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Abstract: Most theories of phyllotaxis are based on the idea that the formation of new primordia is inhibited by the prox-
imity of older primordia. Several mechanisms that could result in such an inhibition have been proposed, including me-
chanical interactions, diffusion of a chemical inhibitor, and signaling by actively transported substances. Despite the
apparent diversity of these mechanisms, their pattern-generation properties can be captured in a unified manner by inhibi-
tion fields surrounding the existing primordia. In this paper, we introduce a class of fields that depend on both the spatial
distribution and the age of previously formed primordia. Using current techniques to create geometrically realistic, growing
apex surfaces, we show that such fields can robustly generate a wide range of spiral, multijugate, and whorled phyllotactic
patterns and their transitions. The mathematical form of the inhibition fields suggests research directions for future studies
of phyllotactic patterning mechanisms.
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Résumé : La plupart des théories phyllotaxiques sont basées sur l’idée que la formation de nouveaux primordiums est in-
hibée par la proximité de prirmordiums plus âgés. On a proposé plusieurs mécanismes qui pourraient conduire à une telle
inhibition, incluant des interactions mécaniques, la diffusion d’un inhibiteur chimique, et une signalisation par des substan-
ces activement transportées. En dépit de la diversité de ces mécanismes, les propriétés de leur patron de développement
peuvent être perçues de manière unifiée, par des champs d’inhibition autour des primordiums existants. Les auteurs propo-
sent une classe de champs qui dépend à la fois de la distribution spatiale et de l’âge des primordiums préalablement for-
més. À l’aide de techniques courantes pour créer des surfaces apicales en croissance géométriquement réalistes, les auteurs
montrent que de tels champs peuvent générer, de façon robuste, un large ensemble de patrons phyllotactiques spiralés,
multijuguées et verticillés ainsi que leurs transitions. La forme mathématique des champs d’inhibition suggère des direc-
tions de recherche pour de futures études des mécanismes sous-jacents aux patrons phyllotactiques.

Mots clés : morphogenèse, spiral, verticille, inhibition, modeling, visualisation.

[Traduit par la Rédaction]

Introduction

Few patterns in nature are more conspicuous than the in-
tersecting spirals of florets in a sunflower head or scales on
a pine cone. These arrangements, known as phyllotactic pat-
terns, have fascinated both mathematicians and biologists for
centuries. Although much of the early literature on phyllo-
taxis was limited to a descriptive characterization of phyllo-
tactic patterns, hypotheses on the underlying developmental
mechanisms began to appear as long as 140 years ago.

The original hypothesis was from Hofmeister (1868), who
proposed that a new primordium appears as far as possible
from the edges of existing primordia. Experimental evi-
dence supporting this assertion was provided by Snow and
Snow (1931) and more recently by Reinhardt et al. (2005).

The postulate that existing primordia inhibit the formation
of new primordia nearby is fundamental to most mechanis-
tic theories of phyllotaxis, as reviewed by Schwabe (1984),
Jean (1994), and Adler et al. (1997). The specific mecha-
nisms considered include contact pressure (Schwendener
1878), diffusion of an inhibitor (Schoute 1913), reaction–
diffusion (Turing 1952), surface buckling (Green 1992),
and the polar transport and depletion of an activator
(Reinhardt et al. 2003).

Despite the diversity of the proposed mechanisms, they
share the notion of an inhibition field surrounding
pre-existing primordia. This general notion raises two
types of questions: (i) What molecular-level processes
may produce such inhibition fields? and (ii) What is the
relationship between spatial and temporal properties of
the inhibition fields and the generated patterns?

In this paper, we use computer simulations to address the
second question. Our objective is to find inhibition field
functions that satisfy the following criteria: (i) the model
can generate a wide variety of phyllotactic patterns, (ii) pat-
terns can start de novo in an empty peripheral zone or from
one or two cotyledons, (iii) the model can capture transitions
in phyllotaxis, such as the often-observed transition from de-
cussate to spiral patterns (Wardlaw 1968), and (iv) the pat-
terns can be initiated and propagated in a robust manner.
This last criterion implies, in particular, (a) low sensitivity
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to changes in the model parameter values, (b) tolerance to
low cell counts in the peripheral zone, limiting the precision
in which individual primordia can be placed, and (c) toler-
ance to random factors (noise) that may affect the placement
of individual primordia.

We also require that the inhibition functions depend on
distance and time in a physically plausible manner, although
we do not hypothesize on specific molecular-level processes
that may yield these functions. We limit our discussion to
models in which the angular position of primordia does not
change over time. This is consistent with the current experi-
mentally based view of phyllotaxis (Reinhardt et al. 2003).
Simulation analysis of the contact-pressure mechanism
(Schwendener 1878; Adler 1974) that relies on such motions
is presented in Ridley (1982) and Hellwig et al. (2006). Fur-
thermore, we do not consider secondary changes in the an-
gles between plant organs that may occur as they develop
from primordia, for example, as a result of uneven growth
at different sides of the organs.

Previous simulation models have been focused on formu-
las derived from a particular proposed mechanism, the diffu-
sion of an inhibiting substance being the most common
(Hellendoorn and Lindenmayer 1974; Thornley 1975; Veen
and Lindenmayer 1977; Mitchison 1977; Young 1978;
Meinhardt 1982, 2003; Schwabe and Clewer 1984;
Chapman and Perry 1987; Yotsumoto 1993). In a steady-
state approximation of the effect of a diffusing substance
(Thornley 1975; Mitchison 1977; Young 1978; Yotsumoto
1993), the inhibiting influence of each primordium decreases
exponentially with distance. In a system containing n pri-

mordia, their combined effect h on a sampling point S is
thus calculated as the sum

½1� hðSÞ ¼
Xn
i¼1

e�bdðPi;SÞ

where d(Pi, S) is the distance between primordium Pi and a
sampling point S on the apex surface and b controls the rate
of exponential decrease in inhibition with the distance from
the primordium.

A different equation, motivated by physical experiments
in which phyllotactic patterns were generated in a magnetic
field, was proposed by Douady and Couder (1992, 1996a,
1996b, 1996c). With this formula, inhibition decreases with
the distance from the source according to the power function

½2� hðSÞ ¼
Xn
i¼1

1

dðPi; SÞb

where d(Pi, S) is defined as in eq. 1 and b controls the rate
of inhibition decrease with the distance from a primordium.

Equations 1 and 2 can generate phyllotactic patterns, yet
in our simulations, they showed limitations: we were not
able to find parameters needed to reproduce some patterns,
such as higher order accessory patterns (p > 6, see below
for terminology), while other patterns and their transitions
only occurred in very narrow ranges of parameter values.
These limitations are difficult to quantify because of the
number of parameters involved: the results of simulations
depend not only on the inhibition fields under investigation

Fig. 1. Sample phyllotactic patterns arranged by jugacy j and divergence angle �. For spiral patterns, numbers of opposed parastichies are
given in parentheses. Integers p and q characterize families of parastichies for normal and anomalous phyllotaxis, respectively, correspond-
ing to Fibonacci-like sequences defined in the text.
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but also on the assumed shape of the apex, its growth pat-
tern, the position of the peripheral zone, the initial distribu-
tion of primordia, and the manner in which all of these
characteristics and parameters change over time. Neverthe-
less, in a series of interactive experiments with simulation
models, we found that robust de novo generation of a vari-
ety of phyllotactic patterns and their transitions was much
easier when the inhibition fields depended both on the spa-
tial arrangement of existing primordia and on their age. Be-
low, we describe the specific fields used and the results of
our simulation experiments.

Materials and methods

Terminology
We describe the arrangement of organ primordia on the

growing surface of the apex (Fig. 1) using the terminol-
ogy based on (Jean 1994). The term whorl size or jugacy,
denoted j, is used to specify the number of primordia
emerging simultaneously. If primordia are issued one at a
time (j = 1), the pattern is unijugate. For unijugate pat-
terns, the divergence angle is defined as the angle be-
tween consecutive primordia. The vertex of this angle lies
on the longitudinal axis of the apex. If the divergence an-
gle is equal to 1808, the phyllotactic pattern is distichous;
otherwise, it is spiral. The latter term reflects the shape of
conspicuous lines, or parastichies, formed by neighboring
organs. Typically, there are two sets of intersecting spiral
parastichies, running in opposite directions. The number
of parastichies is a distinctive feature of the pattern. In
Fibonacci patterns, the numbers of opposite parastichies
are consecutive elements of the Fibonacci sequence <1,
2, 3, 5, 8, 13, 21, ...> . The first two elements of this
sequence are equal to 1, and each successive element is
the sum of two previous elements. In the more general
case of Fibonacci-like sequences, each successive element
is still equal to the sum of previous ones, but the first two
elements are different. A sequence <1, p, p + 1, 2p + 1,
3p + 2, 5p + 3, ...> with p > 2 is termed the (p – 2)th
accessory sequence. The first accessory sequence <1, 3, 4,
7, 11, ...> is also called the Lucas sequence. An anoma-
lous sequence is of the form <2, 2q + 1, 2q + 3, 4q + 4,
6q + 7, ...> , where q > 1. In multijugate patterns, the
numbers of parastichies are multiples of those found in the
underlying unijugate spiral patterns. For example, in a biju-
gate Fibonacci pattern (j = 2), the numbers of opposite
parastichies are consecutive elements of the sequence
2 � <1, 2, 3, 5, 8, 13, 21, ...>. Patterns with the parastichy
numbers being consecutive elements of the same sequence
are of the same type. Within a type, a pattern with a
higher number of parastichies is said to have a higher or-
der. In contrast with the multijugate patterns, in whorled
patterns, new primordia appear in the centers of the spaces
between primordia of the previous whorl. Whorled patterns
with the whorl size equal to 2 or 3 are termed decussate
and tricussate patterns, respectively. In the case of multiju-
gate and whorled patterns, the divergence angle is defined
as the smallest angle between primordia in successive
whorls.

Each phyllotactic pattern can only occur if the divergence
angle lies within some interval, which we call the allowable

interval for this pattern. For each family of patterns (e.g., Fi-
bonacci or Lucas patterns), the bounds of this interval tend
to a limit value, called the limit divergence angle, as the or-
der of the pattern increases. Equations for the bounds of in-
tervals and limit divergence angles for typical phyllotactic
patterns are presented in Jean (1994, pp. 36–38).

Geometric model of a growing apex
We model the shoot apical meristem as a surface of revo-

lution generated by rotating a planar curve around the longi-
tudinal axis of the apex (Fig. 2) (Smith et al. 2006). This
planar curve is a B-spline (Foley et al. 1990) defined inter-
actively using a graphical editor and can easily be changed
to model apices with various profiles of their central longi-
tudinal sections. A point P on the apex surface is repre-
sented by two coordinates (�, a), where � is the angle of
rotation around the axis of the apex, measured with respect
to a reference direction, and a is the distance from the apex
tip, measured along the generating curve on the apex sur-
face. In Cartesian coordinates, the position of point P is
thus given by

½3� ðx; y; zÞ ¼ ðxaðaÞcosð�Þ; yaðaÞ; xaðaÞsinð�ÞÞ

We assume that individual points move away from the
apex tip as a result of growth, although the overall shape of
the apex does not change. This motion is characterized by a
function RERG(a) (Richards and Kavanagh 1943; Erickson
and Sax 1956; Hejnowicz and Romberger 1984), which de-
fines the relative elementary rate of growth in the longitudi-
nal direction (along the generating curve) at a distance a
from the apex tip (Hejnowicz et al. 1984; Nakielski 2000;
Smith et al. 2006). The velocity with which a point P = (�,
a) moves away from the apex tip along the generating curve
is then given by the integral

½4� vðaÞ ¼
Z a

0

RERGðaÞda

Similar to the generating curve, the growth function RE-
RG(a) is defined graphically, which makes it easy to specify
various distributions of growth on the surface of the apex.
Two RERG functions used in the simulations are shown in
Fig. 3. The generated patterns did not depend critically on
the choice of the RERG function.

The shoot apical meristem consists of a central zone of
undifferentiated founder cells surrounded by a relatively nar-
row band of cells called the peripheral zone (Steeves and
Sussex 1989; Lyndon 1998). As the plant develops, the pe-
ripheral zone maintains an approximately constant distance
from the tip of the apex. Only cells within the peripheral
zone are competent to initiate organs. In our simulations,
we assumed that the growth was slower in the central zone
than in the peripheral zone, as suggested by experimental
data (Lyndon 1998). New primordia appear on the active
ring, which we define as a circle situated in the middle of
the peripheral zone (Fig. 2).

Organization of computation
Our simulation models are based on the idea that the ex-

isting primordia exert an inhibiting influence on the incipi-
ent primordia (Fig. 4). The combined influence of all
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primordia constitutes the inhibiting field. The field values
are calculated at equally spaced sampling points of the ac-
tive ring, unless calculation of the field on the entire apex
surface is required for visualization purposes (Fig. 5; also
see videos 1 and 2 in the supplementary data3). The number
of sampling points can be chosen to approximate the number
of cells in the peripheral zone of a particular species or can
be made much larger to simulate pattern formation in con-
tinuous space. The position of sampling points can be ran-
domly perturbed in both in the circumferential and the
longitudinal directions, which is useful when studying the
robustness of phyllotactic pattern formation.

Simulation of phyllotaxis proceeds in a sequence of time
steps. At each step, points on the apical surface, including
existing primordia, are moved away from the apex tip ac-

cording to their velocities [eq. 4]. The inhibition from pre-
vious primordia is then calculated for all sampling points on
the active ring. If the field value at one or more of these
points drops below the inhibition threshold, a new primor-
dium is inserted at the sampling point with the lowest inhib-
ition. If there are two or more points with the same
minimum inhibition, one of them is chosen at random. The
inhibition values on the active ring are then recalculated tak-
ing the influence of the newly created primordium into ac-
count. If one or more sampling points are still below the
inhibition threshold, an additional primordium is inserted at
a point of minimum inhibition, as described before. The
process is repeated until all sampling points on the active
ring are above the inhibition threshold. In the subsequent
simulation steps, all primordia move away from the active

Fig. 2. Schematic representation of the apex. The apex shape is defined by a B-spline generating curve (inset, shown with the control
polygon) rotated around the longitudinal axis of the apex. Sample point P specified by coordinates (�, a) moves away from the apex tip with
velocity v(a).

Fig. 3. Sample plots defining relative elementary rate of growth RERG as functions of distance a from the apex tip. The functions are
defined graphically using an interactive B-spline editor. (a) Constant growth function; (b) function with an increased growth rate at the
active ring.3

 3Supplementary data for this article are available on the journal Web site (http://canjbot.nrc.ca) or may be purchased from the Depository of
Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Building M-55, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada. DUD 5117. For more information on obtaining material refer to http://cisti-icist.nrc-cnrc.gc.ca/irm/unpub_e.shtml.
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ring as a result of the apex growth. This movement, com-
bined with a possible decrease of the inhibiting influences
of primordia with their age, reduces the inhibiting field
strength on the active ring. Over time, this inhibition drops
sufficiently at some location to allow for the formation of
another primordium, and the process repeats.

Software implementation
The simulation models have been implemented using the

modeling software vv (Smith et al. 2003), which extends
the C++ programming language with constructs for model-
ing spatial systems with a dynamically changing structure.

Results

Single inhibition function
The first simulation model discussed uses a single inhibi-

tion function. In an apex with n previously formed primor-
dia, the total inhibiting effect h(S) of previous primordia is
calculated as the sum

½5� hðSÞ ¼
Xn
i¼1

1

dðPi; SÞ
e�bti

where d(Pi, S) is defined as in eq. 1, ti is the age of primor-
dium i, and b controls the rate of exponential decrease in
inhibition over time. The essential feature of this formula is
the explicit dependence of the field on both the distance
from the primordia and their age. We found that the specific
form of the distance dependence is not critical, although the
inversely proportional function suggested by eq. 2 leads to
slightly more robust results than the exponential dependence
suggested by eq. 1. Note that, according to eq. 5, the unit
value of inhibition h is defined as that produced by a newly
formed primordium (ti = 0) at the unit distance from the pri-
mordium center (d(Pi, S) = 1).

We examined the pattern-generating capability of the
model generated with the inhibition function [eq. 5] from
two perspectives: generation of patterns de novo (including
generation of sequences of patterns, with transitions caused
by changes in parameter values) and perpetuation (mainte-
nance) of patterns initiated with a sequence of preplaced pri-
mordia.

Pattern generation de novo
In these simulations, no primordia, and thus no inhibition

field, were present at the beginning of the simulation. The

generating algorithm located the first primordium at a ran-
dom position on the active ring (simulations with a prede-
fined position of the initial primordium produced the same
results). Simulations with high initial values of the inhibition
threshold often produced apparently unorganized arrange-
ments of primordia, before settling into a pattern. To prevent
these unorganized arrangements from occurring while focus-
ing on the biologically relevant situation where patterns be-
gin with the arrangement of cotyledons, the inhibition
threshold value was phased in gradually, increasing from an
initial value of zero to the final value used in the simulation.
This increase led to transitions in the phyllotaxis type or or-
der.

For example, in the simulation shown in Fig. 6, the initial
value of the threshold for primordium differentiation was
relatively low, yielding a distichous pattern. After an in-
crease in the threshold value, a spiro-distichous pattern
emerged. Continued increases in the threshold value caused
a switch to Fibonacci spiral phyllotaxis. Similar progression
of patterns could be obtained when changing the size of the
apex while keeping the threshold value constant. This is rel-
evant from the biological perspective, since changes in the
apex size are known to correlate with changes in the pat-
terns (Kwiatkowska and Florek-Marwitz 1999).

The simulation in Fig. 7 was performed using 38 sam-
pling points on the active ring; this number was chosen to
be comparable with the number of cells around the periph-
eral zone of an Arabidopsis vegetative shoot apex (cf.
Fig. 2 in Kwiatkowska 2006). Furthermore, the increase in
the inhibition threshold was faster than in the previous ex-
ample. Under these conditions, the model produced a se-
quence of divergence angles that are within the standard
error of angles measured during the initial establishment of
a spiral pattern in Arabidopsis (Fig. 8).

Pattern propagation
Owing to various factors, such as the influence of coty-

ledons on the initial state of the simulation, limited accu-
racy of primordium placement caused by the relatively
small number of cells around the circumference of the pe-
ripheral zone, or random factors (noise), an initial pattern
of primordia positions may be different from that obtained
in self-starting simulations described above. Consequently,
perpetuation of such patterns is also of biological interest.
We investigated the perpetuation of patterns by initiating
the simulation with a number of primordia placed at the
limit divergence angle characteristic to a given pattern
type.

The model based on eq. 5 robustly perpetuated all of the
phyllotactic patterns commonly observed in nature in which
primordia appear one at a time. This includes distichous and
spiro-distichous as well as Fibonacci, Lucas, and anomalous
spiral patterns. In all simulations, the opposing parastichy
numbers were consecutive numbers of some Fibonacci-like
sequence. High-order patterns, such as (89, 144) Fibonacci
spirals, could be perpetuated if the number of sampling
points in the active ring was sufficiently large to represent a
divergence angle within the allowable interval for the given
pattern (the size of this interval decreases as the order of the
pattern increases). Occasionally, however, regular phyllotac-
tic patterns could be generated even when the number of

Fig. 4. Diagram of inhibition. (a) The older primordium has a
smaller inhibiting effect on the active ring than the newer primor-
dium. Arrows indicate minima of inhibition where a new primor-
dium can appear. (b) The upper minimum of inhibition was chosen
as the location of the third primordium.
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sampling points was smaller; in these cases, the divergence
angle would oscillate and its average value would lie within
the bounds (see the discussion of pattern robustness for an
example).

In a series of simulation experiments, we observed that
Fibonacci spiral patterns were perpetuated under the widest
range of model parameter values followed by Lucas patterns
and patterns from other Fibonacci-like sequences. This is
consistent with observations in nature, where most single
spiral patterns come from the Fibonacci, the Lucas, or
the <2, 5, 7, 12, ...> anomalous sequence (Zagórska-Marek
1985; Jean 1994). Table 1 shows the minimum values of
the inhibition threshold for which these patterns can be per-
petuated, assuming constant values of other parameters.
There is no maximum value of this threshold, as it can be

raised indefinitely, yielding a sequence of patterns of in-
creasingly high orders.

Table 1 indicates that if the inhibition threshold is greater
than or equal to 128, six different patterns can be propagated
depending on the placement of initial primordia. These pat-
terns are illustrated in Fig. 9. The possibility of propagating
such a wide variety of patterns for the same parameter val-
ues was an unexpected result of simulations and it may ex-
plain why different types of phyllotaxis may occur in the
same species: if the initial placement of primordia is af-
fected by random factors, different patterns may emerge
and be perpetuated. For example, causal observation of pine
cones collected from the trees on the University of Calgary
campus indicted that they usually had Fibonacci spiral phyl-
lotaxis, but many of them had Lucas spiral phyllotaxis, and

Fig. 5. Dynamics of interaction between the inhibiting field and phyllotactic pattern formation. The field was calculated using eq. 5. (a)
The field generated by two symmetrically placed initial primordia. (b) The field shortly before the insertion of the third primordium. Arrows
indicate minima of the inhibition field. The location indicated by the black arrow is chosen at random over the location indicated by the
grey arrow as the location of the third primordium. (c–e) The field before the insertion of the fourth, fifth, and sixth primordium. (f–h) The
steady-state dynamics of the inhibiting field. (f) The field immediately after the insertion of primordium n. (g) The field immediately before
the insertion of primordium n + 1. At the time of insertion of primordium n + 1 (longest arrow), approximate positions of incipient primor-
dia n + 2 and n + 3 are already visible as smaller local minima of the inhibition field (shorter arrows). (h) The field immediately after the
insertion of primordium n + 1. Note that Figs. 5f and 5h differ only by rotation of approximately 137.58.

Table 1. Minimum values of the inhibition threshold needed to maintain selected phyllotactic
patterns.

Phyllotaxis type Jugacy Sequence Divergence angle (8) Min. threshold

Fibonacci 1 1, 2, 3, 5, 8, 13, ... 137.51 4
Lucas 1 1, 3, 4, 7, 11, 18, ... 99.50 22
Bijugate 2 2, 4, 6, 10, 16, ... 68.76 31
Anomalous 1 2, 5, 7, 12, 19, 31, ... 151.14 37
Other 1 3, 7, 10, 17, 27, ... 106.45 65
Second accessory 1 1, 4, 5, 9, 14, 23, ... 77.86 128

Note: See data pertinent to Fig. 9 in Appendix A for the remaining parameter values.
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the two types often coexisted on the same tree. Flowers and
inflorescences with a wide range of phyllotactic patterns
were observed, for example, in Magnolia by Zagórska-
Marek (1994), in Helianthus annuus L. by Couder (1998),
and in Araceae by Jean and Barabé (2001).

The number of initials required to start a pattern varied
considerably. While patterns from the main Fibonacci se-
quence were easily generated de novo, Lucas patterns re-
quired at least three initials. Patterns derived from accessory
sequences with n > 3 could also be propagated but required
a higher number of carefully placed initial primordia. For
example, 40 initials placed at 64.088 were required to main-
tain (11, 17) phyllotaxis derived from the third accessory se-
quence (n = 5). An anomalous (7, 12) pattern could be

started with as few as six initials placed at the angle
151.148. These high numbers of initial primordia indicate
that the inhibiting fields required to propagate the corre-
sponding patterns may emerge in nature (for example, due
to a confluence of random factors), but the probability is
small. This is consistent with Jean’s (1994) summary of fre-
quency data, indicating that phyllotactic patterns derived
from various accessory and anomalous sequences occur in
nature, but are rare.

Once a low-order spiral pattern is established, an increase
in the inhibition threshold can result in the pattern switching
to higher orders of phyllotaxis. This occurs for Fibonacci
spiral patterns as well as patterns from accessory and anom-
alous sequence, provided that the increase is not sudden and

Fig. 6. Effects of changes in inhibition threshold. At low inhibition thresholds, a self-starting distichous phyllotaxis is produced. Increases
in the threshold values cause a switch to spiro-distichous and then to spiral Fibonacci patterns.

Fig. 7. Self-starting spiral Fibonacci pattern created by using an active ring with 38 sampling points. (a) The initial primordium is arbitra-
rily placed by the model. (b) The second primordium appears in the area of least inhibition at a divergence angle of 1808 from the first. At
this point, there are two minima of inhibition on the active ring, both of which are closer to the older of the two existing primordia (arrows).
(c) The third primordium appears at one of these minima with a divergence angle of 1148, the choice determining the direction of the spiral.
(d–f) Successive divergence angles of 1618, 1338, and 1428 ensue. The model will then continue at 1428 generating (3, 5) spiral phyllotaxis.
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the number of sampling points on the active ring is large
enough to support the higher order pattern. Sharp increases
in inhibition threshold in accessory and anomalous patterns
produce less predictable results. In some cases, the pattern
would become disorganized. In others, a switch to a Fibonacci
spiral phyllotaxis was observed. Stable, although not very reg-
ular, bijugate patterns were often generated as well. Parastichy
numbers produced by these patterns were always a multiple
(�2) of consecutive elements of the Fibonacci sequence.

In bijugate patterns, pairs of primordia are expected to ap-
pear simultaneously, yet in the above simulations, this is not
the case. The first primordium of each pair has an immedi-

ate inhibiting effect on the entire ring, which delays the ap-
pearance of the second primordium. As a result of this
delay, the bijugate patterns are slightly irregular (Fig. 10).

Two inhibition functions
In general, the single-inhibitor model characterized by

eq. 5 is not suitable for generating patterns in which two or
more primordia appear simultaneously. Figure 11 illustrates
this limitation by using a decussate pattern as an example.
Suppose the first two primordia have been placed 1808
apart, and the inhibition levels at the entire active ring are
too high for additional primordia to appear. Over time, the

Fig. 8. Comparison of simulation model with measured divergence angles of Arabidopsis (Smith et al. 2006) for the first 10 primordia. The
active ring has 38 sampling points, which limits the accuracy of the placement of primordia to 9.58 increments.

Fig. 9. Different patterns propagated using the same parameter values. These simulations differ only by the divergence angle � between the
20 initial primordia. (a) � = 77.968 yields a second accessory (9, 14) spiral pattern; (b) � = 99.508 yields a Lucas (7, 11) spiral pattern; (c) �
= 106.48 yields a (7, 10) spiral pattern; (d) � = 137.518 yields a Fibonacci (8, 13) spiral pattern; (e) � = 151.148 yields an anomalous (7, 12)
spiral pattern; (f) � = 68.768 and jugacy j = 2 yields a bijugate (6, 10) spiral pattern.
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inhibiting effect of these initial primordia decreases as a re-
sult of apex growth, and two identical inhibition minima ap-
pear in a perpendicular orientation on the active ring
(Fig. 11a). When the inhibition level at these minima falls
below the threshold, one minimum is selected by the place-
ment algorithm as the location of the third primordium
(Fig. 11b). The immediate inhibiting influence of this pri-
mordium pushes the other minimum above the threshold, de-
laying the appearance of the fourth primordium until the
apex grows further (Fig. 11c). As a result, the third primor-
dium has a weaker inhibiting effect on the active ring than
the more recently formed fourth primordium, and the fifth
primordium is positioned asymmetrically (Fig. 11d), causing
a switch to spiral phyllotaxis.

We implemented a variant of the single inhibition model
in which jugacy j is specified as a model parameter. Inhibi-
tion is calculated with eq. 5, considering possible positions
of j evenly spaced locations on the active ring. When the
sum of inhibitions at these locations drops below the inhibi-
tion threshold, j primordia are placed simultaneously. With
this strategy, the model is able to robustly produce decus-
sate, whorled, bijugate, and multijugate patterns. However,
the assumed placement algorithm is difficult to justify in
mechanistic terms.

The inability of the model summarized by eq. 5 to create
patterns in which two or more primordia appear at once is a
consequence of two factors: (i) the spatially unlimited inhib-
iting influence of each primordium and (ii) the immediate ef-
fect of each primordium on the entire active ring. In reality,
it is unlikely that the full inhibiting effect of a primordium
will be felt the instant a primordium appears. This is espe-
cially true for sampling points located some distance away
from the new primordium. To delay the inhibiting effect, we
introduced two modifications to the model. First, the inhibit-
ing influence of a primordium on the active ring is phased in
gradually using the following modification of eq. 5:

½6� hlðSÞ ¼ ð1:0 � e�bdti Þ
Xn
i¼1

1

dðPi; SÞ
e�blti

As in eq. 5, bl is the coefficient for exponential decay of in-

hibition, d(Pi, S) is the distance between sampling point S
and primordium Pi, and ti is the age of primordium Pi. The
additional parameter bd controls the rate with which the in-
hibiting influence of the primordium is phased in. Accord-
ing to eq. 6, a newly placed primordium does not
immediately increase the inhibition levels at other locations,
making it possible for primordia at other minima to appear
concurrently. This sets the stage for the formation of
whorled and multijugate patterns.

The problem with the above mechanism is that the inhib-
ition threshold can be reached at a series of neighboring lo-
cations in quick succession, leading to the formation of
closely spaced primordia. To prevent this from happening,
we introduce a second inhibiting function:

½7� hsðSÞ ¼
Xn
i¼1

1

dðPi; SÞ
e�bsti

where parameters d(Pi, S) and ti are as above and bs con-
trols the rate of exponential decay of the second inhibition
over time. A new primordium is formed when both inhibit-
ing influences are below predefined threshold values. Equa-
tion 6 is used to express long-range inhibition that
determines the phyllotactic patterning of primordia, and
eq. 7 is used to express short-range inhibition that prevents
creation of multiple primordia at adjacent locations on the
active ring. The short-range inhibition decreases over time
faster than the long-range inhibition (bs > bl) and thus does
not interfere with the phyllotactic positioning of primordia,
which remains governed by the long-range inhibition.

Pattern generation de novo
The model with two inhibition functions (two-inhibitor

model for short) can create de novo the distichous, spiro-
distichous, and spiral Fibonacci patterns produced by the
single inhibitor model as well as decussate, spiro-decussate,
whorled, and bijugate patterns (Fig. 12). Experimenting
with model parameters, we found that spiral Fibonacci pat-
terns are generated most often, as in the case of the single-
inhibitor model. In contrast with that model, however, the
second most easily produced spiral patterns are bijugate pat-
terns, with parastichy numbers being twofold multiples of
the main Fibonacci sequence, 2 � <1, 2, 3, 5, 8, 13, ...>.
The next most frequently observed spiral patterns corre-
spond to the Lucas sequence. These frequencies are consis-
tent with the experimental data (Zagórska-Marek 1985; Jean
1994, pp. 148–151).

Many plants undergo changes in phyllotaxis during devel-
opment. Transitions often occur quickly, so that a new pat-
tern is established within the span of a few plastochrons.
These transitions can be simulated using the two-inhibitor
model by manipulating the long-range and short-range in-
hibition thresholds during simulation. For example, Fig. 13
illustrates the transition from decussate to spiral phyllotaxis,
frequently observed in nature (Wardlaw 1968; Carpenter et
al. 1995; Kwiatkowska 1995, 1997), and the transition from
decussate to bijugate phyllotaxis. The model can also simu-
late other transitions, including distichous to Fibonacci spi-
ral, whorled to Fibonacci or Lucas spiral, whorled to
multijugate, and multijugate to Fibonacci spiral.

Fig. 10. Examples of bijugate 2 � (5, 8) patterns. (a) The pattern
generated using the single-inhibitor model. Although parastichies
are clearly visible, the positioning of individual primordia is
slightly irregular due to the delay in the production of the second
primordium in each pair. (b) The regular pattern generated by the
variant of the single-inhibitor model with explicitly imposed ju-
gacy. The pattern generated by the two-inhibitor model is similar.
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Pattern propagation
The model with two inhibition functions can propagate

the same patterns as the single inhibition model as well as
decussate, whorled, and multijugate patterns (Fig. 12). As in
the case of the single-inhibitor model, different patterns can
be propagated by the model using the same parameter val-
ues. The range of patterns that can be propagated that way
is surprisingly large and includes, for example, the entire in-
ventory of single and multijugate spiral patterns reported by
Zagórska-Marek (1985).

Robustness of the models
Although exceptions exist (Zagórska-Marek 1994), phyl-

lotactic pattern formation in nature is often very robust,
which means that patterns are formed or maintained under a
wide range of conditions. Plausible models of phyllotaxis

should therefore generate stable patterns or sequences of
patterns (including transitions) over a wide range of parame-
ter values.

A critical parameter of the models discussed in this paper
is the inhibition threshold at which new primordia are
formed. Both the single-inhibitor and the two-inhibitor mod-
els produce identifiable phyllotactic patterns over a wide
range of long-range inhibition thresholds. Variation of this
parameter during simulation induces transitions in phyllo-
taxis type or order (Figs. 6 and 13).

The two-inhibitor model also includes a threshold for
short-range inhibition. Values of this parameter are more
critical then those of the long-range inhibition threshold.
For example, in the case of decussate patterns, the short-
range threshold values can only be changed by approxi-
mately ±20% without affecting the pattern. This sensitivity

Fig. 11. Decussate patterns are not sustained because of the immediate inhibiting effect of new primordia. Arrows indicate minima of
inhibition where the third primordium can appear. (a–d) Consecutive stages of pattern formation.

Fig. 12. Examples of phyllotactic patterns produced by the two-inhibitor model model: (a) distichous, (b) decussate, (c) spiro-decussate, (d)
whorled, (e) Fibonacci spiral, (f) Lucas spiral, and (g) bijugate. The patterns in Figs. 12a, 12b, 12c, 12e, and 12g have been generated de
novo; the patterns in Figs. 12d and 12f have been propagated by the model from a predefined initial pattern.
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can be understood in the context of the role of the short-
range inhibition in multijugate pattern formation: the thresh-
old values must be low enough to effect suppression of
adjacent primordia yet high enough to allow for proper posi-
tioning of other members of the whorl. The parameters bd
and bs, which control delay of long-range inhibition and de-
crease of short-range inhibition over time, can be manipu-
lated within ranges exceeding ±20% of the mean value.

The parameter b (bl in the two-inhibitor model), which
controls the exponential decay of inhibition with the age of
primordia, also has a significant effect on pattern formation.
Nonzero values of this parameter make it easier to initiate
patterns de novo, allow for faster transitions between pat-
terns, and make it possible to maintain patterns for wider
ranges of apex shapes and other parameter values. On the
other hand, the model is capable of generating regular phyl-
lotactic patterns even as b or bl approaches zero. In this
case, the inhibition exercised by a primordium [eq. 5 or 6]
no longer depends on its age but decreases only with dis-
tance as in the simulations performed by Douady and
Couder (1992).

Recognizable phyllotaxis (determined by examination of
divergence angles) is generated for various apex shapes,
such as disk, cylinder, cone, hemisphere, or arbitrary surfa-
ces of revolution. Both the single-inhibitor and the two-
inhibitor models are also robust with respect to changes in
the RERG function. Nevertheless, the shape of the apex, its
growth rate, the size and shape of primordia, and the num-
ber of sampling points on the active ring can have drastic
effects on which parastichy pairs, if any, are clearly visible
(Schwabe 1984, p. 410).

Both models are robust with respect to noise. For exam-
ple, decussate phyllotaxis, which has a strong tendency to
break symmetry and switch to spiral phyllotaxis, is neverthe-
less stable in the presence of considerable noise (Fig. 14).

The last parameter considered is the number of sampling
points on the active ring. With n sampling points, the diver-
gence angles can be represented with the resolution of 3608/n,
which limits the precision with which primordia can be placed
on the active ring. Low-order phyllotactic patterns can easily

be generated even for small numbers of sampling points, in
the range of 10–20. Higher order patterns, or patterns from
less common accessory sequences, require larger numbers
of sampling points. Nevertheless, the model is robust
enough to generate some high-order patterns even for rela-
tively small numbers of sampling points. For example, an
active ring with 19 sampling points makes it possible to
represent divergence angles with the resolution of 3608/
19 & 18.98. The closest two angles to the limit Fibonacci
angle of 137.58 are 7 � (3608/19) & 132.68 and 8 � (3608/
19) & 151.68. Both of these angles are outside the allow-
able interval [1358, 1448] of divergence angles for (5, 8)
spiral phyllotaxis. Nonetheless, the model can create a
rough (5, 8) spiral pattern by alternating between 132.68
and 151.68 as follows: 151.68–132.68–132.68–151.68–
132.68–132.68–151.68.... The average divergence angle
over many primordia is 138.98, which lies within the inter-
val [1358, 1448].

Discussion
Phyllotaxis is an example of an emergent phenomenon in

which properties of the whole pattern result from interac-
tions between individual elements of the pattern, yet the
causal link between these interactions and the pattern is not
obvious. For this paper, we investigated the inhibiting effect
that the existing primordia may have on the placement of
new primordia when generating the observed phyllotactic
patterns and their transitions. We found that (i) a wide class
of patterns can be robustly generated de novo or indefinitely
propagated if the inhibiting effect of an existing primordium
depends both on the age of a primordium and on the dis-
tance between the primordium and a point on the apex,
(ii) different phyllotactic patterns can be propagated by
models using the same simulation parameters, (iii) multiju-
gate and whorled patterns, in which two or more primordia
appear at once, can be robustly generated if the inhibiting
effect of each primordium is not immediate, but gradually
phased in, and (iv) an additional short-range inhibiting
mechanism is then needed to prevent formation of series of
primordia in neighboring locations.

We summarized the cumulative impact of existing pri-
mordia on the apex in terms of a field that assigns a value
of the inhibition to each point on the apex. The inhibition
field represents a useful level of abstraction, which makes it

Fig. 13. Examples of transitions in phyllotactic patterns generated
by the two-inhibitor model: (a) decussate to spiral and (b) decussate
to bijugate.

Fig. 14. Side and top views of a decussate pattern simulated in the
presence of noise. Sampling points on the active ring were per-
turbed at random in both the longitudinal and circumferential di-
rections. Increasing the amplitude of the noise would cause a
switch to spiral phyllotaxis.
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possible to analyze and visualize the dynamics of interac-
tions between primordia without knowing the specific mech-
anism by which these interactions are implemented in
nature. Nonetheless, general properties of the inhibition field
point to the properties that a molecular-level mechanism
may have to produce these patterns. For example, simula-
tions suggest that an optimal contribution of a primordium
to the field decreases with the inverse of distance. Such a
decrease does not need to be of a diffusion-decay type
postulated in several earlier models (Thornley 1975;
Mitchison 1977; Young 1978; Yotsumoto 1993). This is
consistent with the current view that active transport of
auxin plays an important role in the formation of phyllotac-
tic patterns (Reinhardt et al. 2003; Smith et al. 2006;
Jönsson et al. 2006).

We also observed that the simulation models initiate pat-
terns more easily, are capable of effecting more rapid transi-
tions, and are generally more robust when the inhibiting
field depends on the age of primordia. This is consistent
with the idea that the differentiation and growth of primor-
dia may have a direct impact on the phyllotactic patterns.
Furthermore, short-range inhibition is required to form mul-
tijugate and whorled patterns in the model. Such a mecha-
nism may be related to the establishment of organ
boundaries and organ separation in nature. These properties
of our model are consistent with the molecular-level model
of phyllotaxis proposed by Smith et al. (2006), which re-
quired the introduction of primordium differentiation and or-
gan boundaries to simulate the observed phyllotactic
patterns.
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and Dr. Beata Zagórska-Marek (University of Wroclaw, Po-
land) and Brendan Lane (University of Calgary) for critical
reading of the manuscript. This work was supported by the
Natural Sciences and Engineering Research Council of Can-
ada (NSERC) and Informatics Circle of Research Excellence
(iCORE) postgraduate scholarships (to R.S.S.), Swiss Na-
tional Science Foundation grant 3100A0-105807 (to C.K.),
and Human Frontier Science Program research grant
RGP0013_2001 and NSERC discovery grant RGP 130084
(to P.P.).

References
Adler, I. 1974. A model of contact pressure in phyllotaxis. J.

Theor. Biol. 45: 1–79. doi:10.1016/0022-5193(74)90043-5.
PMID:4836880.
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Table A1. Parameter values for simulations used in the figures and videos.

Parameter Symbol Eq.
Fig. 5;
Video 15117 Fig. 6 Figs. 7 and 8 Fig. 9; Table 1 Fig. 10 Fig. 12a

Time step 0.005 0.12 0.1 0.01 0.01 0.1
Active ring sampling

points
5, 6, 7 480 100 38 500 120 60

Active ring position 0.08 0.06 0.08 0.06 0.02 0.04
Horizontal noise 0 0 0 0 0 0
Vertical noise 0 0 0 0 0 0
Inhibition function

model
Single Single Single Single Single Double

Initial whorls* 2 1 1 20, 10 5 1
Initial primordia per

whorl*
1 1 1 1, 2 2 1

Initial angle (8)* 77.96, 99.50,
106.4, 137.51,
151.14, 68.76

68.76

Long threshold{ 1.5, 52.5 0.32, 1.6,
0.48

5.4 180 120 0.42

Long range inhibition
exponent of time

bl 5, 6 1 1 1 1.1 1.1 1.1

Short threshold 8.3
Short range inhibition

exponent of time
bs 7 4

Long range delay
exponent of time

bd 6 1.6

Note: The videos are available as supplementary data.
*Multiple values given for the simulations in Fig. 9 and Table 1. See Fig. 9 legend for details.
{Multiple values given for simulations that vary the long-range inhibition threshold during simulation to effect a transition in phyllotaxis type or order.



Fig. 12b Fig. 12c Fig. 12d Fig. 12e Fig. 12f Fig. 12g Fig. 13a Fig. 13b Fig. 14
Video
25117

0.1 0.1 0.1 0.05 0.1 0.1 0.2 0.2 0.3 0.02
60 60 60 60 80 80 60 60 60 480

0.04 0.04 0.04 0.01 0.01 0.02 0.04 0.04 0.04 0.08
0 0 0 0 0 0 0 0 0.05 0
0 0 0 0 0 0 0 0 0.005 0
Double Double Double Double Double Double Double Double Double Double

1 1 3 2 3 3 1 1 1 1
2 2 1 1 1 2 2 2 2 2

150 99.5 68.75

4.2 5.3 4.2 170 170 40 4, 20 4, 20 1.25 2.5, 10.5

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1

25 13 33 15 30 60 20, 2.4 20 12.5 14
4 4 4 4 4 4 4 4 4 4

1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
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