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CHAPTER 3 

THE L+C PLANT-MODELLING LANGUAGE 

P. PRUSINKIEWICZ, R. KARWOWSKI, AND B. LANE 
Department of Computer Science, University of Calgary, Calgary, Canada 

Abstract. L+C is a modelling language that combines features of L-systems and C++. It extends the L-
system formalism with the notion of fast transfer of information, and supports a number of standard 
programming constructs absent from its predecessor, the cpfg language. These include modules with 
structured parameters, productions with multiple successors, and user-definable functions. Visualizations 
of L-system models can be enhanced using multiple views and the selective display of frames. These 
features extend the overall range of simulation models that can be conveniently expressed using L-
systems, and are particularly advantageous when creating and visualizing complex plant models. A 
biomechanical model of a growing pendulous branch is given as the key example. 

INTRODUCTION 

L-studio (Windows) and the Virtual Laboratory (Linux and Mac) are related plant-
modelling packages distributed by the University of Calgary, Canada. Each of the L-
studio and Vlab systems consists of: (a) two L-system-based simulation programs, 
cpfg and lpfg; (b) a modelling environment that provides auxiliary modelling tools 
and a graphical interface for creating and manipulating models; (c) a library of 
programs for simulating environmental processes that affect plant development; (d) 
a set of sample models; and (e) a graphical browser for organizing and accessing 
models on both local and remote machines (Prusinkiewicz 2004). 

The simulation programs cpfg and lpfg are at the heart of both L-studio and 
Vlab. Their design has been guided by two key objectives: (a) the programs should 
be suitable for modelling and simulating a wide range of structures and 
developmental processes in plants, and (b) the programs should support diverse 
visualization techniques, from schematic to realistic. These objectives are addressed 
by allowing users to specify models in specialized programming languages, which 
are based on the formalism of L-systems (Lindenmayer 1968a; 1968b; 1971). The 
modelling language for the cpfg simulator was developed first (Prusinkiewicz and 
Hanan 1990; Prusinkiewicz and Lindenmayer 1990; Hanan 1992) and makes it 
possible to specify simple models quickly and concisely. The evolution of the cpfg 
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language has been surveyed by Prusinkiewicz (1999), with subsequent additions (in 
particular, decomposition and interpretation rules) described by Prusinkiewicz et al. 
(2000). The currently available constructs have been listed by M ch et al. (2005). 
The language of the lpfg simulator was designed more recently (Karwowski 2002; 
Karwowski and Prusinkiewicz 2003; Karwowski and Lane 2006) to facilitate the 
specification of complex plant models (e.g. Mündermann et al. 2005; Allen et al. 
2005). We call this language L+C, because it combines features of L-systems and 
the C++ programming language. Here we overview key features of L+C in a manner 
that complements and updates its earlier presentation by Karwowski and 
Prusinkiewicz (2003), and we illustrate the discussed features in the context of a 
complete L+C program: a model of a growing branch that bends due to gravity. 

FAST INFORMATION TRANSFER 

An essential component of functional-structural plant models is transport of 
information through the organism (Perttunen et al. 1996; Allen et al. 2005). A 
simple L-system example would be assigning consecutive numbers to a sequence of 
modules in a string. This task can be accomplished using the context-sensitive 
production B(m) < A(n)  B(m+1), as illustrated below for a string of N=4
modules: 

We observe that it takes N–1 derivation steps for the information to propagate to the 
end of an N-element string, as indicated by the arrows. This is a consequence of 
determining the next state of each module as a function of the current state of its left 
neighbour. Although each module in the string is rewritten in each derivation step, 
the state of only one module is changed. The remaining modules are not affected. 

L+C includes a construct that makes it possible to accelerate this information 
transfer if the string is rewritten sequentially, from left to right, during a single 
derivation step. Under this assumption, the next state of a module can be calculated 
as a function of the (just calculated) next state of its left neighbour, rather than the 
current state of that neighbour. The flow of information is then represented by the 
arrows in the following derivation step: 
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In order to refer to this new context in L-system productions, we use the symbol << . 
A production that defines the above derivation can thus be written as 

B(m) << A(n)  B(m+1).

In general, the predecessor of a production using new context in a derivation 
proceeding from left to right has the following format: 

new-left-context << strict-predecessor > right-context .

In an analogous manner, if a derivation step is performed from right to left, a 
production predecessor with new context has the general format: 

left-context < strict-predecessor >> new-right-context .

The left-context and right-context fields are optional. Motivated by the above 
example, we refer to L-systems that use the new context construct as L-systems with 
fast information transfer. Note that a production may only have one new context 
field (i.e., either << or >>), depending on the derivation direction. Productions with 
a new context field inconsistent with the current derivation direction are ignored. 

FORMAT OF L+C PRODUCTIONS 

The productions considered in the previous section were specified using a 
mathematical L-system notation. In L+C, the arrow is replaced by the keyword 
produce, which leads to production specification of the form

B(m) << A(n) : {produce B(m+1);} 

In general, an L+C production has the syntax: 

predecessor : {production body}

where the predecessor is specified as discussed in the previous section, and the 
production body is a block of C++ code including one or more statements: 

produce parametic-stringopt ;

Although the mathematically inspired arrow notation may appear more elegant than 
the L+C notation, the latter is more flexible as a programming construct. For 
example, an L+C production may include several alternative successors, as in the 
construct: 

B(m) << A(n) : {
  m++;
  if (m%3==0) produce C(m)B(m); else produce B(m);
}

In addition to assigning consecutive numbers to consecutive modules B(m), this 
production inserts a module C(m) in front of every B(m) each time m is divisible  
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by 3. The traditional notation would require two separate productions to express the 
same idea, which might be inefficient if the computations preceding production 
application were much longer than the simple incrementation, m++.

L+C also supports a variant of the produce statement, denoted by keyword 
nproduce. In contrast to produce, the execution of nproduce does not 
terminate the application of a production. This makes it possible to construct the 
successor of a production ‘piece by piece’. For example, using nproduce, the 
previous production can be simplified to the form: 

B(m) << A(n) : { 
  m++;
  if (m%3==0) nproduce C(m); 
  produce B(m);
}

STRUCTURED PARAMETERS AND MODULE DECLARATIONS 

In the above examples, we have only considered modules with a single numerical 
parameter. L+C extends the previous definition of parametric L-systems 
(Lindenmayer 1974; Prusinkiewicz and Hanan 1990; Prusinkiewicz and 
Lindenmayer 1990; Hanan 1992) by allowing for the use of parameters of different 
types, including user-definable data structures. To make this possible, L+C modules 
are declared before use. Declaration specifies the number and types of parameters 
that are associated with the given module type with the following syntax: 

module identifier (parameter-listopt) ; 

To illustrate the usefulness of structured parameters, let us consider the 
following context-sensitive production in cpfg notation: 

L(xl1,xl2,xl3,xl4,xl5) < A(x1,x2,x3,x4,x5) >
R(xr1,xr2,xr3,xr4,xr5)  A(x1,x2,x3,x4,x5+1) 

This production operates on a module A with five real-valued parameters, and 
increments the value of the last parameter by 1 if module A appears in the context of 
modules L and R. Note that, due to the relatively high number of module parameters, 
this production is difficult to read. The corresponding L+C code is: 

struct data { float x1, x2, x3, x4, x5; }; 
module A(data); module L(data); module R(data); 
L(dl) < A(d) > R(dr) : 
{
  d.x5 += 1.0;
  produce A(d); 
}

In this example, as in most simple programs, the L+C code is longer than the 
equivalent cpfg code. Nevertheless, the use of structured module parameters offers 
several advantages: 
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Long lists of parameter modules can be avoided. This results in a more legible 
code. 
The L+C code is less error-prone. In cpfg it is easy to introduce an error by 
inadvertedly skipping a parameter in a long parameter list. 
The L+C code is easier to modify. For example, if an additional parameter x6 is 
needed to characterize modules L, R and A, in L+C it suffices to extend the 
definition of the structure data. In contrast, in cpfg it is necessary to include x6
explicitly in the parameter list associated with each occurrence of these modules. 

CONTROL OF L-SYSTEM PROGRAM EXECUTION 

In principle, the notion of L-systems leads to a declarative programming style. Each 
production is a statement of the form: “If a module and its neighbours match the 
production predecessor then subsequent actions will be performed as specified in the 
production body”. These actions thus depend on the state and context of the module 
to which they apply, rather than a control flow mechanism as found in imperative 
languages. 

Nevertheless, L+C also includes elements of the imperative programming style. 
The body of each production is specified as a sequence of statements based on C++. 
Furthermore, there are four blocks of statements that are performed at specific points 
of the derivation: at the beginning of the simulation (Start), at the beginning of 
each derivation step (StartEach), at the end of each step (EndEach), and at the 
end of the simulation (End). These blocks were already defined for cpfg (Hanan 
1992), but play a more significant role in L+C because they may include statements 
that affect the flow of the simulation. 

One such pair of statements are calls to the predefined functions Forward()
and Backward(). These functions are typically used within the StartEach
block, and determine whether the derivation will proceed left-to-right or right-to-left 
in the forthcoming step. As we have seen in the section "Fast information transfer",
the direction of the derivation is of critical importance in the case of fast information 
transfer, because left new context can only be used when the derivation proceeds 
left-to-right, and right new context can only be used when the derivation proceeds 
right-to-left. 

As the applicability of productions with new context depends on the direction of 
the derivation, only a subset of the production set may apply in a given derivation 
step. In the case of fast information transfer this subset may be established 
implicitly, by ignoring productions with the new context that are incompatible with 
the current direction of derivation. However, in many models it is convenient to 
control the applicable production set explicitly (Frijters and Lindenmayer 1974; 
Frijters 1976). To this end, L+C supports statements of the form 

group group_id : 

which divide the set of productions into subsets called groups (or tables in L-system 
theory; cf. Rozenberg 1973; Ginsburg and Rozenberg 1975). A group statement 
can be inserted before any production, and assigns a numerical label group_id to the 
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subset of productions that follow. This label remains in effect until the next group
statement or the end of the production list. The group statements are used in 
conjunction with the function  

UseGroup(group_id)

which is typically called within the StartEach block and defines the group of 
productions to be used in the forthcoming step. By definition, productions in group 0 
are used in all steps. 

The notion of groups lends itself to the division of the simulation into a sequence 
of phases, each characterized by the use of a specific production group. The 
sequence of phases that constitute a simulation may be fixed, but it may also be 
determined dynamically, with the next phase depending on the outcome of the 
previous phase. For example, such a situation may occur if L-system productions are 
applied iteratively, until some criterion of convergence is met. It may then be 
desirable to interpret and visualize the result of a simulation graphically only after 
convergence has been achieved. To this end, L+C supports the function 

DisplayFrame()

which is typically called within the EndEach block to display the result of the latest 
simulation step. Furthermore, as the number of iterations may be difficult to define a
priori, L+C supports the function 

Stop()

which terminates the execution of the simulation at the end of the derivation step in 
which it has been called. Examples of the constructs discussed in this and the 
following sections will be given in the context of a complete L+C model (Section "A
Biomechanical example"). 

MULTIVIEW VISUALIZATION 

In some applications, it is useful to display different aspects (views) of a simulation 
concurrently (Roberts 2000). For example, one view may realistically represent a 
developing plant, while another shows corresponding statistical information in the 
form of a dynamically updated table or a histogram. In L+C, different views can be 
displayed in separate windows, the contents of which are specified using subsets of 
interpretation rules (Prusinkiewicz et al. 2000). Each subset is called a visual group, 
and is identified by the statement 

vgroup view :

A vgroup statement assigns the label view to the subset of interpretation rules that 
follow it. A visual group is terminated by the next vgroup statement or the end of 
the production list. 

An important difference between the group and vgroup statements concerns 
the execution of the affected productions. In addition to group 0, only one 
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production group, specified by the latest call to the UseGroup() function, applies 
to any particular simulation step. In contrast, interpretation rules in several visual 
groups can be executed in each simulation step, provided that windows associated 
with these groups are open. An L+C programmer may control which windows are 
open using the function call 

UseView(view).

Additional constructs are provided in L-studio and lpfg to determine the default size 
and position of the windows, and to open and close them using menus. 

INTERACTION WITH THE MODELS 

Computational models are often used in simulated experiments in which model 
attributes are modified to address ‘what if’-type questions. Models expressed in L+C 
are conducive to such experiments, since the user can modify any aspect of the 
model by changing the L-system code. In addition, L-studio and vlab provide 
interactive tools that provide an interface for manipulating the numerical parameters 
and functions incorporated in the model. These tools include user-configurable 
virtual control panels and graphical function editors (Prusinkiewicz 2004). 

The user may also explore models by directly manipulating their visual 
representations on the screen. Such manipulations may mimic physical operations 
such as pruning, girdling or pulling branches. The fundamental operation underlying 
these manipulations is the selection of a module within the graphical representation 
of the model. When the user selects a module with the mouse, a reserved module, 
MouseIns() in L+C, is automatically inserted before the symbolic representation 
of the selected module in the L-system string. The modeller specifies the response to 
this event using a production that includes MouseIns()in the predecessor. 

A BIOMECHANICAL EXAMPLE 

To illustrate L+C constructs in the context of a complete program, let us consider 
the biomechanical model of a growing pendulous branch proposed by Jirasek et al. 
(2000) according to the ideas of Fournier (1989). Jirasek et al. observed that the 
forces and torques involved in the bending, as well as the resulting reorientations 
and displacements of internodes, can be considered signals that propagate between 
plant modules and have local effects. This observation led to L-system 
implementations of the biomechanical model, first in cpfg (Jirasek 2000) and later in 
L+C (Taylor-Hell 2005). The L+C implementation makes use of almost all the 
programming constructs specific to this language, and therefore provides a good 
example of its features. In the model below, we ignore for simplicity the effects of 
tropisms and secondary growth. We also assume that the model operates in 2D. 
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Figure 1. Geometry of branch bending. Left: representation of a branch with N=5 
internodes, and the symbols used in the derivation of the formula for static equilibrium. 
Right: the adjustment of internode orientation during the relaxation process 

The point of departure in the model construction is the derivation of equations 
that characterize branch shape in static equilibrium. We represent the branch as a 
sequence of internodes (Figure 1a), beginning with a fixed internode and terminated 
by an apex. The internodes are numbered from 1 (fixed proximal internode) to N
(distal internode), and connect nodes numbered 0 to N. Each internode is represented 
as a vector iii s Hr , where the number is denotes internode length, and the unit 
vector iH denotes internode orientation. The position of node j with respect to node i

Nji0  is thus described by the vector 

j

ik
kji

1
, rR . (1) 

We assume that the branch would be straight in the absence of gravity but bends 
downward in the presence of gravity. To model this bending, we assume that each 
node i is an elastic joint, subject to a torque i . This torque is caused by gravity 
acting on the overhanging part of the branch (positioned distally with respect to 
node i). To simplify calculations, we assume that the mass of the branch is 
concentrated in its nodes. 

Let gF ii m  denote the force acting on node i with mass im  under gravitational 
acceleration g . The torque i is the sum of the torques exerted by the individual 
masses positioned distally with respect to node i:

j

N

ij
jii FR

1
, . (2) 

The above equation expresses torques in global terms, in the sense that it 
incorporates influences of masses im  that may be positioned far away from node i.
Nevertheless, torques acting on consecutive joints can be related to each other in 
local terms. Specifically, the torque acting on node 1i  is equal to 
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In static equilibrium, a torque of magnitude ii , acting on the node i, rotates 
internode 1ir  by angle iii /  with respect to internode ir . The parameter i is
the rotational spring constant associated with node i. The geometry of the branch is 
thus described by the equations: 

,
,),(Rotate

1

1

iiii

iii

s HPP
HH

(5) 

where the function ),(Rotate iiH changes the orientation of vector iH by angle 

i (in 2D), and iP is the position of mass mi.
To find the equilibrium, we use a relaxation method (Press et al. 1992, pp. 754-

755), which in this case consists of an iterative application of two steps: 
Step 1.  Given a sequence of internodes iii s Hr , calculate torque i acting on each 
node. To this end, scan the branch in the proximal direction, and apply Equations 3 
and 4 to consecutive nodes. 
Step 2.  Given the torques i , adjust the orientation of each internode. To this end, 

scan the branch in the distal direction. Given the adjusted orientation '
iH of

internode i, first find the vector ''
1iH  that forms angle iii / with respect to '

iH

(Figure 1b). The vector 1
''

11 iii HHE  is the difference between the orientation 
of internode 1i  calculated in the previous iteration step and the orientation that 
would be required to achieve equilibrium. The adjusted orientation of internode 1i
is then defined as )Normalize( 1

'
1

'
1 iii kEHH . Parameter k controls the amount 

of adjustment and thus affects the speed of convergence to the solution, and function 
Normalize restores the result to the unit length. Furthermore, the magnitudes of 
difference vectors are accumulated to form an error measure: 

N

i
ie

0
E . (6) 
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Figure 2. The sequence of phases in the simulation of a growing and bending branch. Similar 
graphs are useful when defining the sequence of phases in other L+C models as well 

The iteration ends when the error e falls below an assumed tolerance threshold. 
Within this tolerance, the orientations of the internodes and positions of the nodes 
then satisfy Equations 5. In the complete model of a growing branch, this is an 
appropriate time to simulate a developmental step. The cycle of computation is 
illustrated in Figure 2. The resulting L+C program is listed on the following pages. 

The program begins with the definitions of constants, variables and functions, 
and declarations of data structures and modules (lines 1 to 53). The three-
dimensional vector V3f, which appears for the first time in the definition of the 
gravity vector (line 10), is one of the types declared in the L+C header file 
lpfgall.h. An example of a user-defined function follows (lines 12-22). Lines 
55-97 present a typical example of the organization of computation. The statements 
in the Start block (lines 57-67) initialize variables, set the initial phase of the 
computation, and activate two different views of the model at the beginning of the 
simulation. The statements in the StartEach block (lines 69-77) specify the 
production group and derivation direction to be used in the forthcoming simulation 
step. Finally, the statements in the EndEach block (lines 79-97) determine the 
sequence of simulation phases according to Figure 2. As the number of iterations 
needed to reach the equilibrium is not known in advance, the results are displayed 
on demand using the DisplayFrame() function (line 89), once the error drops 
below a threshold value maxerror (line 86). For similar reasons, the number of 
simulation steps needed for the branch to grow to a desired length is not known in 
advance. The simulation is thus terminated by a call to the Stop() function once 
the branch has reached the maximum prescribed length (lines 136-139). The 
derivation length statement (line 99) serves as a safeguard, specifying an 
upper limit on the number of steps. 

The Axiom statement (line 100) specifies the initial structure. First is the 
Axes() module, which is used to draw coordinate axes in the Torques view. 
Following it is the branch, which initially consists of a single internode followed by 
an apex. 

The L-system productions are divided into three groups. The PropagateLeft 
and PropagateRight groups (lines 102-127), with a single production each, 
iteratively compute the shape of the branch according to the mathematical analysis 
presented earlier in this section. The conciseness of these productions illustrates the 
expressive power of key constructs of L+C: context-sensitive productions, fast 
information transfer, modules with structured parameters, and vector operations. 



 THE L+C PLANT-MODELLING LANGUAGE 37 

1
2
3
4
5
6
7
8
9
10
11
12
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14
15
16
17
18
19
20
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22
23
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27
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29
30
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32
33
34
35
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

#include <math.h>       // C/C++ math header 
#include <lpfgall.h>    // declarations: L+C variables, 
                        // structures, functions, etc.
const int MAX_N=30;     // max number of internodes 
const float S=1.0;      // internode length 
const float MASS=0.1;         // mass of a node 
const float KAPPA=4500.0;     // spring constant 
const float maxerror = 0.01;  // error limit 
const float relax=0.5;  // relaxation coefficient 
const V3f Gravity(0,-9.81,0); // gravity vector 

/* Sample definition of functions on vectors: 
   Rotation of vector a in xy plane by angle alpha */ 

V3f VecRotate(V3f a, float alpha)
{
  V3f c; 
  c.x = a.x * cos(alpha) - a.y * sin(alpha); 
  c.y = a.x * sin(alpha) + a.y * cos(alpha); 
  c.z = 0; 
  return c; 
}

/* Analogous definitions of cross product, vector 
   length, and vector normalization should go here */ 

/* Declarations of structures, modules, and variables */ 

struct InternodeData
{
  float s;  // internode length 
  float mass;  // node mass 
  float kappa; // rotational spring constant 
  float sigma_mass; // total mass to the right
  float torque; // torque from masses to the right 
  V3f P;  // proximal node position 
  V3f H;  // internode orientation 
};

module Internode(InternodeData);  
module Apex(int); // int = number of internodes 
module Axes(); // for visualizing coordinate axes 

InternodeData iid;  // initial internode data 
int Phase;          // computation phase 
float error;        // distance from equilibrium 
int color;          // current color index 

/* Enumeration of computation phases */ 

#define PropagateLeft   1 // accumulate masses, torques 
#define PropagateRight  2 // update angles, positions 
#define Grow            3 // append internode 

/* Organization of computation */ 

Start:           // At the beginning of simulation 
{                // initialize non-zero variables: 
  iid.s = S;               // internode length, 
  iid.mass = MASS;         // node mass, 
  iid.kappa = KAPPA;       // rot. spring constant, 
  iid.H.x = 1;             // internode orientation, 
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
90
81
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84
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89
90
91
92
93
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105
106
107
108
109
110
111
112
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116
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118
119
120
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123
124

  Phase = PropagateLeft;   // initial phase, 
  color = 1;               // initial color index. 
  UseView(Branch);         // Display view "Branch" 
  UseView(Torques);        // Display view "Torques" 
}

StartEach:       // At the beginning of simulation step 
{                // set group and derivation direction: 
  UseGroup(Phase);            // set current group, 
  if (Phase == PropagateLeft) // depending on the phase 
    Backward();               // derive right-to-left 
  else                        // or 
    Forward();                // left-to-right. 
  error = 0;     // Also, clear cumulative error. 
}

EndEach:         // At the end of simulation step 
{                // determine next phase: 
  switch (Phase) {            // consider prev. phase; 
  case PropagateLeft:         // after propagating left 
    Phase = PropagateRight;   // propagate right, 
    break; 
  case PropagateRight:        // after propagating right 
    if (error > maxerror)     // if error above limit 
      Phase = PropagateLeft;  // propagate left 
    else {                    // otherwise 
      DisplayFrame();         // display branch 
      Phase = Grow; }         // and grow, 
    break; 
  case Grow:                  // after growing 
    Phase = PropagateLeft;    // propagate left; 
    ++color;                  // increment color index, 
    break; 
  } 
}

derivation length: 1000000; 
Axiom: Axes() Internode(iid) Apex(0); 

/* Accumulate masses and torques using fast information 
   transfer to the left. */ 

group PropagateLeft: 
Internode(id) >> Internode(idr) :
{
  id.sigma_mass = id.mass + idr.sigma_mass; 
  id.torque = idr.torque +
    VecCrossProd(idr.H, id.sigma_mass*Gravity).z ; 
  produce Internode(id) ; 
}

/* Update node angles and internode positions using
   fast information transfer to the right. */

group PropagateRight: 
Internode(idl) << Internode(id) : 
{
  V3f NewEquilVector = VecRotate(idl.H, 
                                 id.torque/id.kappa); 
  V3f DifferenceVector = NewEquilVector - id.H; 
  error += VecLength(DifferenceVector); 
  id.H = VecNormalize(id.H + relax*DifferenceVector); 
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135
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  id.P = idl.P + id.s*id.H; 
  produce Internode(id); 
}

/* Append new internode unless maximum number reached.
   Handle interaction with the model. */ 

group Grow: 
Internode(id) < Apex(n): 
{
  id.P += id.s*id.H; // Calculate new internode position 
  if (n<=MAX_N)      // if internode limit not exceeded 
    produce Internode(id) Apex(n+1);  // append 
  else               // otherwise 
    Stop();          // terminate simulation. 
}

MouseIns() Internode(id): // If node selected by mouse 
{
  id.mass *= 3 ;          // increase its mass 3 times. 
  produce Internode(id); 
}

/* Visualize simulation results */ 

interpretation:
group 0:          // display irrespective of phase 

vgroup Branch :   // specification of view "Branch": 
Internode(id) :   // draw an internode as a line 
{                 // and a circle 
  nproduce SetColor(color); 
  produce LineTo3f(id.P) Circle(id.mass); 
}

vgroup Torques:   // specification of view "Torques": 
Internode(id) :   // extend the plot of torques 
{
 id.P.y = -0.045*id.torque; 
 produce SetColor(color) LineTo3f(id.P); 
}

Axes() :          // draw coordinate axes 
{
 nproduce SetColor(255) SB() F(20) EB(); 
 produce SB() Right(90) F(25) EB(); 
}

The Grow group consists of two productions. The first production (lines 133-
140), describes the addition of a new internode to the branch and stops the 
simulation once the maximum branch length has been reached. The second 
production (lines 142-146) handles interaction with the model. If the user clicks on 
an internode, the symbol MouseIns() is automatically inserted before the 
corresponding Internode module in the L-system string. The production handles 
this situation by incrementing the mass of the internode threefold and removing the 
MouseIns() symbol from the string. This operation can be used to investigate the 
impact of a fruit load on the branch shape, for example. 
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The remainder of the code (lines 148-171) is devoted to the visualization of 
simulation results. Two windows are used for this purpose. The first window is 
associated with the vgroup Branch and shows the shape of the growing branch. 
The second window is associated with the vgroup Torques and shows the 
distribution of torques along consecutive nodes of the branch. These views are 
obtained using different interpretations of the same module Internode. The last 
rule, with predecessor Axes() defined in the axiom, plays an auxiliary role of 
displaying coordinate axes in the plot of torques. With a few additional lines of 
code, we could also place numerical scales and labels on the axes. 

A snapshot of simulation results is shown in Figure 3. 

Figure 3. Visualization of the model of a growing and bending branch. The simulation was 
run in a ‘stroboscopic’ mode, in which consecutive simulation stages are superimposed. Left 
view: changes of the branch shape over time. The mass of the node represented by the 
enlarged circle has been increased interactively. Right view: distribution of torques along the 
branch. Grey levels represent developmental stages (lengths) of the branch, and visually 
associate branch shapes with the corresponding torque plots 

CONCLUSIONS 

The most significant conceptual advancement in L+C, compared to previous L-
system-based languages, is fast information transfer. It significantly speeds up many 
simulations, especially those of functional-structural and biomechanical models, 
which rely on the propagation of hormones, resources or mechanical forces through 
the plant. In addition, the specification of complex models is facilitated through the 
use of modules with structured parameters, and the division of productions into 
groups. L+C also provides the modeller with the wealth of programming constructs 
available in C++. The biomechanical model of a growing pendulous branch 
presented in the section "A Biomechanical example" illustrates the use of these 
features in the context of a complete L+C program. 
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L+C is well suited to the specification of models that incorporate a single aspect 
of plant function within a developing plant structure. An open problem is the 
construction of comprehensive models that incorporate several aspects, such as 
genetics, partitioning of different resources, hormonal control, biomechanics and 
development. The challenge is to devise a methodology, supported by appropriate 
language constructs, that would make it possible to build such models in a well-
structured manner – with different model components specified, implemented and 
tested independently, and easily combined into final synthetic models. 
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