𝑘 ≤ 𝑛, there is at most one neighbouring dart 𝑆𝑘 which shares all of the vertices of 
𝑆 except the vertex representing a 𝑘-cell. We can define a function 𝜎𝑘 that captures this 
relationship: 𝜎𝑘(𝑆) = 𝑆𝑘, and by symmetry 𝜎𝑘(𝑆𝑘) = 𝑆. (Note that 𝜎𝑘 is not defined if 
there is no dart 𝑆𝑘.) 

For example, 𝜎 (red) takes the shaded dart to 
its neighbour which has a different 0-vertex;
𝜎 (blue) takes the shaded dart to its neighbour 
which has a different 1-vertex; and 𝜎 (green) 
takes the shaded dart to its neighbour which has 
a different 2-vertex. Figure 3.14 shows all of the 
defined 𝜎 functions. 

with no 𝑛-neighbour (e.g. darts incident to the boundary). One possibility is to let 
𝜎𝑛(𝑆) = 𝑆 in that case; the existence of the boundary is recorded, but the functions are 
still involutions. Another possibility, used by the Cell Complex Framework, is to have 
the exterior of the complex be a pseudo-𝑛-cell ∞; then if 𝑆 is defined by {𝐶, … , 𝐶𝑛}, 𝜎𝑛(𝑆) 
is a dart defined by {𝐶, … , 𝐶𝑛−, ∞}. 

There is a nice limitation on the possible definitions of the 𝜎 functions. Theorem 3.3 
tells us that each function 𝜎𝑘 only depends on the 𝑘 − 1, 𝑘, and (𝑘 + 1)-vertices of each 
dart: 

Theorem 3.3 (Corollary 4.3 from (Brisson 1990)). If 𝑐𝑘−, 𝑐𝑘, and 𝑐𝑘+ are cells of dimension 
𝑘 − 1, 𝑘, and 𝑘 + 1, respectively, with 𝑐𝑘− ≺ 𝑐𝑘 ≺ 𝑐𝑘+, then there is a unique 𝑘-cell 𝑐′ 𝑘 ≠ 𝑐𝑘 with 
𝑐𝑘− ≺ 𝑐′ 𝑘 ≺ 𝑐𝑘+. 

Argument. As the three cells are incident, there must be a dart 𝐷 with vertices 𝑐 ≺ ⋯ ≺ 
𝑐𝑘− ≺ 𝑐𝑘 ≺ 𝑐𝑘+ ≺ ⋯ ≺ 𝑐𝑛. Then the dart 𝐷′ = 𝜎𝑘(𝐷) has vertices 𝑐 ≺ ⋯ ≺ 𝑐𝑘− ≺ 𝑐′ 𝑘 ≺ 
𝑐𝑘+ ≺ ⋯ ≺ 𝑐𝑛. To show that 𝑐′ 𝑘 is unique, we suppose there is yet another cell 𝑐″ 

𝑘 with 
𝑐𝑘− ≺ 𝑐″ 

𝑘 ≺ 𝑐𝑘+. But then there is a dart with vertices 𝑐 ≺ ⋯ ≺ 𝑐𝑘− ≺ 𝑐″ 
𝑘 ≺ 𝑐𝑘+ ≺ ⋯ ≺ 𝑐𝑛. 

This means that there are three darts (which are 𝑛-simplexes) incident with the (𝑛 − 1)-
simplex with vertices {𝑐, … , 𝑐𝑘−, 𝑐𝑘+, … , 𝑐𝑛}, which contradicts Theorem 3.1. 

By examining the actions of sequences of certain subsets of the 𝜎 functions, we can 
extract more information about the cell complex. The first important subset of opera-
tions is the orbit, defined as all sequences of functions from {𝜎, … , 𝜎𝑘−, 𝜎𝑘+, … , 𝜎𝑛} (i.e. all 
𝜎 functions except 𝜎𝑘). Any such sequence of functions will fix the 𝑘-vertex of any dart 
it is applied to. Since all darts which contain a 𝑘-vertex 𝑐𝑘 are contiguous, we can use 
Theorem 3.2 to see that there is some sequence of 𝜎 operations which do not change 𝑐𝑘 
which take any such dart to any other. Therefore, the set of darts reachable by a function 
in a 𝑘-orbit is exactly those darts which share a 𝑘-vertex. We thus see that 

Theorem 3.4 (Corollary 4.14 from (Brisson 1990)). There is an isomorphism between 𝑘-
orbits and 𝑘-cells. 

There are a number of ways to extend the 𝜎 functions to every dart, including those 
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Figure 3.14: A cell complex 
subdivided into its combinato-
rial map, with arrows connect-
ing all 𝑘-neighbouring darts and 
coloured according to the di-
mension 𝑘: applications of 𝜎 

are red, applications of 𝜎 are 
blue, and applications of 𝜎 are 
green. Note the cycles created 
by alternating 𝜎𝑘 functions of dif-
ferent dimension, such as the 0– 
1 (red–blue) cycle around faces 
or the 1–2 (blue–green) cycle 
around the marked vertex. 

The second important subset of operations is those which are sequences of two func-
tions 𝜎𝑘− and 𝜎𝑘. It can be shown that 

Theorem 3.5 (Theorem 4.5 from (Brisson 1990)). If 𝑐 ≺ ⋯ ≺ 𝑐𝑛, where 𝑐𝑖 is an 𝑖-vertex, 
then the functions 𝜎𝑘− and 𝜎𝑘 induce a circular ordering on all darts with vertices {𝑐, … , 𝑐𝑘−, 𝑐𝑘+, … , 𝑐𝑛}, 
and on all cells 𝑠𝑘− and 𝑠𝑘 such that 𝑐 ≺ ⋯ ≺ 𝑠𝑘− ≺ 𝑠𝑘 ≺ ⋯ ≺ 𝑐𝑛. 

Argument. Name the set of all darts with vertices {𝑐, … , 𝑐𝑘−, 𝑐𝑘+, … , 𝑐𝑛} as 𝒟 . Consider 
the graph (𝒟 , {𝜎𝑘−, 𝜎𝑘}), whose nodes are darts and whose edges are applications of 𝜎 
functions. This graph is connected and each node is incident to one edge labelled 𝑘 and 
one labelled 𝑘−1. This means that the graph must be a simple cycle, with edges alternately 
labelled 𝑘 and 𝑘 − 1. Alternate composition of 𝜎𝑘− and 𝜎𝑘 thus imposes this circular 
ordering on 𝒟 (Figure 3.14). The 𝑘-cells fixed by the applications of 𝜎𝑘− (every second 
operation) form an ordering of 𝑠𝑘, and vice versa for 𝑠𝑘−. 

Half of the possible combinations of 𝜎𝑘− and 𝜎𝑘 start with an application of 𝜎𝑘−, and 
traverse the order in one direction; the other compositions start with 𝜎𝑘 and traverse 
in the other direction. Thus, in Figure 3.14, starting from the shaded dart, sequences 
starting with 𝜎 (blue) traverse the polygon in clockwise order, while sequences starting 
with 𝜎 (red) traverse the polygon in counterclockwise order. 

For 𝑘 = 1, then, we see that the induced circuit traverses around a polygon. For 𝑘 > 1, 
the circuit traverses the 𝑘 − 1 and 𝑘-cells incident to a particular (𝑘 − 2)-cell. For 𝑘 = 2, 
for instance, the induced circuit traverses the edges and faces incident to a vertex. In 
Figure 3.14, again starting from the shaded dart, 𝜎–𝜎 sequences starting with 𝜎 (blue) 
circle the marked vertex in counterclockwise order, while sequences starting with 𝜎 

(green) circle the vertex clockwise. In this case, we see the ordering from graph rotation 
systems. Indeed, the primitive operations from the vv path algebra are equivalent to 
composite operations on the combinatorial map: one possible mapping is prev ≡ 𝜎 ∘ 𝜎, 
next ≡ 𝜎 ∘ 𝜎, and swap ≡ 𝜎 ∘ 𝜎. 
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We can see that the combinatorial map offers us powerful operations for traversing 
a cell complex. Its power becomes especially evident, however, in the following Theo-
rem: 

Theorem 3.6 (Theorem 4.4 from (Brisson 1990)). Suppose two manifolds 𝑀 and 𝑀 are 
subdivided by cell complexes ℂ and ℂ, respectively. The following are equivalent: 

1. The subdivided manifolds (𝑀, ℂ) and (𝑀, ℂ) are homeomorphic. 
2. The abstract cell complexes ℂ and ℂ are isomorphic. 
3. The combinatorial maps of (𝑀, ℂ) and (𝑀, ℂ) are isomorphic. 

Argument. If the subdivisions of 𝑀 and 𝑀 are homeomorphic, the cell complexes must 
be isomorphic; thus, 1 implies 2. The parallel construction of the combinatorial maps 
of isomorphic complexes will clearly lead to isomorphic combinatorial maps; therefore, 
2 implies 3. In the other direction, we can use Theorem 3.4, the isomorphism between
𝑘-orbits and 𝑘-cells, to reconstruct the cell complex from its combinatorial map, show-
ing that 3 implies 2. Finally, there is a local homeomorphism between corresponding 
submanifolds defined by corresponding cells on (𝑀, ℂ) and (𝑀, ℂ). As the connec-
tivity between these submanifolds is isomorphic, these local homeomorphisms can be 
extended into a global homeomorphism. In this way we can show that 2 implies 1. 

This means that the combinatorial map has all of the information needed to recon-
struct the subdivided manifold. We can thus construct a representation of subdivided 
manifolds using combinatorial maps. This representation will be at the heart of the Cell 
Complex Framework. In the next chapter, I describe how this representation works and 
is implemented. 



4 Implementation of the Cell 
Complex Framework 

In Chapter 1 I discussed the advantages of cell complexes in developmental computing: 
first, that having cells of different dimensions lets physical quantities sit in their proper 
place in the structure; second, that operations such as cell division are inherently local 
in space; and third, that a cell complex provides local context for changing parameters 
on individual cells. This suggests the creation of a Cell Complex Framework for devel-
opmental computing, and in this chapter I describe the design and implementation of 
this framework. The Cell Complex Framework described here is based on the combina-
torial map representation of a cell complex, in particular the Cell-Tuple data structures 
proposed by Brisson (1990). 

4.1 Design considerations 

In choosing design and implementation details for the Cell Complex Framework, we 
have several considerations, including space and time efficiency, implementation com-
plexity, and ease of use. These have to be considered for all of the operations we might 
want to carry out. In implementing the developmental model examples described in 
Part II, I found several useful operations and manipulations which we would like to im-
plement cleanly and efficiently. A user of the Framework should be able to perform 
any required exploration or alteration of the cell complex using only these operations, 
independent of the underlying implementation. 

First are the basic topological operations: boundary and coboundary (Figure 4.1). 
Let 𝐶 be a cell of dimension 𝑘. Then boundary(𝐶) is the chain of oriented (𝑘 − 1)-cells 
which make up the boundary of the 𝑘-cell 𝐶. Similarly, coboundary(𝐶) is the coboundary 
of 𝐶, that is, the chain of all of the (𝑘 + 1)-cells in whose boundary 𝐶 lies. Also useful is 
neighbours; neighbours(𝐶) is the set of all 𝑘-cells which share both a common bound-
ary cell and a common coboundary cell with 𝐶. For a cell 𝐶 of maximal dimension, 
neighbours(𝐶) is the set of cells adjacent to 𝐶; for a vertex 𝑣, neighbours(𝑣) is the set 
of all vertices joined to 𝑣 by an edge. For cells of intermediate dimension, the property 
is less obvious, but there is a particularly simple intuition involving the combinatorial 
map (Section 4.5). 

There are also a few other derived operations which query the structure. The inci-
dent operation determines whether two given cells are incident; thus, incident(𝐶, 𝐶) 

60
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𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵

boundary(𝑓𝐴) = 𝑒 + 𝑒 − 𝑒 

coboundary(𝑒) = −𝑓𝐴 + 𝑓𝐵 

neighbours(𝑣) = {𝑣, 𝑣, 𝑣} 

incident(𝑓𝐴, 𝑣) = true
 

border(𝑒) = true
 

border(𝑒) = false
 

meet(𝑒, 𝑓𝐵) = 𝑣 

join(𝑣, 𝑣) = 𝑒 

Figure 4.1: Query operations defined by the Cell Complex Framework, applied to a simple cell 
complex (left). 

is true exactly when 𝐶 ⪯ 𝐶 or 𝐶 ⪯ 𝐶. The border operation reports whether a given 
cell lies on the boundary of the cell complex, while meet and join perform the lattice 
operations ∧ and ∨ (Section 3.2). We should also be able to easily find the dimension of 
a cell; if 𝐶 is a 𝑘-cell, then dimension of 𝐶 = 𝑘. 

Other operations are used to alter the cell complex (Figure 4.2). We need to be able to 
create new cells, as long as their boundary already exists; the addCell operation does this. 
To remove cells, we can use the deleteCell operation. We also recall, from Rosenfeld 
and Strong (1969), that any topological manipulation can be reduced to a series of binary 
splits and merges. The splitCell operation performs a binary division; it splits a 𝑘-cell 
into two child 𝑘-cells, separated by a (𝑘 − 1)-cell, called the membrane of the split operation. 
The input to splitCell is the boundary of the membrane cell. Binary merges are handled 
by the mergeCells operation, which removes a membrane and rejoins two child cells. 

We want to store numerical information on cells in the cell complex, and transfer 
information between these cells, so we need to know the relative orientations between 
them to ensure that signs are computed correctly. We also want to navigate around the 
cell complex; in particular, the cycles induced by alternating involutions of neighbour-
ing dimension (Section 3.3) prove to be very useful. Beyond these, it is often useful to 
perform a breadth- or depth-first search of neighbouring cells. It is also useful in some 
cases to visit a number of adjacent darts. 

Brisson (1990) discusses several possible implementations for his Cell-Tuple frame-
work. These include a handle-based representation like G-maps, a database of all cell 
tuples, or a representation of the combinatorial map as a graph. He also suggests possi-
ble hybrid representations: for instance, the augmented incidence graph: an incidence graph 
in which each cell has pointers to structures representing the involution functions 𝜎𝑖. I 
have developed a different data structure to implement the Cell Complex Framework: 
the flip table. This is a single simple data structure which simultaneously represents both 
incidence information and the involution functions 𝜎𝑖. In the next section I will describe 
the data structure and its underlying elements, flips. In Section 4.3 I discuss how relative 
orientation information is maintained in the flip table. Section 4.4 describes the imple-
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𝑣
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𝑣
𝑒 𝑒
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𝑒
𝑓𝐴

𝑓𝐵

(𝑓𝐴, 𝑒, 𝑓𝐵) ← splitCell(𝑓, 𝑣 − 𝑣)

𝑣

𝑣

𝑣

𝑣
𝑒 𝑒

𝑒𝑒

𝑓

(b)

𝑒

𝑒𝑒
𝑓

𝑓 ← addCell(𝑒 + 𝑒 + 𝑒)

𝑒

𝑒𝑒

(a)

Figure 4.2: Cell Complex Framework operations which add new cells. (a) addCell creates a new 
face 𝑓 with the supplied boundary chain 𝑒 + 𝑒 + 𝑒. (b) splitCell creates a new edge 𝑒 with the 
supplied boundary chain 𝑣 − 𝑣; this new edge is the membrane which splits the old face 𝑓 into 
two child faces 𝑓𝐴 and 𝑓𝐵. 

mentation of cell tuples, which let us access the combinatorial map structure to traverse 
the cell complex. Section 4.5 describes the algorithms used to implement operations like 
join or splitCell. Finally, in Section 4.6 I talk about the actual implementation of the 
Framework in C++ and about optimizations made to improve its performance. 

4.2 Flips and the Flip Table 

A common implementation of cell complex representations based on the combinatorial 
map (e.g. Brisson 1990, Lévy and Mallet 1999) is the handle-based data structure I de-
scribed in Section 2.2.3. Every dart in the combinatorial map is explicitly represented 
by a data structure of the form 

struct Dart { 
Dart *𝜎; 
Dart *𝜎; 
⋮ 
Dart *𝜎𝑛; 

CellData *𝑐; 
⋮ 
CellData *𝑐𝑛; }; 

Each Dart object has 𝑛 + 1 pointers to other Dart objects, the result of applying the 
appropriate involution. It also has pointers to data structures representing the 𝑛 + 1 cells 
that are part of the dart. The cell complex is thus represented by a collection of Dart 
objects, connected by involutions 𝜎𝑖. 

The augmented incidence map suggested by Brisson (1990), on the other hand, has 
cells as objects: 
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struct Cell { 
Cell *boundary[]; 
Cell *coboundary[]; 
Cell *𝜎[][]; 

CellData data; };
	

Each Cell has an array of links to its boundary and coboundary cells; this makes the data 
structure an incidence map. The data member 𝜎 is an array indexed by one boundary 
and one coboundary cell. When indexed by these cells, 𝜎 contains a pointer to the cell 
corresponding to this one in the dart produced after applying the 𝜎 involution in this 
cell’s dimension. By Theorem 3.3, specifying one boundary and one coboundary cell 
uniquely defines these involutions. In the augmented incidence map, the cell complex 
is represented by a collection of Cell objects, again connected by involutions 𝜎𝑖. Darts 
are not explicitly part of the data structure. 

In the Dart data structure, the darts are objects; in the augmented incidence map, 
the cells are objects. In the flip table data structure, it is the involutions themselves which 
are the objects. Each involution of a given dart is represented by a minimal form, a flip, 
and the collection of all of these flips completely defines the involutions and thus the 
combinatorial map and the cell complex. 

Recall that a single dart in an 𝑛-dimensional manifold is an 𝑛-simplex and is thus 
defined by the set of its 𝑛 + 1 vertices. Each of these vertices corresponds to a cell of the 
cell complex, with one cell of each dimension. We can therefore write a single dart as the 
cell tuple (𝑐, 𝑐, ⋯ , 𝑐𝑛). The involution 𝜎𝑘 relates this cell tuple to its 𝑘-neighbour, which 
differs only on its 𝑘-dimensional entry: 

𝜎𝑘(𝑐, ⋯ , 𝑐𝑘−, 𝑐𝑘, 𝑐𝑘+, ⋯ , 𝑐𝑛) = (𝑐, ⋯ , 𝑐𝑘−, 𝑐′ 𝑘, 𝑐𝑘+, ⋯ , 𝑐𝑛). 

According to Theorem 3.3, 𝑐′ 𝑘 depends only on 𝑐𝑘−, 𝑐𝑘, and 𝑐𝑘+. Furthermore (by The-
orem 3.1), 𝑐𝑘 and 𝑐′ 𝑘 are the only two cells in the boundary of 𝑐𝑘+ that are themselves 
bounded by 𝑐𝑘−. This means that, for any cell tuple 𝜏 containing 𝑐𝑘−, 𝑐𝑘, and 𝑐𝑘+, 𝜎𝑘 ∘ 𝜏 
is the same tuple, substituting 𝑐′ 𝑘 for 𝑐𝑘, and vice versa. The value of 𝜎𝑘 on any of these 
cell tuples 𝜏 depends only on the relationship between 𝑐𝑘−, 𝑐𝑘, 𝑐′ 𝑘, and 𝑐𝑘+, which I call 
the flip relationship and denote by its flip 

𝑐𝑘+
𝑐𝑘 𝑐𝑘 ′  or ⟨𝑐𝑘−, 𝑐𝑘 ↔ 𝑐′ 𝑘, 𝑐𝑘+⟩. 
𝑐𝑘− 

The flip determines the value of 𝜎𝑘 applied to any tuple containing 𝑐𝑘−, 𝑐𝑘+, and one of 
𝑐𝑘 or 𝑐′ 𝑘. In other words, as noted above, the 𝜎 functions are completely defined by the collection 
of all flips in the cell complex. The Cell Complex Framework stores all of these flips in the 
flip table.1 

1Of course, only a set of flips is needed, but for the purposes of optimization (Section 4.6) the flips are 
stored in an indexed table. 
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𝑣 𝑣 𝑣 𝑣

𝑒 𝑒 𝑒 𝑒 𝑒

𝑓𝐴 𝑓𝐵
⊤

⊥

(b)

𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵

(a)

Figure 4.3: (a) A two-dimensional 
cell complex consisting of four 
vertices, five edges, and two 
faces. (b) The incidence graph 
corresponding to (a). Two flips are 
highlighted: ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓𝐴⟩ and 
⟨⊥, 𝑣 ↔ 𝑣, 𝑒⟩. 

We call a flip which contains two possible values for 𝑐𝑘, and thus partially defines 𝜎𝑘, 
a 𝑘-flip. The flip table defining an 𝑛-dimensional divided manifold contains 0-flips (or 
vertex flips), 1-flips (edge flips), 2-flips (face flips), up to 𝑛-flips. The cells in a flip are named 

interior
 
facet facet 
 

joint
 

interior

facet

facet

joint
The order of the facets in the flip is immaterial for the definition of the involution; it is, 
however, used to encode orientation information (Section 4.3). 

As an example, we will list the flips which define the 2-dimensional cell complex 
shown in Figure 4.3a. The simplest to start with are the edge flips. These are flips of the 
form ⟨𝑣, 𝑒 ↔ 𝑒′, 𝑓⟩, where 𝑣 is a vertex, 𝑒 and 𝑒′ are edges, and 𝑓 is a 2-cell (face). There 
will be one edge flip for each incident pair of 𝑣 and 𝑓; for instance, the two edges incident 
with both 𝑣 and 𝑓𝐴 are 𝑒 and 𝑒, giving a flip of 

𝑓𝐴


𝑒 𝑒.
 
𝑣 

Note that this, like every flip, corresponds to a diamond of cells (blue) in the incidence 
graph (Figure 4.3b). Face 𝑓𝐴 has two more vertices, 𝑣 and 𝑣, so there are a total of three 
flips with 𝑓𝐴 in interior position: 

𝑓𝐴 𝑓𝐴 𝑓𝐴


𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒.
 
𝑣 𝑣 𝑣 

We see that, in some sense, the set of flips with 𝑓 in interior position defines the structure 
of the boundary of 𝑓; not only which cells make up that boundary, but how to traverse 
between them (across the joints). Another three flips have 𝑓𝐵 in interior position, for a 
total of six edge flips in the complex: 

𝑓𝐴 𝑓𝐴 𝑓𝐴 𝑓𝐵 𝑓𝐵 𝑓𝐵
𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒. 

𝑣 𝑣 𝑣 𝑣 𝑣 𝑣 
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Now we come to the vertex flips. These flips will have an edge in the interior posi-
tion and vertices in the facet positions; these vertices will be the endpoints of the edge. 
The joint position should be filled by a (−1)-dimensional cell, which of course we don’t 
have. Recall the discussion in Section 3.2 of the cell complex as a lattice. There we 
added pseudocells ⊥ and ⊤ as the infimum and supremum of the incidence graph. We 
will continue this practice and fill the joint position in vertex flips with the pseudocell
⊥⃝, pronounced “bottom”. This pseudocell does not have an immediate geometric in-
terpretation, but acts as an formal “shared boundary” for all vertices. The vertex flips in 
the complex are then 

𝑒 𝑒 𝑒 𝑒 𝑒


𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣;
 
⃝⊥ ⊥ ⊥ ⊥ ⊥
⃝ ⃝ ⃝ ⃝ 

note that, again, each serves to define the boundary of the edge in the “interior” position. 
Finally, we look at the 2-flips. The only faces are 𝑓𝐴 and 𝑓𝐵, which are adjacent 

over the edge 𝑒. This flip relationship has 𝑓𝐴 and 𝑓𝐵 in facet position, and 𝑒 in joint 
position. The cell in interior position should be a 3-dimensional cell, but there are none 
in this 2-dimensional complex. Again, we introduce a pseudocell ⊤⃝, or “top”, to fill 
this place: 

⃝⊤
𝑓𝐴 𝑓𝐵. 
𝑒 

⊤⃝ has a clear geometric interpretation: it can be seen as an imaginary 3-cell whose 
boundary contains the 2-complex under consideration. (In general, ⊤⃝ in an 𝑛-dimension-
al complex is an (𝑛 + 1)-dimensional pseudocell.) 

We could stop here; these twelve flips completely define the combinatorial map, and 
thus the cell complex. However, with only a few more flips we can make it much easier 
to handle the boundary of the complex. This information is present in the flips we al-
ready have: any edge which is in joint position of a 2-flip is in the interior, and any edge 
which does not show up in such a flip is in the exterior. We can make it easier to perform 
tasks such as traversing this boundary by introducing a third pseudocell ∞⃝, representing 
the 2-dimensional space outside the cell complex. Then we add 2-flips with the bound-
ary edges in joint position, with the single incident face in one facet position, and ∞⃝ in 
the other: 

⃝ ⃝ ⃝ ⃝
 
⃝ 𝑓𝐴, ⃝ 𝑓𝐴, 𝑓𝐵 ∞, 𝑓𝐵 ∞.
 

⊤ ⊤ ⊤ ⊤
∞ ∞ ⃝ ⃝ 
𝑒 𝑒 𝑒 𝑒 

Finally, we add edge flips with ∞⃝ as “interior”: 

⃝∞ ∞ ∞ ∞⃝ ⃝ ⃝ 
𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒. 

𝑣 𝑣 𝑣 𝑣 

The entire cell complex is then represented by these twenty flips (Figure 4.4).
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𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵

𝑒 𝑒 𝑒 𝑒 𝑒


𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣,
 
⃝⊥ ⊥ ⊥ ⊥ ⊥
⃝ ⃝ ⃝ ⃝ 
𝑓𝐴 𝑓𝐴 𝑓𝐴 𝑓𝐵 𝑓𝐵 𝑓𝐵


𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒,
 
𝑣 𝑣 𝑣 𝑣 𝑣 𝑣
 

⃝∞ ∞ ∞ ∞⃝ ⃝ ⃝ 
𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 

𝑣 𝑣 𝑣 𝑣 

⃝⊤ ⊤ ⊤ ⊤ ⊤⃝ ⃝ ⃝ ⃝ 
∞ ∞ ∞ ∞𝑓𝐴 𝑓𝐵, ⃝ 𝑓𝐴, ⃝ 𝑓𝐴, 𝑓𝐵 ⃝, 𝑓𝐵 ⃝. 

𝑒 𝑒 𝑒 𝑒 𝑒 

Figure 4.4: A simple cell complex and the twenty flips which serve to define it. The order of facets within 
each flip are irrelevant for the definition of the cell complex, but serve to define the relative orientations 
between cells (Section 4.3). 

The flips defining a cell complex are stored in a searchable collection, the flip table. 
The flip table can be searched by queries against template flips which may contain a wild-
card pseudocell ⃝? . Thus, performing a flip operation requires matching against the 
template ⟨𝑐𝑖−, 𝑐𝑖 ↔ ⃝? , 𝑐𝑖+⟩. For example, to find the value of 𝜎 from the cell tuple 
(𝑣, 𝑒, 𝑓𝐴) in the above cell complex, we match against the template ⟨𝑣, 𝑒 ↔ ⃝? , 𝑓𝐴⟩. 
This matches exactly one flip, ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓𝐴⟩ (note that the facets can match in either 
order), so we replace 𝑒 in the tuple by 𝑒, and find that 𝜎(𝑣, 𝑒, 𝑓𝐴) = (𝑣, 𝑒, 𝑓𝐴). 

As another example, we can find cells on the boundary by matching against the tem-
plate ⟨⃝? , ? ⃝, ?⃝ ↔ ∞ ⃝⟩. This template matches 

⃝ ⃝ ⃝
 
 ∞ , ∞ , 𝑓𝐵 ⃝ and 𝑓𝐵 ⃝.
 

⃝⊤ ⊤ ⊤ ⊤
⃝ 𝑓𝐴 ⃝ 𝑓𝐴 ∞, ∞
𝑒 𝑒 𝑒 𝑒 

We can then collect the cells in joint or facet position to find that the boundary of the 
entire cell complex consists of the edges 𝑒, 𝑒, 𝑒, and 𝑒, and that the faces which 
adjoin the boundary are 𝑓𝐴 and 𝑓𝐵. 

4.3 Orientation 

Recall from Section 3.2.2 that an 𝑛-cell 𝑐 and an (𝑛−1)-cell 𝑓 in its boundary have a relative 
orientation 𝜌(𝑐, 𝑓) which is either +1 (meaning the two cells are consistently oriented) or 
−1 (meaning the two cells are inconsistently oriented). The single piece of ambiguity in 
the flip table representation is the order of the facets. In this section, I will show that 
in fact this order can be used to encode the orientation of the flips themselves. This flip 
orientation can be then used to record the relative orientations between all pairs of cells 
in the complex. 
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The boundary of 𝑐 can be represented by the chain 

𝜕𝑐 =  𝜌(𝑡, 𝑓 )𝑓𝑖 𝑖 
𝑖 

where {𝑓, 𝑓, … , 𝑓𝑚} are the (𝑛−1)-cells in 𝑐’s boundary. Remember that the boundary of 
any 𝑛-cell is an (𝑛 − 1)-dimensional manifold without boundary, so applying the boundary 
operator 𝜕 again should give zero: 

0 = 𝜕𝜕𝑐 =  𝜌(𝑐, 𝑓 ) 𝜕𝑓𝑖 𝑖 
𝑖 

=  𝜌(𝑐, 𝑓𝑖)  𝜌(𝑓𝑖, 𝑔𝑖𝑗) 𝑔𝑖𝑗 (4.1) 
𝑖 𝑗 

where {𝑔𝑖, 𝑔𝑖, …} are the (𝑛 − 2)-cells in 𝑓𝑖 ’s boundary. We reverse the order of the sum-
mation: rather than summing first over the 𝑓 cells, then over the incident 𝑔 cells of each, 
we rewrite Equation 4.1 to sum first over 𝑔, then over their incident 𝑓 cells. 

⎛ ⎞ 

0 =  
⎜⎜⎜⎜⎜⎝ 𝜌(𝑔𝑗, 𝑓𝑗𝑖)𝜌(𝑐, 𝑓𝑗𝑖)

⎟⎟⎟⎟⎟⎠ 𝑔 .𝑗 
𝑗 𝑖 

But there are exactly two 𝑓 cells whose boundaries contain each 𝑔 cell; this in fact defines 
a flip 

𝑐
 
𝑓𝑗 𝑓𝑗
 

𝑔𝑗 
where we have named the two 𝑓 cells associated with 𝑔𝑗 𝑓𝑗 and 𝑓𝑗. 

We thus see that 

0 =  𝜌(𝑔𝑗, 𝑓𝑗)𝜌(𝑓𝑗, 𝑐) + 𝜌(𝑔𝑗, 𝑓𝑗)𝜌(𝑓𝑗, 𝑐) 𝑔𝑗; 
𝑗 

as the coefficient of each 𝑔𝑗 must be zero, then, for every flip ⟨𝑔, 𝑓 ↔ 𝑓, 𝑡⟩ it must be the 
case that 

𝜌(𝑔, 𝑓)𝜌(𝑓, 𝑐) + 𝜌(𝑔, 𝑓)𝜌(𝑓, 𝑐) = 0 

𝜌(𝑔, 𝑓)𝜌(𝑓, 𝑐) = −𝜌(𝑔, 𝑓)𝜌(𝑓, 𝑐) 
𝜌(𝑔, 𝑓)𝜌(𝑓, 𝑐)𝜌(𝑔, 𝑓)𝜌(𝑓, 𝑐) = −1. (4.2) 

In other words, for any flip ⟨𝑔, 𝑓 ↔ 𝑓, 𝑡⟩ the product of the relative orientations of the 
four described incidence relationships must be negative. There are eight possible cases; 
four cases in which three of the orientations are positive and one negative, and four cases 
with three negative orientations and one positive orientation: 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐- + + - - - - + - + - -
𝑓 𝑓, 𝑓

+
 𝑓, 𝑓

+
 𝑓, 𝑓 𝑓, 𝑓

+
 𝑓, 𝑓

+
 𝑓, 𝑓 𝑓, 𝑓 𝑓. (4.3)

+ + - + - - + - + + + - - - - +𝑗 𝑗 𝑗 𝑗 𝑗 𝑗 𝑗 𝑗
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𝑓𝐴

𝑓𝐵


⊤⃝

𝑓𝐴 𝑓𝐵
𝑒


(b)

𝑣

𝑒

𝑒

𝑓


𝑓

𝑒 𝑒
𝑣


(c)

𝑣

𝑒

𝑒

𝑒

𝑓𝐴

𝑓𝐵


𝑓𝐴

𝑒 𝑒
𝑣




𝑓𝐵

𝑒 𝑒
𝑣

(d)

Figure 4.5: Some of the flip modifications which happen during addCell and splitCell operations. (a) The 
face 𝑓𝐴 is initially adjacent to the outside pseudocell ∞⃝ across edge 𝑒; (b) after adding the face 𝑓𝐵, its 
adjacency to 𝑓𝐴 is recorded by replacing ∞⃝ in the flip with 𝑓𝐵. Relative orientations on the left side of the 
flip are unaltered. (c) Before splitting the face 𝑓, the edges 𝑒 and 𝑒 flip to one another across the vertex 
𝑣; (d) after splitting, two flips are created by replacing a single edge only in 𝑓𝐴 or 𝑓𝐵 by the shared edge 
𝑒. Since both child faces have the same orientation as their parent, orientations down one side of the flip 
are again unaltered. 

In each of these flips, a + or − has been placed between each pair of cells representing their 
relative orientation. For example, in the first case shown in Equation 4.3, the relative 
orientation between 𝑐 and 𝑓 is negative, while the relative orientations between 𝑓 and 
𝑗, between 𝑐 and 𝑓, and between 𝑓 and 𝑗 are all positive. 

The orientation information could conceivably be stored with the flip in many ways; 
we could store all four relative orientations, or just three bits indicating which of the 
eight above cases holds. However, we note that a flip has exactly one bit of ambiguity: 
the order of the facets. This suggests that we can use the facet order to store a single 
orientation. We can look at how the flip table changes under cell complex operations to 
figure out precisely which orientation to store (Figure 4.5). 

During both addCell and splitCell operations (Section 4.5), many of the new flips 
created are just modifications of existing flips. For instance, when a new face 𝑓𝐵 is created 
(Figures 4.5ab), face 𝑓𝐴 that was formerly adjacent to the external pseudocell ∞⃝ is now 
adjacent to the new face. The face flip between 𝑓𝐴 and 𝑓𝐵 is created by simply taking the 
defunct flip between 𝑓𝐴 and ∞ ⃝ by 𝑓𝐵:⃝ and replacing ∞

⃝⊤ + ⊤⃝?
∞𝑓

-
𝐴 ⃝ ⇒ 𝑓

-
𝐴 𝑓𝐵. (4.4)

-𝑒 
- -𝑒 

? 

Note that the left-hand side of the flip is unchanged; both of the unknown relative ori-
entations are on the right-hand side. 

Similarly, when a face 𝑓 is split (Figures 4.5cd), new flips involving the new mem-
brane edge 𝑒 are created by duplicating original flips involving 𝑓, with the entry for 𝑓 
in one changed to 𝑓𝐴 and in the other to 𝑓𝐵. The facet corresponding to the edge of the 
other face is then replaced by the common edge 𝑒: 

𝑓 𝑓𝐴+ 𝑓𝐵 ?- +
𝑒 𝑒 ⇒ 𝑒

? 
 𝑒, 𝑒

-
 𝑒. (4.5)

-𝑣 
- ?𝑣 

- -𝑣 
? 
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During a splitCell operation, the orientation of the child cells is the same as that of the 
parent, so again both of the unknown relative orientations are on one side or another of 
the flip. 

In all of these flip modifications, then, we see that one side of the flip preserves its rel-
ative orientations, while on the other side the relative orientations are unknown. How-
ever, because the product of all four relative orientations is constant, we know that the 
product of the two relative orientations on each side is unchanged. If a flip’s orientation is 
one of these products then we can perform flip table manipulations (4.4) and (4.5) with-
out changing that orientation. 

I therefore define the orientation of a flip 𝜗⟨𝑗, 𝑓 ↔ 𝑓, 𝑐⟩ as the product of the relative 
orientations down the left side; that is, 𝜗⟨𝑗, 𝑓 ↔ 𝑓, 𝑐⟩ = 𝜌(𝑗, 𝑓) 𝜌(𝑓, 𝑐). The flip with 
facets reversed then has the opposite orientation; 𝜗⟨𝑗, 𝑓 ↔ 𝑓, 𝑐⟩ = −𝜗⟨𝑗, 𝑓 ↔ 𝑓, 𝑐⟩. We 
say that a flip is in normal form if its orientation is positive. All flips are stored in the flip 
table in normal form. 

To determine the relative orientation between any pair of cells, we can work from 
known relative orientations. First, we arbitrarily state that the relative orientation be-
tween any vertex 𝑣 and ⊥⃝ is positive. Then 

𝑒 
𝜗𝑣  = 𝜌( ⊥𝑣 ⃝, 𝑣) 𝜌(𝑣, 𝑒) = 𝜌(𝑣, 𝑒). 

⊥⃝ 

Now if we need to find the relative orientation between 𝑒 and some cell 𝑓 in the cobound-
ary of 𝑒, we need only find the flip ⟨𝑣, 𝑒 ↔ 𝑒′, 𝑓⟩; then we see that 

𝑓 𝑓 𝑒 
𝜗𝑒 𝑒′ = 𝜌(𝑣, 𝑒) 𝜌(𝑒, 𝑓) so 𝜌(𝑒, 𝑓) = 𝜗𝑒 𝑒′ 𝜗𝑣 𝑣. 

𝑣 𝑣 ⃝⊥

In general, if there is a sequence of cells 𝑐 ≺ 𝑐 ≺ ⋯ ≺ 𝑐𝑘 ≺ 𝑐𝑘+ and flips ℱ𝑖 = 
⟨𝑐𝑖−, 𝑐𝑖 ↔ 𝑐′ 𝑖 , 𝑐𝑖+⟩, the relative orientation between 𝑐𝑘 and 𝑐𝑘+ is 𝜌(𝑐𝑘, 𝑐𝑘+) = ∏𝑖 𝜗ℱ𝑖. This 
is exactly the structure of the flip tower (Section 4.4); the Cell Complex Framework con-
structs a flip tower containing 𝑐𝑘 and 𝑐𝑘+ in order to evaluate their relative orientation. 

4.4 Cell Tuples 

In Section 4.1, I mentioned that we want a way to access the underlying combinatorial 
map structure in order to traverse the cell complex, particularly to perform iterations 
around the boundaries of cells. The Cell Complex Framework provides cell tuples as the 
data structure which provides this ability. In this section, I will describe how cell tuples 
are created and modified, as well as the operations which they offer. The underling data 
structure, the flip tower, is also used in implementing other basic cell complex operations, 
such as finding relative orientations (Section 4.3) and testing for incidence (Section 4.5). 

Recall that cell tuples are the software realization of darts and are defined by a se-
quence of cells 𝑐 through 𝑐𝑛: 
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struct CellTuple { 
Cell *𝑐; 
⋮ 
Cell *𝑐𝑛; }; 

The cells defining a cell tuple 𝜏 can be accessed by the user as the indices of 𝜏; thus, 𝜏[0] is 
the cell tuple’s vertex, while 𝜏[𝑘] is the tuple’s 𝑘-cell. The flip operation 𝜏.flip(𝑘) returns 
the result of applying 𝜎𝑘 to 𝜏. This operation changes the cell 𝑐𝑘 in the tuple to the unique 
cell 𝑐′ 𝑘 ≠ 𝑐𝑘 with 𝑐𝑘− ≺ 𝑐𝑘 ′ ≺ 𝑐𝑘+. This is, of course, exactly the relationship stored in an 
entry in the flip table. The operation is performed by finding the corresponding flip in 
the flip table; as described in Section 4.2, this can be done by searching the flip table 
for the flip matching the template ⟨𝑐𝑘−, 𝑐𝑘 ↔ ⃝? , 𝑐𝑘+⟩. If an entire new cell tuple is not 
needed, the cell 𝑐′ 𝑘 can be accessed as 𝜏.other(𝑘). 

The Framework lets a cell tuple be created given any subset of the cells it contains. 
If the cells do not uniquely define a single tuple, then an arbitrary tuple containing all 
of those cells is created. Thus, for instance, the operation tuple containing {𝑣} will 
return one of the many tuples containing 𝑣, while tuple containing {} will return one 
arbitrary tuple from the entire cell complex. A cell tuple cannot be made from just any 
set of cells, however: the cells must all be incident. In order to ensure the correctness 
of cell tuples, the Cell Complex Framework builds a cell tuple out of a flip tower which 
supports it as a cell sequence. 

A cell sequence is a sequence of cells 𝑐𝑖 ≺ 𝑐𝑖+ ≺ … ≺ 𝑐𝑖+𝑘, where 𝑐ℓ is an ℓ-cell. For 
example, a cell tuple is a cell sequence 𝑐 ≺ … ≺ 𝑐𝑛 with 𝑛 + 1 elements. We can define a 
sequence of flips {ℱ𝑖} associated with a particular cell sequence as follows: 

• ℱ𝑖 is one of the flips matching ⟨⃝? , 𝑐𝑖 ↔ ⃝? , 𝑐𝑖+⟩; 

• ℱ𝑗, where 𝑖 < 𝑗 < 𝑖 + 𝑘, is the unique flip ⟨𝑐𝑗−, 𝑐𝑗 ↔ 𝑐𝑗 ′, 𝑐𝑗+⟩; 

• ℱ𝑖+𝑘 is one of the flips matching ⟨𝑐𝑖+𝑘−, 𝑐𝑖+𝑘 ↔ ⃝? , ⃝? ⟩. 

The result is a sequence of flips which share cells in an overlapping manner: 

𝑐𝑖−
𝑐𝑖 𝑐′𝑖
𝑐𝑖+

ℱ𝑖 =   𝑐𝑖
𝑐𝑖+ 𝑐′𝑖+
𝑐𝑖+

  𝑐𝑖+
𝑐𝑖+ 𝑐′𝑖+
𝑐𝑖+

  𝑐𝑖+
𝑐𝑖+ 𝑐′𝑖+
𝑐𝑖+

  .
. . 𝑐𝑖+𝑘−

𝑐𝑖+𝑘 𝑐′𝑖+𝑘
𝑐𝑖+𝑘+

  = ℱ𝑖+𝑘

I call such a sequence of overlapping flips a flip tower, and say that it supports the cell 
sequence 𝑐𝑖 ≺ 𝑐𝑖+ ≺ … ≺ 𝑐𝑖+𝑘. Note that all of the flips, except the first and last, are 
determined uniquely. In addition, for a cell tuple, we note that the flips ℱ and ℱ𝑛 are 
determined too, as there is only one flip with interior 𝑐 and facet 𝑐 (⟨ ⊥ , 𝑐⟩)⃝, 𝑐 ↔ 𝑐′ 
and only one flip with facet 𝑐𝑛 and joint 𝑐𝑛− (⟨𝑐𝑛−, 𝑐𝑛 ↔ 𝑐′ ⃝⟩). Thus a cell tuple is 𝑛, ⊤
supported by a unique flip tower, and in fact ℱ𝑖 is exactly the flip which defines the 
operation flip(𝑖). 
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The operation tuple containing attempts to construct a complete flip tower joining 
the given cells. The construction process naturally produces the incident cells of all of 
the missing dimensions. The flips which connect the cells are determined in different 
ways, depending where in the tower they lie. 

⃝ A run of a single missing cell is the easiest to fill. 
⊤ For instance, suppose a cell tuple is to be created 

⊤
⃝ 

𝑐 = ⃝? ⃝? ⃝?  = ℱ from the cell complex shown in Figure 4.4, con-
𝑒 taining the specified cell 𝑒. The cells 𝑐 and 𝑐 

𝑐 = 𝑒 are unknown. The flip tower entry ℱ has in-
𝑒 terior cell 𝑒 and joint ⊥⃝; similarly, ℱ has in-

𝑐 = ⃝? ⃝? ⃝?  = ℱ terior cell ⊤ The unknown cells⃝ and joint 𝑒. 
⊥ are replaced by ⃝? and the flips are used as search⃝ 

⊥ templates.⃝ 
The ℱ template matches the flip ⊤⃝ 
⟨⃝⊥ , 𝑣 ↔ 𝑣, 𝑒⟩, while the ℱ template 𝑐 = 𝑓𝐴 𝑓𝐴 𝑓𝐵 = ℱ 

matches ⟨𝑒, 𝑓𝐴 ↔ 𝑓𝐵, ⊤ 𝑒⃝⟩. The unknown tuple 
entries are filled with the facet cells 𝑣 and 𝑓𝐴. 𝑓𝐴 

(Which of the facet cells is picked is arbitrary.) 𝑐 = 𝑒 𝑒 ⃝?  = ℱ 

The flip ℱ then has joint 𝑣, interior cell 𝑓𝐴, 𝑣 

and one facet 𝑒; adding a ⃝? for the unknown 𝑒 

other facet gives us a search template to find the 𝑐 = 𝑣 𝑣 𝑣 = ℱ 

final entry in the flip tower. ⊥⃝ 
The template matches exactly one flip (as it must), and we are left with both the tuple 

and its supporting flip tower: 
⎛ ⎞

𝑒 𝑓𝐴 ⃝ 
𝜏 = 𝑣, 𝑒, 𝑓𝐴 , ℱ𝑖 = 

⎜⎜⎜⎜⎜⎜⎜⎝𝑣 𝑣, 𝑒 𝑒, 𝑓𝐴 

⊤
𝑓𝐵 

⎟⎟⎟⎟⎟⎟⎟⎠ 
. 

⊥ 𝑣 𝑒⃝ 

A longer run of unknown cells can be filled it-𝑐 = 𝑓𝐵 eratively. Suppose the cell tuple is to be created𝑓𝐵 from 𝑓𝐵, with 𝑐 and 𝑐 initially unknown. Only𝑐 = ⃝? ⃝? ⃝?  = ℱ the interior cell in ℱ is then known; the other ⃝? cells are filled by ⃝? and the flip is used as a search𝑐 = ⃝? template. 
⃝ 

𝑐 = 𝑓𝐵 𝑓𝐵 ⃝?  = ℱ 

The ℱ template matches several flips; we arbi- 𝑒 

trarily select ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓𝐵⟩. We can then set 𝑓𝐵 

𝑐 = 𝑣 and 𝑐 = 𝑒. The remaining entries in the 𝑐 = 𝑒 𝑒 𝑒 = ℱ 

flip tower will then match the templates ℱ = 𝑣 

⊤

⃝⟩. 
𝑐 = 𝑣 𝑣 ⃝?  = ℱ 

⊥

⟨⃝⊥ , 𝑣 ↔ ⃝? , 𝑒⟩ and ℱ = ⟨𝑒, 𝑓𝐵 ↔ ⃝? , ⊤ 𝑒 

⃝ 
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We find the unique flips matching these templates to see that the cell tuple and sup-
porting flip tower are 

⎛ ⎞
𝑒 𝑓𝐵 ⊤⃝ 

∞𝜏 = 𝑣, 𝑒, 𝑓𝐵 , ℱ𝑖 = 
⎜⎜⎜⎜⎜⎜⎜⎝𝑣 𝑣, 𝑒 𝑒, 𝑓𝐵 ⃝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 
. 

⊥ 𝑣 𝑒⃝ 

4.5 Operations on cells 

As mentioned in Section 4.1, the user-facing operations of the Cell Complex Framework 
operate on cells and cell chains. They notably do not operate on flips; these operations 
are meant to be atomic and should be independent of the underlying representation of 
the cell complex. In this section, I will cover how these operations are carried out under 
the flip table representation. 

Query operators First are the topological queries boundary, coboundary, and neigh-
bours. The first two give the boundary and coboundary chain, respectively. These are 
implemented by simply collating information from flips involving the queried cell. For 
instance, to find the boundary of cell 𝑓𝐴 in Figure 4.4, we find all flips with 𝑓𝐴 in interior 
position: 

𝑓𝐴 𝑓𝐴 𝑓𝐴


𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒
 
𝑣 𝑣 𝑣 

and collect a set of the facets from these flips: {𝑒, 𝑒, 𝑒}. By building flip towers down-
ward we can then find the relative orientations between these facets and 𝑓𝐴 and combine 
all of this information into the answer: 

boundary(𝑓𝐴) = 𝑒 + 𝑒 − 𝑒. 

The neighbours operation finds all cells which share both a bounding cell and a 
cobounding cell with the given cell. The neighbours of a vertex are those vertices on 
the other end of edges incident on the given vertex; this is exactly the vv definition 
of neighbouring vertices. The neighbours of a cell of maximal dimension are the cells 
it is adjacent to; again, this is a natural definition of neighbouring cells. For cells of 
intermediate dimension the neighbours operation is less useful. The general definition 
is used because the cells which match are in fact exactly those which the given cell can flip to. 
For example, the neighbours of the vertex 𝑣 in Figure 4.4 are found by retrieving all 
flips with 𝑣 in facet position: 

𝑒 𝑒 𝑒


𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣
 
⃝⊥ ⊥ ⊥
⃝ ⃝ 

then collecting all of the other facets: {𝑣, 𝑣, 𝑣}. 
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The next query operations are incident and border. The incident test determines 
whether the two cells it is given are incident. This is done by attempting to construct a 
partial flip tower (Section 4.4) in exactly the same way as cells are interpolated when con-
structing a cell tuple. The cells are incident only if the partial cell tower can be built. For 
example, to determine whether cells 𝑣 and 𝑓𝐴 are incident, we must find the 1-cell be-
tween them. This is done by finding a flip which matches the template ⟨𝑣, ⃝? ↔ ⃝? , 𝑓𝐴⟩. 
Since ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓𝐴⟩ matches, we can conclude that 

incident(𝑣, 𝑓𝐴) = true. 

We only have to find this single flip; this is enough of the flip tower to confirm the 
incidence. 

The border test determines if the given cell is on the border of the complex. For 
cells below maximal dimension, this means that the cell is part of the boundary manifold 
of the entire cell complex. A cell of maximal dimension is considered to be on the border 
if the outside of the complex is across one of its walls. Both of these cases are handled 
using the ∞⃝ pseudocell. Then a cell of maximal dimension is on the border if it flips to 
∞ ⃝. For ⃝, while a cell of below maximal dimension is on the border if it is incident to ∞
example, for the cell complex in Figure 4.4 the flip ⟨𝑒, 𝑓𝐴 ↔ ∞ ⃝⟩ shows both that ⃝, ⊤

border(𝑓𝐴) = true 

and, as part of the flip tower joining 𝑒 with ∞⃝, that 

border(𝑒) = incident(𝑒, ∞⃝) = true. 

meet and join The last two query operations are meet and join. Their implementa-
tions are somewhat more complex than the other queries because they require us to find 
paths from both cells to an unknown common cell, out of all possible paths in the inci-
dence graph. In the current implementation this is done by constructing all possible flip 
towers from the query cells, then matching them at the first opportunity. In effect, this 
reconstructs the incidence graph starting from the query cells. As an example, consider 
finding the meet of the cells 𝑓𝐵 and 𝑒 from the cell complex in Figure 4.4. 

We start by working down from 𝑓𝐵. There are three flips 
with 𝑓𝐵 in interior position: 

𝑣 𝑣 𝑣

𝑒 𝑒 𝑒

𝑓𝐵
𝑒

𝑓𝐵 𝑓𝐵 𝑓𝐵


𝑒 𝑒, 𝑒 𝑒, and 𝑒 𝑒.
 
𝑣 𝑣 𝑣
 

We can thus connect three edges and three vertices to 𝑓𝐵. 
None of the edges is 𝑒, so we must expand downwards 
from there next. 
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𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒 𝑒

𝑓

(b)

𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵

(a)

Figure 4.6: The join of two cells on the boundary 
of a cell complex. (a) As no real cell joins them, 
join(𝑣, 𝑣) = ∞⃝. (b) We prefer to return a real cell 
from a query, if possible. Since they are joined 
by a real cell, join(𝑣, 𝑣) = 𝑓, even though ∞⃝ still 
cobounds them both. 

There is only one flip with 𝑒 in interior position: 

𝑒


𝑣 𝑣.
 
⊥
⃝ 

This connects two vertices to 𝑒, and we compare the ver-
tices to see that 𝑣 is present in paths from both 𝑓𝐵 and 𝑒. 
We can therefore conclude that meet(𝑒, 𝑓𝐵) = 𝑣. 

𝑣 𝑣 𝑣

𝑒 𝑒 𝑒

𝑓𝐵
𝑒

𝑣 𝑣
⊥⃝

As another example, consider finding the join of the cells 𝑓𝐵 and 
𝑣. We work upward in this case, starting from the cell of lower 
dimension. There are two flips with 𝑣 in interior position: 

𝑣

𝑒 𝑒

𝑓𝐴 ∞⃝𝑓𝐵 𝑓𝐴 ∞⃝ 
𝑒 𝑒 and 𝑒 𝑒. 

𝑣 𝑣 

Two edges, one face, and the pseudocell ∞⃝ are thus connected to 
𝑣. 𝑓𝐵 is not the face, so we expand further. 

If this was a three-dimensional cell complex, we would find the 
flips with 𝑓𝐵, 𝑓𝐴, and ∞⃝ in joint position to continue building the 
graphs upward. In two dimensions, however, the only cobound-
ary of a 2-cell is ⊤⃝, so the graphs end there. We can therefore 
conclude that join(𝑣, 𝑓𝐵) = ⊤⃝. 

Note the presence of ∞
𝑣

𝑒 𝑒

𝑓𝐴 ∞⃝
⊤⃝

𝑓𝐵

⊤⃝

⃝ in the previous example. It is possible for the join of two 
cells to be ∞⃝; for instance, both 𝑣 and 𝑣 in Figure 4.4 are on the boundary of the cell 
complex, so join(𝑣, 𝑣) = ∞⃝. We would prefer to return a real cell from any query, if 
possible; we therefore return ∞⃝ only if there is no real cell which joins the input cells 
(Figure 4.6). 

Adding cells The first operation which modifies the cell complex is addCell, which 
creates a new cell, given its boundary chain. This operation is performed by creating 
all of the flips which involve the new cell, then adding them to the cell complex’s flip 
table. The new cell may also be filling in space formerly occupied by ∞⃝; in this case, flips 
involving ∞⃝ may need to be deleted. In the process of creating the flips, the validity of 
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𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵

𝑒 𝑒 𝑒 𝑒 𝑒


𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣,
 
⃝⊥ ⊥ ⊥ ⊥ ⊥
⃝ ⃝ ⃝ ⃝ 
𝑓𝐴 𝑓𝐴 𝑓𝐴 ⃝∞ ∞ ∞⃝ ⃝ 

𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 
𝑣 𝑣 𝑣 𝑣 𝑣 𝑣 

⃝ ⃝ ⃝
 
⃝∞ ∞ ∞

⊤ ⊤ ⊤

𝑓𝐴 , ⃝ 𝑓𝐴, ⃝ 𝑓𝐴. 
𝑒 𝑒 𝑒 

Figure 4.7: A cell complex and the flips which define it. The new face 𝑓𝐵 will be added with boundary 
𝑒 − 𝑒 − 𝑒. 

the supplied boundary chain can be verified: it must be closed, it must be in one segment, 
and the stated orientations must be consistent. 

As an example, consider adding a face to the cell complex depicted in Figure 4.7. We 
wish to add the new face 𝑓𝐵, bounded by edges 𝑒, 𝑒, and 𝑒. The face is to be oriented 
counterclockwise, so its boundary chain is 𝑒 − 𝑒 − 𝑒. We thus want to perform the 
operation 𝑓𝐵 + addCell(𝑒 − 𝑒 − 𝑒). 

First among the new flips to be added are those with 𝑓𝐵 in interior position (Fig-
ure 4.8a). Their facets will be cells from 𝑓𝐵’s boundary, that is from {𝑒, 𝑒, 𝑒}. The 
joints of the new flips will be from the boundary of the boundary cells. We therefore 
look at the flips with these edges in interior position: 

𝑒 𝑒 𝑒


𝑣 𝑣, 𝑣 𝑣, and 𝑣 𝑣.
 
⃝⊥ ⊥ ⊥
⃝ ⃝ 

There are three different vertices in these flips: 𝑣, 𝑣, and 𝑣. Importantly, each is in the 
boundary of exactly two edges; this means that flips can be created, one for each vertex: 

𝑓𝐵 𝑓𝐵 𝑓𝐵


𝑒 𝑒, 𝑒 𝑒, and 𝑒 𝑒.
 
𝑣 𝑣 𝑣
 

If a vertex is encountered in relation to only one edge, or to more than two edges, then 
the supplied boundary is invalid. The boundary is also invalid if the orientations of the 
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𝑣 𝑣

𝑣

𝑒

𝑒 𝑒
𝑓𝐵

𝑓𝐵
𝑒 𝑒
𝑣



𝑓𝐵

𝑒 𝑒
𝑣



𝑓𝐵

𝑒 𝑒
𝑣


(a)

𝑒

𝑒 𝑒

𝑓𝐴

𝑓𝐵


⊤⃝

𝑓𝐴 𝑓𝐵
𝑒



⊤⃝

𝑓𝐵 ∞⃝
𝑒


⊤⃝
𝑓𝐵 ∞⃝
𝑒


(b)

𝑣 𝑣

𝑣

𝑒𝑒
𝑒

𝑒𝑒

∞⃝

𝑒 𝑒
𝑣



∞⃝

𝑒 𝑒
𝑣



∞⃝

𝑒 𝑒
𝑣



∞⃝

𝑒 𝑒
𝑣


(c)

Figure 4.8: Some of the flips added in the execution of 𝑓𝐵 + addCell(𝑒 − 𝑒 − 𝑒). (a) Flips with 𝑓𝐵 in 
interior position; (b) Flips with 𝑓𝐵 in facet position; (c) Flips with ∞⃝ in interior position. Existing flips 
across ∞⃝ are altered by replacing new interior edges by the corresponding new exterior edge. For example, 
in the flip shown in grey (⟨𝑣, 𝑒 ↔ 𝑒, ∞⃝⟩) the new interior edge 𝑒 is replaced by its corresponding new 
exterior edge 𝑒. 

vertices with respect to the edges are inconsistent. We use a disjoint-set data structure 
(Cormen, Leiserson, and Rivest 1990) to count how many disjoint segments the bound-
ary is divided into; if we have more than one segment, then the boundary is invalid. 

The next group of flips that are to be affected are 2-flips across the new face’s edges 
(Figure 4.8b). There is only one existing flip with one of these edges in joint position:
⟨𝑒, 𝑓𝐴 ↔ ∞ ⃝⟩. ⃝ are adjacent across 𝑒, and that 𝑒⃝, ⊤ This flip asserts that 𝑓𝐴 and ∞
is on the boundary of the cell complex. Now that 𝑓𝐵 has been added, the adjacency is 
between 𝑓𝐴 and 𝑓𝐵, so we replace ∞⃝ with 𝑓𝐵. Edges 𝑒 and 𝑒 are on the boundary of 
the cell complex, so we also add one flip for adjacency across each of them: 

⃝ ⃝ ⃝⊤ ⊤ ⊤
∞ ∞𝑓𝐴 𝑓𝐵, 𝑓𝐵 ⃝, and 𝑓𝐵 ⃝. 

𝑒 𝑒 𝑒 

Finally, the edges that are now towards the outside of the cell complex must be con-
nected by flips across ∞⃝ (Figure 4.8c). Now that 𝑒 is not on the boundary of the cell 
complex, we identify the flips involving it and ∞⃝: 

⃝∞ ∞⃝ 
𝑒 𝑒 and 𝑒 𝑒. 

𝑣 𝑣 

The boundary edges involving 𝑣 are now 𝑒 and 𝑒; the entry for 𝑒 in the first flip 
is thus replaced by 𝑒. Similarly, the entry for 𝑒 in the second flip is replaced by 𝑒. 
Finally, there is no existing flip for 𝑣, so a new flip is created. This gives three new flips 
with ∞⃝ in the interior position: 

⃝∞ ∞ ∞⃝ ⃝ 
𝑒 𝑒, 𝑒 𝑒, and 𝑒 𝑒. 

𝑣 𝑣 𝑣 
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𝑣

𝑣 𝑣

𝑣

𝑒 𝑒

𝑒 𝑒
𝑓

𝑒 𝑒 𝑒 𝑒


𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣, 𝑣 𝑣,
 
⃝⊥ ⊥ ⊥ ⊥
⃝ ⃝ ⃝ 
𝑓 𝑓 𝑓 𝑓
 

𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒,
 
𝑣 𝑣 𝑣 𝑣
 

⃝∞ ∞ ∞ ∞
⃝ ⃝ ⃝ 
𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒,
 

𝑣 𝑣 𝑣 𝑣
 

⃝⊤ ⊤ ⊤ ⊤
⃝ ⃝ ⃝ 
∞ ∞⃝ 𝑓 ⃝ ⃝⃝ 𝑓,  , 𝑓 ∞, 𝑓 ∞. 
𝑒 𝑒 𝑒 𝑒 

Figure 4.9: A cell complex and the flips which define it. The face 𝑓 will be split by the edge with boundary 
𝑣 − 𝑣. 

The addition of the cell 𝑓𝐵 therefore requires removing three flips 

 
⊤⃝ 

𝑓𝐴 ∞⃝ 
𝑒 

,  
∞⃝ 

𝑒 𝑒 

𝑣 

,  
∞⃝ 

𝑒 𝑒 

𝑣 

 

and adding nine flips 
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𝑒 𝑒 

𝑣 

,  
𝑓𝐵 

𝑒 𝑒 

𝑣 

,  
𝑓𝐵 

𝑒 𝑒 

𝑣 

,  
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𝑓𝐴 𝑓𝐵 

𝑒 

,  
⊤⃝ 

𝑓𝐵 ∞⃝ 
𝑒 

,  
⊤⃝ 

𝑓𝐵 ∞⃝ 
𝑒 

, 

 
∞⃝ 

𝑒 𝑒 

𝑣 

,  
∞⃝ 

𝑒 𝑒 

𝑣 

,  
∞⃝ 

𝑒 𝑒 

𝑣 

 

to the flip table. One important feature of this operation is that it is not only spatially 
local (that is, that only flips involving cells incident to the new cell are affected) but also 
dimensionally local — only flips in dimensions near the dimension of the new cell are af-
fected. In the example, a 2-cell is added and the only modifications are to 1- and 2-flips. 
This property holds in higher dimensions; adding a 𝑘-cell to an 𝑛-dimensional complex 
involves only modifications to 𝑘-flips and (𝑘 − 1)-flips. This is an important property 
which limits the implementation complexity of these operations. 

There is also a deleteCell operation which deletes a cell. It requires that the cell to 
be deleted does not lie in the boundary of any other cell; once this is confirmed to be the 
case, the operation essentially does the reverse of addCell, removing flips involving the 
deleted cell and adding flips involving ∞⃝. 

Splitting cells The second modification operation is splitCell, which takes as argu-
ments the cell to split as well as the boundary chain of the new cell introduced between 
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(c)

Figure 4.10: Some of the flips modified in the execution of (𝑓𝐵, 𝑒, 𝑓𝐴) + splitCell(𝑓, 𝑣 − 𝑣). (a) Flips added 
involving the membrane 𝑒 and the left and right children 𝑓𝐵 and 𝑓𝐴. (b) Flips involving only the right 
(blue) or left (green) boundaries have the face 𝑓 replaced by the corresponding child face, 𝑓𝐴 or 𝑓𝐵. (c) 
Flips involving both right and left boundaries are replaced by two flips. Each of these flips contains only 
cells from the membrane and either the left or right boundaries. Here, the single flip ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓⟩ is 
replaced by ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓𝐴⟩ and ⟨𝑣, 𝑒 ↔ 𝑒, 𝑓𝐵⟩. 

the two child cells. The flips involving the new cell are created in much the same way as 
in addCell, including the same consistency checks. In the case of splitCell, however, 
different flips must be added and modified. As an example, consider splitting the face
𝑓 in the cell complex shown in Figure 4.9 by an edge from 𝑣 to 𝑣. The new edge, or 
“membrane”, will be 𝑒, and it will split 𝑓 into two faces 𝑓𝐴 and 𝑓𝐵. We thus want to 
perform the operation (𝑓𝐵, 𝑒, 𝑓𝐴) + splitCell(𝑓, 𝑣 − 𝑣). 

The new edge 𝑒 does not lie on the boundary of this cell complex, so only two 
flips must be added to the flip table: the flip with 𝑒 interior position ⟨ ⊥⃝, 𝑣 ↔ 𝑣, 𝑒⟩ 
(Figure 4.10a) and a flip between the children across the membrane: ⟨𝑒, 𝑓𝐴 ↔ 𝑓𝐵, ⊤⃝⟩. 
The rest of the changes will involve flips where the old face is replaced by its child faces. 

The first task is to partition the boundary of the old face into three pieces: vertices 
in the boundary of the membrane; edges and vertices only in the boundary of the left 
child; and edges and vertices only in the boundary of the right child. This partitioning is 
again performed by a disjoint-set algorithm. The flips involving only the left- or right-
hand boundaries are then updated by replacing the cell 𝑓 by the corresponding child 
(Figure 4.10b). This means that 

𝑓 ⊤ ⊤ 𝑓𝐴 ⃝ ⃝⃝ ⃝ ⊤ ⊤
∞ ∞ become ∞ ∞𝑒 𝑒, ⃝ 𝑓, ⃝ 𝑓 𝑒 𝑒, ⃝ 𝑓𝐴, ⃝ 𝑓𝐴 

𝑣 𝑒 𝑒 𝑣 𝑒 𝑒 

⃝ ⃝ ⃝ ⃝𝑓 ⊤ ⊤ 𝑓𝐵 ⊤ ⊤
and become ∞ ∞𝑓 ∞ 𝑓 ∞ 𝑓𝐵 ⃝𝑒 𝑒,  ⃝,  ⃝ 𝑒 𝑒,  ⃝, 𝑓𝐵 . 

𝑣 𝑒 𝑒 𝑣 𝑒 𝑒 

Next, the flips involving both left- and right-hand boundaries are replaced. These are 
flips from an edge from the left-hand boundary to an edge from the right-hand boundary, 
with 𝑓 in interior position and a vertex from the boundary of the membrane in joint 
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position:
 

𝑓 𝑓
 

𝑒 𝑒 and 𝑒 𝑒.
 
𝑣 𝑣 

These are each replaced by two flips, one in which 𝑓 is replaced by the left-hand child 
and the facet from the right-hand boundary is replaced by the membrane, and one in 
which 𝑓 is replaced by the right-hand child and the facet from the left-hand boundary is 
replaced by the membrane (Figure 4.10c): 

𝑓𝐴 𝑓𝐵 𝑓𝐴 𝑓𝐵


𝑒 𝑒, 𝑒 𝑒 and 𝑒 𝑒, 𝑒 𝑒.
 
𝑣 𝑣 𝑣 𝑣
 

In the end, the splitCell operation modifies the flip table by removing the flips 

𝑓 ⊤ ⊤ 𝑓 ⃝ ⃝ 𝑓⃝ ⃝ ⊤ ⊤ 𝑓 
⃝ 𝑓 ⃝ 𝑓 ⃝ ⃝𝑒 𝑒,  ∞ ,  ∞ , 𝑒 𝑒, 𝑓 ∞, 𝑓 ∞, 𝑒 𝑒, and 𝑒 𝑒 

𝑣 𝑒 𝑒 𝑣 𝑒 𝑒 𝑣 𝑣 

and adding 

⃝ ⊤ ⊤ 𝑓𝐵 ⃝ ⃝ 
𝑓𝐴 ∞ ∞ 𝑓𝐵 ⃝ ∞

𝑒 ⊤ 𝑓𝐴 ⃝ ⃝ ⊤ ⊤
𝑣 𝑣,  𝑓𝐵, 𝑒 𝑒, ⃝ 𝑓𝐴, ⃝ 𝑓𝐴, 𝑒 𝑒,  ∞, 𝑓𝐵 ⃝, 
⃝⊥ 𝑒 𝑣 𝑒 𝑒 𝑣 𝑒 𝑒 

𝑓𝐴 𝑓𝐵 𝑓𝐴 𝑓𝐵
𝑒 𝑒, 𝑒 𝑒, 𝑒 𝑒, and 𝑒 𝑒. 

𝑣 𝑣 𝑣 𝑣 

Just as for addCell, the splitCell operation has an inverse mergeCells, which re-
moves a membrane and joins two formerly separate cells into one. It requires that the 
two cells to be joined are the only cells with the membrane in their boundaries, and that 
their relative orientations be consistent, exactly as if the membrane had been created 
by a splitCell operation. Given this requirement, mergeCells reverses the steps taken 
by splitCell, removing flips involving the membrane and the cells to be merged, and 
inserting flips involving the cell resulting from the merge. 

4.6 Implementation in C++ 

The Cell Complex Framework has been implemented as a C++ library. In this section I 
describe this implementation, including the fundamental data structures, the API, and 
the optimizations used. 
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Data structures The principal data structure representing the state of the cell com-
plex is CellStructure. A CellStructure maintains the flip table and all of the 
higher-level operations to be used on it. Operations like boundary, meet, addCell, 
and mergeCells are implemented as methods of the CellStructure class. A new 
CellStructure must be created with a given maximal dimension: 

CellStructure<Index> cs(2);
	

CellStructure is templated over Index, the type of a cell reference. There are a 
few requirements on a cell reference for the CCF: individual Index objects must be com-
parable by ==, !=, and < (for use in stl containers); the pseudocells ⃝, ⊤ ⃝, ∞ ⃝– ⃝, ⊥ ⃝, and ?
must be available as Index::UNDEF, Index::TOP, Index::BOTTOM, Index::INFTY, 
and Index::Q; unary + and - operators which turn an Index into an oriented index; 
and the methods isPseudocell(), which reports if an Index represents a pseudocell, 
and match(), which acts like == but also matches any cell to ⃝? , must be defined. 

Two kinds of cell reference are included with the CCF. The UIntIndex encapsulates 
an unsigned integer, while the PtrIndex encapsulates a pointer. The CellStructure 
treats the two identically; the primary difference between them is in how data is stored 
on the cell complex. For integer indexes, data is stored in some associative array: for 
example, an stl map: 

std::map<UIntIndex , Vector3D> vertexPosition;
	
vertexPosition[v0] = Vector3D(1,0,0);
	
vertexPosition[v1] = vertexPosition[v0] + Vector3D(0,1,0);
	

The PtrIndex lets the user store data directly accessible from the index. It encapsu-
lates a pointer to a data structure specific to the cell it represents. The entire PtrIndex 
is templated with the types of these data structures for each dimension of cell. Thus, if 
vertices have a data type VertexT, edges a data type EdgeT, and faces a data type FaceT, 
the corresponding PtrIndex in a two-dimensional cell complex will be 

typedef PtrIndex2D<VertexT , EdgeT , FaceT> Index;
	

The user can then cast an Index of known dimension into a subclass which can be deref-
erenced to the proper class: 

Index::Index0 v0, v1;
	
v0->position = Vector3D(0,0,0);
	
v1->position = Vector3D(1,0,0);
	
Index::Index1 edge = cs.join(v0,v1);
	
edge->restLength = 1;
	

The CellStructure does not handle the creation of new Indexes; instead, the 
user is responsible for creating and deleting them as required. The UIntIndex and 
PtrIndex each have associated index managers UIntIndexManager and PtrIndexManager 
which create and release indexes on request: 

UIntIndexManager manager;
	
UIntIndex v0 = manager.create(0), v1 = manager.create(0);
	
UIntIndex edge = manager.create(1);
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manager.release(edge);
	

Positive and negative orientations are POS and NEG, of type RO. A cell reference can 
be assigned an orientation by multiplying by POS or NEG, or with the unary operator + 
or -, and these oriented cells can be combined to create a BoundaryChain: 

CellStructure<Index>::BoundaryChain chain1 = POS * v0 + NEG * v1;
	
CellStructure<Index>::BoundaryChain chain2 = +e0 -e1 -e2 +e3;
	

The orientation can be removed from an oriented cell with the ~ operator: 

CellStructure<Index>::OrientedCell ocell = +v0;
	
Index unoriented = ~ocell;
	

CellTuple is a nested class of CellStructure. A new CellTuple must be given 
the CellStructure it is operating over. In addition, a number of cell references can be 
passed, creating a CellTuple on those cells; with no cells passed, an arbitrary CellTuple 
on the structure is created: 

CellStructure<Index>::CellTuple tuple1(cs);
	
CellStructure<Index>::CellTuple tuple2(cs,v0);
	
CellStructure<Index>::CellTuple tuple3(cs,e0,f0);
	

Operations The operations introduced in Section 4.1 are all methods of the CellStructure 
class. boundary and coboundary take a single cell reference as an argument and return 
a BoundaryChain representing the boundary or coboundary: 

CellStructure<Index>::BoundaryChain e0Boundary = cs.boundary(e0);
	
CellStructure<Index>::BoundaryChain v0Coboundary = cs.coboundary(v0);
	

There is a special operation to return the boundary of an edge. The edgeBounds method 
returns an stl pair; the first element is the vertex with positive relative orientation, the 
second element the negatively oriented vertex. 

std::pair<Index,Index> endpoints = cs.edgeBounds(edge);
	

The boundary and coboundary can also be returned as a set of cells. Along with neigh-
bours, these methods return the cells in an stl set: 

std::set<Index> f0Neighbours = cs.neighbours(f0);
	
std::set<Index> e0BoundingCells = cs.bounds(e0);
	
std::set<Index> v0CoboundingCells = cs.cobounds(v0);
	

Tests for incidence or being on the border take cell references as argument, and return a 
boolean value: 

if( cs.border(e0) ) …; 
if( cs.incident(e0,Index::INFTY) ) …; 

meet and join take a number of cell references and return a single index, which might 
be a pseudocell: 

Index faceMeet = cs.meet(f0,f1);
	
Index vertexJoin = cs.join(v0,v1,v2);
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The user can query whether a cell is actually in the complex is with hasCell, while 
the dimension of a cell is returned by dimensionOf. All cells in the complex of a given 
dimension can be retrieved with cellsOfDimension. 

if( cs.hasCell(v0) ) …;
	
unsigned int dim = cs.dimensionOf(v0);
	
std::set<Index> allVertices = cs.cellsOfDimension(0);
	

The relative orientation between two incident cells is returned by relativeOrientation. 

if( cs.incident(v0,e0) )
	
RO orientation = cs.relativeOrientation(v0,e0);
	

The modification operation addCell takes as argument the Index of the new cell 
and the BoundaryChain defining its boundary. (The boundary may be omitted if we 
are adding a vertex.) The deleteCell operation needs only the cell reference. These 
operations return a boolean value reporting whether the operation was successful; if the 
operation was not successful, no change is made to the cell complex. (A common reason 
for failure is that the provided boundary is invalid.) 

Index v0 = manager.create(0), v1 = manager.create(0);
	
cs.addCell(v0);
	
cs.addCell(v1);
	
Index edge = manager.create(1);
	
cs.addCell(edge , +v0 -v1);
	
if( cs.deleteCell(edge) ) manager.release(edge);
	

There are four cells involved in a splitCell operation: the parent 𝑛-cell, the two child 
𝑛-cells, and the new (𝑛 − 1)-cell separating the child cells (the membrane). These cells are 
provided to the operation in a structure of type SplitStruct: 

struct CellStructure<Index>::SplitStruct {
	
Index parent;
	
Index childP , childN;
	
Index membrane; };
	

The child cells are distinguished by their relative orientation with respect to the mem-
brane: childP is positively oriented, while childN is negatively oriented. The second 
argument of the operation is the BoundaryChain defining the boundary of the mem-
brane. Again, the operation returns false and makes no changes if the split operation 
fails. 

Index quad = cs.join(v0,v1,v2,v3);
	
CellStructure<Index>::SplitStruct ss;
	
ss.parent = quad;
	
ss.childP = manager.create(2);
	
ss.childN = manager.create(2);
	
ss.membrane = manager.create(1);
	
if( cs.splitCell(ss , +v0 -v2) ) manager.release(quad);
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mergeCells also requires a SplitStruct, though in this case the children and mem-
brane will be removed from the cell complex, while the parent will be added. 

CellStructure<Index>::SplitStruct ss;
	
ss.parent = manager.create(1);
	
ss.childP = cs.join(v0,v1);
	
ss.childN = cs.join(v1,v2);
	
ss.membrane = v1;
	
if( cs.mergeCells(ss) ) {
	
manager.release(ss.membrane);
	
manager.release(ss.childP);
	
manager.release(ss.childN); }
	

Cell tuples also have several operations defined. The 𝑘-cell of a tuple is returned by 
the indexing operator [𝑘], while the tuple resulting from a flip operation is returned by 
flip. The other operation returns the 𝑘-cell of the result of flip(𝑘). 

CellTuple tuple(cs,v0,e0);
	
do
 
tuple = tuple.flip(1,2);
	
Index neighbouringVertex = tuple.other(0);
	

while ( tuple[1] != e0 );
	

The relative orientation between the 𝑘-cell and the 𝑘 + 1-cell of the tuple is returned by 
relativeOrientation. 

RO vertexEdgeOrientation = tuple.relativeOrientation(0);
	
RO faceVolumeOrientation = tuple.relativeOrientation(2);
	

Complete example Algorithm 4.1 is a complete example of using the Cell Complex 
Framework. It creates a Sierpinski triangle using the polyhedral subdivision method of 
Algorithm 5.4. The program starts by creating useful type aliases for Index, SplitStruct, 
and CellTuple (lines 2–4); cell references in this example will be of type UIntIndex. 
We create the index manager (line 7) and a two-dimensional cell complex (line 8). Vertex 
positions will be kept in an stl map (line 11). 

We next create the initial triangle. The three vertices are v0, v1, and v2. For each 
vertex, we first create a new index with manager.create(0) (line 15). We then add 
the vertex to the cell complex with addCell (line 16). Finally, we set the position by 
setting the appropriate entry in vpos (line 17). Next are the edges; the triangle has 
three, e0, e1, and e2. We create the new indexes (line 19), then add the edges to the 
cell complex. Each edge goes from its corresponding vertex to the next vertex in the 
triangle; thus, e0 goes from v0 to v1, and so has boundary chain +v0 -v1 (line 20). 
Finally, we add the face. We create the index with manager.create(2) and add the 
face to the cell complex; the three edges are uniformly oriented, so the face’s boundary 
is +e0 +e1 +e2 (line 22). 

Now we subdivide the triangle indefinitely (lines 25–69). The set newVertices 
will hold all of the new vertices created in this step (line 26). We retrieve all of the edges 
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Algorithm 4.1 Creation of a Sierpinski triangle using the Cell Complex Framework 
(part 1) 

1 // useful type aliases
 
2 typedef UIntIndex Index;
	
3 typedef CellStructure<Index>::SplitStruct SplitStruct;
	
4 typedef CellStructure<Index>::CellTuple CellTuple;
	
5
 
6 // new index manager and cell structure
 
7 UIntIndexManager manager;
	
8 CellStructure<Index> cs(2);
	
9
 

10 // map containing vertex positions 
11 std::map<Index , Vector2D> vpos; 
12 
13 // create an initial triangle 
14 // vertices 
15 Index v0 = manager.create(0), v1 = manager.create(0), v2 = manager.create(0); 
16 cs.addCell(v0); cs.addCell(v1); cs.addCell(v2); 
17 vpos[v0] = Vector2D(0,0); vpos[v1] = Vector2D(1,0); vpos[v2] = Vector2D(0,1); 
18 // edges 
19 Index e0 = manager.create(1), e1 = manager.create(1), e2 = manager.create(1); 
20 cs.addCell(e0, +v0 -v1); cs.addCell(e1, +v1 -v2); cs.addCell(e2, +v2 -v0); 
21 // face 
22 Index face = manager.create(2); cs.addCell(face, +e0 +e1 +e2); 
23 
24 // subdivide indefinitely 
25 while( true ) { 
26 std::set<Index> newVertices; 
27 
28 // subdivide edges 
29 std::set<Index> edges = cs.cellsOfDimension(1); 
30 for(auto edgeIter = edges.begin() ; edgeIter != edges.end() ; edgeIter++) { 
31 std::pair<Index,Index> endpoints = cs.edgeBounds(*edgeIter); 
32 SplitStruct ss; 
33 ss.parent = *edgeIter; 
34 ss.childP = manager.create(1); 
35 ss.childN = manager.create(1); 
36 ss.membrane = manager.create(0); 
37 cs.splitCell(ss); 
38 vpos[ss.membrane] = 0.5 * (vpos[endpoints.first] + vpos[endpoints.second]); 
39 newVertices.insert(ss.membrane); 
40 } 
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Algorithm 4.1 Sierpinski example (part 2) 

41 // subdivide faces 
42 std::set<Index> faces = cs.cellsOfDimension(2); 
43 for(auto faceIter = faces.begin() ; faceIter != faces.end() ; faceIter++) { 
44 CellTuple tau(cs,*faceIter); 
45 if( newVertices.count(tau[0]) == 0 ) tau = tau.flip(0); 
46 Index v0 = tau[0]; 
47 tau = tau.flip(0,1,0,1); 
48 Index v1 = tau[0]; 
49 tau = tau.flip(0,1,0,1); 
50 Index v2 = tau[0]; 
51 SplitStruct ss; 
52 ss.parent = *faceIter; 
53 ss.childP = manager.create(2); 
54 ss.childN = manager.create(2); 
55 ss.membrane = manager.create(1); 
56 cs.splitCell(ss, +v0 -v1); 
57 ss.parent = cs.join(v1,v2); 
58 ss.childP = manager.create(2); 
59 ss.childN = manager.create(2); 
60 ss.membrane = manager.create(1); 
61 cs.splitCell(ss, +v1 -v2); 
62 ss.parent = cs.join(v2,v0); 
63 ss.childP = manager.create(2); 
64 ss.childN = manager.create(2); 
65 ss.membrane = manager.create(1); 
66 cs.splitCell(ss, +v2 -v0); 
67 cs.deleteCell(cs.join(v0,v1,v2)); 
68 } 
69 } 
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with the method cellsOfDimension(1) (line 29), then iterate over them (lines 30– 
40). We find the endpoints of the edge with edgeBounds (line 31); these are used later 
to find the position of the vertex midway between them (line 38). The SplitStruct 
for splitting the edge is created and initialized (lines 32–36), and the edge is split (line 37). 
The new vertex is added to the set (line 39). Note that we do not release the cell index 
of the old edge; releasing UIntIndexes has no effect. If we were using PtrIndexes, 
however, we would have to add the line 

manager.release(ss.parent);
	

after the split to deallocate the cell data and avoid a memory leak. 
After splitting every edge, we must split every face (lines 42–43). We create a new 

cell tuple tau with the current face (line 44) and ensure that its vertex is a new vertex: 
if tau[0] is not in newVertices, then we flip the tuple to a new vertex (line 45). We 
then read the three new vertices v0, v1, and v2, advancing the tuple after each (lines 46– 
50). Now we have to split the face three times (lines 56, 61, and 56). Before each split, we 
specify the cell to be divided (lines 52, 57, and 52) and allocate the new cells. (Note again 
that we do not release any of these indexes.) Finally, in order to create the Sierpinski tri-
angle, we find the central triangle with a join operation then delete it with deleteCell 
(line 67). 

The flip table The methods of the CellStructure class are intended to be complete 
for most users. Descending to the level of flips should only be necessary for special 
topological manipulations. At this level, the CellStructure has two principal member 
variables which record the state of the cell complex at this level: the map dimension 
records the dimension of each cell, while the flip relations are kept in the flip table flips. 

The flip table is a container holding all of the flips defining all of the involutions of the 
combinatorial map. The flips in turn are data structures containing four cell references: 

struct Flip<Index> {
	
Index joint;
	
Index facet[2];
	
Index interior; };
	

The flip class defines the match method, which compares two flips and returns true if 
they match, that is, if the cell references in corresponding positions are equal (up to facet 
order) or one of the references is ⃝? . 

The simplest flip table is just a flip set, which is implemented using stl’s set. Queries 
are resolved by checking the flips against the template with match, one by one. Us-
ing this structure, every query becomes a linear-time operation, and flip operations of 
greater complexity are extremely inefficient. The container used by the Cell Complex 
Framework is therefore a flip table. This table takes advantages of a time-space tradeoff 
and stores each flip four times, indexed individually by the cell in each of the positions: 

struct FlipTable<Index> {
	
std::map<Index,FlipSet<Index>> byJoint;
	
std::map<Index,FlipSet<Index>> byFacet;
	
std::map<Index,FlipSet<Index>> byInterior; };
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Figure 4.11: Timings of common tasks using a flat flip set (grey), a flip table with one layer of indirection 
(blue), with two layers of indirection (red), and with three layers of indirection (green). All of the flip tables 
are significantly more efficient than the flip set, and the double-indirection flip table is always better than 
the single-indirection flip table. The triple-indirection flip table is worse than the double-indirection table 
at the tasks involving creating new flips, and about the same at traversal, which involves only looking up 
flips. 

Each of the stl maps contains all of the flips in the table, indexed by the cell in the cor-
responding location. byJoint, for example, is a map which relates a cell reference 𝑐 to 
the set of all flips with 𝑐 in joint position, while byFacet relates 𝑐 to the set of all flips 
with 𝑐 in either facet position. 

Matching a flip template is now a two-stage process. For example, recall that per-
forming a flip operation in the 𝑘th dimension requires finding the unique flip matching 
⟨𝑐𝑘−, 𝑐𝑘 ↔ ⃝? , 𝑐𝑘+⟩. To look this up in the flip table, we first get the flip subset corre-
sponding to one of the cells which is not ⃝? . In this case, we look up the flip set corre-
sponding to 𝑐𝑘− in byJoint; this operation is a binary search and takes time 𝑂(log 𝑛). 
This 𝑂(1)-sized flip set is then searched linearly for an exact match to the template. The 
entire query operation thus takes logarithmic time. We could also start the search by 
looking at byFacet or byInterior; the difference in expected run time in these cases 
depends on the particular cell complex. I found in implementing the example mod-
els, however, that volumes with many faces and polygons with many sides were more 
common than vertices with high valence. In this situation, the average number of flips 
with a given cell in interior position is larger than the average number of flips with a 
cell in joint position. The default behaviour of the query function is therefore to check 
byJoint unless the template has ⃝? in that position. 

It is reasonable to ask whether it would be faster to add a second layer of indirec-
tion; that is, to have byJoint, for instance, match a cell 𝑐 not to a flat set of the flips 
with 𝑐 in joint position, but to have those flips arranged into a table indexed by the cells 
in facet and interior position. The linear-time search would then only have to be run 
against a smaller number of flips. In the example above, matching ⟨𝑐𝑘−, 𝑐𝑘 ↔ ⃝? , 𝑐𝑘+⟩ 
would be done by searching the smaller flip set byJoint[𝑐𝑘−].byFacet[𝑐𝑘] or even 
byJoint[𝑐𝑘−].byFacet[𝑐𝑘].byInterior[𝑐𝑘+]; the latter, a triple indirection, should 
return exactly the required flip. Indeed, in timing tests I found that adding a second layer 
of indirection significantly speeds up flip table operations (Figure 4.11). Adding a third 
layer of indirection is almost as fast as two layers in traversing all tuples (Figure 4.11b), 
but somewhat slower in tasks in which we create new flips (Figures 4.11ac). The Cell 
Complex Framework thus uses by default a flip table with two layers of indirection. 
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5 Techniques for Modeling with the 
Cell Complex Framework 

In Part I, I introduced and developed the Cell Complex Framework, a representation 
for cell complexes based on the combinatorial map and the Cell-Tuple system of Brisson 
(1990). In Part II, I will discuss modeling with the Cell Complex Framework. Chapter 6 
covers geometric modeling with cell complexes, while Chapter 7 treats biological mod-
eling. First, though, I discuss some general techniques which apply to many different 
kinds of models: navigating through the cell complex using sequences of flips, subdivid-
ing cells, and incorporating geometric information into models. These examples serve 
as an introduction to modeling with cell complexes. 

5.1 Flip navigation 

One of the powerful advantages of the flip table representation is that flips can be chained
 
together to move between any connected tuples. Paths between tuples can be used to
 
encode the topological relationship between two cells, or to visit a number of tuples in
 
some order.
 

Tuple paths We can use a tuple path to describe how to find a target cell with a given
 
topological relationship with respect to a given cell. One application in which this is
 
useful is in specifying subdivision masks in geometric modeling, such as for the butter-
fly subdivision scheme (Dyn, Levin, and Gregory 1990). In butterfly subdivision, each
 
edge is subdivided, and the position of each new vertex is an affine combination of the
 
positions of existing nearby vertices; the particular weights used depend on the topo-
logical relationship between the vertex and the edge to be subdivided. Given a tuple 𝜏
 
containing the edge, a fixed sequence of flips moves across the cell complex to the re-
quired vertices. For example, the red vertex in Figure 5.1 is on the tuple 𝜏𝑅, which can
 
be reached from 𝜏 by the sequence of flips 𝜎 ∘ 𝜎 ∘ 𝜎, or1
 

𝜏.flip(2,1,0) 
Similarly, the blue vertex is on 𝜏𝐵 and can be reached by
 

𝜏.flip(1,2,1,0)
 

1The functional composition notation has the last operation applied in the leftmost position, while 
the flip operation lists the dimensions to flip in order of application; the leftmost is thus the first applied. 
Because of this, the operations appear in the opposite order in the two notations. 
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𝜏
𝜏𝑅

𝜏𝐺

𝜏𝐵

flip(1, 2)

Figure 5.1: The position of a new point (on the 
purple edge) in the butterfly subdivision scheme 
depends on the positions of the eight existing 
points at fixed relative positions. Traveling from 
the grey tuple in the center to the shaded tuples 
incident to the red, blue, and green vertices can 
be accomplished by fixed sequences of flips. 

𝜏𝑅 = 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜏, 
𝜏𝐵 = 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜏, 
𝜏𝐺 = 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜏. 

Figure 5.2: Composing flips in 1- and 2-cells to iter-
ate around a vertex (red). Starting from the blue cell 
tuple, successive applications of flip(1, 2) (green ar-
rows) move the tuple counterclockwise around the 
vertex. 

and 𝜏𝐺, containing the green vertex, can be reached by 
𝜏.flip(0,2,1,2,1,0) 

The entire subdivision mask, in fact, can be represented by a table of tuple paths and 
corresponding weights. In Section 5.2 I show this table and describe a complete butterfly 
subdivision model. 

Tuple rotation Another type of traversal is the iteration, which lets the model visit a 
number of tuples in some order. As mentioned in Section 3.3, flipping about adjacent 
dimensions performs a rotation, and repeating this operation lets the model iterate over 
a cycle of tuples: around the edges and vertices of a polygon, around the edges and 
faces adjoining a vertex, around the faces and volumes sharing an edge. For example, 
Figure 5.2 shows the rotation of a tuple around a central vertex (red). Starting from the 
blue cell tuple, we can flip the edge then the face to arrive at the corresponding tuple 
in the next face. This is an application of flip(1, 2), and successive applications (green 
arrows) rotate us counterclockwise around the vertex. 

Algorithm 5.1 uses such a vertex iteration to compute the vertex normal on a polygon 
mesh. This normal is an estimate of the normal of a smooth surface interpolated by the 
mesh (Figure 5.3) and is the weighted average of the normals of the faces adjoining the 
vertex. Several possible weightings have been suggested; the particular weightings used 
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𝑣

𝑤𝑖−

𝑤𝑖

𝑤𝑖+
𝜃𝑖

Figure 5.3: The vertex normal (red) at 𝑣 is 
an estimate of the normal of an interpo-
lated smooth surface. It is the weighted av-
erage of the normals of the adjoining faces 
(blue). The normal can be computed by it-
erating around 𝑣 with the operation flip(1, 2) 
(green arrows); at each step, the neigh-
bouring vertex 𝑤𝑖 is just other(0) (purple ar-
rows). 

in Algorithm 5.1 are those derived by Max (1999): 

sin 𝜃𝑖�⃗� =  �̂�𝑖, 
𝑖 |�⃗�𝑖||�⃗�𝑖+| 

where 𝜃𝑖 is the angle subtended by face 𝑖 at the vertex and �⃗�𝑖 is the vector from vertex 
𝑣 to its neighbour 𝑤𝑖. This weighting means that faces which take up a lot of 𝑣’s neigh-
bourhood contribute more to the vertex normal, while faces which extend a long way 
from 𝑣 have less effect on the local curvature. Note that 

�⃗�𝑖 × ⃗𝑣𝑖+sin 𝜃𝑖 �̂�𝑖 = |�⃗�𝑖||�⃗�𝑖+|
�⃗�𝑖 × ⃗𝑣𝑖+so �⃗� =  (5.1) 

𝑖 |�⃗�𝑖||�⃗�𝑖+| 
. 

This is the equation Algorithm 5.1 uses to compute the normal. 
The vertex normal is computed with an iteration of a cell tuple about the vertex 𝑣. 

First (line 2) a tuple 𝜏 containing 𝑣 is created. At each step of the iteration, we will update 
the normal ⃗𝑛 according to Equation 5.1; this accumulator is set to zero in line 3. Finally, 
before we begin the iteration, we must set the endpoint of the iteration by saving the 
current tuple (line 4); when we reach this tuple again, the loop will end (line 10). 

For each tuple in the iteration, we compute the contribution of its face according to 
Equation 5.1. In line 6 we find the vector �⃗�𝑖; it is the displacement between 𝑣 and the 
vertex 𝑤𝑖 at the other end of the current edge. 𝑤𝑖 is thus the 0-cell of 𝜎𝜏; this is exactly 
the cell 𝜏.other(0) (purple arrow, Figure 5.3). The position of each vertex 𝑤 is stored in 
𝑷(𝑤), and we subtract the positions to find the vector. 

In line 7 we advance the tuple to the next face (green arrow, Figure 5.3). The dis-
placement 𝑤𝑖+ along this edge is computed in exactly the same way as 𝑤𝑖 (line 8). Finally, 
the accumulator �⃗� is updated according to Equation 5.1 (line 9). Once the iteration has 
finished by circling back to the original tuple, the accumulated normal is normalized and 
returned (line 11). 

The visual effect of rendering with a vertex normal is striking (Figure 5.4). In the 
default rendering (a) each face is a uniform colour which depends on its orientation; this 
emphasizes the nature of the mesh as a collection of flat polygons. In drawing with vertex 
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Algorithm 5.1 Compute the vertex normal according to the method of Max (1999).
 
Input: A vertex 𝑣
 
Require: Each vertex 𝑤 in the cell complex has a position 𝑷(𝑤)
 
Output: The estimated normal at 𝑣
 
1: procedure VertexNormal(𝑣) 
2: 𝜏 + tuple containing 𝑣 
3: �⃗� + 0	 ▷ normal accumulator 
4: 𝜏start + 𝜏	 ▷ record starting point 
5: repeat 
6:	 �⃗�𝑖 + 𝑷(𝜏.other(0)) − 𝑷(𝑣) 
7:	 𝜏.flip(1, 2) ▷ advance to the next tuple 
8:	 �⃗�𝑖+ + 𝑷(𝜏.other(0)) − 𝑷(𝑣)
 

�⃗� + �⃗� + 
�⃗�𝑖+ × ⃗𝑣𝑖
9:  |�⃗�𝑖| |�⃗�𝑖+|

10: until 𝜏 = 𝜏start	 ▷ we’ve come full circle 
11: return ⃗𝑛 / |�⃗�| 
12: end procedure 

(a)	 (b) 

Figure 5.4: The effect of rendering with vertex normals. (a) The mesh has been rendered with flat 
faces; (b) the mesh has been rendered with vertex normals computed by Algorithm 5.1. 
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normals (b) the colour can be computed independently for each vertex then interpolated 
across the faces (Gouraud 1971), giving the illusion that the surface is smooth. 

General traversal Traversals by alternating flips are useful in many situations, but can 
only reach a one-dimensional cycle of cells. In many situations, however, the set of cells 
that must be reached do not have such a ring structure. For instance, iterating through 
the faces (2-cells) of a 3-cell can not be performed by simply repeating the application of 
a single operation. In this case, we can recourse to general graph traversal methods. A 
breadth-first search, for example, can be used to iterate through all tuples which can be 
reached using a given set of flips. The faces of a 3-cell can be found by iterating through 
the tuples reachable by combinations of 𝜎, 𝜎, and 𝜎, holding the 3-cell itself constant. 
This iteration will not be cyclic (in the general case, cannot be), but is guaranteed to find 
all of the tuples adjoining the 3-cell. 

One application of a graph traversal is in determining the orientability of a subdivided 
manifold. A manifold is considered orientable if an orientation can be consistently chosen 
over the entire manifold. The topological definition of “orientation” in this sense is 
complex (Hatcher 2002), but it is related to the total orientation of a cell tuple. 

Definition 2. The total orientation 𝜗(𝜏) of a cell tuple 𝜏 = (𝑐, 𝑐, … , 𝑐𝑛) is the product of the 
successive relative orientations between its cells: 

𝜗(𝜏) = 𝜌(𝑐, 𝑐) 𝜌(𝑐, 𝑐) ⋯ 𝜌(𝑐𝑛−, 𝑐𝑛) 𝜌(𝑐𝑛, ⊤⃝). 

The total orientation of a tuple is related to the handedness of its associated tuple co-
ordinate system (Section 5.3). The two possible orientations correspond to left-handed 
and right-handed coordinates, though which is which depends on the particular embed-
ding of the cell complex. 

When we perform an involution 𝜎𝑖 on a tuple 𝜏, we change exactly one cell: 𝑐𝑖 be-
comes 𝑐′ 𝑖 . The only relative orientations which might differ are those between 𝑐𝑖+ and 
𝑐𝑖, or between 𝑐𝑖 and 𝑐𝑖−. Remember, though, that this change is produced by the appli-
cation of the flip 

𝑐𝑖+
𝑐 𝑐′;𝑖 𝑖 
𝑐𝑖− 

the old relative orientations (with respect to 𝑐𝑖) run down the left side of this flip, while 
the new relative orientations (with respect to 𝑐′ 𝑖 ) run down the right side. But this means 
that, by Equation 4.2, their products must be of opposite sign. Thus, the total orientation 
of 𝜏 is the opposite of the total orientation of 𝜎𝑖 ∘ 𝜏. 

All neighbours of a positively-oriented tuple are thus negatively oriented, while all 
neighbours of a negatively-oriented tuple are positively oriented. If a manifold is ori-
entable, then these orientations are consistent across all tuples, and we can divide the set 
of tuples into two disjoint sets: positively and negatively oriented. If the manifold is 
not orientable, however, then orientations cannot be assigned consistently, so we will 
not be able to divide the cell tuples into two disjoint sets. Algorithm 5.2 uses this fact to 
determine the orientability of the manifold represented by a cell complex. 



94 CHAPTER 5. TECHNIQUES FOR MODELING WITH THE CCF 

Algorithm 5.2 Determine whether a connected manifold component represented by 
the cell complex is orientable by checking that its tuples form a bipartite graph 
Input: a tuple 𝜏 on the manifold component in question 
Output: true if the component is orientable; false otherwise 
1: procedure IsOrientable(𝜏) 
2: pending + {𝜏} 
3: visited + {𝜏} 
4: 𝜗(𝜏) + + 
5: while pending ≠ {} do 
6: pick 𝜏 ∈ pending 
7: pending + pending ⧵ {𝜏} 
8: 𝜌 + 𝜗(𝜏) 
9: for 𝑑 ∈ {0, … , 𝑛} do ▷ find neighbours in each dimension 

10: 𝜏′ + 𝜏.flip(𝑑) 
11: if 𝜏′ ∉ visited then 
12: pending + pending ∪ {𝜏′} 
13: visited + visited ∪ {𝜏′} 
14: 𝜗(𝜏′) + −𝜌 
15: else if 𝜗(𝜏′) ≠ −𝜌 then ▷ inconsistent orientation 
16: return false 
17: end if 
18: end for 
19: end while 
20: return true ▷ all tuples are consistently oriented 
21: end procedure 
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(a) (b) 

Figure 5.5: Cylinder (a) and Möbius strip (b) made of square faces (outlined in black). Tuples with 
positive orientation are coloured blue, while tuples with negative orientation are red. (a) Tuples 
on the cylinder are adjacent to tuples of the opposite orientation, meaning that the cylinder is an 
orientable manifold. (b) On the Möbius strip, one pair of blue tuples (indicated by an arrow) and 
one pair of red tuples are adjacent; this demonstrates that the Möbius strip is not orientable. 

The algorithm takes as input a single tuple; its search will reach all connected tu-
ples and thus determine whether one particular connected component of the manifold 
is orientable. The value returned is either true (if the manifold component is orientable) 
or false (if the manifold component is not orientable). The algorithm performs a graph 
traversal of the tuples connected to the input tuple and ensures that their orientations are 
consistent. The traversal relies on two sets: visited is a set of all tuples whose orientation 
has been computed, while pending is a set of all tuples whose neighbours have not yet 
been examined. Both sets initially contain only the input tuple 𝜏, whose orientation is 
(arbitrarily) set to positive (line 4). 

The algorithm then examines one pending tuple 𝜏 each iteration until no tuples are 
left in the pending set (lines 5–19). Each of 𝜏’s neighbours 𝜏′ ∈ {𝜎 ∘ 𝜏, … , 𝜎𝑛 ∘ 𝜏} is examined 
in turn (lines 9–18). If 𝜏′ has not been visited, then it is added to the pending and visited 
sets (lines 12–13) so its neighbours will be examined in a future iteration. Its orientation 
is also set to the reverse of the orientation of 𝜏 (line 14). 

If, on the other hand, 𝜏′ has already been visited, then its previously computed ori-
entation 𝜗(𝜏′) should be the reverse of the orientation of 𝜏. If this is not the case, then 
the orientations have not been assigned consistently and the algorithm indicates that the 
manifold component is non-orientable (line 16). If every tuple is traversed without find-
ing an inconsistency, however, then the manifold component must be orientable, and 
the algorithm returns true (line 20). 

This algorithm is visualized in Figure 5.5. Positively-oriented tuples are coloured 
blue, while negatively-oriented tuples are coloured red. A cylinder is an orientable man-
ifold, and Figure 5.5a shows the expected distribution of orientations: the cell tuples 
alternate between positive and negative. A Möbius strip (Figure 5.5b) is not orientable, 
and the algorithm reports this when it finds adjacent tuples of the same orientation (two 
adjacent red tuples and two adjacent blue tuples, indicated by an arrow). 
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𝑣
𝑒𝐿 𝑒𝑅

𝑒

Figure 5.6: (a) Splitting an edge 𝑒 into two edges 𝑒𝐿 and 𝑒𝑅 at its intersection with line ℓ is performed 
simply by the CCF operation (𝑒𝐿 , 𝑣, 𝑒𝑅) + splitCell(𝑒). (b) Splitting a face 𝑓 into two faces 𝑓𝐿 and 𝑓𝑅 

along the intersection with ℓ is a two-stage process. First, the edges 𝑒 and 𝑒 intersecting ℓ are 
subdivided themselves; the new vertices 𝑣 and 𝑣, lying on ℓ, are then the endpoints of the new 
edge 𝑒 subdividing 𝑓: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(𝑓, +𝑣 − 𝑣). (c) Splitting a volume in two is a three-stage 
process: first edges are split and new vertices created, then faces are split and new edges created, 
then the volume is split by a new face. 

5.2 Subdividing cells 

Splitting along a line The most common way in which the cell complex is changed 
is through the splitting of cells. Splitting an edge at its intersection point with a line 
(Figure 5.6a) is simple; the split operation (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝑒) makes all of the topo-
logical changes. But how do we split a face at its intersection with a line (Figure 5.6b)? 
Two of the vertices of the face will become the endpoints of a new edge, splitting the face 
in two, but what do we do if there are no vertices on the splitting line? The answer is to 
split a face as a two-stage process: first, the edges intersecting the line are split, creating 
new vertices which lie on the splitting line; then these vertices become the endpoints of 
the splitting edge.2 Similarly, splitting a volume is a three-stage process (Figure 5.6c): 
first, edges are split, then faces, then the volume itself. 

Algorithm 5.3 splits a face along its intersection with a plane ℓ. The set endpoints 
stores the two intersection points of the plane with the face’s edges. These points are 
found in an iteration over the edges of the face (lines 5–17); this is similar to the iteration 
over faces in Algorithm 5.1, but the tuple is advanced by flips of vertex and edge (line 7). 
For each edge, its endpoints 𝒑 and 𝒑 are found (lines 6 and 8), then used to find the 
intersections of the edge with the plane (line 9). 

The function LineSegmentIntersect returns the parameter of the intersection point 

2This assumes that the face is convex; if the face is concave, the splitting line might intersect its edges 
in many points, and it becomes ambiguous how we are to split the face in two. The rest of this section 
assumes that cells are convex. 
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Algorithm 5.3 Split a face 𝑓 along its intersection with plane ℓ 
Input: A face 𝑓 and a plane ℓ 
Require: Each vertex 𝑣 in the cell complex has a position 𝑷(𝑣) 
1: procedure SplitFaceByPlane(𝑓,ℓ) 
2: 𝜏 + tuple containing 𝑓 
3: endpoints + {} 
4: 𝜏start + 𝜏 ▷ starting point for iteration 
5: repeat 
6: 𝒑 + 𝑷(𝜏[0]) 
7: 𝜏.flip(0, 1) ▷ advance to the next tuple 
8: 𝒑 + 𝑷(𝜏[0]) 
9: 𝑡 + LineSegmentIntersect(𝒑,𝒑,ℓ) 

10: if 𝑡 = 1 then ▷ plane passes through vertex 
11: endpoints + endpoints ∪ {𝜏[0]} 
12: else if 0 < 𝑡 < 1 then ▷ split edge where the plane cuts it 
13: (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝜏.other(1)) 
14: 𝑷(𝑣) + 𝒑 + 𝑡(𝒑 − 𝒑) 
15: endpoints + endpoints ∪ {𝑣} 
16: end if 
17: until 𝜏 = 𝜏start 

18: if endpoints = {𝑣, 𝑣} and join(𝑣, 𝑣) = 𝑓 then 
19: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(𝑓, +𝑣 − 𝑣) 
20: end if 
21: end procedure 
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(a) (b) (c) 

Figure 5.7: Splitting a mesh along a plane. (a) The initial mesh and the splitting plane (blue). (b) 
Faces on the mesh intersecting the plane have been split; faces above the plane are drawn in blue, 
faces below are drawn in green. (c) The mesh has been split in two along the plane, and the two 
parts moved apart for illustration. 

of the line segment through 𝒑 and 𝒑 with the plane ℓ. If 𝑡 = 1 (line 10), then 𝒑 lies on 
the plane and this point will be one of the endpoints of the splitting edge (line 11). If the 
parameter 𝑡 is between 0 and 1 (line 12) then the plane intersects the edge proper. In this 
case, we split the edge (line 13), move the newly created vertex to the intersection point 
(line 14), and add the vertex to the set of endpoints (line 15). If the parameter is outside 
the interval (0, 1], then we do nothing; the case 𝑡 = 0 (𝒑 lies on the plane) is caught by 
the previous stage of the iteration (or the final stage, if this is the first edge in the loop). 

When we have iterated around the entire face, we can split the face if two conditions 
are met (line 18). First, exactly two endpoints 𝑣 and 𝑣 must have been found; second, 
the join of these vertices must be the face itself. This second condition catches the possi-
bility that the face intersects the plane along an existing edge; if that is the case, their join 
will be that edge. If the conditions are met, then the face is split from 𝑣 to 𝑣 (line 19). 

In Figure 5.7 I illustrate a model which divides an entire mesh in two along a plane. 
Each face is divided by Algorithm 5.3, then the faces are categorized by centroid (Sec-
tion 5.3); those faces above the plane are coloured blue and moved up, those below the 
plane are coloured green and moved down. 

Polyhedral subdivision Another common use for the splitCell operation is subdivi-
sion. By subdividing all of the cells in a model or a localized region, we can geometrically 
smooth a surface (Chapter 6) or refine mathematical computations done on the cell com-
plex. The polyhedral subdivision, for example, subdivides a mesh of triangles by splitting 
each edge into two, and each triangle into four (Figure 5.8). A new vertex is placed at 
the midpoint of the edge it subdivides. Algorithm 5.4 subdivides a triangular mesh in 
this way. 

The mesh is subdivided in two stages. In the first stage (lines 3–7), every edge is 
subdivided and the splitting vertex is placed at its midpoint. In the second stage (lines 8– 
21), each face is split into four faces by new edges whose endpoints are the new vertices 
created in the first stage. In order to distinguish these from the original vertices, the new 
vertices are saved in the set newV (line 6). 
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Figure 5.8: Polyhedral subdivision of a triangle. (a) The initial triangle 𝑓. (b) After subdividing the edges, 
the shape has six vertices and twelve tuples. We proceed from the shaded tuple to the next new vertex by 
flipping four times. (c) After splitting along the edge from 𝑣 to 𝑣, the next face to be split is join(𝑣, 𝑣). 
(d) The next face to be split is join(𝑣, 𝑣). (e) The original triangle has been split into four triangles. 

Algorithm 5.4 Polyhedral subdivision
 
Require: Each vertex 𝑣 in the cell complex has a position 𝑷(𝑣)
 
1: procedure PolyhedralSubdivision 
2: newV + {} 
3: for all edge 𝑒 do ▷ split each edge at its midpoint 
4: (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝑒) 
5: 𝑷(𝑣) + Centroid(𝑒) 
6: newV + newV ∪ {𝑣} 
7: end for 
8: for all face 𝑓 do ▷ split each face in four 
9: 𝜏 + tuple containing 𝑓 

10: if 𝜏[0] ∉ newV then ▷ ensure that 𝜏[0] is a new vertex 
11: 𝜏.flip(0) 
12: end if 
13: 𝑣 + 𝜏[0] 
14: 𝜏.flip(0, 1, 0, 1) ▷ advance to the next new vertex 
15: 𝑣 + 𝜏[0] 
16: 𝜏.flip(0, 1, 0, 1) 
17: 𝑣 + 𝜏[0] 
18: splitCell(𝑓, +𝑣 − 𝑣) 
19: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
20: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
21: end for 
22: end procedure 
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(a) 

(b) 

Figure 5.9: (a) Successive application of the polyhedral subdivision algorithm turns a single triangle into 
a tiled array of triangles. (b) Removing the central triangle after each subdivision step results in the con-
struction of a Sierpinski gasket. 

Edges are split much as in the previous Algorithm. For splitting each face, we first 
create a cell tuple 𝜏 (line 9) and ensure that its vertex is new by flipping the vertex if it 
is old (lines 10–12). We then collect the three new vertices (lines 13–17). Between each 
vertex, we advance the tuple two vertices around the face, bypassing the old vertex (Fig-
ure 5.8b). Finally, the face is split three times (lines 18–20); as 𝑓 itself will not exist after 
the first split (Figure 5.8c), the face connecting vertices 𝑣 and 𝑣 is found as join(𝑣, 𝑣) 
(line 19), and the same for 𝑣 and 𝑣 (line 20). 

Successive application of the polyhedral subdivision algorithm turns a single triangle 
into a tiled array of triangles (Figure 5.9a). We can also slightly alter the polyhedral 
subdivision algorithm to create a Sierpinski gasket. In this case, the internal of the four 
subdivided triangles is removed from the cell complex at each subdivision step, leaving a 
self-similar structure with holes (Figure 5.9b). The change requires only one alteration 
to Algorithm 5.4: the insertion of a new line 

deleteCell(join(𝑣, 𝑣, 𝑣)) 

at the end of the face loop, after line 20. The join of the three new vertices is their 
common triangle, i.e. the central triangle of the subdivision. 

The new vertices do not have to be placed at the midpoints of the edge they subdivide. 
In the butterfly subdivision scheme (Dyn, Levin, and Gregory 1990), the position of new 
points is an affine combination of the positions of nearby points. In Section 5.1 I showed 
how a specific sequence of flips could be used to travel from the edge to be subdivided 
to each vertex whose position must be considered to place the new vertex. Figure 5.10 
shows the weights of each of these vertices and their corresponding flip sequences. Using 
this table, we can turn the polyhedral subdivision algorithm into a butterfly subdivision 
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Figure 5.10: Tuple paths are used to find nearby vertices in the Butterfly subdivision scheme. 
When the purple edge is subdivided, the position of the new vertex is an affine combination of the 
positions of its eight neighbouring vertices. Starting from the shaded tuple containing the edge 
to be subdivided, these vertices can be reached through specific flip sequences. 

(a) (b) (c) (d) 

Figure 5.11: Butterfly subdivision applied to an octahedral mesh. (a) The initial mesh; (b) after one subdi-
vision step; (c) after two subdivision steps; (d) after five subdivision steps. 

algorithm (Algorithm 5.5). 
The key difference in Algorithm 5.5 is line 16, in which a new vertex’s position is 

set. Rather than using the midpoint of the edge, point 𝑣 is placed at a point 𝑷′(𝑒) which 
depends on the edge it splits. This position is computed in the first loop over all edges 
(lines 2–12). First, a tuple 𝜏 containing the edge is created (line 3); this is the shaded tuple 
in Figure 5.10. In line 4, the point 𝑷′(𝑒) is set to the position of 𝜏’s vertex, scaled by /; 
this is the first of eight points whose positions contribute to the position of the vertex 
which will split 𝑒. In each of the next seven lines, one neighbouring vertex is found by 
following the corresponding flip sequence (giving tuple 𝜏′ ) and its position is scaled and 
added to 𝑷′(𝑒). The scaled positions of these eight vertices combine to give the position 
we need. 

Figure 5.11 illustrates the application of butterfly subdivision. Starting from a simple 
shape (Figure 5.11a), the subdivision reduces the size of the triangles and smooths the 
surface of the mesh, while interpolating the vertices of the original mesh. 
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Algorithm 5.5 Butterfly subdivision
 
Require: Each vertex 𝑣 in the cell complex 𝐶 has a position 𝑷(𝑣)
 
1: procedure ButterflySubdivision 
2: for all edge 𝑒 do ▷ find positions of new vertices 
3: 𝜏 + tuple containing 𝑒 
4: 𝑷′(𝑒) + / 𝑷(𝜏[0]) 
5: 𝜏′ + 𝜏.flip(0); 𝑷′(𝑒) + 𝑷′(𝑒) + / 𝑷(𝜏′[0]) 
6: 𝜏′ + 𝜏.flip(1, 0); 𝑷′(𝑒) + 𝑷′(𝑒) + / 𝑷(𝜏′[0]) 
7: 𝜏′ + 𝜏.flip(2, 1, 0); 𝑷′(𝑒) + 𝑷′(𝑒) + / 𝑷(𝜏′[0]) 
8: 𝜏′ + 𝜏.flip(1, 2, 1, 0); 𝑷′(𝑒) + 𝑷′(𝑒) − / 𝑷(𝜏′[0]) 
9: 𝜏′ + 𝜏.flip(0, 1, 2, 1, 0); 𝑷′(𝑒) + 𝑷′(𝑒) − / 𝑷(𝜏′[0]) 

10: 𝜏′ + 𝜏.flip(2, 1, 2, 1, 0); 𝑷′(𝑒) + 𝑷′(𝑒) − / 𝑷(𝜏′[0]) 
11: 𝜏′ + 𝜏.flip(0, 2, 1, 2, 1, 0); 𝑷′(𝑒) + 𝑷′(𝑒) − / 𝑷(𝜏′[0]) 
12: end for 
13: newV + {} 
14: for all edge 𝑒 do ▷ split each edge at position 𝑷′(𝑒) 
15: (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝑒) 
16: 𝑷(𝑣) + 𝑷′(𝑒) 
17: newV + newV ∪ {𝑣} 
18: end for 
19: for all face 𝑓 do ▷ split each face in four 
20: 𝜏 + tuple containing 𝑓 
21: if 𝜏[0] ∉ newV then ▷ ensure that 𝜏[0] is a new vertex 
22: 𝜏.flip(0) 
23: end if 
24: 𝑣 + 𝜏[0] 
25: 𝜏.flip(0, 1, 0, 1) ▷ advance to the next new vertex 
26: 𝑣 + 𝜏[0] 
27: 𝜏.flip(0, 1, 0, 1) 
28: 𝑣 + 𝜏[0] 
29: splitCell(𝑓, +𝑣 − 𝑣) 
30: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
31: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
32: end for 
33: end procedure 
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Figure 5.12: Barycentric coordi-
nates label points in simplexes 
of one and two dimensions. 

5.3 Tuple coordinates 

In this section, I introduce tuple coordinates, a set of intrinsic coordinate systems defined 
on the cell complex. These coordinates are helpful in performing geometric operations 
on the cell complex, and I provide algorithms using tuple coordinates for computing the 
measure and centroid of a cell. The measure is the size of the cell, and is a generalization 
of one-dimensional length, two-dimensional area, and three-dimensional volume. The 
centroid is the geometric center of the cell, the average position of all of its points. Tuple 
coordinates are also used in Chapter 6 to propagate geodesics across a mesh. 

The tuple frame As discussed in Section 3.2.1, the way in which cells are assigned 
positions in a manifold is called the cell complex’s embedding. Most of the models de-
scribed in this thesis use the default embedding, which assumes that vertices 𝑣𝑖 are placed 
at positions 𝒑𝑖, and that all 𝑘-cells are the flat 𝑘-dimensional polytopes defined by their 
vertices. Of course, a 𝑘- cell with more than 𝑘 + 1 vertices will not in general be flat (e.g. 
a quadrilateral in three-dimensional space (a 2-cell with 4 vertices) is not necessarily flat). 
In many models, this is not a problem: we can restrict the cells to simplexes or guarantee 
that non-simplicial cells will nonetheless be flat. Even when these guarantees are not pos-
sible, cells are often very close to flat in practice and this approximation makes modeling 
significantly easier. 

Note that in any embedding, the only points on that manifold that are explicitly rep-
resented are the vertices of the complex. In order to relate other points on the manifold 
to the cell complex, we can introduce a coordinate system to relate any point in the man-
ifold to the positions of the vertices. In the default embedding, this is particularly easy, 
and in this section I define tuple coordinates, a family of coordinate systems, each defined 
by a single cell tuple. 

Tuple coordinates are based on barycentric coordinates (Coxeter 1961), which let us 
define a point in a simplex as a weighted sum of the positions of the vertices. For example 
(Figure 5.12a), the midpoint of a line 𝑃𝑄 is at the average position of the vertices, 𝑨 = 
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/𝑷 + /𝑸. In fact, we can take any weights instead of /; as long as the sum of the 
weights is 1, the points will lie on the line 𝑃𝑄. Thus, 𝑨 = /𝑷 + /𝑸, in which the 
point 𝑃 is weighted much more than 𝑄, is much closer to 𝑃. The weights need not even 
be positive; 𝑨 = −/𝑷 + /𝑸 still lies on the line 𝑃𝑄, though points with negative 
coefficients do not lie between the endpoints. Given the constraint that the coefficients 
sum to 1, each of these sums uniquely defines a point on the line. 

The same is true for higher-dimensional simplexes; a point on a triangle 𝛥𝑃𝑄𝑅 is 
uniquely defined by a weighted average of the triangle’s vertices, where the weights sum 
to 1 (Figure 5.12b). In this case, if all three of the coefficients are between 0 and 1, the 
point lies within the triangle, like 𝑨 = /𝑷 + /𝑸 + /𝑹. If one of the coefficients is 
zero, then the point lies on one of the triangle’s edges like 𝑨 = /𝑸 + /𝑹. Finally, if 
a coefficient is negative, the point lies in the plane of the triangle but outside its edges, 
like 𝑨 = /𝑷 − /𝑸 + /𝑹. 

We can remove the constraint that the weights sum to 1 by expressing these points 
in a coordinate frame; that is, a coordinate system with a specified origin point. A point
𝒑 on an 𝑛-simplex is uniquely defined by 

𝒑 = 𝛼𝑷 + 𝛼𝑷 + ⋯ + 𝛼𝑛𝑷𝑛; 

since ∑𝑖 𝛼𝑖 = 1, we see that 𝛼 = 1 − 𝛼 − ⋯ − 𝛼𝑛 and 

𝒑 = (1 − 𝛼 − ⋯ − 𝛼𝑛)𝑷 + 𝛼𝑷 + ⋯ + 𝛼𝑛𝑷𝑛 

= 𝑷 + 𝛼(𝑷 − 𝑷) + ⋯ + 𝛼𝑛(𝑷𝑛 − 𝑷) 
= 𝑷 + 𝛼�⃗� + ⋯ + 𝛼𝑛�⃗�𝑛 

where ⃗𝑒𝑖 = 𝑷𝑖 − 𝑷 are the coordinate axes and 𝑷 is the origin point. 
Even though the cells are not necessarily simplexes, we can use this same idea to 

define a unique reference frame for every tuple (Figure 5.13): 

Definition 3. The tuple frame corresponding to an 𝑛-dimensional tuple 𝜏 is {𝒑, �⃗�, �⃗�, … , ⃗𝑒𝑛}, 
where 𝒑 is the position of the vertex 𝜏[0] and ⃗𝑒𝑘 is the vector 𝒑𝑘 − 𝒑, where 𝒑𝑘 is the position of the 
vertex of the tuple 𝜅 = 𝜎 ∘ 𝜎 ∘ ⋯ ∘ 𝜎𝑘− ∘ 𝜏. 

The definition of ⃗𝑒𝑘 means that each ⃗𝑒𝑘 is a vector with the direction and length of an 
edge incident on 𝜏[0]. �⃗� is in the direction of the tuple’s own edge; ⃗𝑒 is in the direction 
of the edge which shares the tuple’s face; ⃗𝑒 is in the direction of the edge which shares 
the tuple’s volume but not its face, and so on. 

The tuple frame defines a set of tuple coordinates for any point within the 𝑛-cell. If 
the cell is a simplex, then the coordinates are exactly equivalent to the barycentric coor-
dinates on the cell. Even if the cell is not a simplex, the tuple coordinates still uniquely 
define points within it, though some points in the cell might have coordinates greater 
than one or less than zero. Moreover, each tuple in an 𝑛-cell defines a different set of 
tuple coordinates; thus, there are many possible coordinate systems which define points 
in each cell. 

Each set of tuple coordinates provides a map from a Euclidean space on that cell to the 
embedding space; the totality of these maps (one for each tuple in the divided manifold) 



105 CHAPTER 5. TECHNIQUES FOR MODELING WITH THE CCF 

𝐩

𝐩

𝐩

𝐩

�⃗�

�⃗�

�⃗�

𝜏
𝜎

𝜎 ∘ 𝜎

𝜎 ∘ 𝜎 ∘ 𝜎

Figure 5.13: The construction of the tuple frame {𝒑, �⃗�, �⃗�, �⃗�} corresponding to the red tuple 𝜏. The 
coordinate origin 𝒑 is the position of 𝜏’s vertex 𝜏[0]; the first coordinate axis ⃗𝑒 is in the direction 
of 𝜏’s edge, which lies between 𝜏[0] and (𝜎 ∘ 𝜏)[0]. The second axis �⃗� is in the direction of the 
other edge on 𝜏’s face: the other endpoint of this edge is (𝜎 ∘ 𝜎 ∘ 𝜏)[0]. Finally, the third axis ⃗𝑒 is 
in the direction of the other edge on the other face on 𝜏’s volume; that makes its other endpoint 
(𝜎 ∘ 𝜎 ∘ 𝜎 ∘ 𝜏)[0]. 

thus forms a complete atlas covering the manifold. In other words, the tuple coordinates 
provide us with an intrinsic coordinate system for the divided manifold. When we tra-
verse the cell complex, each flip function 𝜎𝑖 corresponds to a transition function between 
tuple frames: 

{𝒑, �⃗�, … , ⃗𝑒𝑛} ↦ {𝒑′ , �⃗�′ , … , ⃗𝑒′ 𝑛} 

Examples of these transition functions are derived in Section 6.3, where they are used to 
propagate curves across a polygonized surface. 

The tuple frame might be left- or right-handed, depending on the particular embed-
ding. However, the transition functions always reverse the orientation of the coordinate frame 
(Figure 5.14). We thus see that the orientation of the coordinate frame is related to the 
total orientation of a cell tuple as discussed in Section 5.1. 

The vectors in the tuple frame are not in general perpendicular or of unit length, but 
we can define a frame whose coordinate axes are orthonormal (Figure 5.15): 

Definition 4. The orthonormal tuple frame corresponding to 𝜏 is {𝒑, �̂�, �̂�, … , �̂�𝑛}, where 𝒑 is 
as above, �̂� = ⃗𝑒/|⃗𝑒|, and �̂�𝑘 is the inward-pointing normal to the cell 𝜏[𝑘 − 1] lying in the subspace 
of the cell 𝜏[𝑘]. 

Thus, �̂� points inward from 𝒑 along the edge 𝜏[1]; �̂� is orthogonal to the edge and 
points into the face 𝜏[2]; �̂� is normal to this face and points into the volume 𝜏[3], and so 
on. Whenever the cells are not geometrically degenerate, we can derive the orthonormal 
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Figure 5.14: Flips reverse the orientation of tuple coordinates. The coordinate system of 𝜏 (a) is 
right-handed, while the coordinate systems of 𝜎 ∘ 𝜏 (b) and 𝜎 ∘ 𝜏 (c) are left-handed; flipping once 
more, the coordinate system of 𝜎 ∘ 𝜎 ∘ 𝜏 (d) is again right-handed. 
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𝜏

Figure 5.15: The construction of the orthonormal tuple frame {𝒑, �̂�, �̂�, �̂�} corresponding to the 
pink tuple 𝜏. Again, the coordinate origin 𝒑 is the position of 𝜏’s vertex 𝜏[0], and the first coordinate 
axis �̂� is in the direction of 𝜏’s edge. Now, however, the second axis �̂� is the vector in the plane 
of 𝜏’s face pointing inward from �̂� (purple), and the third axis ⃗𝑒 is the vector normal to 𝜏’s face 
pointing into 𝜏’s volume (green). 
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tuple frame from the non-orthogonal frame through Gram-Schmidt orthogonalization. 
This is the purpose of Algorithm 5.6. 

Algorithm 5.6 Calculate the orthonormal tuple frame through Gram-Schmidt orthog-
onalization of the tuple edge directions 
Input: A tuple 𝜏 
Require: Each vertex 𝑣 in the cell complex has a position 𝑷(𝑣) 
Output: The orthonormal tuple frame (𝒑, �̂�, … , �̂�𝑛) corresponding to 𝜏 
1: procedure OrthonormalTupleFrame(𝜏) 
2: 𝒑 + 𝑷(𝜏[0]) 
3: for 𝑖 ∈ {1, … , 𝑛} do 
4: 𝜏′ + 𝜏.flip(𝑖 − 1, … , 1, 0) 
5: �⃗�𝑖 + 𝑷(𝜏′[0]) − 𝒑 
6: for 𝑗 ∈ {1, … , 𝑖 − 1} do ▷ Gram-Schmidt orthogonalization 
7: �⃗� + ⃗𝑒 − (⃗𝑒 ⋅ �̂� )�̂�𝑖 𝑖 𝑖 𝑗 𝑗 
8: end for 
9: �̂� + ⃗𝑒 /|⃗𝑒 |𝑖 𝑖 𝑖 

10: end for 
11: return (𝒑, �̂�, … , �̂�𝑛) 
12: end procedure 

The point 𝒑 is just the position of the input tuple 𝜏’s vertex (line 2). The basis vectors 
�̂�𝑖 are found one at a time (lines 3–10). In order to find the 𝑖th vector, we first find the 
tuple 𝜏′ which contains the edge and vertex which lie on 𝜏’s 𝑖-cell but not on its (𝑖 − 1)-
cell (line 4). The vector from 𝒑 to 𝜏′ ’s vertex is the non-orthonormal tuple frame axis 
�⃗�𝑖 (line 5). This is orthogonalized against the already-found axes by the Gram-Schmidt 
technique (lines 6–8), then normalized (line 9). Finally, once all of the basis vectors have 
been computed, the frame is returned (line 11). 

Measure The orthonormal tuple frame can be used to compute the measure of a cell. 
We state arbitrarily that the measure of a vertex is 1. The algorithm for computing the 
measure of a cell of higher dimension is stated, with proof in two dimensions only, by 
Franklin (1992). Here I prove the general multidimensional case: 

Theorem 5.1. Let 𝜏 be a cell tuple in a 𝑑-dimensional cell complex with a default embedding. Let 
𝜈(𝜏) = ∏(⃗𝑝 ⋅ �̂�𝑖), where {𝒑, �̂�, �̂�, … , �̂�𝑛} is the orthonormal tuple frame associated with 𝜏. If 𝐶 is 
a 𝑘-cell with measure ‖𝐶‖, then 

‖𝐶‖ = 
(−1)𝑘  𝜈(𝜏) (5.2)𝑘! 𝜏 

𝐶∈𝜏 

where the sum is taken over all tuples 𝜏 with 𝑘-cell 𝐶. 

Proof. The measure of a closed space is the integral of a function with constant value 1 
over the space: 

‖𝐶‖ =  1 𝑑𝐶. 
𝐶 
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We introduce the function ∇ ⋅ ⃗𝑥; in 𝑘 dimensions, this has the constant value 𝑘: 

‖𝐶‖ = 
1 

𝑘  ∇ ⋅ ⃗𝑥 𝑑𝐶. 
𝐶 

By the Divergence Theorem, this becomes 

‖𝐶‖ = 
1 

𝑘  �⃗� ⋅ 𝑑𝑛,̂
𝜕𝐶 

where �̂� is the outward-facing normal to the boundary of 𝐶. Since the boundary of 𝐶 is 
made up of flat (𝑘 − 1)-cells 𝜙 ≺ 𝐶, we see that 

‖𝐶‖ = 
1 

𝑘 
  �⃗� ⋅ �̂�𝜙 𝑑𝜙; 
𝜙≺𝐶 𝜙 

but the inward-facing normal to 𝜙 is �̂�𝑘; that is, �̂�𝜙 = − �̂�𝑘, so: 

̂‖𝐶‖ = − 
1 

𝑘 
  �⃗� ⋅ 𝜉𝑘 𝑑𝜙. 
𝜙≺𝐶 𝜙 

Since �̂�𝑘 is perpendicular to 𝜙, its dot product with any point in 𝜙 is the same. 𝜙 contains 
𝒑, so 

‖𝐶‖ = − 
1 

𝑘 
  �⃗� ⋅ �̂�𝑘 𝑑𝜙 = − 

1 

𝑘 
(⃗𝑝 ⋅ �̂�𝑘)  𝑑𝜙. 

𝜙≺𝐶 𝜙 𝜙≺𝐶 𝜙 

We can recursively perform the same derivation to find that 

‖𝐶‖ = − 
1 (⃗𝑝 ⋅ �̂�𝑘) 

−1 (⃗𝑝 ⋅ �̂�𝑘−)  𝑑𝜒𝑘 
 

𝑘 − 1 
 

𝜙≺𝐶 𝜒≺𝜙 𝜒 

�̂�𝑘) 
−1 

2 
= − 

1 

𝑘 
(⃗𝑝 ⋅ (⃗𝑝 ⋅ �̂�𝑘−) ⋯ 

−1 (⃗𝑝 ⋅ �̂�)  𝑑𝑒𝑘 − 1 
 

𝜙≺𝐶 𝜒≺𝜙 𝑒 𝑒 

where 𝑒 is an edge of the cell 𝐶. If 𝑒’s endpoints are at ⃗𝑝 and ⃗𝑝′ , then 

 𝑑𝑒 = ‖⃗𝑒‖ = ⃗𝑒 ⋅ �̂�
𝑒 

= (�⃗�′ − ⃗𝑝) ⋅ �̂�
= −(�⃗� ⋅ �̂� + ⃗𝑝′ ⋅ (−�̂�)) 

because the inward-facing normal from ⃗𝑝 is opposite to the inward-facing normal from 
�⃗�′ . But then 

‖𝐶‖ = − 
1 

𝑘 
(⃗𝑝 ⋅ �̂�𝑘) 

−1 (⃗𝑝 ⋅ �̂�𝑘−) ⋯ 
−1 (⃗𝑝 ⋅ �̂�) 

−1 �⃗� ⋅ �̂�2 
 

1 


𝑘 − 1 
 

𝜙≺𝐶 𝜒≺𝜙 𝑒 𝑝 

−1 −1=   ⋯   1  (⃗𝑝 ⋅ �̂�𝑘)(⃗𝑝 ⋅ �̂�𝑘−) ⋯ (⃗𝑝 ⋅ �̂�)𝑘 𝑘 − 1 
⋯ 
−1 

𝜙≺𝐶 𝜒≺𝜙 𝑝≺𝑒
 

(−1)𝑘
 =   ⋯  (⃗𝑝 ⋅ �̂� ).𝑘! 𝑖 
𝜙≺𝐶 𝜒≺𝜙 𝑝≺𝑒 𝑖 
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(a) 

�⃗�

�⃗� ⋅ �̂� �⃗� ⋅ �̂�
𝜈(𝜏) = (⃗𝑝 ⋅ �̂�)(�⃗� ⋅ �̂�)

�⃗�′

�⃗�′ ⋅ �̂�′

𝜈(𝜏′) = (�⃗�′ ⋅ �̂�′)(�⃗�′ ⋅ �̂�′)
(b) 

Figure 5.16: Calculating the measure in two dimensions using Equation 5.2. (a) The value 𝜈(𝜏) = 
(⃗𝑝 ⋅ �̂�)(⃗𝑝 ⋅ �̂�) is the area of a rectangle aligned with the edge. The sum 𝜈(𝜏) + 𝜈(𝜏′) of the areas 
of both rectangles on an edge is the area of the rectangle whose base is the edge. (b) The sum 
of 𝜈 for all tuples on the triangle is equal to the sum of the areas of three rectangles. The entire 
triangle is covered twice by the sum of the rectangles, so ‖𝐶‖ = / ∑ 𝜈(𝜏). 

All of the sums mean that there is one term for each cell sequence 𝑝 ≺ 𝑒 ≺ ⋯ ≺ 𝜒 ≺ 𝜙 ≺ 𝐶; 
that is, one term for each cell tuple containing 𝐶: 

‖𝐶‖ = 
(−1)𝑘  𝜈(𝜏)𝑘! 𝜏 

𝐶∈𝜏 

as expected. 

Some intuition to how Equation 5.2 produces the measure is shown in Figure 5.16. 
In two dimensions, each value 𝜈(𝜏) is the area of a rectangle aligned with the edge 𝜏[1] 
whose opposite vertices are 𝜏[0] and the coordinate origin; the vector ⃗𝑝 is thus its diago-
nal. The sum of 𝜈 for both tuples which share that edge, i.e. 𝜈(𝜏) + 𝜈(𝜎 ∘ 𝜏), is the area of 
the rectangle whose base is that edge and whose altitude is the distance to the origin (Fig-
ure 5.16a). Overlaying the rectangles corresponding to all of the tuples (Figure 5.16b), 
we see that some parts of the triangle are covered by two rectangles. The parts of the 
triangle covered by only one rectangle, however, correspond exactly to the parts of that 
rectangle which lie outside the triangle. This means that the triangle is covered exactly 
twice by the sum of the rectangles, or ‖𝐶‖ = / ∑ 𝜈(𝜏). 

Algorithm 5.7 finds the measure of a cell 𝐶 by performing a traversal of its tuples. 
The measure will be held in accumulator 𝜇, which is initialized to zero in line 3. We start 
our traversal at an arbitrary tuple 𝜏 containing 𝐶 (line 4). The traversal is performed in 
exactly the same way as that in Algorithm 5.2, with the difference that the traversal only 
uses flips in dimensions less than the dimension of 𝐶 (line 16). This dimension is retrieved 
as 𝑘 in line 2. Since there are no flips in dimension 𝑘, every tuple we visit must include 
𝐶. 

For each tuple 𝜏 we visit, we first compute its orthonormal tuple frame (line 10). We 
then find the value of 𝜈(𝜏) (lines 11–14) and add it to the accumulator 𝜇 (line 15). Finally, 
once all of the tuples have been visited, we return the total measure (line 24). 
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Algorithm 5.7 Find the measure of a cell 𝐶 by performing a traversal of its tuples and 
applying Equation 5.2 
Input: A cell 𝐶 
Require: Each vertex 𝑣 in the cell complex has a position 𝑷(𝑣) 
Output: The measure 𝜇 of 𝐶 
1: procedure Measure(𝐶) 
2: 𝑘 + dimension of 𝐶 
3: 𝜇 + 0 ▷ accumulator for measure 
4: 𝜏 + tuple containing 𝐶 
5: pending + {𝜏} 
6: visited + {𝜏} 
7: while pending ≠ {} do ▷ traversal of 𝐶’s tuples 
8: pick 𝜏 ∈ pending 
9: pending + pending ⧵ {𝜏} 

10: (⃗𝑝, �̂�, … , �̂�𝑛) + OrthonormalTupleFrame(𝜏) 
11: 𝜈 + 1 
12: for 𝑖 ∈ {1, … , 𝑘 − 1} do ▷ compute 𝜈 = ∏(⃗𝑝 ⋅ �̂�𝑖) 
13: 𝜈 + 𝜈 ∗ (�⃗� ⋅ �̂�𝑖) 
14: end for 
15: 𝜇 + 𝜇 + 𝜈 
16: for 𝑑 ∈ {0, … , 𝑘 − 1} do ▷ only flip in dimensions less than 𝑘 
17: 𝜏′ + 𝜏.flip(𝑑) 
18: if 𝜏′ ∉ visited then 
19: pending + pending ∪ {𝜏′} 
20: visited + visited ∪ {𝜏′} 
21: end if 
22: end for 
23: end while 

(−1)𝑘 
24: return 𝑘! 𝜇 

25: end procedure 
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Centroid An algorithm for computing the centroid of a cell is given for three-dimen-
sional cells with triangular faces by Nürnberg (2013). A generalization is more compli-
cated than the expression for computing measure, but takes much the same form: the 
centroid of 𝐶 is the sum, over every tuple containing 𝐶, of a function of that tuple’s 
orthonormal tuple frame: 

Theorem 5.2. Let 𝜏 be a cell tuple in a 𝑑-dimensional cell complex with a default embedding. Let 

⎧ (⃗𝑝 ⋅ 𝜖)̂ 𝑘+ 

 ̂ ̂ ̂ ̂(𝜖 ⋅ 𝜉𝑖) if 𝜉 ⋅ 𝜖 ≠ 0⎪⎪⎪⎪⎪ ̂ ⋅ �̂�⎨ 𝜉 ≤𝑖≤𝑘𝜂( �̂�, 𝜏) = ⎪⎪⎪⎪⎪(𝑘 + 1) (�⃗� ⋅ 𝜖)̂ 𝑘 (⃗𝑝 ⋅ �̂�)  (�̂� ⋅ �̂�𝑖) if �̂� ⋅ �̂� = 0,⎩ ≤𝑖≤𝑘

where {𝒑, �̂�, �̂�, … , �̂�𝑛} is the orthonormal tuple frame associated with 𝜏, and �̂� is any unit vector. If 
𝐶 is a 𝑘-cell with measure ‖𝐶‖ and centroid �⃗�, then 

(−1)𝑘‖𝐶‖ �⃗� ̂ 𝜂(𝜖, 𝜏)⋅ 𝜖 = ̂ (5.3)(𝑘 + 1)! 
 
𝜏 
𝐶∈𝜏 

where the sum is taken over all tuples 𝜏 with 𝑘-cell 𝐶. 

Proof. The centroid �⃗� of 𝐶 is average of every point in 𝐶, i.e. 

∫ �⃗� 𝑑𝐶
⃗ 𝐶𝑍 = ,‖𝐶‖ 

so 

̂ ̂‖𝐶‖ �⃗� ⋅ 𝜖 =  �⃗� ⋅ 𝜖 𝑑𝐶. 
𝐶 

We want to apply the Divergence Theorem to this integral: 

(�⃗� ⋅ 𝜖)̂ ‖𝐶‖ �⃗� ⋅ ̂ �⃗� ⋅ ̂ ∇ ⋅  �̂� 𝑑𝐶𝜖 =  𝜖 𝑑𝐶 =  
𝐶 𝐶 2 

(�⃗� ⋅ 𝜖)̂  

=   �̂� ⋅ 𝑑�̂�
𝜕𝐶 2 

= 2 

1   (�⃗� ⋅ 𝜖)̂  �̂� ⋅ �̂�𝜙 𝑑𝜙 
𝜙≺𝐶 𝜙 

where �̂�𝜙 is the outward-pointing normal to 𝜙. We replace this with the inward-pointing 
normal �̂�𝑘 = −�̂�𝜙: 

−�̂� ⋅ �̂�𝑘̂ ̂ �⃗� ⋅ 𝜖 𝑑𝐶 =   (�⃗� ⋅ 𝜖) 𝑑𝜙. 
𝐶 𝜙≺𝐶 2 𝜙 
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By a similar argument, 

−�̂� ⋅ �̂�𝑘− (�⃗� ⋅ 𝜖)̂  𝑑𝜙 =   (�⃗� ⋅ 𝜖)̂  𝑑𝜒3𝜙 𝜒≺𝜙 𝜒 

and, in general, 

̂

 (�⃗� ⋅ 𝜖)̂ 𝑘+−𝑖 𝑑𝐶𝑖 =  

−�̂� ⋅ 𝜉𝑖  (�⃗� ⋅ 𝜖)̂ 𝑘+−𝑖 𝑑𝐶𝑖−
𝑘 + 2 − 𝑖𝐶𝑖 𝐶𝑖−≺𝐶𝑖 𝐶𝑖− 

until we reach an edge 𝑒. Here we must be careful: in the general case, we find that 

(�⃗� ⋅ 𝜖)̂ 𝑘 𝑑𝑒 = 
 

(⃗𝑝 + 𝑡(⃗𝑝 − ⃗𝑝)) ⋅ �̂�
𝑘 
‖�⃗� − ⃗𝑝‖ 𝑑𝑡 

𝑒  

‖�⃗� − ⃗𝑝‖ 𝜖
𝑘+  

= 𝜖 
(⃗𝑝 + 𝑡(⃗𝑝 − ⃗𝑝)) ⋅ ̂ |(𝑘 + 1) (⃗𝑝 − ⃗𝑝) ⋅ ̂ 

1= ⋅ 𝜖)̂ 𝑘+ − (�⃗� ⋅ 𝜖)̂ 𝑘+ .(𝑘 + 1) �̂� ⋅ �̂�
(⃗𝑝 

̂ ̂This cannot be done, of course, if 𝜉 ⋅ 𝜖 = 0. In that case, however, the edge is perpendic-
ular to �̂�, so the value (�⃗� ⋅ 𝜖)̂ 𝑘 is the same at all points; then 

(�⃗� ⋅ 𝜖)̂ 𝑘 𝑑𝑒 = (⃗𝑝 ⋅ 𝜖)̂ 𝑘  𝑑𝑒 
𝑒 𝑒 

= (�⃗� ⋅ 𝜖)̂ 𝑘 −�⃗� ⋅ �̂� + ⃗𝑝 ⋅ (−�̂�)
 

= − (⃗𝑝 ⋅ 𝜖)̂ 𝑘 (⃗𝑝 ⋅ �̂�) + (�⃗� ⋅ 𝜖)̂ 𝑘 (⃗𝑝 ⋅ −�̂�) .
 

We can thus write the entire sum as either 

̂ −�̂� ⋅ �̂�𝑘 −�̂� ⋅ �̂�𝑘− −�̂� ⋅ �̂� −1 𝜖)̂ 𝑘+‖𝐶‖ �⃗� ⋅ 𝜖 =   ⋯   ⋅ 
𝜙≺𝐶 2 𝜒≺𝜙 3 𝑒≺𝑓 𝑘 𝑝≺𝑒 (𝑘 + 1) �̂� ⋅ �̂�

(⃗𝑝 

−�̂� ⋅ �̂�𝑘 −�̂� ⋅ �̂�𝑘− −�̂� ⋅ �̂�̂ ̂ ̂
2 3 𝑘or ‖𝐶‖ �⃗� ⋅ 𝜖 =   ⋯   −(⃗𝑝 ⋅ 𝜉) (⃗𝑝 ⋅ 𝜖)𝑘, 

𝜙≺𝐶 𝜒≺𝜙 𝑒≺𝑓 𝑝≺𝑒 

i.e. 

(−1)𝑘‖𝐶‖ �⃗� ⋅ 𝜖 = 𝜂(𝜏).̂
(𝑘 + 1)! 

 
𝜏 
𝐶∈𝜏 

Algorithm 5.8 uses this slightly more complex function to compute the centroid of a 
cell 𝐶, again using a traversal. The traversal works exactly the same as in Algorithm 5.7, 
so I will concentrate on how each tuple 𝜏′ is processed. First (line 6) the orthonormal 
tuple frame for 𝜏′ is calculated. The centroid term corresponding to 𝜏′ will be accumu-
lated in variable 𝜔. First, we multiply in the terms −�̂� ⋅ �̂�𝑚 for 2 ≤ 𝑚 ≤ 𝑘 (lines 8–8); we 
also accumulate the factorial at this time, though, since the same indexes are involved, 
we divide each term involving �̂�𝑚 by 𝑚, not (𝑘 + 2 − 𝑚) as suggested by the derivation. 
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Algorithm 5.8 Find the component of the centroid of a cell 𝐶 parallel to �̂� by performing 
a traversal of its tuples. 
Input: A cell 𝐶 and a basis vector �̂�
Require: Each vertex 𝑣 in the cell complex has a position 𝑷(𝑣) 
Output: The component of the centroid of 𝐶 parallel to �̂�
1: procedure CentroidComponent(𝐶,�̂�) 
2: 𝑘 + dimension of 𝐶 
3: 𝑧 + 0 
4: 𝜏 + tuple containing 𝐶 
5: for 𝜏′ from traversal starting from 𝜏 do 
6: (⃗𝑝, �̂�, … , �̂�𝑛) + OrthonormalTupleFrame(𝜏′ ) 
7: 𝜔 + 1 
8: for m from 2 to k do

�̂� ⋅ �̂�𝑚9: 𝜔 + 𝜔 ∗ − 𝑚 
10: end for 
11: if �̂� ⋅ �̂� = 0 then 
12: 𝜔 + 𝜔 ∗ (⃗𝑝 ⋅ �̂�) ∗ (�⃗� ⋅ 𝜖)̂ 𝑘 
13: else 

⋅ 𝜖)̂ 𝑘+ 

14: 𝜔 + 𝜔 ∗ (⃗𝑝 

�̂� ⋅ �̂� 
15: end if 
16: 𝑧 + 𝑧 + 𝜔 
17: end for 
18: 𝜇 + Measure(𝐶) 
19: return 𝑧/𝜇 
20: end procedure 
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(a) (b) 

Figure 5.17: A two-dimensional cell complex (a) and its dual complex (b). Vertices (red) in the 
original complex correspond to faces (red) in the dual complex. Edges connecting vertices cor-
respond to edges between faces. Faces (green) in the original complex correspond to vertices 
(green) in the dual; these have been placed at the centroid of their corresponding face. 
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Then we check whether �̂� is perpendicular to �̂�, and multiply by the appropriate term 
(lines 11–15). Finally, we add the accumulated term 𝜔 to 𝑧 (line 16). 

After visiting all of the tuples, we must still divide 𝑧 by the measure of 𝐶; this is done 
in lines 18 and 19. 

One application of finding the centroid of the cells in the complex is in creating the 
complex’s dual. This is the cell complex which has a vertex corresponding to each 𝑛-cell 
of the original complex, connected by edges which correspond to the (𝑛 − 1)-cells of the 
original, and so on, up to 𝑛-cells which correspond to the original vertices, separated by 
(𝑛 − 1)-cells which correspond to the original edges (Figure 5.17). We define the dual 
of a 𝑘-cell 𝐶 as the (𝑛 − 𝑘)-cell DUAL(𝐶). The dual of the dual complex is the original 
complex; thus, the DUAL operation is an involution, or 

DUAL(DUAL(𝐶)) = 𝐶. 

The dual of ⊥ ⃝, and vice versa. ⃝ is ⊤
Because the adjacencies correspond so closely, the flip structure is mostly intact. Ver-

tices which used to be adjacent over an edge correspond to 𝑛-cells which are adjacent over 
an (𝑛 − 1)-cell, except that the (𝑖 + 1) and (𝑖 − 1) positions of the flip have changed places: 

𝑐𝑖+ DUAL(𝑐𝑖−)
𝑐𝑖 𝑐𝑖 ′ ↦ DUAL(𝑐𝑖) DUAL(𝑐′ 𝑖 ). 
𝑐𝑖− DUAL(𝑐𝑖+) 

The positions of vertices in the dual complex is ambiguous. However, a common choice 
is to place dual vertices at the centroids of the corresponding 𝑛-cells; this is what has been 
done in Figure 5.17. 

One problem to note is that if the complex has a boundary, then cells on the bound-
ary are dual to unbounded cells. This can be easily seen in the flip structure representa-
tion, as cells on the boundary are adjacent to the pseudocell ∞⃝, or “the space outside the 
manifold”, whose dual would be a “point at infinity”. While this makes the embedding 
of the dual of a manifold with boundary problematic, the dual of a manifold without 
boundary has a clear embedding. 



6 Geometric modeling
 

In this chapter, I present Cell Complex Framework models in several areas related to 
geometric modeling. In Section 6.1 I talk about global subdivision algorithms for mesh 
smoothing: the Catmull-Clark and Kobbelt √3 methods in two dimensions, and three-
dimensional extensions to both. Section 6.2 covers the shrink-wrap algorithm for poly-
gonizing an implicit surface. Finally, in Section 6.3 I go into detail on a model which 
draws geodesics, the manifold counterpart to straight lines, on a subdivided manifold sur-
face. 

6.1 Smoothing by global subdivision 

In Section 5.2 I demonstrated the butterfly global subdivision method. There are a num-
ber of such methods which refine a mesh by subdividing faces and edges, and positioning 
vertices as affine combinations of the positions of nearby vertices. If the weights used 
to find vertex positions are chosen carefully, then successive refinements of the mesh 
asymptotically approach a smooth surface. The butterfly subdivision, which does not 
move existing vertices, is an interpolating subdivision; the limit surface passes through all 
of the vertices in the original mesh. In this section, I will cover CCF implementations of 
two non-interpolating subdivision schemes: Catmull-Clark subdivision (Catmull and 
Clark 1978) and Kobbelt’s √3 subdivision (Kobbelt 2000). 

6.1.1 Catmull-Clark subdivision in two dimensions 

The butterfly subdivision described in Section 5.2 inserts a new vertex on each edge, then 
subdivides each triangular face into four triangular faces (Figure 6.1a). The Catmull-
Clark subdivision, on the other hand, inserts a new vertex on each edge as well as in the 
interior of each face, then splits each 𝑛-gon into 𝑛 quadrilateral faces (Figures 6.1b–d). 
Consequently, every face is a quadrilateral after the first refinement step. 

The new vertex in the middle of face 𝑓 (a face-vertex) is placed at the average position 
of the vertices of 𝑓: 

𝑛 1𝑷′(𝑓) =  
𝑛 
𝑷(𝑣 ).𝑖 

𝑖= 

The position of the vertex splitting edge 𝑒 (an edge-vertex) is best described in terms of the
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(a) (b) (c) (d)

Figure 6.1: (a) In butterfly subdivision, new vertices (red) are inserted on each edge and each triangular 
face is split into four new faces. (b)-(d) In Catmull-Clark subdivision, new vertices are inserted on each 
edge and in the interior of each face, and each 𝑛-gonal face is split into 𝑛 quadrilateral faces. 

(newly computed) positions of the face-vertices on the faces adjoining 𝑒 and the (already 
known) positions of the vertex-vertices which are 𝑒’s endpoints. If 𝑒 has endpoints 𝑣 and 
𝑣, and adjoins faces 𝑓𝑎 and 𝑓𝑏, then the position of the new vertex is 

𝑷′(𝑒) = 
𝑷′(𝑓𝑎) + 𝑷′(𝑓𝑏) + 𝑷(𝑣) + 𝑷(𝑣) . (6.1)4 

Finally, the new position of a vertex-vertex is a combination of its old position and that 
of the adjoining edge and face vertices. If vertex 𝑣 adjoins 𝑛 edges and faces, then its new 
position is 

𝑷′(𝑒 ) 1 𝑷′(𝑓 )𝑷′(𝑣) = 
𝑛 − 2 𝑷(𝑣) + 

1 𝑖 + 𝑖 . (6.2)𝑛 𝑛 
 

𝑛 𝑛 
 

𝑛𝑖 𝑖 

Algorithm 6.1 performs Catmull-Clark refinement on an input mesh. 
The new vertex positions are computed first (lines 2–29). The position of each face-

vertex is simply the average of the face’s incident vertices. We find these vertices by 
iterating a tuple 𝜏 around the face by repeated application of flip(0, 1) (lines 7–11). At 
each step, we add 𝜏[0]’s position to the accumulating sum of vertex positions (line 8) and 
increment the number of incident vertices (line 9). The position of the face-vertex is 
then the sum of vertex positions divided by the number of incident vertices (line 12). 

The position of an edge-vertex is the average of the positions of its incident face- and 
vertex-vertices (Equation 6.1). Any tuple containing 𝑒 (line 15) has one of these vertices 
as 0-cell and one of these faces as 2-cell. The other vertex is then other(0), and the other 
face is other(2). The four positions are averaged in line 16 and the result saved as the 
position of 𝑒’s edge-vertex. 

The new position of a vertex-vertex 𝑣 is a combination of its old position and the 
average positions of the edge- and face-vertices incident to 𝑣 (Equation 6.2). These posi-
tions are accumulated while iterating a tuple around the vertex with flip(1, 2) (lines 23– 
27). During this iteration, we also find 𝑛, the valence of 𝑣 (line 24). Finally, we compute 
the new position of 𝑣 in line 28. 

Once all of the new positions have been calculated, we proceed to subdividing the 
mesh. Each edge is split (line 32) and the new vertex’s position is set to the computed 
position assigned to the edge (line 33). Because of the introduction of a face-vertex, 
face splitting is somewhat different from midpoint subdivision. However, it begins in 



118 CHAPTER 6. GEOMETRIC MODELING 

Algorithm 6.1 Catmull-Clark mesh subdivision (part 1) 
Require: Each vertex 𝑣 has a position 𝑷(𝑣) 
1: procedure CatmullClarkSubdivision 
2: for all face 𝑓 do ▷ calculate face-vertex positions 
3: 𝑷′(𝑓) + 𝟎 
4: 𝑛 + 0 
5: 𝜏 + tuple containing 𝑓 
6: 𝜏start + 𝜏 
7: repeat 
8: 𝑷′(𝑓) + 𝑷′(𝑓) + 𝑷(𝜏[0]) 
9: 𝑛 + 𝑛 + 1 

10: 𝜏.flip(0, 1) 
11: until 𝜏 = 𝜏start 

12: 𝑷′(𝑓) + /𝑛 𝑷′(𝑓) 
13: end for 
14: for all edge 𝑒 do ▷ calculate edge-vertex positions 
15: 𝜏 + tuple containing 𝑒 
16: 𝑷′(𝑒) + / 𝑷′(𝜏[2]) + 𝑷′(𝜏.other(2)) + 𝑷(𝜏[0]) + 𝑷(𝜏.other(0)) 
17: end for 
18: for all vertex 𝑣 do ▷ calculate vertex-vertex positions 
19: 𝑷′(𝑣) + 𝟎 
20: 𝑛 + 0 
21: 𝜏 + tuple containing 𝑣 
22: 𝜏start + 𝜏 
23: repeat 
24: 𝑛 + 𝑛 + 1 
25: 𝑷′(𝑣) + 𝑷′(𝑣) + 𝑷′(𝜏[1]) + 𝑷′(𝜏[2]) 
26: 𝜏.flip(1, 2) 
27: until 𝜏 = 𝜏start 

28: 𝑷(𝑣) + 𝑛− 𝑛 𝑷′(𝑣)𝑛 𝑷(𝑣) +  

29: end for 
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Algorithm 6.1 Catmull-Clark mesh subdivision (part 2) 
30: edge-vertices + {} 
31: for all edge 𝑒 do ▷ split each edge 
32: (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝑒) 
33: 𝑷(𝑣) + 𝑷′(𝑒) 
34: edge-vertices + edge-vertices ∪ {𝑣} 
35: end for 
36: for all face 𝑓 do ▷ split each face 
37: 𝜏 + tuple containing 𝑓 
38: if 𝜏[0] ∉ edge-vertices then ▷ start on an edge-vertex 
39: 𝜏.flip(0) 
40: end if 
41: 𝑛 + 0 
42: repeat ▷ find all edge-vertices 
43: 𝑛 + 𝑛 + 1 
44: 𝑣𝑛 + 𝜏[0] 
45: 𝜏.flip(0, 1, 0, 1) 
46: until 𝜏[0] = 𝑣 

47: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(𝑓, +𝑣 − 𝑣) ▷ split face once 
48: (𝑒𝐿, 𝑣𝑓, 𝑒𝑅) + splitCell(𝑒) ▷ split edge to create face-vertex 
49: 𝑷(𝑣𝑓) + 𝑷′(𝑓) 
50: for 𝑖 ∈ {3, … , 𝑛} do ▷ split the face into 𝑛 quadrilaterals 
51: splitCell(join(𝑣𝑓, 𝑣𝑖), +𝑣𝑖 − 𝑣𝑓) 
52: end for 
53: end for 
54: end procedure 
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Figure 6.2: Splitting a face in the Catmull-Clark subdivision. (a) A pentagonal face’s edges have been 
subdivided; the new edge-vertices (red) have been labelled 𝑣, 𝑣, 𝑣, 𝑣, 𝑣. (b) The face is split along the 
edge between 𝑣 and 𝑣. (c) The new edge is split; the splitting vertex is the face-vertex 𝑣𝑓. (d) The vertex 𝑣𝑓 

is moved to the center of the face. (e) The face is further split by edges between the remaining edge-vertices 
and the face-vertex. 

(a) (b) (c) (d) 

Figure 6.3: A coarse mesh (a) and refinements using a Catmull-Clark subdivision. (b) One subdivision 
step; (c) two subdivision steps; (d) four subdivision steps. 

the same way: finding all of the new vertices of the face (lines 38–46). A tuple is cho-
sen (line 37) and we ensure that its vertex is an edge-vertex (lines 38–40); the vertex is 
checked against the set edge-vertices, to which each edge vertex was added during the edge 
loop (line 34). In lines 42–46, the edge-vertices 𝑣, 𝑣, … , 𝑣𝑛 are found by continuing the 
iteration around the face. 

Once the new vertices have been found, we can proceed to splitting the face (lines 47– 
52). This process is illustrated in Figure 6.2. We have to create a vertex interior to 
the face; simply adding the vertex into the face isn’t possible, however, as the resulting 
structure would no longer be a cell complex. We therefore have to split the face first, 
creating an edge through it (line 47); this edge is then itself split, and the new vertex 𝑣𝑓 

is placed in the middle of the face (lines 48–49). Finally, the face is split between the 
remaining edge-vertices and the face-vertex (lines 50–52). 

The results of applying Algorithm 6.1 to an input mesh are shown in Figure 6.3. 

6.1.2 Catmull-Clark subdivision in three dimensions 

Joy and MacCracken (1996) derive a three-dimensional extension to Catmull-Clark sub-
division. On the boundary of the mesh, this subdivision works just like two-dimensional 
Catmull-Clark; in the interior, however, it introduces volume-vertices along with face 
and edge-vertices. The new positions of interior 𝑛-vertices are computed in a similar 
way as (𝑛 − 1)-vertices in the two-dimensional refinement; for instance, volume-vertices 
are placed at the average position of the volume’s vertices, just like face-vertices in the 
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two-dimensional method.
 

Algorithm 6.2 Computing the position of edge-vertices in three-dimensional Catmull-
Clark subdivision 
1: for all edge 𝑒 do 
2: 𝜏 + tuple containing 𝑒 
3: 𝒑𝑚 + /(𝑷(𝜏[0]) + 𝑷(𝜏.other(0)) 
4: if border(𝑒) then 
5: 𝑷′(𝑒) + / 2𝒑𝑚 + 𝑷′(𝜏[2]) + 𝑷′(𝜏.other(2) 
6: else 
7: 𝑷′(𝑒) + 𝟎 
8: 𝑛 + 0 
9: 𝜏start + 𝜏 

10: repeat 
11: 𝑛 + 𝑛 + 1 
12: 𝑷′(𝑒) + 𝑷′(𝑒) + 2𝑷′(𝜏[2]) + 𝑷′(𝜏[3]) 
13: 𝜏.flip(2, 3) 
14: until 𝜏 = 𝜏start 

15: 𝑷(𝑒) + 𝑛− 𝑛 𝑷′(𝑒)𝑛 𝒑𝑚 +  

16: end if 
17: end for 

Algorithm 6.2 shows how the positions of edge-vertices are computed in the three-
dimensional extension to Catmull-Clark. On line 4, we use the border operation to 
check if the edge 𝑒 is on the boundary of the mesh; if so, then the edge-vertex is com-
puted using Equation 6.1 (line 5). If the edge is not external, then the edge-vertex po-
sition is an affine combination of the edge’s midpoint and the positions of the incident 
face and volume-vertices, similar to Equation 6.2 for vertex-vertices in the 2D method. 
An iteration through the incident faces and volumes (lines 10–14) is used to accumulate 
the face-vertex and volume-vertex positions (line 12); note that the subdivision requires 
that face-vertices are weighted twice as much as volume-vertices. The position of the 
edge-vertex is then computed as the average of these positions and the midpoint of the 
edge (line 15). 

Once all of the new vertex positions have been computed, the 2-cells are subdivided 
just as in the two-dimensional method: first edges are split by edge-vertices (Figure 6.4a), 
then face-vertices are created and used to split faces, in the same way as Figure 6.2. The 
volume splitting is completed by the method described in Algorithm 6.3 (Figures 6.4c– 
f). 

We have to split the volume into eight volumes; this is done by splitting it in half 
(Figure 6.4c, lines 2–15), then further splitting each half (Figure 6.4e, lines 17–31) and 
finally each resulting quarter (Figure 6.4f, lines 32–40). Recall that the splitCell oper-
ation requires the boundary of the new face dividing the two volumes; this is stored in 
the chain meridian (line 9). We create this boundary chain by following a path of edges 
which connect face-vertices and edge-vertices; lines 3–8 ensure that the iteration starts 
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Algorithm 6.3 Split hexahedral volumes for the extended Catmull-Clark subdivision 
1: for all volume ℓ do 
2: 𝜏 + tuple containing ℓ 
3: if 𝜏[0] ∈ edge-vertices then 
4: 𝜏.flip(0) 
5: end if 
6: if 𝜏[0] ∈ vertex-vertices then 
7: 𝜏.flip(0, 1, 0) 
8: end if 
9: meridian + 0 

10: 𝜏start + 𝜏 
11: repeat 
12: meridian + meridian + 𝜌(𝜏[0], 𝜏[1]) 𝜏[1] 
13: 𝜏.flip(0, 1, 2, 1) 
14: until 𝜏 = 𝜏start 

15: (ℓ, 𝑓, ℓ) + splitCell(ℓ, meridian) 
16: split face 𝑓 as in Algorithm 6.1 to create volume-vertex 𝑣ℓ 
17: for 𝑗 ∈ {1, 2} do 
18: 𝜏 + tuple containing {𝑣ℓ, ℓ𝑗} 
19: meridian + 0 
20: 𝑛 + 0 
21: repeat 
22: if 𝑛 = 3 then 
23: 𝑣𝑗 + 𝜏[0] 
24: end if 
25: meridian + meridian + 𝜌(𝜏[0], 𝜏[1]) 𝜏[1] 
26: 𝜏.flip(0, 1, 2, 1) 
27: 𝑛 + 𝑛 + 1 
28: until 𝜏[0] = 𝑣ℓ 
29: (ℓ𝑗, 𝑓𝑗, ℓ𝑗) + splitCell(ℓ𝑗, meridian) 
30: (𝑓𝐿, 𝑒𝑗, 𝑓𝑅) + splitCell(𝑓𝑗, +𝑣𝑗 − 𝑣ℓ) 
31: end for 
32: for (𝑗, 𝑘) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} do 
33: 𝜏 + tuple containing {𝑣ℓ, 𝑒𝑗, ℓ𝑗𝑘} 
34: meridian + 0 
35: repeat 
36: meridian + meridian + 𝜌(𝜏[0], 𝜏[1]) 𝜏[1] 
37: 𝜏.flip(0, 1, 2, 1) 
38: until 𝜏[0] = 𝑣ℓ 
39: (ℓ𝑗𝑘𝐿, 𝑓𝑗𝑘, ℓ𝑗𝑘𝑅) + splitCell(ℓ𝑗𝑘, meridian) 
40: end for 
41: end for 
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(a) (b) (c)
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Figure 6.4: A hexahedral volume element in a mesh is split into eight subvolumes. (a) Edges are split by 
edge-vertices (red). (b) Faces are split in four at face-vertices (green). (c) One meridian of edges becomes 
the boundary of the first split face (light red). (d) The first split face is itself divided in four at a volume-
vertex 𝑣ℓ (blue). (e) Meridians in left and right child volumes are used as the boundaries for faces (light 
green) splitting their respective volumes. During this traversal, the remaining two face-vertices 𝑣 and 𝑣 

are identified. (f ) Starting from the edge between the volume-vertex and the face-vertex (𝑣 or 𝑣) in each 
of the four volumes, meridians are traced and used as boundaries for the final splitting planes (light blue). 

on a tuple with a face-vertex, then lines 11–14 perform the iteration; the tuple is ad-
vanced at each step by the operation flip(0, 1, 2, 1) (line 13). In line 12 the edge is added 
to the boundary chain. We require all of the orientations of the edges to be consistent; 
to this end, the orientation of the edge 𝜏[1] added to the boundary chain is its relative 
orientation with respect to the vertex 𝜏[0]. The orientation of each edge in meridian is 
thus the direction of the iteration. 

The meridian chain is then used by splitCell as the boundary of the face 𝑓 which splits 
the volume ℓ into ℓ and ℓ (line 15). We use the same method shown in Figure 6.2 and 
described in Algorithm 6.1 to create a vertex on this face and split it in four. This vertex 
is the volume-vertex 𝑣ℓ (Figure 6.4d). 

We now split each of the volumes ℓ and ℓ. (lines 17–31). For each volume, we find 
a boundary chain meridian in exactly the same way as for the entire volume ℓ, starting 
from a tuple on the volume-vertex 𝑣ℓ. The only addition is that we must also record the 
vertex 𝑣𝑗 (line 23); this is the face vertex incident with ℓ𝑗 we have not encountered yet, 
and is always the third vertex encountered (Figure 6.4e). After splitting ℓ𝑗 with face 𝑓𝑗 
(line 29), we further split the face by an edge 𝑒𝑗 between the volume-vertex 𝑣ℓ and the 
face-vertex 𝑣𝑗 which we recorded earlier (line 30). 

The final splits (lines 32–40) start from a tuple including the edge 𝑒𝑗 (line 33) then 
iterate as before to create the boundary chain meridian (lines 34–38) which is used to split 
the quarter-volume ℓ𝑗𝑘 (line 39). 

The results of applying extended Catmull-Clark subdivision are shown in Figure 6.5. 
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(a) 

(b) 

(c) 

Figure 6.5: Section of a a 3D mesh after (a) two steps of refinement with the extended Catmull-
Clark method; (b) three steps of refinement; (c) four steps of refinement. The internal structure 
is revealed by drawing only those 3-cells to one side of a plane (not visualized). External faces are 
coloured blue, while the colour of internal faces depends on their orientation. 



125 CHAPTER 6. GEOMETRIC MODELING 

(a) (b) (c)

Figure 6.6: The two stages of the √3 subdivision scheme. (a) The initial mesh of two triangles. 
The blue edge is internal, while the black edges are external. (b) A new vertex (green) is placed at 
the center of each triangle, and new edges (red) connecting it to the triangle’s vertices split the 
triangle into three. (c) The internal edge is “flipped”; it is removed and the resulting quadrilateral 
is split by a new edge between the green vertices. 

The initial mesh is a cube, and the boundary of the shape is the same as in Figure 6.3; the 
internal structure is divided into roughly uniform cubelike cells. 

6.1.3 Kobbelt’s √3 subdivision in two dimensions 

Another two-dimensional subdivision scheme is Kobbelt’s √3 method (Kobbelt 2000). 
Not only does it require moving existing vertices and adding vertices in the interior of 
faces, but also removing edges and adding new ones (Figure 6.6). The subdivision is a 
two-step process. In the first step, each triangle is subdivided into three, which share 
a new vertex at the middle of the triangle. In the second step, the old edges between 
triangles are “flipped” so they run between the new midpoint vertices. 

Algorithm 6.4 implements one step of the √3 subdivision. It consists of three loops. 
In the first loop (lines 2–10), the updated positions of the preexisting vertices are found. 
The new position of a vertex 𝑣 is a linear combination of its old position and the average 
position of its neighbouring vertices (line 9). Line 3 retrieves the neighbours of 𝑣, and 
the sum of their positions is computed in the loop in lines 5–7. The exact interpolant 𝛼 
is a function of the number of neighbours, ‖nbs‖; it is computed in line 8. 

The second loop (lines 12–22) splits all the triangles into three. Like the Catmull-
Clark subdivision, one endpoint of all three of the edges is in the middle of the face; we 
therefore use a similar method to subdivide the triangle (Figure 6.7). First, the vertices 
of the triangle 𝑓 are found by creating a tuple and finding its vertex, the other vertex 
on the same edge, and the other vertex after flipping the edge (lines 13–17). Then 𝑓 
is split by an edge with the same endpoints as an existing edge (line 18). This operation is 
topologically valid, and the structure is still a cell complex. The new edge is split, and 
the resulting vertex is moved to the center of the triangle (lines 19–20). Finally, the 
quadrilateral remainder of the original triangle is split into two triangles (line 21). 

The third loop (lines 26–38) flips the preexisting edges, which were saved in line 11. 
Only edges between two triangles can be flipped; external edges are excluded by the 
test in line 27. For each remaining edge, its endpoints are retrieved with the boundary 
operation (line 30), then the edge itself is deleted by the mergeCell operation (line 31). 
The new quadrilateral face is split by an edge through the other two vertices (line 36); 
these vertices are found by creating a new tuple at 𝑣 and finding its other cells (lines 32– 
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Algorithm 6.4 √3 subdivision
 
Require: Each vertex 𝑣 has a position 𝑷(𝑣)
 
1: procedure Root3Subdivision 
2: for all vertex 𝑣 do ▷ Set new positions of old vertices 
3: nbs + neighbours(𝑣) 
4: 𝑾 + 0 
5: for all 𝑤 ∈ nbs do 
6: 𝑾 + 𝑾 + 𝑷(𝑤) 
7: end for 
8: 𝛼 + 4 − 2 cos 2𝜋 

‖nbs‖  / 9 

9: 𝑷′(𝑣) + (1 − 𝛼) 𝑷(𝑣) + 𝛼 
𝑾 

‖nbs‖ 
10: end for 
11: oldEdges + cells of dimension 1 
12: for all face 𝑓 do ▷ Split all triangles into three 
13: 𝜏 + tuple containing 𝑓 
14: 𝑣 + 𝜏[0] 
15: 𝑣 + 𝜏.other(0) 
16: 𝜏.flip(1) 
17: 𝑣 + 𝜏.other(0) 
18: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(𝑓, +𝑣 − 𝑣) 
19: (𝑒𝐿, 𝑣𝑚, 𝑒𝑅) + splitCell(𝑒) 
20: 𝑷′(𝑣𝑚) + / (𝑷(𝑣) + 𝑷(𝑣) + 𝑷(𝑣)) 
21: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(join(𝑣, 𝑣𝑚), −𝑣𝑚 + 𝑣) 
22: end for 
23: for all vertex 𝑣 do 
24: 𝑷(𝑣) + 𝑷′(𝑣) 
25: end for 
26: for all 𝑒 ∈ oldEdges do ▷ Flip internal edges 
27: if border(𝑒) then 
28: skip this edge 
29: else 
30: {+𝑣, −𝑣} + boundary(𝑒) 
31: 𝑓 + mergeCell(𝑒) 
32: 𝜏 + tuple containing {𝑣, 𝑓} 
33: 𝑣 + 𝜏.other(0) 
34: 𝜏.flip(1) 
35: 𝑣 + 𝜏.other(0) 
36: (𝑓𝐿, 𝑒′, 𝑓𝑅) + splitCell(𝑓, −𝑣 + 𝑣) 
37: end if 
38: end for 
39: end procedure 
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Figure 6.7: Splitting a single triangular face from its center is a three-step process. (a) The triangle 
is split by a new edge (visualized as a blue arc) parallel to an existing edge. (b) The new edge is 
split and the new vertex (green) is moved to the center of the triangle. (c) The quadrilateral face 
is split into two triangles. 

(a) (b) (c) (d) 

Figure 6.8: Successive applications of the √3 subdivision algorithm to an input mesh. (a) Original mesh; 
(b) after one refinement step; (c) after two steps; (d) after three steps. 

35). 
The results of successively applying the √3 subdivision to an input mesh can be seen 

in Figure 6.8. 

6.1.4 Kobbelt’s √3 subdivision in three dimensions 

A three-dimensional extension to the √3 algorithm, applicable to tetrahedral meshes, 
is described by Burkhart, Hamann, and Umlauf (2010). Tetrahedra are divided by a 
method analogous to triangles in the √3 method. First, a new vertex is inserted in the 
interior of each tetrahedron and used to divide each tetrahedron into four (Figure 6.9). 
Next, the pre-existing internal faces are removed and replaced by edges between the new 
vertices; this turns each pair of adjoining tetrahedra into three tetrahedra (Figure 6.10). 
The original √3 method is then applied to triangles on the surface of the complex. The 
division of each surface triangle into three is carried to its incident tetrahedron, dividing 
it as well (Figure 6.11). Finally, the edge-flip applied to surface edges must alter the 
incident tetrahedra (Figure 6.12). 

Splitting a tetrahedron in four is performed by a method analogous to the method 
used to split a triangle in three. The tetrahedron is split by a new face parallel to an 
existing face, which is itself split in three, creating one tetrahedron and one volume with 
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𝑣𝑐

(a)

𝑣𝑐

(b) Figure 6.9: Splitting a tetrahedron 
into four tetrahedra which meet at a 
vertex 𝑣𝑐. (a) The tetrahedron is split 
once, into a new tetrahedron (red) 
and a six-sided volume (grey). (b) 
The six-sided volume is split into three 
tetrahedra (the front tetrahedron is 
not rendered). 

𝑣

𝑣𝑣

𝑣𝑇

𝑣𝐵

(a)

𝑣

𝑣𝑣

𝑣𝑇

𝑣𝐵

𝑒

(b)

𝑣

𝑣𝑣

𝑣𝑇

𝑣𝐵

(c)

Figure 6.10: Turning an internal face separating two tetrahedra into an edge incident with three 
tetrahedra. (a) Two tetrahedra (red and blue) are separated by the shaded face. The vertices 
{𝑣, 𝑣, 𝑣} incident with the face are identified, as are the other vertices involved: 𝑣𝑇 on the red 
tetrahedron and 𝑣𝐵 on the blue tetrahedron. (b) The face has been removed, resulting in a volume 
with six triangular faces, which is then split by the nonplanar face whose boundary is the cycle 
through the vertices [𝑣𝑇 , 𝑣, 𝑣𝐵, 𝑣] (red). This face is then itself split by 𝑒 (blue), between 𝑣𝑇 and 
𝑣𝐵, into two triangular faces. (c) Two more tetrahedra sharing 𝑒 are created: one with vertices 
{𝑣𝑇 , 𝑣, 𝑣𝐵, 𝑣} (blue) and one with vertices {𝑣𝑇 , 𝑣, 𝑣𝐵, 𝑣} (not rendered). 

six triangular faces (Figure 6.9a). The six-sided shape is then split into the other three 
tetrahedra (Figure 6.9b). 

Algorithm 6.5 performs the next step, flipping internal faces into edges (Figure 6.10). 
First, a tuple iteration is used to find the face’s vertices {𝑣, 𝑣, 𝑣} (lines 2–8). We also 
use flip paths involving 2-flips and 3-flips to identify the other two vertices in the two 
tetrahedra, 𝑣𝑇 and 𝑣𝐵 (lines 9 and 10). We use mergeCell to remove the face 𝑓 (line 11) 
then split the combined volume by a single face along four of its edges. These edges are 
those which form a circuit connecting the vertices [𝑣𝑇 , 𝑣, 𝑣𝐵, 𝑣], and are found using join 
(lines 12–15); each is multiplied by the relative orientation with respect to its starting 
point to ensure that the orientations are consistent, then they are combined into the 
boundary chain faceBound (line 16), which is used to split the volume (line 17). The new 
quadrilateral face is itself split by an edge 𝑒 between 𝑣𝑇 and 𝑣𝐵 (line 18). Finally, the new 
edge is used to split the larger volume into two more tetrahedra (lines 14–21). 

The third step of the extended √3 subdivision method splits the triangular faces on 
the boundary of the manifold into three; this is done as in the two-dimensional method. 
Once the face has been split, its incident tetrahedron is split along the same edges, pro-
ducing three tetrahedra (Figure 6.11). 
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Algorithm 6.5 Flip internal faces into edges in the extended √3 subdivision, turning 
two adjacent tetrahedra into three 
1: procedure FaceEdgeFlip(𝑓) 
2: 𝜏 + tuple containing 𝑓 
3: 𝑛 + 0 
4: repeat 
5: 𝑛 + 𝑛 + 1 
6: 𝑣𝑛 + 𝜏[0] 
7: 𝜏.flip(0, 1) 
8: until 𝜏[0] = 𝑣 

9: 𝑣𝑇 + 𝜏.flip(2, 1).other(0) 
10: 𝑣𝐵 + 𝜏.flip(3, 2, 1).other(0) 
11: ℓ + mergeCell(𝑓) 
12: 𝑒𝑇  + join(𝑣𝑇 , 𝑣) 
13: 𝑒𝐵 + join(𝑣, 𝑣𝐵) 
14: 𝑒𝐵 + join(𝑣𝐵, 𝑣) 
15: 𝑒𝑇 + join(𝑣, 𝑣𝑇 ) 
16: faceBound + 𝜌(𝑣𝑇 , 𝑒𝑇  ) 𝑒𝑇  + 𝜌(𝑣, 𝑒𝐵) 𝑒𝐵 + 𝜌(𝑣𝐵, 𝑒𝐵) 𝑒𝐵 + 𝜌(𝑣, 𝑒𝑇 ) 𝑒𝑇 

17: (ℓ𝐿, 𝑓′, ℓ𝑅) + splitCell(ℓ, faceBound) 
18: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(𝑓′, +𝑣𝑇 − 𝑣𝐵) 
19: 𝑒𝐵 + join(𝑣𝐵, 𝑣) 
20: 𝑒𝑇 + join(𝑣, 𝑣𝑇 ) 
21: splitCell(join(𝑒, 𝑣), +𝑒 + 𝜌(𝑣𝐵, 𝑒𝐵) 𝑒𝐵 + 𝜌(𝑣, 𝑒𝑇 ) 𝑒𝑇 ) 
22: end procedure 

(a) (b) (c)

Figure 6.11: Splitting a tetrahedron on the border of the cell complex. (a) Before splitting: the 
brown face is on the border of the cell complex. (b) The face has been split into three triangles, 
which all meet at the face-vertex(red); the volume now has six triangular faces. (c) The volume has 
been split into three tetrahedra, each with one border face, and all meeting at the edge (dotted) 
which joins the face-vertex to the internal vertex of the original tetrahedron. 
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𝑣

𝑣 𝑣𝑛−

𝑣𝑛𝑒

𝑓 𝑓𝑛
𝑣𝐵

𝑣𝑇(a)

𝑣

𝑣 𝑣𝑛−

𝑣𝑛𝑒′

𝑣𝐵

𝑣𝑇(b)

𝑣

𝑣 𝑣𝑛−

𝑣𝑛

𝑣𝐵

(c)

Figure 6.12: Performing an edge flip on an external edge in a 3D complex requires altering all incident 
tetrahedra. (a) Before flipping, the edge 𝑒 (blue) is incident to five faces: two (𝑓 and 𝑓𝑛) are on the border 
of the complex, while the other three are internal. (b) All of the internal faces incident with 𝑒 are deleted 
and 𝑒 itself is flipped into 𝑒′ , leaving a volume with ten triangular faces. The equator (red) divides the cell 
into two pyramids. (c) The volume is split by an equatorial face, which is itself subdivided into triangles. 
The new edges (blue and green), together with 𝑣𝐵, define new faces which split the bottom pyramid into 
three tetrahedra. The top pyramid (not shown) is divided in the same way. 

The final step is to flip edges on the boundary. This is complicated in a 3D complex 
because such an edge may be incident to many faces (Figure 6.12a). We have to remove 
all of the internal faces, producing a diamond-shaped volume, then split this volume into 
two pyramidal cells (Figure 6.12b). The shared face is then triangulated, and each of the 
new edges used to split the upper and lower pyramids (Figure 6.12c). Algorithm 6.6 
performs this flip operation. 

We first collect the important cells incident to the edge 𝑒. The top and bottom ver-
tices of the diamond-shaped volume, 𝑣𝑇 and 𝑣𝐵, are the endpoints of 𝑒 (line 2). We per-
form an iteration around 𝑒 (lines 5–10) to find all of the incident faces 𝑓𝑖 (line 7) and the 
third vertex on each face, 𝑣𝑖; the flip operation in line 8 accesses this vertex. Because we 
start and end on a tuple containing the external volume ∞⃝, the faces 𝑓 and 𝑓𝑛 are on 
the boundary of the complex, and the other faces are on the inside. 

We first delete these internal faces (lines 11–13) then perform the 2D edge-flip opera-
tion (lines 14–15). Next we split the resulting diamond-shaped cell equatorially (lines 16– 
21). The boundary of the face is the boundary chain equator, which contains the flipped 
edges 𝑒⟂ as well as the edges connecting each 𝑣𝑖 to 𝑣𝑖+ (line 18); once again, each edge is 
multiplied by its relative orientation with respect to its start vertex (line 19) in order to 
ensure the proper orientation of the boundary. 

Once split, the equatorial face is triangulated (line 22). Following Burkhart, Hamann, 
and Umlauf, the procedure TriangulatePolygon uses the algorithm of Klincsek (1980) 
to triangulate the face in a way that the sum of the length of the edges is minimized. The 
procedure returns a list of the new edges inserted in the face 𝑓⟂. The final loop (lines 23– 
31) introduces faces splitting each of the upper and lower pyramids along each edge. For 
each new edge 𝑒′ the boundary chain faceBound is created containing the edge 𝑒′ and the 
edges 𝑒𝑎 and 𝑒𝑏 which connect its endpoints 𝑣𝑎 and 𝑣𝑏 with the tip of the pyramid, either 
𝑣𝑇 or 𝑣𝐵 (line 28). Finally, the pyramid is split by this face (line 29). 

The results of applying the extended √3 subdivision to an input mesh are shown in 
Figure 6.13. 
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Algorithm 6.6 Applying a √3 edge-flip operation to an edge and all of its incident tetra-
hedra 
1: procedure ExternalEdgeFlip(𝑒) 
2: {+𝑣𝑇 , −𝑣𝐵} + boundary(𝑒) 
3: 𝜏 + tuple containing {𝑒, ∞⃝} 
4: 𝑛 + 0 
5: repeat 
6: 𝑛 + 𝑛 + 1 
7: 𝑓𝑛 + 𝜏[3] 
8: 𝑣𝑛 + 𝜏.flip(1).other(0) 
9: 𝜏.flip(3, 2) 

10: until 𝜏[3] = ∞⃝ 
11: for all 𝑓 ∈ {𝑓, … , 𝑓𝑛−} do ▷ delete all internal faces 
12: mergeCell(𝑓) 
13: end for 
14: 𝑓𝐸𝑋 𝑇 + mergeCell(𝑒) ▷ flip edge 
15: (𝑓𝑇 , 𝑒⟂, 𝑓𝐵) + splitCell(𝑓𝐸𝑋 𝑇 , +𝑣𝑛 − 𝑣) 
16: equator + +𝑒⟂ ▷ split volume into two pyramids 
17: for all 𝑖 ∈ {1, … , 𝑛 − 1} do 
18: 𝑒′ + join(𝑣𝑖, 𝑣𝑖+) 
19: equator + equator + 𝜌(𝑣𝑖, 𝑒′) 𝑒′ 
20: end for 
21: (ℓ𝑇 , 𝑓⟂, ℓ𝐵) + splitCell(join(𝑣𝑇 , 𝑣𝐵), equator) 
22: newEdges + TriangulatePolygon(𝑓⟂) 
23: for all 𝑒′ ∈ newEdges do ▷ split pyramids into tetrahedra 
24: {+𝑣𝑎, −𝑣𝑏} + boundary(𝑒′) 
25: for 𝑣 ∈ {𝑣𝑇 , 𝑣𝐵} do 
26: 𝑒𝑎 + join(𝑣𝑎, 𝑣) 
27: 𝑒𝑏 + join(𝑣𝑏, 𝑣) 
28: faceBound + +𝑒′ + 𝜌(𝑣𝑏, 𝑒𝑏) 𝑒𝑏 + 𝜌(𝑣, 𝑣𝑎) 𝑒𝑎 
29: (ℓ𝐿, 𝑓′, ℓ𝑅) + splitCell(join(𝑒′, 𝑣), faceBound) 
30: end for 
31: end for 
32: end procedure 
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(a) (b) (c) 

Figure 6.13: Successive applications of the extended three-dimensional √3 subdivision algorithm 
to an input mesh. (a) Mesh after two refinement steps; (b) after three steps; (c) after four steps. 

6.2 Polygonizing implicit surfaces 

Another important problem in geometric modeling is polygonizing implicit surfaces: 
creating a mesh which approximates a mathematically-defined surface of the form 𝐹(𝒙) = 
𝑐. The method I will implement in this section is the shrink-wrap algorithm (van Overveld 
and Wyvill 2004). This algorithm finds a triangle mesh which does not lie more than 
a distance 𝜖 from the mathematical surface. Other polygonization methods, such as 
the marching cubes algorithm (Lorensen and Cline 1987), produce polygons of approxi-
mately uniform size. The shrink-wrap algorithm, on the other hand, produces triangles 
whose sizes match the surface: large triangles where the curvature is low and the sur-
face does not change rapidly, and smaller triangles where the curvature is higher and 
the surface changes rapidly. The triangles are produced by subdividing an initial coarse 
mesh. Unlike the global subdivision methods discussed in Section 6.1, acceptable trian-
gles are not subdivided; the shrink-wrap algorithm only divides triangles where necessary 
to match the surface. It is thus an example of an adaptive subdivision. 

The shrink-wrap algorithm starts with a coarse mesh far outside the surface, with 
vertices on a higher isosurface 𝐹(𝒙) = 𝜃. The mesh is then shrunk towards the desired 
isosurface, and each edge is checked for two conditions. The first condition ensures that 
the distance between the edge and the surface is not too high. The second condition 
ensures that the mesh captures even small regions of high curvature. If an edge fails 
either of these conditions, it is deemed unacceptable and is split in two. Faces whose edges 
are split are themselves subdivided so that all faces are triangular. The loop then repeats, 
with the mesh shrunk and subdivided further, until all of the points are close enough to 
the desired isosurface. 

Algorithm 6.7 performs one step of this algorithm. It takes as argument the isovalue 
𝜃 that the mesh is to be shrunk to, and moves all vertices along the gradient of the field
∇𝐹 so that they are on the isosurface 𝐹(𝒙) = 𝜃 (lines 2–4). Each edge is then checked to 
see if it is acceptable (lines 5–14). An unacceptable edge will be split (line 8). The new 
vertex is moved to the point SplineMidpoint (line 9), the midpoint of the spline fitted to 
the position of the endpoints and the gradient of the field at those points. This point is 
chosen by van Overveld and Wyvill to improve the convergence of the polygonization. 

If an edge is split, then the splitting vertex is added to a list associated with each 
incident face (lines 10–12). This list is checked to see if each face must be split (lines 15– 
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Algorithm 6.7 Perform one step of the shrink-wrap polygonization method
 
Input: The new isovalue the mesh will interpolate 
1: procedure ShrinkWrap(𝜃) 
2: for all vertex 𝑣 do 
3: move 𝑣 along ∇𝐹 to the point where 𝐹(𝑷(𝑣)) = 𝜃 
4: end for 
5: for all edge 𝑒 do 
6: if EdgeUnacceptable(𝑒) then 
7: {+𝑣𝐿, −𝑣𝑅} + boundary(𝑒) 
8: (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝑒) 
9: 𝑷(𝑣) + SplineMidpoint(𝑣𝐿, 𝑣𝑅, 𝜃) 

10: {+𝑓𝐿, −𝑓𝑅} + coboundary(𝑒) 
11: splitVs[𝑓𝐿] + splitVs[𝑓𝐿] ∪ {𝑣} 
12: splitVs[𝑓𝑅] + splitVs[𝑓𝑅] ∪ {𝑣} 
13: end if 
14: end for 
15: for all face 𝑓 do 
16: if ‖splitVs[𝑓]‖ = 1 then 
17: {𝑣} + splitVs[𝑓] 
18: 𝜏 + tuple containing {𝑓, 𝑣} 
19: 𝜏.flip(0, 1, 0) 
20: splitCell(𝑓, +𝑣 − 𝜏[0]) 
21: else if ‖splitVs[𝑓]‖ = 2 then 
22: {𝑣, 𝑣} + splitVs[𝑓] 
23: 𝜏 + tuple containing {𝑓, 𝑣} 
24: 𝜏.flip(0, 1) 
25: if 𝜏.other(0) = 𝑣 then 
26: 𝜏.flip(1, 0, 1, 0, 1) 
27: end if 
28: 𝑣′  + 𝜏[0] 
29: 𝑣′  + 𝜏.other(0) 
30: (𝑓𝐿, 𝑒, 𝑓𝑅) + splitCell(𝑓, +𝑣 − 𝑣) 
31: if ‖𝑷(𝑣) − 𝑷(𝑣′ )‖ < ‖𝑷(𝑣) − 𝑷(𝑣 

′ )‖ then 
32: splitCell(join(𝑣, 𝑣′ ), +𝑣 − 𝑣′ ) 
33: else 
34: splitCell(join(𝑣, 𝑣′ ), +𝑣 − 𝑣 

′ ) 
35: end if 
36: else if ‖splitVs[𝑓]‖ = 3 then 
37: {𝑣, 𝑣, 𝑣} + splitVs[𝑓] 
38: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
39: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
40: splitCell(join(𝑣, 𝑣), +𝑣 − 𝑣) 
41: end if 
42: end for 
43: end procedure 
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𝑣
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Figure 6.14: Splitting faces in the 
shrink-wrap polygonization algorithm. 
(a) If one edge has been split by a ver-
tex 𝑣, the face is split across to the op-
posite vertex, which is found by iter-
ating two vertices from 𝑣. (b) If two 
edges have been split by vertices 𝑣 

and 𝑣, the face is split between 𝑣 and 
𝑣, and between the shorter of 𝑣𝑣′  and 
𝑣𝑣′ . 

42). The face will be subdivided differently depending on how many of its edges were 
split. If one edge was split (lines 16–20), the face is split from the new vertex to the 
opposite vertex; this vertex is found by rotating a tuple two vertices around the triangle 
(Figure 6.14a). If two edges were split (lines 21–35), the triangle will be split twice: once 
along an edge between the two new vertices (line 30), and once between a new vertex 
and its opposite vertex (lines 32 or 34). Of the two possibilities, the shortest splitting 
edge is used (line 31). The opposite vertices are found through tuple rotation in lines 23– 
29; the tuple is rotated by one vertex starting from 𝑣 (line 24) then checked to see if it 
has been rotated towards 𝑣 or away; if the former, it is rotated in the opposite direction 
(line 26) so it ends in the correct place to find 𝑣′  and 𝑣′ . Finally, if all three edges of a 
triangle have been split, the face is split between each pair of new vertices (lines 36–41). 

Figure 6.15 shows a use of the shrink-wrap algorithm to find a triangle mesh approx-
imating an isosurface of the form 

𝐹(𝒑) = 𝑓(‖𝒑 − 𝒑‖) + 𝑓(‖𝒑 − 𝒑‖) = 0.5, 

where 𝑓(𝑟) = / (1 − 22𝑟 + 17𝑟 − 4𝑟) is Wyvill’s soft object function (G. Wyvill, McPheeters, 
and B. Wyvill 1986). This isosurface has the form of two balls which join smoothly 
around the axis joining their centers. The initial surface is an icosahedron (Figure 6.15a) 
whose vertices are moved along the gradient ∇𝐹 to the isosurface 𝐹(𝒑) = 0.2 (Figure 6.15b). 
After a few applications of Algorithm 6.7, the triangles on the outside of the balls are 
much larger than those on the join section, where the surface changes more rapidly (Fig-
ures 6.15c–e). The larger polygons still approximate the surface well, as shown by the 
smooth rendering (Figure 6.15f) in which each vertex is rendered with a normal defined 
by the gradient to the field at that point. 

6.3 Propagating geodesics 

The next model is original to this thesis and illustrates the use of tuple coordinates, which 
were introduced in Section 5.3. A tuple 𝜏 = (𝑣, 𝑒, 𝑓, …) defines a coordinate frame: the 
origin is the position of 𝑣, the 𝑥-axis is the direction of 𝑒, the 𝑥𝑦-plane is the same as the 
plane of 𝑓, and so on. Particular choices for the axes lead to different coordinate frames: 
the tuple frame chooses each axis to lie along an edge incident to 𝑣, while the orthogonal 
tuple frame instead has the axes orthogonal and pointing inward (Figure 6.16). 

The tuple frame provides an intrinsic coordinate system for a cell, and the totality 
of these coordinate frames defines an atlas for the entire subdivided manifold. Each flip 
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(a) (b) (c) 

(d) (e) (f ) 

Figure 6.15: A run of the shrink-wrap algorithm to polygonize an implicit surface 𝐹(𝒙) = 0.5. (a) The algo-
rithm starts with an icosahedron; (b) the vertices are moved to the isosurface 𝐹(𝒙) = 0.2. At each step of 
the algorithm, the vertices are moved to a lower isosurface and unacceptable edges are split. (c) After one 
step (isovalue 0.3); (d) after two steps (isovalue 0.36); (e) after eight steps (isovalue 0.48). (f ) The mesh 
shown in (e), rendered with Gouraud shading. 

(a)

𝐩 �⃗�

�⃗�(b)

𝐩 �̂�

�̂�
(c)

Figure 6.16: The tuple frame of reference. (a) The shaded tuple has the red vertex, the green edge, 
and the blue face. (b) The tuple frame has position ⃗𝑝, first coordinate axis ⃗𝑒 along the green edge, 
and second coordinate axis ⃗𝑒 along the other edge shared by the vertex. (c) The orthogonal tuple 
frame has the same position, and the first coordinate axis is the unit-length version of �⃗�, while 
the second coordinate axis is orthogonal to the first within the plane of the face. 
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𝑂 𝑃

𝑄

𝑅

𝑅′

Figure 6.17: Naming the vertices for the derivation of the 
tuple coordinate transition functions. The cell tuple 𝜏 = 
𝑂, 𝑂𝑃, △𝑂𝑃𝑄 is shaded. 𝑅′ is the point 𝑅 rotated about 𝑂𝑃 
into the plane of △𝑂𝑃𝑄. 

operation 𝜎𝑖 takes a tuple to an adjacent tuple, and so defines a coordinate system transfor-
mation between the respective tuple frames. Using these coordinate transformations, we 
can propagate geometric information across the manifold in a way that does not depend 
on its particular embedding. The model described in this section propagates a geodesic: a 
curve that is locally straight. On the surface of a mesh, this means that a geodesic is a 
piecewise straight line, running straight across faces and turning only on edges or ver-
tices. 

This propagation depends on knowing the coordinate transition functions corre-
sponding to a flip in each dimension; these are derived in Section 6.3.1. The algorithm 
itself is then described in Section 6.3.2. 

6.3.1 Tuple coordinate transition functions 

Consider the cell complex in a default embedding (Section 3.2.1); that is, an embedding 
in which all cells are linear subspaces. As the transitions depend only on intrinsic infor-
mation (such as the sizes of cells and the angles between them), they will be invariant 
in any isometric embedding. Since all tuple frame axes are edges, and thus straight in a 
default embedding, they must be related to the canonical basis of the embedding space 
by an affine transformation. In turn, this means that the transition functions must also 
be affine transformations. Thus, any of the transition functions consists of a linear trans-
formation of the coordinate directions followed by a translation of the origin: 

𝛷 ∶ 𝒑 → 𝑇 𝒑 + 𝒐. 

(Vectors are independent of origin, so 𝛷 ∶ �⃗� → 𝑇 ⃗𝑣.) 
We are particularly interested in triangular meshes. In this case, we label the three 

vertices of the triangle 𝑂, 𝑃, and 𝑄, where 𝜏 = 𝑂, 𝑂𝑃, △𝑂𝑃𝑄; the adjoining triangle 
𝜏.other(2) is △𝑂𝑃𝑅 (Figure 6.17). 

Transformation under 𝜎 We will find the particular transformation by reducing a 
point in tuple coordinates to barycentric coordinates (Section 5.3). Recall that a point in 
a simplex can be uniquely represented as an affine combination of the vertices; for our 
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example triangle △𝑂𝑃𝑄, this means that a point can be defined as 

𝒑 = 𝛼𝑂𝑶 + 𝛼𝑃𝑷 + 𝛼𝑄𝑸, 

where 𝛼𝑂 + 𝛼𝑃 + 𝛼𝑄 = 1. A point with tuple frame coordinates (𝑢, 𝑣) is at 

𝒑 = 𝑶 + 𝑢 ⃗𝑒 + 𝑣 ⃗𝑒 

= 𝑶 + 𝑢(𝑷 − 𝑶) + 𝑣(𝑸 − 𝑶) 
= (1 − 𝑢 − 𝑣)𝑶 + 𝑢𝑷 + 𝑣𝑸, 

i.e. it has barycentric coordinates (1 − 𝑢 − 𝑣, 𝑢, 𝑣). 
Applying the flip 𝜎 effectively switches 𝑂 with 𝑃; the point 𝒑 is therefore 

𝒑 = 𝑢𝑶′ + (1 − 𝑢 − 𝑣)𝑷′ + 𝑣𝑸 

= (1 + (1 − 𝑢 − 𝑣) + 𝑣)𝑶′ + (1 − 𝑢 − 𝑣)(𝑷′ − 𝑶′) + 𝑣(𝑸 − 𝑶′) 
= 𝑶′ + (1 − 𝑢 − 𝑣) ⃗𝑒′  + 𝑣 ⃗𝑒′ , 

which is the point with tuple coordinates (1 − 𝑢 − 𝑣, 𝑣). Thus, we see that 

𝛷 ∶ (𝑢, 𝑣) → (−(𝑢 + 𝑣), 𝑣) + (1, 0). (6.3) 

(A vector 𝑤 = (𝑤⃗ 𝑢, 𝑤𝑣) is thus transformed to �⃗�′ = (−(𝑤𝑢 + 𝑤𝑣), 𝑤𝑣).) 

Transformation under 𝜎 As before, a point 𝒑 with tuple coordinates (𝑢, 𝑣) has barycen-
tric coordinates 

𝒑 = (1 − 𝑢 − 𝑣)𝑶 + 𝑢𝑷 + 𝑣𝑸. 

The flip 𝜎 maintains the vertex 𝑶, but interchanges the edges 𝑒 and 𝑒. This effectively 
switches 𝑷 and 𝑸: 

𝒑 = (1 − 𝑢 − 𝑣)𝑶 + 𝑣𝑷′ + 𝑢𝑸′ 

= ((1 − 𝑢 − 𝑣) + 𝑢 + 𝑣)𝑶 + 𝑣(𝑷′ − 𝑶) + 𝑢(𝑸′ − 𝑶) 
= 𝑶 + 𝑣 ⃗𝑒′  + 𝑢 ⃗𝑒′ , 

so we see that 
𝛷 ∶ (𝑢, 𝑣) → (𝑣, 𝑢). (6.4) 

Transformation under 𝜎 The transition function corresponding to 𝜎 is more compli-
cated than those corresponding to 𝜎 and 𝜎 because of the involvement of a new triangle 
△𝑂𝑃𝑅. This triangle might not even be in the same plane as △𝑂𝑃𝑄; we therefore want 
to rotate it into this plane, bringing 𝑅 to 𝑅′ . We can then write 𝑹′ in tuple coordinates: 

𝑹′ = 𝑶 + 𝑟𝑢 �⃗� + 𝑟𝑣 �⃗� 

= (1 − 𝑟𝑢 − 𝑟𝑣)𝑶 + 𝑟𝑢𝑷 + 𝑟𝑣𝑸. 



138 CHAPTER 6. GEOMETRIC MODELING 

We want to express 𝒑 in terms of 𝑶, 𝑷, and 𝑹′ , so we solve for 𝑸, 

𝑸 = 𝑟
1 

𝑣 

(𝑹′ − (1 − 𝑟𝑢 − 𝑟𝑣)𝑶 − 𝑟𝑢𝑷) , 

and substitute: any point with tuple coordinates (𝑢, 𝑣) has barycentric coordinates 

𝒑 = (1 − 𝑢 − 𝑣)𝑶 + 𝑢𝑷 + 𝑣𝑸 

= (1 − 𝑢 − 𝑣)𝑶 + 𝑢𝑷 + 𝑟
𝑣 

𝑣 

(𝑹′ − (1 − 𝑟𝑢 − 𝑟𝑣)𝑶 − 𝑟𝑢𝑷) 

= (1 − 𝑢 − 𝑣) − 𝑣 
(1 − 𝑟𝑢 − 𝑟𝑣)  𝑶 + 𝑢 − 𝑣 

𝑟𝑢  𝑷 + 
𝑣 𝑹′ .𝑟𝑣 𝑟𝑣 𝑟𝑣 

Since the rotation is an isometric transformation, the barycentric coordinate frame in
△𝑂𝑃𝑅′ must be the same as that in △𝑂𝑃𝑅: 

𝒑 = (1 − 𝑢 − 𝑣) − 𝑣 
(1 − 𝑟𝑢 − 𝑟𝑣)  𝑶 + 𝑢 − 𝑣 

𝑟𝑢  𝑷 + 
𝑣 𝑹𝑟𝑣 𝑟𝑣 𝑟𝑣 

= (1 − 𝑢 − 𝑣) − 𝑣 
(1 − 𝑟𝑢 − 𝑟𝑣) + 𝑢 − 𝑣 

𝑟𝑢  + 
𝑣 
 𝑶 + 𝑢 − 𝑣 

𝑟𝑢  (𝑷 − 𝑶) + 
𝑣 (𝑹 − 𝑶) 𝑟𝑣 𝑟𝑣 𝑟𝑣 𝑟𝑣 𝑟𝑣
 

= 𝑶 + 𝑢 − 𝑣 
𝑟𝑢  �⃗�′  + 

𝑣 �⃗�′ ,
𝑟𝑣 𝑟𝑣 

where ⃗𝑒′  = ⃗𝑒 = 𝑷 − 𝑶, and ⃗𝑒′  = 𝑹 − 𝑶. Therefore, 

𝛷 ∶ (𝑢, 𝑣) → (𝑢 − 𝑣 𝑟𝑢/𝑟𝑣, 𝑣 /𝑟𝑣) . (6.5) 

All that remains is to find (𝑟𝑢, 𝑟𝑣), the tuple frame coordinates of 𝑅′ . 
Consider the projection of the vector (𝑹′ − 𝑶) onto 𝑂𝑃: 

(𝑹′ − 𝑶) ⋅ (𝑷 − 𝑶)�⃗�′ ∥ = (𝑷 − 𝑶). ‖𝑷 − 𝑶‖ 

Because vertex 𝑅′ is the result of rotating 𝑅 around 𝑂𝑃, this should be the same as the 
projection of (𝑹 − 𝑶) onto the same line: 

(𝑹 − 𝑶) ⋅ (𝑷 − 𝑶)�⃗�′ ∥ = �⃗�∥ = (𝑷 − 𝑶). ‖𝑷 − 𝑶‖ 

The only difference between the two is therefore in the parts perpendicular to 𝑂𝑃: 

�⃗�⟂ = (𝑹 − 𝑶) − �⃗�∥ and �⃗�′ 𝑅′ ⟂ = (𝑹′ − 𝑶) − ⃗∥. 

Both vertices 𝑅 and 𝑅′ are the same distance from the axis of rotation 𝑂𝑃, so the two 
vectors �⃗�⟂ and �⃗�′ ⟂ must be of the same length. In addition, the direction of �⃗�′ ⟂ must be 
opposite that of the part of (𝑸 − 𝑶) perpendicular to 𝑂𝑃: 

𝑅⟂‖�⃗�′ �⃗�⟂.⟂ = − 
‖⃗


‖�⃗�⟂‖
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Since 
⋅ (𝑷 − 𝑶)�⃗�⟂ = (𝑸 − 𝑶) − 

(𝑸 − 𝑶) (𝑷 − 𝑶),‖𝑷 − 𝑶‖ 

we can substitute into �⃗�′ 𝑅′ ⟂ = (𝑹′ − 𝑶) − ⃗∥ to see that 

𝑹′ − 𝑶 = 
(𝑹 − 𝑶) ⋅ (𝑷 − 𝑶) 𝑅⟂‖ ⋅ (𝑷 − 𝑶)(𝑷 − 𝑶) − 

‖
𝑄

⃗

⟂‖ 
(𝑸 − 𝑶) − 

(𝑸 − 𝑶) (𝑷 − 𝑶) .‖𝑷 − 𝑶‖ ‖ ⃗ ‖𝑷 − 𝑶‖ 

This vector is �⃗�′ ; if we can express it in 𝛥𝑂𝑃𝑄’s tuple coordinates, we can relate them 
to the tuple coordinates of 𝛥𝑂𝑃𝑅. Recall that a vector ⃗𝑝 = (𝑢, 𝑣) in coordinates {⃗𝑒, �⃗�} is 
represented in {𝑥, 𝑦, 𝑧} coordinates as 

�⃗� = 𝑢 ⃗𝑒 + 𝑣 ⃗𝑒 = (𝑢 𝑒𝑥 + 𝑣 𝑒𝑥, 𝑢 𝑒𝑦 + 𝑣 𝑒𝑦, 𝑢 𝑒𝑧 + 𝑣 𝑒𝑧), 

or ⎛ ⎞ ⎛ ⎞

𝑒𝑥 𝑒𝑥 𝑝𝑥
⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑦 𝑒𝑦 

⎟⎟⎟⎟⎟⎟⎟⎠ 
𝑢 
𝑣 = 

⎜⎜⎜⎜⎜⎜⎜⎝
𝑝𝑦 

⎟⎟⎟⎟⎟⎟⎟⎠ 
.
 

𝑒𝑧 𝑒𝑧 𝑝𝑧 
As we want to solve for (𝑢, 𝑣), we add a third vector ⃗𝑒 to the coordinate frame: 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞

𝑒𝑥 𝑒𝑥 𝑒𝑥 𝑢 𝑝𝑥
⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑦 𝑒𝑦 𝑒𝑦 

⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎝ 
𝑣 
⎟⎟⎟⎟⎟⎟⎟⎠ 
= 
⎜⎜⎜⎜⎜⎜⎜⎝
𝑝𝑦 

⎟⎟⎟⎟⎟⎟⎟⎠ 
.
 

𝑒𝑧 𝑒𝑧 𝑒𝑧 𝑤 𝑝𝑧
 

This system can now be solved with Cramer’s rule: 

⋅ (�⃗� × ⃗𝑒) ⋅ (⃗𝑒 × ⃗𝑝)𝑢 = 
�⃗� 𝑣 = 

�⃗� 

�⃗� ⋅ (⃗𝑒 × ⃗𝑒) 
, �⃗� ⋅ (⃗𝑒 × ⃗𝑒) 

. 

After substituting ⃗𝑒 = (𝑷 − 𝑶), ⃗𝑒 = (𝑸 − 𝑶), ⃗𝑒 = ⃗𝑒 × �⃗�, and ⃗𝑝 = (𝑹′ − 𝑶) we see that 

((𝑷 − 𝑶) × (𝑸 − 𝑶)) ⋅ ((𝑹′ − 𝑶) × (𝑸 − 𝑶))𝑟𝑢 = and((𝑷 − 𝑶) × (𝑸 − 𝑶)) 

((𝑷 − 𝑶) × (𝑸 − 𝑶)) ⋅ ((𝑷 − 𝑶) × (𝑹′ − 𝑶))𝑟𝑣 = .((𝑷 − 𝑶) × (𝑸 − 𝑶)) 

The cross product of (𝑹′ − 𝑶) with (𝑸 − 𝑶) is 

⋅ (𝑷 − 𝑶)(𝑹′ − 𝑶) × (𝑸 − 𝑶) = 
(𝑹 − 𝑶) (𝑷 − 𝑶) × (𝑸 − 𝑶)−‖𝑷 − 𝑶‖ 

‖�⃗�⟂‖ ⋅ (𝑷 − 𝑶)
𝑄⟂‖ 

(𝑸 − 𝑶) × (𝑸 − 𝑶) − 
(𝑸 − 𝑶) (𝑷 − 𝑶) × (𝑸 − 𝑶)

‖ ⃗ ‖𝑷 − 𝑶‖ 

⎛ 
− 
‖⃗

⎞ 
= 
⎜⎜⎜⎝ 
(𝑹 − 𝑶) ⋅ (𝑷 − 𝑶)

𝑄
𝑅⟂ 

⟂ 

‖ 
‖ 
0 − 

(𝑸 − 𝑶) ⋅ (𝑷 − 𝑶)

⎟⎟⎟⎠ (𝑷 − 𝑶) × (𝑸 − 𝑶)‖𝑷 − 𝑶‖ ‖ ⃗ ‖𝑷 − 𝑶‖ 

so 
(𝑹 − 𝑶) ⋅ (𝑷 − 𝑶) ‖�⃗�⟂‖ (𝑸 − 𝑶) ⋅ (𝑷 − 𝑶)𝑟𝑢 = + . (6.6)‖𝑷 − 𝑶‖ ‖�⃗�⟂‖ ‖𝑷 − 𝑶‖ 
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The cross product of (𝑷 − 𝑶) with (𝑹′ − 𝑶) is 

⋅ (𝑷 − 𝑶)(𝑷 − 𝑶) × (𝑹′ − 𝑶) = 
(𝑹 − 𝑶) (𝑷 − 𝑶) × (𝑷 − 𝑶)− ‖𝑷 − 𝑶‖ 

‖�⃗�⟂‖ ⋅ (𝑷 − 𝑶)
𝑄⟂‖ 

(𝑷 − 𝑶) × (𝑸 − 𝑶) − 
(𝑸 − 𝑶) (𝑷 − 𝑶) × (𝑷 − 𝑶)

‖ ⃗ ‖𝑷 − 𝑶‖ 

𝑅⟂‖= − 
‖⃗ (𝑷 − 𝑶) × (𝑸 − 𝑶). 
‖�⃗�⟂‖ 

so 
𝑅⟂‖𝑟𝑣 = − 
‖⃗

(6.7)
‖�⃗�⟂‖ 

. 

Equations 6.6 and 6.7 give us the values of 𝑟𝑢 and 𝑟𝑣; we can substitute these into 
Equation 6.5 to find the transition function corresponding to 𝜎: 

𝛷 ∶ (𝑢, 𝑣) → (𝑢 − 𝑣 𝑟𝑢/𝑟𝑣, 𝑣 /𝑟𝑣) . 

6.3.2 The geodesic propagation algorithm 

Algorithm 6.8 propagates a geodesic across a triangle mesh. It takes as arguments a cell 
tuple 𝜏, a position 𝒒 and direction �⃗� defined in the tuple frame, and a distance 𝑑, then 
follows the geodesic across triangles until the total travelled distance equals 𝑑. 

The entire procedure is a loop which continues until the distance left to travel is 
zero. In each iteration, the geodesic is propagated across one face of the mesh. For 
each triangle, the first step taken is to find the intersection points of the geodesic with 
the triangle’s edges (lines 3–15). We are looking for the next edge intersected by the 
geodesic; this is the edge whose intersection point is in the direction of �⃗� (lines 6–15). 
Which edge in particular is stored in 𝑒; the edge of the current tuple is 0, the other edge 
is 1, and the third edge of the triangle is 2. The point the geodesic leaves the triangle, in 
barycentric coordinates, is recorded as ℓ. 

We know the distance to ℓ in barycentric coordinates, but this is not necessarily the 
same as the distance in the embedding space. We thus determine the scale 𝑑𝑠 between the 
magnitude of a barycentric vector and its embedded length. After retrieving the points
𝑶, 𝑷, and 𝑸 (lines 16–18), we divide the world length of �⃗� by its barycentric length 
to find the scale factor (line 19). The length 𝑑𝑡 (line 20) is the distance left within the 
triangle; if this is greater than the total distance remaining (line 21), then the geodesic 
will end within this triangle. In this case, the geodesic is advanced by the remaining 
distance, and the callback function PolylinePoint is called to place the point (line 24). 

If the distance remaining is greater than the distance within the triangle, then the 
geodesic must be advanced to the exit point and transformed into the next face. First, 
the exit point is recorded as the next point of the geodesic (line 28). We then have to 
apply flips to move the tuple to the exit edge. If this is the current edge (if 𝑒 = 0), then 
nothing needs be done. If the exit edge is the other edge of the tuple (𝑒 = 1), then we 
must perform a flip(1) operation on the tuple and the geodesic (lines 29–32). The point 
𝒒 and vector �⃗� are thus modified by the transition function corresponding to this flip 
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Algorithm 6.8 Geodesic propagation (part 1)
 
Input: a cell tuple 𝜏, a position 𝒒 and direction ⃗𝑥 in 𝜏’s tuple frame, and a distance 𝑑
 
1: procedure PropagateGeodesic(𝜏, 𝒒, ⃗𝑥, 𝑑) 
2: while 𝑑 > 0 do 
3: 𝑢 + − 

𝑥
𝑥
𝑢 

𝑣 
𝑞𝑣 + 𝑞𝑢 ▷ 𝑢-crossing of geodesic 

4: 𝑣 + − 𝑥
𝑥
𝑢 

𝑣 𝑞𝑢 + 𝑞𝑣 ▷ 𝑣-crossing of geodesic 
1 − 𝑞𝑢 − 𝑞𝑣5: 𝑤 + 𝑞𝑢 + 𝑥𝑢 ▷ (𝑢 + 𝑣 = 1)-crossing of geodesic 𝑥𝑢 + 𝑥𝑣 

6: if 0 < 𝑢 < 1 and ((𝑢, 0) − 𝒒) ⋅ ⃗𝑥 > 0 then 
7: 𝑒 + 0 
8: ℓ + (𝑢, 0) 
9: else if 0 < 𝑣 < 1 and ((0, 𝑣) − 𝒒) ⋅ ⃗𝑥 > 0 then 

10: 𝑒 + 1 
11: ℓ + (0, 𝑣) 
12: else if 0 < 𝑤 < 1 and ((𝑤, 1 − 𝑤) − 𝒒) ⋅ ⃗𝑥 > 0 then 
13: 𝑒 + 2 
14: ℓ + (𝑤, 1 − 𝑤) 
15: end if 
16: 𝑶 + 𝑷(𝜏[0]) 
17: 𝑷 + 𝑷(𝜏.other(0)) 
18: 𝑸 + 𝑷(𝜏.flip(1).other(0)) 
19: 𝑑𝑠 + ((𝑷 − 𝑶)𝑥𝑢 + (𝑸 − 𝑶)𝑥𝑣) / ‖�⃗�‖ ▷ distance scale 
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Algorithm 6.8 Geodesic propagation (part 2)
 
20: 𝑑𝑡 + 𝑑𝑠‖ℓ − 𝒒‖ 
21: if 𝑑𝑡 ≥ 𝑑 then 
22: 𝒒 + 𝒒 + (𝑑/𝑑𝑠)�⃗� 
23: 𝑑 + 0 
24: PolylinePoint(𝑞) 
25: else 
26: 𝑑 + 𝑑 − 𝑑𝑡 
27: 𝒒 + ℓ 
28: PolylinePoint(𝑞) 
29: if 𝑒 = 1 then 
30:	 𝜏.flip(1) 
31:	 𝒒 + (𝑞𝑣, 𝑞𝑢) 
32:	 �⃗� + (𝑥𝑣, 𝑥𝑢) 
33: else if 𝑒 = 2 then 
34:	 𝜏.flip(0) 
35:	 𝒒 + (1 − (𝑞𝑢 + 𝑞𝑣), 𝑞𝑣) 
36:	 �⃗� + (−(𝑥𝑢 + 𝑥𝑣), 𝑥𝑣) 
37:	 𝜏.flip(1) 
38:	 𝒒 + (𝑞𝑣, 𝑞𝑢) 
39:	 �⃗� + (𝑥𝑣, 𝑥𝑢) 
40: end if 
41: 𝜏.flip(2) 
42:	 𝑹 + 𝑷(𝜏.flip(1).other(0))

(𝑸 − 𝑶) ⋅ (𝑷 − 𝑶)
43: 𝑄𝑑𝑜𝑡 + (𝑷 − 𝑶) 

44:	 �⃗�⟂ + (𝑸 − 𝑶) − 𝑄𝑑𝑜𝑡(𝑷 − 𝑶) 
(𝑹 − 𝑶) ⋅ (𝑷 − 𝑶)

45: 𝑅𝑑𝑜𝑡 + (𝑷 − 𝑶) 

46:	 �⃗�⟂ + (𝑹 − 𝑶) − 𝑅𝑑𝑜𝑡(𝑷 − 𝑶) 
‖�⃗�⟂‖ 47: 𝑟𝑢 + 𝑅𝑑𝑜𝑡 + 𝑄𝑑𝑜𝑡‖�⃗�⟂‖ 

𝑅⟂‖ 48:	 𝑟𝑣 + − 
‖⃗

‖�⃗�⟂‖ 
49: 𝒒 + (𝑞𝑢 − 𝑞𝑣 𝑟𝑢/𝑟𝑣, 𝑞𝑣 /𝑟𝑣) 
50: �⃗� + (𝑥𝑢 − 𝑥𝑣 𝑟𝑢/𝑟𝑣, 𝑥𝑣 /𝑟𝑣) 
51: end if 
52: end while 
53: end procedure 

▷ geodesic ends in this triangle 

▷ go to the next triangle 

▷ move to edge where geodesic departs 

▷ transition into next face 
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(a) (b) (c) (d) 

Figure 6.18: Several geodesics propagate across a mesh. 

operation (Equation 6.4). If the exit edge is the third edge of the triangle, we must get 
there by the flip sequence flip(0, 1) (lines 33–40). This means that we must first apply 
the transition corresponding to 𝜎 (Equation 6.3), then the transition corresponding to 
𝜎 (Equation 6.4). 

Once the tuple has reached the exit edge, we must flip it into the next face. We find 
𝑟𝑢 according to Equation 6.6 (line 47) and 𝑟𝑣 according to Equation 6.7 (line 48), then 
use Equation 6.5 to find the corresponding values of 𝒒 and ⃗𝑥 (lines 49–50). The iteration 
then continues with the next face. 

Figure 6.18 shows a result of using the geodesic propagation algorithm. Several 
geodesics are started at the top of the kitten mesh, and propagated in all directions. 

This mechanism for producing straight lines can be used to define turtle geometry 
(Abelson and diSessa 1986) on an arbitrary subdivided manifold. A common geometric 
interpretation of L-systems, for instance, is defined through turtle geometry (Prusinkiewicz 
and Lindenmayer 1990), and by using Algorithm 6.8 many L-systems can be run on an 
arbitrary surface defined by a triangular mesh. For example, Figure 6.19 shows the result 
of using the geodesic propagation algorithm to create an Ulam branching pattern (Ulam 
1962) on the surface of a mesh. 
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Figure 6.19: An Ulam branching pattern grown on the surface of a mesh. 



7 Biological modeling
 

The original inspiration for developmental modeling was models of the growth and de-
velopment of plants. In this chapter, I demonstrate how cell complexes can be applied to 
this area. In Section 7.1 I discuss modeling plant form with simulation of the mechanics 
of elastic sheets. In Section 7.2 I talk about dividing cells and simulating chemical pro-
cesses in expanding tissues. Finally, in Section 7.3 I describe two models which seek to 
reproduce the growth and form of a specific plant: the moss Physcomitrella patens. 

7.1 Mechanical simulation 

One of the advantages of modeling with cell complexes put forward in Chapter 1 was 
that physical quantities are associated with cells of the appropriate dimension. A good 
illustration of this advantage is in simulating Newtonian mechanics. In the thin-shell 
model described later in this section, for example, points have positions and velocities, 
edges have flexural energy, faces have stretching energy, and volumes have pressure. In 
this section I will cover three cell complex models of plantlike forms which are created 
by resolving the Newtonian mechanics of elastic sheets. 

Mass-spring systems A simple representation of an elastic body is the mass-spring sys-
tem (Figure 7.1a). The body is modeled as a set of point masses connected by massless 
springs. It is often assumed that the springs apply forces to the masses according to 
Hooke’s law. Each spring has a rest length ℓ, and the applied force is in opposition to a 

(a) ℓ

ℓ

ℓ

(b)

Figure 7.1: (a) A mass-spring system. Point masses (red) are joined by springs (black). (b) Each 
spring has a rest length ℓ; if the spring is stretched to a length ℓ > ℓ, it applies an inward force 
on the masses, while if the spring is compressed to a length ℓ < ℓ, the applied force is directed 
outward. 

145
 



146 CHAPTER 7. BIOLOGICAL MODELING 

change in length with respect to ℓ, with the magnitude proportional to the difference 
between the current length and the rest length. Thus, if the spring is stretched to a length
ℓ > ℓ, the force applied to each mass will be of magnitude 𝑘 (ℓ − ℓ) (where the con-
stant of proportionality 𝑘 is called the spring constant) and will be directed inward, while 
if the spring is compressed to a length ℓ < ℓ, the force applied to each mass will be of 
magnitude 𝑘 (ℓ − ℓ) and will be directed outward. 

Suppose the masses 𝑚𝑖 and 𝑚𝑗 are at positions 𝒙𝑖 and 𝒙𝑗, respectively, and the spring 
joining them has rest length ℓ𝑖𝑗. The current length of the spring is ℓ = ‖𝒙𝑗 − 𝒙𝑖‖, so the 
magnitude of the applied force is 𝑘𝑖𝑗 ‖ℓ − ℓ𝑖𝑗‖. If the spring has been stretched (ℓ > ℓ𝑖𝑗), 
then the force applied to 𝑚𝑖 will be towards 𝑚𝑗; that is, it will be in the direction of ⃗𝑒𝑖𝑗. 
On the other hand, if the spring has been compressed (ℓ < ℓ𝑖𝑗), then the force applied to 
𝑚𝑖 will be away from 𝑚𝑗, in the direction of −�⃗�𝑖𝑗. In either case, then, we see that the force 
applied by the spring on 𝑚𝑖 is 

𝑒𝑖𝑗�⃗�𝑖 = 𝑘𝑖𝑗 ‖⃗𝑒𝑖𝑗‖ − ℓ𝑖𝑗 ‖⃗𝑒𝑖𝑗‖ 
= 𝑘𝑖𝑗 1 − ‖⃗

ℓ
𝑒𝑖𝑗 
𝑖𝑗 

‖  �⃗�𝑖𝑗. 

Similarly, the force applied by the spring on 𝑚𝑗 is 

�⃗�𝑗 = −�⃗�𝑖 = −𝑘𝑖𝑗 1 − 
ℓ𝑖𝑗 
‖⃗𝑒𝑖𝑗‖ 

 �⃗�𝑖𝑗. 

The masses in a mass-spring system can in general be connected in any way, but in 
most cases we wish to model a subdivided manifold. In a cell complex, we can model 
a mass-spring system by representing point masses by vertices and springs by edges con-
necting the vertices. Higher-dimensional cells are not involved at all in the simulation It 
is then clear that the force applied by a spring is a property of an edge, while the position 
or mass of a point mass is a property of a vertex. We can compute all of the forces in the 
system by visiting every edge in the cell complex. Algorithm 7.1 performs one timestep 
of the simulation of a mass-spring system. 

The forces for each vertex 𝑣 are accumulated in ⃗𝐹(𝑣). Lines 2–4 initialize all of these 
forces to zero. The loop between lines 5 and 11 computes all of the spring forces in the 
system. Line 6 retrieves the endpoints of the edge 𝑒, and line 7 finds the vector ⃗𝑒 between 
them. The force is computed in line 8 using 𝑒’s rest length 𝐿(𝑒) and the length of ⃗𝑒, then 
applied to the endpoints in lines 9 and 10. In the last loop (lines 12–15) the positions 
and velocities of all of the vertices are updated using a symplectic Euler integration with 
timestep 𝛥𝑡 (Stern and Desbrun 2006). 

Mass-spring systems are useful and have been used in a wide variety of developmental 
models of plant form. As an example, I will present cell complex implementations of two 
models of organ shape. The first is the model of leaf shape presented by Prusinkiewicz 
and Barbier de Reuille (2010), originally implemented in the vertex-vertex modeling sys-
tem vve. This model produces a surface exhibiting a fractal cascade of waves of increasing 
frequency, reminiscent of the leaves of Brassica oleracea varieties such as kale (Figure 7.3a). 

A sheet representing the leaf is divided into rows of rectangles, each of which is fur-
ther divided into three triangles (Figure 7.3). The number of rectangles doubles in each 
successive row, while the lengths of the edges is reduced by a constant factor 𝑟. If 𝑟 = /, 
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Algorithm 7.1 Model of a mass-spring system 

Require: Vertices 𝑣 have mass 𝑀(𝑣), position 𝑷(𝑣) and velocity �⃗� (𝑣); edges 𝑒 have rest 
length 𝐿(𝑒) 

1: procedure MassSpringTimeStep 
2: for all vertex 𝑣 do ▷ initialize forces to zero 
3: �⃗�(𝑣) + 0 
4: end for 
5: for all edge 𝑒 do ▷ compute spring forces 
6: {+𝑣, −𝑣} + boundary(𝑒) 
7: �⃗� + 𝑷(𝑣) − 𝑷(𝑣) 
8: 𝑓  + 𝑘 1 − (𝐿(𝑒) / ‖⃗𝑒‖) �⃗� 
9: �⃗�(𝑣) + �⃗�(𝑣) + 𝑓  

10: �⃗�(𝑣) + �⃗�(𝑣) − 𝑓  

11: end for 
12: for all vertex 𝑣 do ▷ update positions and velocities 
13: 𝑉 (𝑣) + ⃗ 𝑀(𝑣) 𝛥𝑡⃗ 𝑉 (𝑣) + �⃗�(𝑣) / ⃗
14: 𝑷(𝑣) + 𝑷(𝑣) + �⃗� (𝑣) 𝛥𝑡 
15: end for 
16: end procedure 

as in Figure 7.3, then this formation can be realized in two dimensions. For larger values 
of 𝑟, the formation can only be realized by buckling into the third dimension. The leaf 
model creates such a realization by making each edge a spring whose rest length is 𝑠𝑖, 𝑑𝑖, 
or ℎ𝑖, then letting the mass-spring system relax into proper shape. 

In the cell-complex implementation of this model, the surface is produced one row 
at a time. Algorithm 7.2 is used to produce the new row. The algorithm maintains an 
ordered list leading of the vertices in the leading row (Figure 7.2a). The first loop of the 
algorithm (lines 2–18) creates new edges and vertices which connect back to one of the 
leading vertices 𝑣𝑖 (Figure 7.2b). The first step is to find the direction of the new edges; 
this is done by finding the position on the previous leading row corresponding to 𝑣𝑖 and 
subtracting this from 𝑣𝑖’s position. The tuple 𝜏 is used to find the vertex; initially it is 
set to any vertex containing 𝑣𝑖 (line 3), then lines 4–6 ensure that the tuple’s edge is one 
that connects to the previous row. 

Even-indexed vertices connect to only one vertex in the previous boundary; these 
are also exactly those vertices which have two (for corner vertices) or three neighbour-
ing vertices. We check this in line 7; if the vertex connects back to one corresponding 
vertex 𝜏.other(0), then we set ⃗𝑢 to the offset between the two. If, on the other hand, the 
vertex 𝑣𝑖 has four neighbouring vertices, then it must connect back to two vertices in the 
previous row. These are 𝜏.other(0) and 𝜏.flip(1).other(0), and the position correspond-
ing to 𝑣𝑖 is halfway between them (line 10). In either case, once the offset �⃗� is known, a 
new vertex is created (line 13) and given a position offset from the position of 𝑣𝑖 in the 
direction of �⃗� at distance ℎ (line 14). A new edge is created from the old vertex to the 
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Algorithm 7.2 Production of a new row of triangles in the kale-leaf model 
1: procedure AddOneRow(leading,𝑠,𝑑,ℎ) 
2: for vertex 𝑣𝑖 ∈ leading do 
3: 𝜏 + tuple containing 𝑣𝑖 ▷ find direction ⃗𝑟 of next vertex 
4: if 𝜏.other(0) ∈ leading then 
5: 𝜏 + 𝜏.flip(1, 2) 
6: end if 
7: if ‖neighbours(𝑣𝑖)‖ = 2 or 3 then 
8: �⃗� + 𝑷(𝑣𝑖) − 𝑷(𝜏.other(0)) 
9: else if ‖neighbours(𝑣𝑖)‖ = 4 then 

10: 𝒂 + / 𝑷(𝜏.other(0)) + / 𝑷(𝜏.flip(1).other(0)) 
11: �⃗� + 𝑷(𝑣𝑖) − 𝒂 
12: end if 
13: 𝑤 + addCell() ▷ create new vertex and edge 
14: 𝑷(𝑤) + 𝑷(𝑣𝑖) + ℎ �̂�
15: 𝑒 + addCell(+𝑣𝑖 − 𝑤) 
16: 𝐿(𝑒) + ℎ 
17: newLeading[2𝑖] + 𝑤 
18: end for 
19: for 𝑣𝑖, 𝑣𝑖+ ∈ leading do 
20: 𝑤𝑖 + newLeading[2𝑖] 
21: 𝑤𝑖+ + newLeading[2𝑖 + 2] 
22: 𝑒 + addCell(+𝑤𝑖 − 𝑤𝑖+) 
23: addCell(+join(𝑣𝑖, 𝑤𝑖) + 𝑒 − join(𝑣𝑖+, 𝑤𝑖+) − join(𝑣𝑖, 𝑣𝑖−)) 
24: (𝑒𝐿, 𝑤′, 𝑒𝑅) + splitCell(𝑒) 
25: 𝐿(𝑒𝐿) + 𝑠 
26: 𝐿(𝑒𝑅) + 𝑠 
27: newLeading[2𝑖 + 1] + 𝑤′ 
28: 𝑷(𝑤) + / (𝑷(𝑤𝑖) + 𝑷(𝑤𝑖+)) + ⃗𝑜 
29: (𝑓𝐿, 𝑒𝑖, 𝑓𝑅) + splitCell(join(𝑣𝑖, 𝑤′), +𝑣𝑖 − 𝑤′) 
30: (𝑓𝐿 

′ , 𝑒𝑖+, 𝑓𝑅 
′ ) + splitCell(join(𝑣𝑖+, 𝑤′), +𝑣𝑖+ − 𝑤′) 

31: 𝐿(𝑒𝑖) + 𝑑 
32: 𝐿(𝑒𝑖+) + 𝑑 
33: end for 
34: leading + newLeading 
35: end procedure 
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𝑣 𝑣 𝑣 𝑣 𝑣

(a)

𝑣 𝑣 𝑣 𝑣 𝑣

𝑤 𝑤 𝑤 𝑤 𝑤(b)

𝑣 𝑣 𝑣 𝑣 𝑣

𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤(c)

𝑣 𝑣 𝑣 𝑣 𝑣

𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤(d)

Figure 7.2: Adding a new row to the fractal leaf model. (a) Initial configuration; the vertices 
{𝑣, … , 𝑣} are stored in the ordered list leading. (b) Even-indexed new vertices 𝑤𝑖 are created in 
front of each leading vertex 𝑣𝑖 and attached by new edges. (c) The new vertices are joined by new 
edges, which are split to create the odd-indexed new vertices 𝑤𝑖+. (d) The five-sided faces are 
split into three triangles by diagonal edges between 𝑤𝑖+ and 𝑣𝑖 and 𝑣𝑖+. 

new (line 15) and given the rest length ℎ (line 16). Finally, the new vertex is added to the 
list newLeading of new leading vertices. Since there will be more vertices added between 
these, the new vertex corresponding to 𝑣𝑖 is 𝑤𝑖. 

In the second loop (lines 19–33), the rest of the new cells are created. The iteration is 
over adjacent old vertices 𝑣𝑖, 𝑣𝑖+; we then recall the corresponding new vertices 𝑤𝑖, 𝑤𝑖+ 

(lines 20–21). A new edge 𝑒 is created between the new vertices (line 22), then a new 
face bounded by the edges between 𝑣𝑖, 𝑣𝑖+, 𝑤𝑖+, and 𝑤𝑖 (line 23). The edge 𝑒 is split 
(line 24) and the new edges have their rest lengths set to 𝑠 (lines 25–26). The new vertex 
is placed into the newLeading list between 𝑤𝑖 and 𝑤𝑖+ (line 27) and its position is set 
halfway between those vertices (line 28). The position is altered by an offset ⃗𝑜; this offset 
determines which way the surface bends in three dimensions. Following Prusinkiewicz 
and Barbier de Reuille (2010), this model alternates placing the vertex to the left and 
to the right of the plane. This produces a margin in the form of the space-filling dragon 
curve, so the margin develops without self-intersection (Figure 7.3b). 

After the new vertex 𝑤′ is placed, it is used to split the face twice (Figure 7.2d). The 
first split is between 𝑣𝑖 and 𝑤′ and creates the diagonal edge 𝑒𝑖 (line 29), while the second is 
between 𝑣𝑖+ and 𝑤′ and creates the diagonal edge 𝑒𝑖+. Both edges have their rest lengths 
set to 𝑑 (lines 31–32). Finally, once all faces have been created, the list leading is updated 
to the list of new leading vertices newLeading (line 34). 

After each row is added, we iterate the mass-spring relaxation of Algorithm 7.1. In 
order to minimize oscillation, we add a damping force to each vertex, opposed to the 
vertex’s motion: 

�⃗�(𝑣) + �⃗�(𝑣) − 𝜈 ⃗𝑉 (𝑣), 

where 𝜈 is a small damping coefficient. The iteration is ended when the total force drops 
below a small constant 𝜖; the system is then considered to be at equilibrium. 

Choosing 𝑟 = √/ (after Prusinkiewicz and Barbier de Reuille (2010)), the model 
produces a surface exhibiting the wavy nature we expect (Figure 7.3). 



150 CHAPTER 7. BIOLOGICAL MODELING 

(a) (b) 

(c) (d) 

Figure 7.3: (a) Photograph of a kale leaf. (b) A simulated leaf surface resembling kale. (c) The kale-leaf 
model, with ten rows added, followed by several rounds of subdivision for smoothing. (d) Detail of the 
model. 
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(a) (b) 

Figure 7.4: The equilibrium state of a mass-spring system. (a) The rest circumference of the 
shape increases in the higher rings, and the only forces resolved are those which govern the edge 
lengths. The result is a surface which bends severely on many edges. (b) The rest lengths are 
the same as in the left figure, but there are also angular springs ensuring the surface bends more 
gradually and periodically. 

Angular springs The mass-spring system in the kale-leaf model finds a configuration 
of the surface in which all of the edges are of the required lengths. More generally, 
though, a mass-spring system can be used to find an equilibrium between opposing forces. 
This is the case with the next model, originally presented by Smith (2006) in the vv 
language, of wavy tubular plant organs, such as in the flowers of daffodil. Here the forces 
seeking to maintain edge lengths act in opposition to forces that try to avoid folding of 
the surface. The effect of this is that the surface bends gradually and less frequently than 
otherwise (Figure 7.4). 

The forces that seek to prevent the surface from folding are provided by angular springs 
acting at each edge. These springs work in a manner analogous to the linear springs 
which govern edge length, but the magnitude of the applied force is proportional to the 
difference between the edge’s rest angle 𝛩, and 𝜃, the angle between the faces separated 
by the edge: 

‖�⃗�‖ = 𝜅 (𝜃 − 𝛩). 

This is a reasonable approximation to the torque created by a physical spring on the edge 
if the triangles are of similar size and the angular difference is small. The force is ap-
plied to four vertices: the endpoints of the edge are pushed parallel to the average of the 
normals of the faces, while the opposite vertices on the triangles are pushed in the other 
direction (Figure 7.5b); this force thus opens or closes the angle as required. 

Algorithm 7.3 computes this bending spring force. It modifies the accumulated force 
�⃗�(𝑣) associated with a vertex and could thus be inserted, for instance, after line 11 in 
Algorithm 7.1. The forces are accumulated one edge at a time (lines 2–22). Edges on the 
border of the cell complex have no bending force, so they are skipped (lines 3–5). 

The two triangles adjoining edge 𝑒 are 𝑓ℓ and 𝑓𝑟 (Figure 7.5a), and have a total of four 
vertices: 𝑣𝑎 and 𝑣𝑏 are the endpoints of 𝑒 (line 6), while 𝑣ℓ and 𝑣𝑟 are the third vertices 
of 𝑓ℓ and 𝑓𝑟, respectively (lines 8–9). The face normals are computed in lines 10 and 11; 
the angle 𝜃 is then the inverse cosine of their dot product (line 12). We then check the 
dot product of �⃗�𝑟 with the vector from 𝑣ℓ to 𝑣𝑎 (line 13). If the dot product is negative, 
then the angle is concave (Figure 7.5c) and we negate 𝜃 to reflect this (line 14). The 
direction of the force is the average of �⃗�ℓ and �⃗�𝑟 (line 16), and the magnitude is applied 
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𝑓𝑟

𝑓ℓ
𝑣𝑎

𝑣𝑏

𝑣ℓ
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𝑒
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𝜃
(a) �̂� = /(�̂�ℓ + �̂�𝑟)(b)

𝑣ℓ 𝑣𝑟
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− 𝐏(𝑣ℓ

)

(c)

𝑣ℓ 𝑣𝑟
𝑣𝑎

�̂�𝑟
𝐏(𝑣𝑎 ) − 𝐏(𝑣ℓ )

Figure 7.5: The angular spring model of Smith (2006). (a) The angle between two faces 𝑓ℓ and 𝑓𝑟 
separated by edge 𝑒 is the angle between the faces’ respective normals, �̂�ℓ and �̂�𝑟. (b) The force 
applied to resist bending is parallel to the average of the normals, �⃗� = / (�̂�ℓ + �̂�𝑟). On 𝑣𝑎 and 𝑣𝑏, 
the endpoints of edge 𝑒, the force is in the same direction as �⃗� when 𝜃 < 𝛩, and in the opposite 
direction otherwise; on 𝑣ℓ and 𝑣𝑟, the force is in the opposite direction to ⃗𝑛 when 𝜃 < 𝛩, and in the 
same direction otherwise. (c) The sign of the angle 𝜃 can be found by calculating the dot product 
between �̂�𝑟 and (𝑷(𝑣𝑎) − 𝑷(𝑣ℓ)). This value is positive if the angle is convex (top), negative if the 
angle is concave (bottom). 

Algorithm 7.3 Computation of bending spring forces 

Require: Vertex 𝑣 has position 𝑷(𝑣) and accumulates force �⃗�(𝑣); edge 𝑒 has rest angle 
𝛩(𝑒) 

1: procedure BendingSpringForce 
2: for all edge 𝑒 do 
3: if border(e) then ▷ no bending force on border of complex 
4: continue to next edge 
5: end if 
6: {+𝑣𝑎, −𝑣𝑏} + boundary(𝑒) ▷ find vertices {𝑣𝑎, 𝑣𝑏, 𝑣ℓ, 𝑣𝑟} 
7: 𝜏 + tuple containing {𝑒, 𝑣𝑎} 
8: 𝑣ℓ + 𝜏.flip(1).other(0) 
9: 𝑣𝑟 + 𝜏.flip(2, 1).other(0) 

10: �⃗�ℓ + (𝑷(𝑣𝑎) − 𝑷(𝑣ℓ)) × (𝑷(𝑣𝑏) − 𝑷(𝑣ℓ)) ▷ face normals 
11: �⃗�𝑟 + (𝑷(𝑣𝑏) − 𝑷(𝑣𝑟)) × (𝑷(𝑣𝑎) − 𝑷(𝑣𝑟)) 
12: 𝜃 + cos−(�̂�ℓ ⋅ �̂�𝑟) ▷ angle between faces 
13: if �⃗�𝑟 ⋅ (𝑷(𝑣𝑎) − 𝑷(𝑣ℓ)) < 0 then 
14: 𝜃 = −𝜃 
15: end if 
16: �⃗� + / (�⃗�ℓ + ⃗𝑛𝑟) 
17: 𝑓  + 𝜅 (𝜃 − 𝛩(𝑒)) �̂�
18: �⃗�(𝑣𝑎) + �⃗�(𝑣𝑎) − 𝑓  

19: �⃗�(𝑣𝑏) + �⃗�(𝑣𝑏) − 𝑓  

20: �⃗�(𝑣ℓ) + �⃗�(𝑣ℓ) + 𝑓  

21: �⃗�(𝑣𝑟) + �⃗�(𝑣𝑟) + 𝑓  

22: end for 
23: end procedure 
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Figure 7.6: The model creates a tubular flower with smooth, roughly periodic wrinkles. 

in line 17. Finally, the force vector is subtracted from the accumulated force for 𝑣𝑎 and 
𝑣𝑏, and added to the accumulated force for 𝑣ℓ and 𝑣𝑟 (lines 18–21). 

As with the leaf model, the tube model brings the mechanical simulation to an equi-
librium state before adding a new row of triangles. We again rapidly increase the rest 
length of the springs in successive rows. Unlike the leaf model, however, the triangles 
in any row are arranged in a ring. This forces the buckling into roughly periodic waves 
(Figure 7.6). 

Thin shells The leaf and flower models use mass-spring systems to find a shape deter-
mined by the spring forces: in the former case, a shape in which the edges achieve their 
assigned rest lengths; in the latter, a shape created as a compromise between rest lengths 
and rest angles. In both of these cases, we are seeking a shape fulfilling certain constraints 
and using spring forces to find this shape. We can also use spring forces to find a phys-
ically accurate shape given the physical properties of a system. This goal, however, is 
more problematic, as mass-spring networks are not the approximation to any continu-
ous surface. 

Therefore, in order to model physically accurate shapes, I now move to a cell com-
plex in which all cells are taken into account in the simulation. The next model I will 
present tries to find the equilibrium shape of a single plant cell, modeled as a pressure 
vessel whose walls are represented as thin shells; that is, as (nominally) three-dimensional 
objects whose thickness is negligible in relation to the other dimensions. Thin shells 
can therefore be modeled as two-dimensional membranes with resistance to bending 
(Destuynder 1985). This is similar to the other models in this section, but here both the 
forces within the surface and the forces opposing bending are more physically accurate 
than the mass-spring network and ad-hoc angular springs described previously. 

Another difference between this model and the previous models is that forces are 
not computed directly, but are instead derived as the gradient of the total energy of the 
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Figure 7.7: The flexural energy along edge 𝑒 depends on 
the deformed and undeformed angle 𝜃 between the two 
triangles, the length ‖𝑒‖ of the edge, and the average of 
the heights of the faces (ℎ𝑒 = / ‖�⃗�‖ + ‖�⃗�‖). 

system. This simplifies the computation of the forces, especially those due to pressure. 
The potential energy due to pressure within a volume 𝒱 is 𝑈 = −𝑃𝒱 (Stowe 2007).1 

Algorithm 7.4 computes the membrane and flexural energies of the thin shell. After 
initializing the potential energy 𝑈 to zero in line 2, we compute the flexural energy 
in a loop over all edges (lines 3–16) and the membrane energy in a loop over all faces 
(lines 17–30). The flexural energy is computed with the formula derived by Grinspun 
et al. (2003); their expression for the energy at an edge 𝑒 is 

𝑈𝑒 = 𝜅 (𝜃𝑒 − �̄�𝑒)‖𝑒‖̄ / ℎ̄𝑒, (7.1) 

where 𝜃𝑒 is the current angle formed by the two faces adjoining 𝑒, �̄�𝑒 is the rest angle 
associated with 𝑒, ‖𝑒‖̄ is the rest length of the edge 𝑒, and ℎ̄𝑒 is one third of the average of 
the heights of the faces (Figure 7.7). To compute this measure, we first find the vertices 
of the triangles adjoining the edge; 𝑣 and 𝑣 are the endpoints of the edge (line 4, while 
simple flip paths bring us to the other two vertices 𝑣 and 𝑣 (lines 5–7). We find the 
vector ⃗𝑎, the altitude of the triangle 𝛥𝑣𝑣𝑣, by projecting the vector ⃗𝑒 along the side 
of the triangle onto the vector ⃗𝑒 along the edge 𝑒, then subtracting from ⃗𝑒 (line 11); 
�⃗� is found in a similar manner (line 12). We calculate ℎ̄𝑒 (line 13) and the current angle 
𝜃 (line 14) from these vectors, then increment 𝑈 by the flexural energy, computed by 
Equation 7.1 (line 15). 

The membrane energy is computed with a method derived by Delingette (2008) 
based on “biquadratic springs”; the form of the energy is similar to that of a linear spring 
following Hooke’s law, the difference is taken between the squares of length and rest 
length. Delingette (2008) shows that the membrane energy of a flat, deformed triangle 
is 


𝑈𝑓 =  𝑘𝑓𝑖 (ℓ𝑖 − ℓ𝑖) +  𝑐𝑓𝑖𝑗 (ℓ𝑖 − ℓ𝑖) (ℓ𝑗 − ℓ𝑗). (7.2) 

𝑖= 𝑗≠𝑖 

The constants 𝑘𝑓𝑖 and 𝑐𝑓𝑖𝑗 depend on the triangle’s undeformed shape: 

𝐸 2 cot 𝛼𝑖 + 1 − 𝜈 𝑘𝑓𝑖 = (7.3)64 (1 − 𝜈) 𝒜𝑓 

𝐸 2 cot 𝛼𝑖 cot 𝛼𝑗 + 𝜈 − 1 
𝑐𝑓𝑖𝑗 = , (7.4)32 (1 − 𝜈) 𝒜𝑓 

1This assumes that temperature and pressure remain constant, which is plausible for a plant cell ex-
changing material with the environment. 
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Algorithm 7.4 Calculation of thin-shell flexural and membrane energy 
Require: Vertex 𝑣 has position 𝑷(𝑣); edge 𝑒 has rest length 𝐿(𝑒) and rest angle 𝛩(𝑒); face 𝑓 

has rest area 𝒜 (𝑓); the rest angle of face 𝑓 at vertex 𝑣 has cotangent 𝐶(𝑓, 𝑣) 
1: procedure ThinShellEnergy 
2: 𝑈 + 0 
3: for all edge 𝑒 do 
4: {+𝑣, −𝑣} + boundary(𝑒) 
5: 𝜏 + tuple containing 𝑒 
6: 𝑣 + 𝜏.flip(1).other(0) 
7: 𝑣 + 𝜏.flip(2, 1).other(0) 
8: �⃗� + 𝑷(𝑣) − 𝑷(𝑣) 
9: �⃗� + 𝑷(𝑣) − 𝑷(𝑣) 

10: �⃗� + 𝑷(𝑣) − 𝑷(𝑣) 
11: �⃗� + ⃗𝑒 − projection of �⃗� onto ⃗𝑒 

12: �⃗� + ⃗𝑒 − projection of �⃗� onto ⃗𝑒 

13:	 ℎ̄𝑒 + / ‖�⃗�‖ + ‖�⃗�‖ 
�⃗� ⋅ �⃗�14: 𝜃 + 𝜋 − cos−  ‖�⃗�‖ ‖�⃗�‖ 

 

15: 𝑈 + 𝑈 + 𝜅 (𝜃 − 𝛩(𝑒)) 𝐿(𝑒) / ℎ̄𝑒 
16: end for 
17: for all triangle 𝑓 do 
18: 𝜏 + tuple containing 𝑓 
19: 𝜏 + 𝜏 
20: repeat 
21: 𝑣 + 𝜏.flip(1).other(0) 

𝐸 2 𝐶(𝑓, 𝑣))
 
+ 1 − 𝜈 

22: 𝑘 + 64 (1 − 𝜈) 𝒜 (𝑓) 
23: ℓ + Measure(𝜏[1]) 
24: 𝑈 + 𝑈 + 𝑘 ℓ − 𝐿(𝜏[1])

 

▷ initial energy 
▷ compute flexural energy 

▷ find vertices {𝑣, 𝑣, 𝑣, 𝑣} near 𝑒 

▷ triangle altitudes 

▷ flexural energy of 𝑒 

▷ compute membrane energy 

▷ vertex opposite 𝜏[1] 

𝐸 2 𝐶(𝑓, 𝑣) 𝐶(𝑓, 𝜏.other(0)) + 𝜈 − 1 
25: 𝑐 + 32 (1 − 𝜈) 𝒜 (𝑓) 
26: ℓ′ + Measure(𝜏.other(1)) 
27: 𝑈 + 𝑈 + 𝑐 ℓ − 𝐿(𝜏[1]) ℓ′ − 𝐿(𝜏.other(1)) 
28: 𝜏 + 𝜏.flip(0, 1) 
29: until 𝜏 = 𝜏 

30: end for 
31: return U 
32: end procedure 
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Figure 7.8: The membrane energy of the triangle 
depends on the rest and deformed lengths of the 
edges and the undeformed opposite angles. In iter-
ation, the shaded tuple 𝜏 has edge 𝑒𝑖; edge 𝑒𝑗 is then 
𝜏.other(1). 𝑣, with undeformed angle 𝛼𝑖, is opposite 
𝑒𝑖, and is at 𝜏.flip(1).other(0). 𝑤 has undeformed an-
gle 𝛼𝑗, is opposite 𝑒𝑗, and is found at 𝜏.other(0). 

(a) (b) 

Figure 7.9: Undeformed and equilibrium configuration of a three-dimensional cell-like body. Pressure 
from within the cell is balanced by forces opposing the deformation of the triangles and the bending of 
the membrane at the edges. 

where 𝒜𝑓 is the undeformed area of the triangle and 𝛼𝑖 is the rest angle opposite edge 𝑖 
(Figure 7.8), while 𝐸 and 𝜈 are the Young’s modulus and Poisson coefficient of the mate-
rial, respectively. 

The sum over all edges is carried out by iterating a tuple around the triangle (lines 18– 
29). The edge 𝑒𝑖 is the edge of the tuple; the opposite vertex is 𝑣 = 𝜏.flip(1).other(0) 
(line 21). The undeformed area of face 𝑓 is stored in 𝒜 (𝑓), while the cotangent of the 
undeformed internal angle at 𝑣 is stored in 𝐶(𝑓, 𝑣); these are used to compute 𝑘 according 
to Equation 7.3 (line 22). The first term of Equation 7.2 is then added to the total poten-
tial energy 𝑈 (line 24). The edge 𝑒𝑗 is the other edge of the tuple; its opposite vertex is 
thus the other vertex (Figure 7.8). Line 25 computes the coefficient 𝑐, line 26 the length 
of 𝑒𝑗, and line 27 adds the second term of Equation 7.2 to the potential energy. 

To the potential energy computed by Algorithm 7.4 we add the energy due to pres-
sure internal to the volume 𝜔, 

𝑈 + 𝑈 − 𝑃 Measure(𝜔). 

We then minimize 𝑈 to find the equilibrium configuration of the cell; this is done using 
an external solver from the SUNDIALS suite (Hindmarsh et al. 2005). Figure 7.9a shows 
the undeformed configuration of a hypothetical hexagonal prism cell; Figure 7.9b shows 
the minimal energy configuration of this cell. 

7.2 Cell expansion and division 

A fundamental problem in the modeling of developing organisms is the simulation of cell 
divisions and growth in a tissue. In the models described in Section 7.1, new mathemati-
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(a) (b) (c) 

Figure 7.10: Creating the Korn-Spalding pattern with the algorithm of Lindenmayer and Rozenberg 
(1979). (a) The walls of each hexagonal cell are coloured alternately red, green, and blue. (b) The 
red walls have each been divided into three walls, coloured green, blue, and green. Other walls 
have been advanced in colour: green walls become blue, blue walls become red. Each cell has 
been divided by a red wall. (c) After relaxation, the cells are once more hexagonal. 

cal cells were either added marginally (as in the leaf and flower models) or not introduced 
at all (as in the thin-shell model). In the models described in this section, on the other 
hand, new cells are created by dividing existing cells. In the first model, division adds 
new mechanical stresses which result in growth; in the second model, externally-driven 
growth causes cells to divide when they become too large. 

Expansion driven by division The growth pattern of the onion epidermis modeled 
by Korn and Spalding (1973) has been previously implemented in map L-systems in two 
and three dimensions (Lindenmayer and Rozenberg 1979; Lindenmayer 1984), cell sys-
tems (de Boer, Fracchia, and Prusinkiewicz 1992), and vv (Smith 2006). The CCF ver-
sion described here follows the algorithm used in the implementation of Lindenmayer 
and Rozenberg (1979). 

The onion epidermis is composed of hexagonal cells. For the purposes of the model, 
the walls of the cells are coloured either red, green, or blue; the colours are assigned 
clockwise around each cell (Figure 7.10a). This means that walls of the same colour are 
opposite each other. At each division step, all red walls are divided into three new walls 
which are coloured so as to maintain the ordering. Moving clockwise around the cell, 
the first new vertex is one of the endpoints for the wall which splits the cell in two. The 
colours of the walls are advanced: green walls become blue, while blue walls become red 
(Figure 7.10b). 

Algorithm 7.5 carries out one step of this division. The main body of the procedure 
is a loop over all red edges (lines 5–27). For each red edge, we start with a tuple 𝜏 on the 
edge (line 7). We want to process all edges in clockwise order, so we make sure the tuple 
starts at the vertex of 𝑒 adjoining a blue edge (lines 8–10). We move the tuple off of the 
edge (line 13) then divide the edge twice, creating three new edges (lines 14–15). We 
process each of these edges in turn (lines 16–25). For each edge, we advance the tuple 
(lines 16, 20, and 24) and set its colour (lines 17, 21, and 25). For each of the two new 
vertices, we must set the position (lines 18 and 22) and register it as the endpoint of a 
splitting edge. Each vertex is placed in the set split(𝑐) corresponding to the cell it splits; 
the first vertex found while moving clockwise is the endpoint of the edge which splits 
the other cell (line 19), while the second vertex is the endpoint of the edge which will 
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Algorithm 7.5 Cell division for Korn-Spalding model 
Require: Vertex 𝑣 has position 𝑷(𝑣); edge 𝑒 has colour colour(𝑒) 
1: procedure KornSpaldingDivision 
2: for all face 𝑐 do 
3: split(𝑐) + {} 
4: end for 
5: for all edge 𝑒 do 
6: if colour(𝑒) = 𝑟𝑒𝑑 then 
7: 𝜏 + tuple containing 𝑒 
8: if colour(𝜏.other(1)) = 𝑔𝑟𝑒𝑒𝑛 then 
9: 𝜏 + 𝜏.flip(0) 

10: end if 
11: 𝒑 + 𝑷(𝜏[0]) 
12: 𝒑 + 𝑷(𝜏.other(0)) 
13: 𝜏 + 𝜏.flip(1) 
14: (𝑒, 𝑣, 𝑒′) + splitCell(𝑒) 
15: (𝑒, 𝑣, 𝑒) + splitCell(𝑒′) 
16: 𝜏 + 𝜏.flip(1, 0) 
17: colour(𝜏[1]) + 𝑟𝑒𝑑 
18: 𝑷(𝜏[0]) + /𝒑 + /𝒑 

19: split(𝜏.other(2)) + split(𝜏.other(2)) ∪ {𝜏[0]} 
20: 𝜏 + 𝜏.flip(1, 0) 
21: colour(𝜏[1]) + 𝑔𝑟𝑒𝑒𝑛 
22: 𝑷(𝜏[0]) + /𝒑 + /𝒑 

23: split(𝜏[2]) + split(𝜏[2]) ∪ {𝜏[0]} 
24: 𝜏 + 𝜏.flip(1, 0) 
25: colour(𝜏[1]) + 𝑟𝑒𝑑 
26: end if 
27: end for 
28: for all edge 𝑒 do 
29: if colour(𝑒) = 𝑟𝑒𝑑 then 
30: colour(𝑒) + 𝑔𝑟𝑒𝑒𝑛 
31: else if colour(𝑒) = 𝑔𝑟𝑒𝑒𝑛 then 
32: colour(𝑒) + 𝑏𝑙𝑢𝑒 
33: else if colour(𝑒) = 𝑏𝑙𝑢𝑒 then 
34: colour(𝑒) + 𝑟𝑒𝑑 
35: end if 
36: end for 
37: for all face 𝑐 do 
38: {𝑣, 𝑣} + split(𝑐) 
39: (𝑐, 𝑒, 𝑐) + splitCell(𝑐, +𝑣 − 𝑣) 
40: colour(𝑒) + 𝑟𝑒𝑑 
41: end for 

▷ clear split vertices 

▷ split red edges 

▷ advance edge colour 

▷ split faces 

42: end procedure 
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split the current cell (line 23). 
After splitting each red edge, we recolour the edges (lines 28–36); red edges become 

green, green edges become blue, and blue edges become red. Finally, we split each face 
(lines 37–41). The splitting edge runs between the two vertices in split(𝑐) (lines 38 and 39) 
and is coloured red (line 40). 

After splitting the old faces all of the new faces have six sides but are no longer regular 
hexagons. The new regular shape is found using a mass-spring system. Each edge is 
modeled by a spring with a rest length of 1. To maintain the regular shape, extra forces 
are added as if there were a spring of rest length 1 between the center of each face and 
each of its vertices. Algorithm 7.6 performs one timestep of the mass-spring simulation. 

Algorithm 7.6 One timestep of mass-spring simulation for the Korn-Spalding pattern 

Require: Vertices 𝑣 have position 𝑷(𝑣) and velocity �⃗� (𝑣) 
1: procedure KornSpaldingTimeStep 
2: for all vertex 𝑣 do ▷ initialize forces to zero 
3: �⃗�(𝑣) + 0 
4: end for 
5: for all edge 𝑒 do ▷ compute edge forces 
6: {+𝑣, −𝑣} + boundary(𝑒) 
7: �⃗� + 𝑷(𝑣) − 𝑷(𝑣) 
8: 𝑓  + 1 − (1 / ‖⃗𝑒‖) �⃗� 
9: �⃗�(𝑣) + �⃗�(𝑣) + 𝑓  

10: �⃗�(𝑣) + �⃗�(𝑣) − 𝑓  

11: end for 
12: for all face 𝑓 do ▷ compute face forces 
13: 𝒑𝑓 + Centroid(𝑓) 
14: 𝜏 + tuple containing 𝑓 
15: 𝜏 + 𝜏 
16: repeat 
17: �⃗� + 𝑷(𝜏[0]) − 𝒑𝑓 

18: �⃗�(𝜏[0]) + �⃗�(𝜏[0]) + 1 − (1 / ‖⃗𝑒‖) �⃗� 
19: 𝜏 + 𝜏.flip(0, 1) 
20: until 𝜏 = 𝜏 

21: end for 
22: for all vertex 𝑣 do ▷ update positions and velocities 
23: 𝑉 (𝑣) + ⃗⃗ 𝑉 (𝑣) + �⃗�(𝑣) 𝛥𝑡 
24: 𝑷(𝑣) + 𝑷(𝑣) + �⃗� (𝑣) 𝛥𝑡 
25: end for 
26: end procedure 

Edge spring forces are computed exactly as in Algorithm 7.1 (lines 5–11). The face 
spring forces are computed in lines 12–21). The centroid of the cell is found (line 13); this 
is one of the endpoints of the springs whose forces we are computing. We then iterate 
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Figure 7.11: Several steps of the development of the Korn-Spalding pattern: from left to right, with 
eight, sixteen, thirty-two, and sixty-four cells. 

Figure 7.12: A cell and all minimal division walls 
which divide it into two cells of equal sizes. All of 
the minimal division walls are circular sections and 
meet the cell’s existing walls at right angles. 

over the vertices of the face (lines 14–20). For each vertex, we compute a force for the 
spring between it and the centroid in exactly the same way as for the edge forces (lines 
17 and 18). Finally, once all edge and face forces are computed, the time is advanced 
(lines 22–25). 

Figure 7.11 shows a few steps in the development of the Korn-Spalding pattern im-
plemented using Algorithms 7.5 and 7.6. 

Division driven by expansion In the Korn-Spalding model, cells expand because di-
vision changes the rest lengths of their walls; that is, division drives expansion. It is 
also possible to model expansion in a tissue independently of division, and have cell divi-
sion be driven by this expansion; for example, cells might divide once they exceed some 
threshold size. The models described in this subsection work in this way. 

There are several different models for the shape and positioning of division walls 
(Besson and Dumais 2011). One of these is the model of Errera (1886), which posits that 
the division wall takes the same form as a soap film would under the same conditions. In 
a two dimensional model of a cell tissue, this means that the division wall is a circular 
section which is perpendicular to the walls it attaches to, and that it is of locally minimal 
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(a) (b) (c) (d)

Figure 7.13: A cell is split by a polyline approximation to a circular splitting wall. (a) The candidate 
dividing walls. (b) A dividing wall (green) has been chosen. The cell is split by a straight edge 
with the same endpoints. (c) The straight edge is divided into five pieces. (d) The new vertices 
(red) are moved onto the desired geometry. 

length (Besson and Dumais 2011) (Figure 7.12). In order to capture the geometry of 
a circular section while using a geometric interpretation of cell complexes in which all 
edges are straight lines, we subdivide each wall into several edges to better fit the circular 
shape (Figure 7.13). 

The distance 𝑠 between an arc with subtending angle 𝜃 and radius 𝑟 and the chord 
between its endpoints is 𝑠 = 𝑟 1 − cos 𝜃 

 . If we then require that the distance from the 
true arc to the subdivided edge is less than some 𝜖, then we see that the edge must be 
divided into at least 

𝜃𝑁 = (7.5)
2 cos− 1 − 𝜖𝑟  

segments. To divide the cell, then, we find all of the circular sections of locally minimal 
length (Figure 7.13a). Besson and Dumais (2011) discuss how to choose which of these 
curves will form the division wall; it could just be the shortest of the candidate curves, 
or could be chosen by some stochastic process weighted by the curve lengths. Once the 
curve has been chosen, the cell is divided by a single edge 𝑒 with the same endpoints. 
(Figure 7.13b). The edge 𝑒 is then subdivided into 𝑁 parts, where 𝑁 is computed with 
Equation 7.5 (Figure 7.13c). Finally, the new vertices are moved onto the desired split-
ting curve (Figure 7.13d). 

Figure 7.14 shows the result of repeated cell division in a tissue. The initial state is a 
single hexagonal cell, and the largest cell is divided in each step; the shortest candidate 
curve is used for every division. The figure shows the state of the tissue when there are 
two, three, four, eight, sixteen, and thirty-two cells. 

Many models of plant processes rely on an underlying tissue geometry. I next show 
an application of this subdividing tissue as an underlying space for the model of auxin 
transport described by Cieslak, Runions, and Prusinkiewicz (2015). The plant hormone 
auxin moves between plant cells largely by the action of the protein pin, which is as-
sociated with a cell’s membrane and acts to export auxin from the cell to its neighbour. 
However, pin is not uniformly distributed across the cell membrane; instead, the concen-
tration on each wall changes over time depending on influx and efflux across that wall. 
The flow of auxin and the redistribution of pin can thus form patterns on the tissue, from 
flow channels to evenly-spaced peaks. 

Recall the discussion of diffusion from Chapter 1. The change of auxin concentra-
tion 𝑎 in a cell 𝑖 is the sum of the influxes to the cell, minus the sum of the effluxes from 
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(a) (b) (c) 

(d) (e) (f ) 

Figure 7.14: Simulation of cell division by the Errera criterion. In each step, the largest cell is divided into 
two cells of equal sizes. (a) The initial hexagonal cell is dived into two. (b) One of the child cells is divided. 
(c) The other initial child cell is divided, producing a tissue of four cells. (d)–(f ) The state of the tissue 
with eight, sixteen, and thirty-two cells. 

the cell. In one dimension, the cell has two neighbours with indexes 𝑖 − 1 and 𝑖 + 1, and 
the change of auxin concentration 𝑎𝑖 is 

𝑑𝑎𝑖
 
𝑑𝑡 = 𝐸𝑖−→𝑖 + 𝐸𝑖+→𝑖 − 𝐸𝑖→𝑖− − 𝐸𝑖→𝑖+
 

= 𝑇 𝑎𝑖−𝑃𝑖−→𝑖 + 𝑇 𝑎𝑖+𝑃𝑖+→𝑖 − 𝑇 𝑎𝑖𝑃𝑖→𝑖− − 𝑇 𝑎𝑖𝑃𝑖→𝑖+, 

where T is the transport coefficient and 𝑃𝑖→𝑗 is the concentration of pin on the membrane 
of cell 𝑖 which separates it from cell 𝑗. In the case of diffusion, we could assign the two 
variables concentration and flux to cells and walls, respectively; but where does the pin 
concentration 𝑃 fit? 𝑃 is not a property of a cell, as it may differ on different membranes; 
nor is it the property of a wall, as it may differ in the cells on either side. 

We can still find a place to record the pin concentration 𝑃, but we have to change the 
topology of the cellular representation. Instead of a string of cells separated by walls 

⋯ Wall Cell Wall Cell Wall ⋯ , 

we have a string of cells and their associated membranes 

Membrane Cell Membrane 

separated by intercellular spaces: 

⋯ Intercell Membrane Cell Membrane Intercell Membrane Cell Membrane Intercell ⋯ . 
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biological cell

intercellular space

intercellular
junction

Figure 7.15: The structure of a two-
dimensional tissue with intercellular space. 
Biological cells (blue) are bounded by cell 
membranes (black), which separate them 
from intercellular space (pink). Intercellu-
lar spaces meet at intercellular junctions 
(green). Vertices joined by intercellular 
edges (blue) have the same position but 
have been moved apart for visualization; 
thus, the position of the red vertices is the 
same, while all four green vertices have the 
same position. 

Then the pin concentrations are the property of the membranes, while the intercellular 
spaces take the place of walls in the previous model, carrying the net flux between two 
cells: 

⋯ Intercell(𝐽 ) Membrane(𝑃) Cell(𝑎) Membrane(𝑃) Intercell(𝐽 ) ⋯ . 

The productions corresponding to 1.8a and 1.8b are then clearly 

Cell(𝑎𝐿) Membrane(𝑃𝐿) < Intercell(𝐽 ) > Membrane(𝑃𝑅) Cell(𝑐𝑅) → 

Intercell (𝑇 (𝑎𝐿𝑃𝐿 − 𝑎𝑅𝑃𝑅)) (7.6a) 

Intercell(𝐽𝐿) Membrane(𝑃𝐿) < Cell(𝑎) > Membrane(𝑃𝑅) Intercell(𝐽𝑅) → 

Cell (𝑎 + 𝛥𝑡 (𝐽𝐿 − 𝐽𝑅)) . (7.6b) 

There is also a production for Membrane which alters the pin concentration based on the 
flux and total pin in the cell: 

Intercell(𝐽 ) < Membrane(𝑃𝐿) > Cell(𝑎) Membrane(𝑃𝑅) → 

Membrane 𝑃𝐿 + 𝛥𝑡 (𝜎𝑃𝑄𝐽 + 𝜎𝑃)(1 − (𝑃𝑅 + 𝑃𝐿)) − 𝜇𝑃𝑃𝐿 , (7.6c) 

where (1 − (𝑃𝑅 + 𝑃𝐿)) is the amount of pin in the cell unassociated with either membrane. 
(There is a nearly identical production for the right membranes. This is once again a 
problem with the inherent left-right orientation of a string.) 

We can extend this structure to two dimensions. In this case, the intercellular spaces 
are 2-cells; we also have a new kind of space, the intercellular junction, where more than 
two intercellular spaces meet (Figure 7.15). 1-cells are either cell membranes or intercel-
lular edges between intercellular space and intercellular junctions. 0-cells are all on the 
boundaries of biological cells and still carry position information. We can choose how 
large the intercellular spaces are: for the purposes of the simulation described in this sec-
tion, the spaces are of zero thickness. This means that vertices joined by intercellular edges 
have the same position. 

In order to divide cells in a cellular structure with intercellular space, we have to 
change how splitting operations work. The operation which splits a 1-cell must now 
also split the adjacent intercellular space and the 1-cell on the other side of that space 
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(a) (b)

Figure 7.16: Splitting operations with intercellular space. (a) When splitting an edge, we also 
divide the adjacent intercellular space and the edge on its opposite side. (b) When splitting a 
face, we insert intercellular space between the two child faces and create intercellular junctions at 
the endpoints of the splitting wall. 

(Figure 7.16a). The operation to split a 2-cell must insert intercellular space between the 
two child cells and add intercellular junctions to the intercellular spaces at the endpoints 
(Figure 7.16b). Algorithms 7.7 and 7.8 implement these augmented operations. 

To split an edge and its adjoining intercellular space (Algorithm 7.7), we start with a 
cell tuple 𝜏 on that edge (line 2) and ensure that its 2-cell is the intercellular space (lines 3– 
5). We can then iterate around the rectangular intercellular space (line 7) to reach the 
opposite edge. 

We now split both the original edge 𝑒 (line 8) and the opposite edge (line 11). Each 
of the new vertices is placed at the supplied position ⃗𝑝 (lines 9 and 12) and its vertex type 
is set to intercell; this means that the vertex is adjacent only to intercellular spaces, and 
not to intercellular junctions. We assume that the children after a splitCell operation 
are set to the same type as the parent. 

Finally, we split the intercellular space itself between 𝑣 and 𝑣′ (line 14). The splitting 
edge is of type intercell as well; this means that it separates intercellular spaces and 
junctions, and is not adjacent to an actual cell. 

Splitting a 2-cell adjacent to intercellular space (Algorithm 7.8) is illustrated in Fig-
ure 7.17. We first split the face by an edge with the indicated endpoints (line 2, Fig-
ure 7.17a); the splitting edge will become a cell membrane (line 3). The endpoints must 
then be doubled; we do this by splitting the edges incident to the vertices and to the child 
face 𝑓′ (line 6, Figure 7.17b). These new vertices will be on the other side of the new 
intercellular space from the old vertices, so their positions will be the same (line 7). The 
face 𝑓′ is then split between the new vertices (line 23, Figure 7.17d). and the cell types 
are set: the splitting edge is the membrane of cell 𝑓𝑅 (line 24), while the space between 
𝑓𝐿 and 𝑓𝑅 is an intercell (line 25). 

Most of Algorithm 7.8 deals with the changes to the intercellular space required 
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Algorithm 7.7 Splitting an edge in a structure with intercellular space
 
Require: Vertices 𝑣 have position 𝑷(𝑣); edges and faces have type kind
 
1: procedure IntercellEdgeSplit(𝑒,⃗𝑝) 
2: 𝜏 + tuple containing 𝑒 
3: if kind(𝜏[2]) ≠ intercell then 
4: 𝜏 + 𝜏.flip(2) 
5: end if 
6: 𝑐 + 𝜏[2] 
7: 𝜏 + 𝜏.flip(1, 0, 1) 
8: (𝑒𝐿, 𝑣, 𝑒𝑅) + splitCell(𝑒) 
9: 𝑷(𝑣) + ⃗𝑝 

10: kind(𝑣) + intercell 
11: (𝑒′ 𝐿, 𝑣′, 𝑒𝑅 

′ ) + splitCell(𝜏[1]) 
12: 𝑷(𝑣′) + ⃗𝑝 
13: kind(𝑣′) + intercell 
14: (𝑐𝐿, 𝜖, 𝑐𝑅) + splitCell(𝑐, +𝑣 − 𝑣′) 
15: kind(𝜖) + intercell 
16: end procedure 

(a) (b) (c) (d)

Figure 7.17: The steps taken to split a face surrounded by intercellular space. (a) The face is split 
once between the indicated endpoints. (b) The edges incident to one side of the splitting edge 
are split again to create new split vertices (red and green). (c) Intercellular junctions are created 
(top) or widened (bottom) to accommodate the new vertices. (d) The right-hand face is split 
again between the new vertices and the area to the left is designated intercellular space. 
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Algorithm 7.8 Splitting a face in a structure with intercellular space 
Require: Vertices 𝑣 have position 𝑷(𝑣); edges and faces have type kind 
1: procedure IntercellFaceSplit(𝑓,+𝑣 − 𝑣) 
2: (𝑓𝐿, 𝑒, 𝑓′) + splitCell(𝑓, +𝑣 − 𝑣) 
3: kind(𝑒) + membrane 
4: for 𝑣 ∈ {𝑣, 𝑣} do 
5: 𝜏 + tuple containing {𝑣, 𝑒, 𝑓′} 
6: (ℓ𝐿, 𝑣′, ℓ𝑅) + splitCell(𝜏.other(1)) 
7: 𝑷(𝑣′) + 𝑷(𝑣) 
8: 𝜏 + 𝜏.flip(1, 2) 
9: kind(𝜏[1]) + intercell 

10: 𝑤 + 𝜏.flip(1).other(0) 
11: (𝑐𝐿, 𝜖, 𝑐𝑅) + splitCell(𝜏[2], +𝑣′ − 𝑤) 
12: kind(𝜖) + intercell 
13: if kind(v) = intercell then 
14: kind(join(𝑣, 𝜖)) + icjunction 
15: else if kind(v) = icjunction then 
16: 𝑗 + mergeCell(join(𝑣, 𝑤)) 
17: kind(𝑗) + icjunction 
18: end if 
19: kind(𝑣) + icjunction 
20: kind(𝑣′) + icjunction 
21: kind(𝑤) + icjunction 
22: end for 
23: (𝑐, 𝑒′, 𝑓𝑅) + splitCell(𝑓′, +𝑣′  − 𝑣′ ) 
24: kind(𝑒′) + membrane 
25: kind(𝑐) + intercell 
26: end procedure 
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Figure 7.18: Steps from an auxin transport simulation on a growing tissue. Auxin concentration in cells is 
represented by a proportionally-sized blue square, while pin concentration is represented by the thickness 
of a red bar along the membrane. Auxin peaks form early and are distributed throughout the tissue as it 
grows. 

when we double the endpoints. The loop in lines 4 to 22 handles each of the endpoints 
in turn. After creating the new vertex 𝑣′ , we set the type of the edge between it and 𝑣 
to intercell (line 9). We then find 𝑤, the vertex corresponding to 𝑣 on the other side of 
the old intercellular space (line 10). The intercellular space is then split between 𝑣′ and 𝑤 
(line 11); the space shared by 𝑣, 𝑣′ , and 𝑤 will become an intercellular junction. If there 
was no pre-existing junction at 𝑣 (in which case 𝑣’s type was intercell), then we simply 
set the type of the new triangular face to icjunction (lines 13–14). On the other hand, 
if 𝑣 was already on an intercellular junction, the new junction must be merged into it. 
This is done by mergin along the edge between 𝑣 and 𝑤 (line 16); the newly merged cell 
is then set to type icjunction (line 17). Finally, the three vertices 𝑣, 𝑣′ and 𝑤 are set to 
type icjunction (lines 19–21). 

We bring all of these pieces together in the simulation shown in Figure 7.18. A 
tissue with intercellular space is grown by scaling all positions uniformly at each time 
step. We use the Measure procedure (Algorithm 5.7) to calculate each cell’s area, and 
if it reaches a threshold area, the cell is divided according to Errera’s criterion along a 
polyline approximating a circular section; the division uses IntercellEdgeSplit and In-
tercellFaceSplit in place of default splitCell operations. During expansion, a chemical 
system, the two-dimensional equivalent of productions 7.6, is simulated on the growing 
tissue, using differential equation solvers from the SUNDIALS suite (Hindmarsh et al. 
2005). As a cell expands, the concentration of auxin in each cell and of pin on each wall 
remains constant. When a wall divides, the concentration of pin on the two child walls 
is the same as on the parent; when a cell divides, the concentration of auxin in the chil-
dren is the same as in the parent, while the initial concentration of pin on the new wall 
is assumed to be zero. 

In Figure 7.18, the auxin concentration in a cell is visualized by a proportionally-
sized blue square, while the pin concentration in a membrane is visualized by the thick-
ness of a red line along that edge. Auxin peaks initially form in the top left, center, and 
bottom right of the tissue, and more peaks join them as the tissue grows. 
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Figure 7.19: Microphotograph of a leaf of Physcomitrella patens. Note the rectangular cells in 
staggered files, narrower cells on the margin, and long, straight cells at the middle of the cell. 
(Courtesy of E. Barker) 

Figure 7.20: The first cell divisions of the leaf of P. patens. The apical cell (pink) divides alternately 
to the left and right, producing a herringbone pattern in the initial cells. 

7.3 The leaf and apex of Physcomitrella patens 

The last family of models I will discuss in this section aims to capture the growth and 
form of a specific plant: the moss Physcomitrella patens. The first of these is a model of 
the growth of leaves, with focus on the cell division patterns that lead to the emergence 
of parallel cell files in the mature leaf. This model is based on the work of Chelladurai 
(2012), which was originally done in the vertex-vertex modeling system vve. The sec-
ond model in this chapter is a geometric model of the growing shoot apex of P. patens. 
The apex displays a very interesting three-dimensional structure which naturally lends 
itself to, and thus provides a good example of, modeling using three-dimensional cell 
complexes. 

Leaf model The Physcomitrella leaf model is based on the work of Chelladurai (2012), 
which aimed to reproduce the cell patterns seen in microphotographs (Figure 7.19) by 
growing the leaf from a single cell, expanding cells through a mechanical (mass-spring) 
simulation. The cells seen in Figure 7.19 are rectangular, and appear in staggered files. 
This is puzzling, because early division patterns produce cell walls at 45∘ to the leaf axis 
(Figure 7.20). Further divisions then produce four-way cellular junctions (Figure 7.21a). 

Chelladurai showed that the four-way junctions could be manipulated to create ex-
actly the rectangular cell patterns needed. This is done by expanding these junctions, 
inserting a new horizontal edge to divide them into two three-way junctions and turn 
the internal cells into hexagons (Figure 7.21b). We add bending springs with 90∘ rest an-
gles at the top and bottom vertices of these cells, and springs with 180∘ rest angles at the 
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(a) (b) (c) 

Figure 7.21: The model of early cell divisions in Physcomitrella. (a) Dividing the initial apex many 
times creates cells which meet at four-way junctions. (b) The cells can be made into hexagonal 
cells by inserting new horizontal edges at each of the four-way junctions. (c) By adding bending 
springs and relaxing the mass-spring system, a leaf blade with staggered files of rectangular cells 
is created. 

side vertices. Relaxing the mass-spring system then pushes the leaf shape into staggered 
files of rectangular cells (Figure 7.21c). 

Now the leaf blade expands. This expansion is driven by an increase in the rest length 
of the cell walls. We want the leaf to expand more in the apical-distal (vertical) direc-
tion than in the medio-lateral (horizontal) direction so cell walls aligned vertically see a 
greater increase in rest length than cell walls aligned horizontally. The vertical expan-
sion factor is uniform, but the horizontal expansion factor is greater about halfway up 
the leaf (Chelladurai 2012). The growth rates are interpolated between the horizontal 
and vertical extremes, depending on the wall’s orientation. 

Two kinds of wall do not expand. First, the leaf base (red edges in Figure 7.21c) will 
not expand, as in a real plant it is attached to the stem. Second, the horizontal edges 
adjacent to the margin and in the emergent midrib have a fixed, relatively small rest 
length. This fixed length results in cells on the margin and at the midrib being narrower 
than other cells, just as in the real cell pattern (Figure 7.19). 

As the cells expand, they eventually reach a threshold area and divide. This threshold 
area depends on the vertical position of the cell: cells near the bottom of the leaf blade 
are much larger, which indicates that their division area must have been relatively larger; 
the cells near the leaf apex are smaller and have a lower threshold division area. When a 
cell divides and creates four-way junctions, an edge is inserted into them. In contrast to 
the apical part shown in Figure 7.21b, the inserted edges in the lower areas of the leaf are 
oriented vertically (pink walls in Figure 7.22cd). These vertical edges result in staggered 
files of cells in the leaf. 

Figure 7.22 shows the output of a Cell Complex Framework implementation of 
Chelladurai’s Physcomitrella leaf model. This model uses the same growth pattern as that 
described by Chelladurai (2015). The CCF implementation combines the mass-spring 
dynamics described in Section 7.1, using angular springs which are attached to faces 
instead of edges, with cell divisions determined by the method discussed in Section 7.2. 
Cell sizes are calculated using the Measure algorithm shown in Chapter 5. Expansion 
is simulated with the help of an external solver from the SUNDIALS suite (Hindmarsh 
et al. 2005). 
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(a) (b) (c) (d) 

Figure 7.22: The development of the model of the Physcomitrella leaf. Wall divisions which result in four-
way junctions are split by a vertical edge (pink), maintaining the staggered files of cells. Cells on the margin 
(green) and at the midleaf (blue) are narrower, while cells near the top of the leaf are still dominated by 
the apex’s diagonal division pattern. 

Apex model The shoot apex of Physcomitrella also displays an interesting growth pat-
tern (Harrison et al. 2009). A single apical cell undergoes successive divisions in a spiral 
pattern, cleaving off new leaf initials surrounding it. The spiral division pattern leaves 
the apical cell tetrahedral in shape (Figure 7.23). This three-dimensional division pattern 
is difficult to visualize, so the Cell Complex Framework was used to create a descriptive 
model replicating the pattern. 

The bud is modeled as a dome-shaped volume (Figure 7.24a), created by Catmull-
Clark subdivision (Section 6.1) of a hexagonal prism. Divisions are performed by split-
ting the apical cell at its intersection with a plane (Section 5.2). All of the splitting planes 
are inclined from the vertical, though this is only visible for the first two splits (Fig-
ures 7.24ab). Successive splitting planes are rotated by a phyllotactic angle of 137.5∘ about 

(a) (a) 

Figure 7.23: The development of the shoot apex of P. patens. (a) The apical cell (lower right) has 
divided to create two leaf cells (left and upper right). (b) After a third division, the apical call 
(center) is tetrahedral in shape and surrounded by initial leaf cells. (Courtesy of J. Harrison) 
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(a) (b) (c) (d) (e) (f ) 

Figure 7.24: Division of the apical cell (red) in the model of the shoot apex of Physcomitrella. All of the 
division planes are inclined from the vertical, and successive divisions are rotated by 137.5∘, leaving a 
tetrahedral apical cell surrounded by leaf initials. 

the vertical axis, creating a spiral arrangement of leaf initials and a tetrahedral apical cell 
(Figures 7.24c–f). 

We can better appreciate the internal structure of the apex if we render some of the 
cells as partly transparent (Figure 7.25). The oblique splitting planes that create wedge-
shaped leaf initials and a tetrahedral apical cell are then clearly visible. 

The presented apex model can serve as a foundation for other models. For instance, 
Figure 7.26 shows the result of adding a descriptive model of the early development of 
Physcomitrella leaves. The upper surfaces of each leaf initial bulges upward as the leaf 
apical cell divides in the characteristic herringbone pattern (Figure 7.20). As the leaves 
expand, the apex becomes surrounded by young growing leaves. 
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(a) (b) 

(c) (d) 

Figure 7.25: Development of the Physcomitrella apex model, rendered with transparent cells to 
reveal internal structure. Panel (a) corresponds to Figure 7.24c; (b) to 7.24d; (c) to 7.24e; and 
(d) to 7.24f. Note the progression of the apical cell (red) to a tetrahedral cell surrounded by leaf 
initials. 

Figure 7.26: Early leaf develop-
ment on the Physcomitrella apex. 
The leaf initials have divided in 
a herringbone pattern and sur-
round the apex. 



8 Conclusions 

Embracing cell complexes as an underlying representation for a modeled problem has 
many advantages. They are a natural representation for a subdivided manifold, and sup-
ply a discrete topological structure to space. This structure includes cells of all dimen-
sions, which provides placeholders for physical quantities of different inherent dimen-
sionality. The cell complex structure is locally defined: a cell is defined in terms of the 
cells in its boundary. This means that operations which modify the topology are local 
in nature. In addition, the topological relations in the cell complex provide a local con-
text for changing the parameters of individual cells. This locality of both topological 
operations and parameter modifications mans that the behaviour of any one cell depends 
only on its own history and its interaction with its neighbours. In other words, cells are 
modules, so problems can be modeled taking cells into account in a modular fashion. 

I have systematically investigated the use of cell complexes as a framework for devel-
opmental modeling in one, two, and three dimensions. I created a new computational 
representation for a cell complex — the flip table. This single representation provides 
information on incidence relations between cells, adjacency relations between cells, and 
relative orientations between cells. I used this representation to design and implement 
the Cell Complex Framework, a modeling system built on cell complexes. I used the 
CCF to construct models illustrating both programming techniques and fundamental ap-
plications of cell complexes in both geometric modeling and biological modeling. The 
CCF is now ready for practical applications. 

The Cell Complex Framework The Cell Complex Framework is implemented as a 
C++ API, offering the user access to the cell complex both through the low-level repre-
sentation as flips, and through higher-level operations. The CCF incorporates the basic 
operations described in Chapter 4, chosen because, while by no means exhaustive, they 
allowed me to implement the wide range of models described in later chapters. 

Operations which modify the cell complex work by modifying the flips which in-
clude the cells which are altered. Since a flip only refers to adjacent and incident cells, 
the operations are thus local. Moreover, since each flip only refers to cells of nearby di-
mension, operations are also dimensionally local; the splitting of an 𝑛-cell only impacts 
flips involving cells down to dimension (𝑛 − 3). 

Also vital to the locality of CCF operations is the cell tuple, which provides a “handle” 
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to the cell complex. Modifying cell tuples with flip operations is a useful way to move 
across the cell complex or to rotate through a number of cells in order. 

Tuple coordinates Another concept introduced in this thesis that I think is extremely 
useful is tuple coordinates (Chapter 5). Each cell tuple in the cell complex has an associated 
coordinate frame (𝒑, �⃗�, �⃗�, …), where 𝒑 is the position of the tuple’s vertex, ⃗𝑒 is the direc-
tion of the tuple’s edge, ⃗𝑒 is the direction of the other edge in the tuple’s face, and so on. 
There is also an orthonormal coordinate frame (𝒑, �̂�, �̂�, …) which can be derived from 
the tuple frame. 

Tuple coordinates are used to great effect in Algorithms 5.7, 5.8, and 6.8. The first 
two algorithms use the orthonormal tuple frame to compute the measure and centroid 
of a cell as the sum of a simpler expression over all of the tuples containing that cell. This 
is a general solution to finding the measure and centroid of arbitrary (non-intersecting)
𝑛-dimensional polytopes which I have not been able to find in the published literature. 
While the expression for the centroid is somewhat more complex than that for measure, 
both operations are extremely useful in further modeling. 

Algorithm 6.8, on the other hand, propagates a geodesic across an arbitrary trian-
gulated surface by associating each flip operation with a transformation between tuple 
coordinate frames. In this way, a sequence of flips which follows the geodesic is coupled 
with the coordinate transformation relating the original direction of the geodesic to the 
coordinates in the current cell. There is nothing inherently two-dimensional about this 
result, which could equally well be applied to 3-cells or 4-cells in a curved spacetime. 

Comparing the CCF to vv The inspiration for creating a framework based on cell 
complexes was the modeling system vv (Smith, Prusinkiewicz, and Samavati 2003) and 
its extension VVE (Barbier de Reuille 2008). Both systems have been widely used to 
create published models of multicellular structures. When compared to the CCF, vv has 
several advantages. Without so many cells to take into account, operations are simpler 
and faster to execute. Further, vv exists as a language extension to C++. This means that 
it includes language constructs that allow some topological operations, such as iterating 
around a neighbourhood, to be expressed more intuitively than calls to an API. 

There are also shortcomings of vv which the CCF overcomes. The first of these is 
the representation of cells other than vertices. In vv, only vertices have a true topological 
representation. Data stored on edges is associated instead with a pair of vertices, and faces 
have no representation whatever in the basic system. A representation for faces can be 
added by, for instance, adding in a new “face” vertex which is in the neighbourhoods 
of all of the vertices of the face, but this ad-hoc solution confounds the topology and 
increases the complexity of operations. The lack of representation for faces does not 
critically hamper vv in all cases, of course: some of the models described in this thesis 
only use the vertex-edge structure and store no parameters on faces. For many models, 
however, the lack of faces is a serious problem. 

The second problem is that vv inherently relies on an orientation of two-dimensional 
space, in the same way as L-systems have an inherent difference between “left” and 
“right”. This reliance on absolute orientations is the reason for vv’s greatest limitation: 
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it is inherently two-dimensional. The CCF was explicitly designed to create an alternative 
framework that works in any number of dimensions. 

Comparing the CCF to mgs A developmental modeling system that operates on three-
dimensional cell complexes is mgs (Giavitto and Michel 2001). mgs is a language with 
declarative semantics: a rule is defined by a pattern of incidences and adjacencies, and 
a specification of how cells that match should be altered. The declarative style makes 
it possible to specify some manipulations more cleanly than the CCF’s imperative style. 
However, the pattern specification in mgs quickly grows very verbose. Furthermore, 
searching the cell complex for a match to the pattern can be quite slow. It is unclear 
whether a more expressive pattern syntax would make declarative semantics more at-
tractive; it is my hope that the CCF may be extended in this direction efficiently. 

Comparing the CCF to G-maps The recent book by Damiand and Lienhardt (2014) 
describes in detail the implementation of a modeling framework built on G-maps. It 
is likely that low-level CCF and G-map operations are of similar time and space com-
plexity, as there seem to be similar numbers of flips and darts in a cell complex. One 
advantage of the flip table representation is that operations are dimensionally local; how-
ever, this advantage is only prominent in higher dimensions. It would be enlightening 
to attempt a direct comparison between the formalisms. 

8.1 Future directions 

My goal is to make the Cell Complex Framework as useful for modelers as possible. I 
can see a few key directions for improvement with this in mind. The first direction is to 
investigate improvements to the speed of the system. The second would be to enhance 
the set of basic topological operations. The third is to simplify and make more intu-
itive the construction of models by introducing new predefined functions or language 
constructs. 

Efficiency Except for the most basic time profiling (Chapter 4), little work has been 
done investigating the speed of the CCF. Faster implementations of the basic data struc-
tures are only a start. Can CCF operations be readily parallelized, using multicore ma-
chines or GPUs? Rather than offloading differential equations to an external solver, 
might more efficient solvers be created which use the topology of the existing cell com-
plex? How does the CCF compare in terms of efficiency to other similarly powerful 
systems, particularly G-maps? 

New topological operations The current set of topological operations, while suffi-
cient for almost all of the models described in this thesis, is not complete. The standard 
topological operations glue and cut are not currently included. These operations are 
very useful for changing the genus of a manifold: for turning a plane into a cylinder, for 
example, or, in biology, for the process of gastrulation. 

The model of the leaf of Physcomitrella patens (Chapter 7) used an operation insert-
Edge which separates a vertex into two vertices by inserting an edge between them. 
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This operation is also not in the CCF, and had to be written in terms of low-level flips. 
However, this operation is dual to the splitCell operation applied to a face, so the flip 
implementation of insertEdge was simply a matter of copying the implementation of 
splitCell, then reversing each flip into its dual. Presumably the same could be done to 
mergeCell to create collapseEdge, but would it also be useful to allow access to the dual 
complex more generally? That is, would a “filter” of sorts, which allows the dual com-
plex to be accessed and modified as if it were the true complex, be useful as a modeling 
tool? 

Higher-level constructs Language-level abstractions could also be useful. Looking 
at the models implemented in this thesis, one sees that the pattern of iterating around a 
loop of tuples by flipping in adjacent dimensions is used frequently, to iterate through 
all neighbours of a vertex, all vertices of a face, or all faces incident to an edge. This 
iteration always has a form similar to: 
𝜏 + some tuple 
𝜏 + 𝜏 
repeat 

do something with the tuple
𝜏 + 𝜏.flip(0, 1)
 

until 𝜏 = 𝜏
 

It may be possible to abstract out this loop into higher-level syntax, such as something 
of the form 

perform_iteration(𝜏,flip(0, 1)) { 
do something with 𝜏 

} 

Broader patterns might also be used as higher-level abstractions. For example, ma-
nipulating a two-dimensional tissue involves many of the same operations: expanding 
uniformly, or according to some growth tensor; dividing a cell with a wall determined 
by Errera’s rule; or diffusing a substance to neighbouring cells. These could be abstracted 
into a library for two-dimensional tissues. If this were done, the tissue itself might be 
replaced at some point by a tissue with intercellular space (Chapter 7), while the model 
code, using the library functions, would remain virtually identical. 

At a higher level still, it may be desirable to turn the API into an embedded language 
like vv. This would let some of the more cumbersome syntax, like the face iteration 
above, become easier to use. A more expressive language might even replace the im-
perative semantics with declarative semantics. There are still problems with defining 
neighbourhoods declaratively, as the example of mgs shows, but it is worth pursuing if 
it would let local operations be performed even more easily and the semantics of opera-
tions be more clearly defined. 

Even though the CCF clearly has room for extension, however, this thesis has shown 
that in its current state the CCF is functional, and has already opened the door to mod-
eling with cell complexes in one, two, and three dimensions. I look forward to seeing 
the many interesting models the Cell Complex Framework will be used to construct. 
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