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Figure 1: A photograph and a model of an Orlaya grandiflora inflorescence. These images illustrate some of the key elements of our paper:
the organization of florets into a planar canopy, hierarchical phyllotaxis, the dependency of floret type and petal size on their position in the
inflorescence, and the deformation of some petals due to collisions. Photograph by Holger Casselmann licensed under CC BY SA 3.0.

Abstract

Showy inflorescences – clusters of flowers – are a common fea-
ture of many plants, greatly contributing to their beauty. The large
numbers of individual flowers (florets), arranged in space in a sys-
tematic manner, make inflorescences a natural target for procedural
modeling. We present a suite of biologically motivated algorithms
for modeling and animating the development of inflorescences with
closely packed florets. These inflorescences share the following
characteristics: (i) in their ensemble, the florets form a relatively
smooth, often approximately planar surface; (ii) there are numer-
ous collisions between petals of the same or adjacent florets; and
(iii) the developmental stage and type of a floret may depend on
its position within the inflorescence, with drastic or gradual differ-
ences. To model flat-topped branched inflorescences (corymbs and
umbels), we propose a florets-first algorithm, in which the branch-
ing structure self-organizes to support florets in predetermined po-
sitions. This is an alternative to previous branching-first models, in
which floret positions were determined by branch arrangement. To
obtain realistic visualizations, we complement the algorithms that
generate the inflorescence structure with an interactive method for
modeling floret corollas (petal sets). The method supports corollas
with both separate and fused petals. We illustrate our techniques
with models from several plant families.
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1 Introduction

In many plant species, flowers are grouped into multi-flower as-
semblies called inflorescences. Such floral arrangements have se-
lective value: by being more visible, inflorescences can attract
pollinators from a larger distance than individual flowers; further-
more, by supporting walking between adjacent florets, inflores-
cences may facilitate their pollination by insects. From an aesthetic
perspective, showy inflorescences are a visually appealing attribute
of many plants occurring in natural and artificial settings. The
common occurrence and beauty of inflorescences has made them
an attractive modeling subject in computer graphics [Prusinkiewicz
et al. 1988; Prusinkiewicz and Lindenmayer 1990; Fowler et al.
1992; Prusinkiewicz et al. 1993; Lintermann and Deussen 1999;
Prusinkiewicz et al. 2001; Ijiri et al. 2005; Ijiri et al. 2006]. In this
paper we extend the class of inflorescences that can be modeled and
animated for image synthesis purposes.

1.1 Biological context

An insight into the form of plants is offered by the first available
space theory of plant organ initiation, formulated in the XIX cen-
tury by Wilhelm Hofmeister (see [Kirchoff 2003] for a recent de-
scription). According to this theory, incipient organs, such as leaf or
floret primordia, are positioned on the growing surface of the (shoot
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or reproductive) meristem when and where there is enough room
for them. Depending on the parameters of this process, different
regular arrangements (phyllotactic patterns) of primordia emerge
[Douady and Couder 1996; Smith et al. 2006]. In some cases, re-
productive meristems develop into next-order meristems rather than
florets, leading to hierarchically or recursively compounded inflo-
rescences [Classen-Bockhoff and Bull-Hereñu 2013].

The type, form and developmental stage of florets may depend on
their position within an inflorescence (floral dimorphism [Weber-
ling 1992]). In general, florets close to the inflorescence margin
develop enlarged petals, making the inflorescence more visible to
pollinators, while florets in more central positions have compara-
tively reduced petals allowing for denser packing and thus a larger
number of reproductive organs within the inflorescence [Classen-
Bockhoff 1992] (English version [Classen-Bockhoff 1994]). Strik-
ing examples of floral dimorphism abound in the Aster family. For
example, in the sunflower, petals of the showy florets on the margin
(ray florets) are orders of magnitude larger than those of florets in
the interior of the inflorescence (disk florets). The differences be-
tween florets may also be gradual, as illustrated by the photograph
and model of Orlaya grandiflora in Figure 1, and may occur at dif-
ferent organization levels in compound inflorescences. The devel-
opmental mechanisms defining the spatial distribution of florets of
different type and size are not yet well understood, but observations
of compound heads [Classen-Bockhoff 1992] and wounding exper-
iments on sunflower heads [Hernandez and Palmer 1988] suggest
that the inhibition of showy florets by the proximity of other florets
is the determining factor at least in some cases. In the context of a
regular arrangement of florets into spiral phyllotactic patterns, such
inhibition leads to the prevalence of specific numbers of enlarged
florets on the inflorescence margin (numerical canalization [Battjes
et al. 1993]). For example, in the most common spiral phyllotac-
tic pattern with the golden divergence angle (approx. 137.5◦), the
prevalent numbers of ray florets belong to the Fibonacci sequence.
The availability of space when new primordia are initiated does not
guarantee that the florets will not collide during subsequent devel-
opment. In dense inflorescences such collisions are frequent.

Florets in an inflorescence are supported either by a fleshy volumi-
nous body (the receptacle) or a free-standing branching structure
[Weberling 1992]. The former case is exemplified by flower heads
(capitula), and is relatively simple from a modeling perspective,
as the receptacle can be approximated by a surface of revolution
(e.g. [Fowler et al. 1992]). In the latter case, the arrangement of flo-
rets in space has traditionally been viewed as a consequence of the
underlying branching pattern. This branching-first perspective is
useful in modeling practice (e.g. [Frijters 1978; Prusinkiewicz and
Lindenmayer 1990; Ijiri et al. 2005]; Figure 8), but does not pro-
vide an adequate model for inflorescences in which the ensemble
of florets forms a smooth canopy. A quintessential example is that
of corymbs, an inflorescence type in which florets are arranged into
an almost planar surface (Figure 1). How plants create branching
structures satisfying this planarity constraint is an open question,
as the problem is nontrivial from a trigonometric perspective. We
propose a solution inspired by the current biological understand-
ing of inflorescence development [Reinhardt et al. 2003; O’Connor
et al. 2014]. According to it, a growing meristem (Figure 2a) sup-
ports emergent primordia (b), which initiate vascular strands (c).
These strands gradually extend toward the base of the meristem
and merge, forming a branching structure (d). The vascular strand
formation is driven by the flow of the plant hormone auxin (auxin
canalization1 [Sachs 1991]) and is analogous to the formation of a
branching river network, where tributaries start at different sources

1Confusingly, the terms numerical canalization and auxin canalization
function concurrently, although they are not closely related.
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Figure 2: Postulated mechanism of branching inflorescence devel-
opment. Dots represent florets, yellow lines indicate the vascula-
ture. Vascular strands develop within a growing meristem (a-d)
and define the axes of the emerging branching structure (e,f).

and gradually join each other. In heads, the vascular structure re-
mains embedded in the surrounding tissue, which becomes the re-
ceptacle as the inflorescence develops to maturity. In branched in-
florescences, the vascular strands and the immediately adjacent tis-
sues elongate while tissues further removed from the vasculature do
not grow or grow more slowly. A free-standing branching structure
thus emerges (e,f). We note that, if the growth of this structure is
(approximately) isometric or allometric – in general, if the length
of mature segments is proportional to their length in the meristem,
and the branching angles do not change or change in concert – the
arrangement of florets in the mature inflorescence will reflect their
original distribution on the surface of the meristem. For instance,
in corymbs, the floret distribution formed on a flat meristem surface
will result in a planar canopy. In summary, we assume that the dis-
tribution of florets in a predetermined phyllotactic pattern drives the
formation of the supporting branching structure, and not vice versa.
This florets-first perspective provides a possible explanation for the
development of smooth floral canopies. It is also justified from an
ecological/evolutionary point of view, as it reflects the importance
of flower distribution, rather than the branching structure, to the
pollinators. The branching structure is merely a scaffold support-
ing the flowers in their target positions [Harder and Prusinkiewicz
2013].

Following this description, we propose a method for modeling and
animating the development of inflorescences that integrates the fol-
lowing elements: (i) the modeling of individual florets; (ii) the gen-
eration of phyllotactic patterns that defines the distribution of flo-
rets within floral canopy; (iii) determination of the type, size and
developmental stage of each floret according to its position in the
inflorescence, (iv) detection and resolution of collisions between
petals, and (v) generation of the branching inflorescence structure
supporting the florets in space. These elements can be used jointly
or selectively, depending on the inflorescence type.

1.2 Overview of the method

The elements of our method can be grouped into three processes:
the modeling of individual florets, the generation of their spatial dis-
tribution and attributes such as the type and developmental stage,
and — when present — the generation of the branching structure
that supports the florets. Components of the system and the infor-
mation flow between them are shown in Figure 3.

Florets are modeled as B-spline surfaces (Section 2). The poses
representing key developmental stages for each floret type are spec-
ified interactively. This is effected using a specialized graphical
editor (Figure 3a), which supports radial and bilateral symmetry
as well as partially fused petals found in many florets. The key
poses are interpolated to generate sequences representing the de-



Figure 3: Key components of our modeling method and the associ-
ated information flow.

velopment and opening of florets (Figure 3b). The models are then
carefully polygonized so that the polygon count in each floret is
small and degenerate triangles are avoided (Figure 3c). Low poly-
gon count in individual florets is important to the efficient detection
and resolution of collisions in inflorescences with multiple florets.
The resulting floret models are instantiated when placed within an
inflorescence and may be deformed by collisions between petals.

Collisions may arise in each step of simulated inflorescence devel-
opment. We resolve them by applying the kinematic description
of floret development and opening (the interpolation of key poses)
to drive a physically-based model of petal expansion and collision
(Figure 3f and Section 3). A related approach, with a kinematic
growth model driving a physically-based model, was proposed to
animate flower opening by Ijiri et al. [2008]. Given that a floral
canopy may include many flowers, we use position-based dynamics
[Müller et al. 2007] as a faster alternative to the energy minimiza-
tion method used by Ijiri et al.

To generate the layout of florets in dense canopies, we extend the
algorithm for generating phyllotactic patterns on arbitrary surfaces
of revolution proposed by Ridley [1986] and introduced to com-
puter graphics by Prusinkiewicz et al. [2001] (Figure 3d and Sec-
tion 4). Our extensions capture the dynamics of pattern develop-
ment and provide information on the developmental stage of each
floret within the inflorescence; furthermore, they enable simulation
of hierarchically and recursively compound phyllotactic patterns.
If the inflorescence is dimorphic, the neighborhood of each floret is
inspected and the floret type is determined on this basis (Figure 3e
and Section 5).

If florets are supported by a receptacle, distributing florets of the
appropriate type according to the phyllotactic pattern and resolving
collisions terminates the modeling process. The receptacle, usually
obscured by the florets, does not need to be represented explicitly.
In contrast, in branched inflorescences, the branching structure sup-
porting the floral canopy must be visualized. We generate it using
the spatial layout and age of the florets as input (Figure 3g and Sec-
tion 6). Our algorithm is inspired by that introduced by Rodkaew
et al. [2003] to model leaf vein patterns and trees – both algorithms
create branching structures from the outside in – extending it in sev-
eral directions as needed to model inflorescences. The floral canopy
and the supporting branching structure are rendered together to pro-
duce the final image (Figure 3h).

2 Interactive modeling of flowers

Previous work. There is a long history of modeling flower petals
as interactively defined bicubic surfaces (e.g. [Prusinkiewicz and
Lindenmayer 1990; Fowler et al. 1992]) or generalized cylinders
[Lintermann and Deussen 1999; Prusinkiewicz et al. 2001], and as-
sembling them into flowers using procedural models of phyllotaxis.
Ijiri et al. [2005] advanced the concept of interactive flower model-
ing by introducing a specialized editor to distribute flower parts in
space. They also pioneered sketch-based modeling of plant organs
such as leaves and petals [Ijiri et al. 2005; Ijiri et al. 2006]; further
work in this direction was pursued by Anastacio et al. [2006].

At any point in time, an inflorescence may incorporate a progres-
sion of flowers at different developmental stages, a phenomenon
termed the phase effect by d’Arcy Thompson [1942] (see also
[Prusinkiewicz et al. 1988; Prusinkiewicz and Lindenmayer 1990]).
Simulation of flower growth and opening is thus needed not only to
animate flower or inflorescence development, but also to construct
static models of inflorescences with the phase effect. To simulate
the opening of flowers modeled as bicubic surfaces, Prusinkiewicz
et al. [1993] constructed a branching structure that supported the
set of control points defining the surface and gradually modified
this structure over time. This method amounted to a forward sim-
ulation of growth, making the final form of fully open flowers dif-
ficult to control. With petals represented as generalized cylinders,
Prusinkiewicz et al. [2001] modeled flower growth by interpolat-
ing intrinsically-defined carrier curves that represented petal axes
(midribs) in closed and open flowers. Our method is related to this
concept. A different, physically-based approach was proposed by
Ijiri et al. [2008] and improved by Li et al. [2015]. They repre-
sented petals as elastic surfaces subject to non-uniform expansion.
This expansion affected both the size and shape of the petals. Re-
lated methods have also been used in biologically-motivated sim-
ulations [Liang and Mahadevan 2011; Green et al. 2010], in the
latter case addressing the particularly complex shape of snapdragon
flowers. Physically-based techniques are appealing because of their
sound biological basis and possible emergence of secondary fea-
tures, such as wrinkles on the margin of the petals, which are other-
wise difficult to model [Li et al. 2015]. On the negative side, both
the dynamics of flower opening and the final shape are difficult to
specify.

The complexity of inflorescences results from the arrangement of
florets, rather than the individual floret forms. Consequently, we
devised a specialized interactive editor to quickly model simple
flowers in their key poses (stages of development) and a blending
technique to interpolate between these poses.

Floret editor. We focus on the modeling of corolla (the set of
petals), which is the most visible part of florets. A snapshot of
the editor is shown in Figure 4. Petals are represented as clamped
B-spline surfaces. To facilitate the modeling process, bilateral sym-
metry can be imposed on the individual petals, and petals can be
multiplied by assuming n-fold radial symmetry. One new element
is the modeling of partially fused petals, which are found in many
florets. We implemented it for florets with dihedral (i.e., both rota-
tional and bilateral) symmetry, by constraining a user-defined num-
ber of control points defining the petal boundary (starting at the
flower base) to the symmetry plane between the adjacent petals.

Simulation of floret development. We assume that the key flo-
ret poses are represented by B-spline surfaces defined by control
meshes with the same topology (numbes of control points in the u
and v directions). Such surfaces can easily be blended by linearly
interpolating positions of the corresponding control points, but lin-
ear interpolation is not appropriate for simulating the opening of
flowers because petals may undergo large rotations. Addressing



Figure 4: Snapshot of the floret editor. The user defines the shape
of the petal by moving control points in the standard front, top and
side view. The bottom right view shows the corolla with the petals
replicated by rotational symmetry and partially fused.

Figure 5: Example of control mesh interpolation. In each pose,
control polylines in the v direction are represented by boxes, the
colored faces of which are aligned with a rotation-minimizing mov-
ing frame. White lines indicate control polylines in the u direction,
spanning the vertices of the v polylines.

this problem, we interpolate floret poses by extending the method
of blending intrinsically defined polygons [Sederberg et al. 1993] to
3D. To this end, we calculate a rotation-minimizing frame [Bloo-
menthal 1990] for each (open) control polyline running in the v
direction, from the petal base to its tip (Figure 5). At each vertex
between consecutive line segments, this frame is rotated around the
axis perpendicular to both segments so that the next segment lines
up with the previous one (for collinear segments this rotation is 0).
We then blend corresponding control polygons in the initial and fi-

Figure 7: Example of petal polygonization. (a) Default polygo-
nization using a family of isoparametric lines u = const and
v = const, equidistant in the parameter space. (b) A sample re-
sult of repolygonization. (c,d) Graphically-defined functions used
to create the repolygonization in panel b. Note that the axis repre-
senting the independent variable v runs vertically.

nal poses by linearly interpolating the lengths of the corresponding
segments, and spherically interpolating the rotations between them.
This technique makes it possible to simulate the development and
opening of flowers using a minimal number of key poses, usually
only two or three (Figure 6).

Polygonization. An inflorescence may comprise many florets. To
make the subsequent collision detection and resolution efficient it is
thus critical to polygonize them well, into a small number of non-
degenerate triangles. The simplest polygonization of tensor product
surfaces, producing an array of quadrangles by stepping through
the u and v parameters, is inadequate for this purpose, because the
shape of the resulting polygons varies greatly between narrow and
wide petal regions (Figure 7a). Consequently, we repolygonize the
surfaces using a semi-interactive method, in which the modeler can
fine-tune the polygonization with two graphically-defined functions
(Figure 7c,d). The first function, λ(v), defines the spacing between
a sequence of vertices v0, v1, . . . , vn along the v axis. The dis-
tances between these vertices are calculated by solving the equation∫ vi+1

vi

dv

λ(v)
= 1, i = 0, 1, . . . , n− 1, (1)

which distributes points along the axis according to average val-
ues of function λ(v) in each interval [vi, vi+1] and guarantees that
this distribution is robust (not sensitive to small perturbations of
λ) [Prusinkiewicz et al. 2001]. The second function, η(v), defines
the number dη(v)e of vertices, equidistant in the parameter space,
along each isoparametric line v = vi. The final polygon mesh is
obtained as the Delaunay triangulation of the resulting set of points
(u, v) (Figure 7b). This triangulation is performed in parameter
space, so that the mesh topology does not change as the floret de-
velops.

Figure 6: Simulation of floret opening by intrinsic interpolation between the first and the last pose.



3 Collision detection and resolution

Previous work. In early models of flowers and inflorescences
(e.g. [Prusinkiewicz and Lindenmayer 1990; Fowler et al. 1992;
Prusinkiewicz et al. 2001]) the modeler minimized the visual im-
pact of intersections between petals by carefully crafting their
shapes. More recently, Ijiri et al. [2008] outlined a specialized al-
gorithm for handling collisions between petals or sepals, which ex-
ploited their spatial ordering as determined by the flower structure.
In inflorescences a similar assumption of spatial ordering cannot be
made; moreover, an inflorescence may include hundreds or thou-
sands of florets, making the number of polygons representing the
inflorescence as a whole correspondingly higher. Consequently, we
have adapted to inflorescences a more general method of collision
detection and resolution originally developed for cloth, but also ap-
plied to leaves [Müller et al. 2007]. In contrast to cloth, the set of
polygons representing an inflorescence can be divided into subsets,
which represent individual organs [Zhao and Barbič 2013]. We take
advantage of this observation by considering different florets of the
same type as instances — modified by collisions — of a common
dynamic geometric template (Section 2).

Collision detection. We assume that the initial configuration of
florets in a young inflorescence is collision-free, then detect and
resolve collisions as they arise during the simulated development.
To this end, we follow the continuous collision detection (CCD)
paradigm (cf. [Brochu et al. 2012]). With petals represented as tri-
angle meshes growing over time, we need to find intersections be-
tween triangular prisms representing the development-driven mo-
tion of triangles. We consider vertex-triangle and edge-edge in-
tersections separately, and decompose each case into a broad and
narrow phase. The broad phase is accelerated by partitioning space
into a regular grid. For vertex-triangle intersections, each voxel
stores the IDs of all triangles that may intersect this voxel over a
given time step. This is done by constructing axis-aligned bound-
ing boxes (AABB) containing the space-time prisms of the trian-
gles as they move through space, and intersecting them with the
voxels. The boxes are enlarged by a small amount to address po-
tential numerical inaccuracies when detecting intersections. The
information in each voxel is time-stamped so that out-of-date vox-
els can be cleared efficiently, only if visited in a subsequent time
step [Teschner et al. 2003]. To detect whether a moving vertex may
intersect a triangle, an AABB is created around the line segment
representing the vertex motion. All triangles in the voxels that in-
tersect with this AABB are considered in the narrow phase. Broad-
phase detection of potential edge-edge collisions is carried out in
a similar manner, except that, in this case, voxels contain infor-
mation about the edges which intersect them during their motion
through space, rather than the entire triangles. Narrow-phase col-
lision detection is performed using the method of Provot [1997],
by detecting whether, during a given time interval, the four vertices
representing a moving point and a triangle, or the endpoints of two
edges, become co-planar. If this is the case, a test is performed
to determine whether the moving point is within the triangle, or
whether the intersection point is within both segments, respectively.

Collision resolution. We resolve collisions by adapting position-
based dynamics (PBD) [Müller et al. 2007; Bender et al. 2014] to
the simulation of growth. Consistent with the PBD method, we
map mesh M0 representing the initial (collision-free) floral canopy
into a network of constraints. Distance constraints correspond to
the edges of this mesh and represent their length. Angular con-
straints correspond to the signed dihedral angles between all pairs
of adjacent triangles in the mesh. Attachment constraints define
positions and orientations of individual florets in the canopy (see
Section 4). We denote the resulting set of constraints C0. We then
simulate the growth of the inflorescence and the opening of flowers.

Figure 8: A model of a lilac inflorescence with collisions resolved.

Figure 9: A zoom into the lilac inflorescence from Figure 8 modeled
with collision resolution turned off and on. Two flowers have been
false-colored to facilitate comparisons.

To this end, we iteratively progress through the sequence of poly-
gonized meshes M0,M1, . . . ,Mn representing consecutive stages
of the inflorescence canopy development. In each step i, we use
the edge lengths, dihedral angles and attachment positions in mesh
Mi to define the corresponding constraint set Ci. If one or more
collisions occur, we add constraints preventing triangle intersection
to the set Ci before resolving it. Once a collision-free steady state
is found, we advance developmental time and progress to the next
simulation step, i+ 1. Our simulation is thus similar to the typical
application of PBD to simulate cloth, except that not only colli-
sion constraints, but also all other constraints, may change from
one simulation step to the next as the inflorescence grows.

Figure 8 shows a sample inflorescence model with collisions be-
tween petals eliminated. We have used a previously published
model of lilac inflorescence architecture [Prusinkiewicz et al. 2001]
to support florets in space. A magnified view of a portion of this in-
florescence (Figure 9) highlights intersections that would occur if
collisions were not addressed, and shows how the algorithm re-
solves them by displacing individual florets and deforming their
petals. Although neglecting collisions does not significantly affect
the overall shape of the inflorescence, collision detection and reso-
lution is essential to properly represent details in close-up views.



4 Phyllotactic pattern generation

In the remainder of this paper we focus on plants of the aster and
carrot families (Asteraceae and Apiaceae), in which florets are ar-
ranged into spiral phyllotactic patterns. We recreate these patterns
by extending a previous model [Prusinkiewicz et al. 2001] to simu-
late the dynamics of pattern formation. Dynamic simulation opens
the door to animating the development of inflorescences, and im-
proves the realism of static models by capturing the age and size
differences between the florets. In addition, we consider the forma-
tion of hierarchical and recursive phyllotactic patterns.

Previous work. Phyllotactic patterns have fascinated researchers
for almost two centuries by their conspicuous regularity and intrigu-
ing mathematical properties, such as the emergent occurrence of Fi-
bonacci numbers and the golden ratio. The beauty of inflorescences
exhibiting diverse phyllotactic patterns has also made them an at-
tractive modeling subject in computer graphics. The first models
[Fowler et al. 1989; Prusinkiewicz and Lindenmayer 1990] were
based on analytic descriptions of spiral organ packing on the sur-
face of a cylinder [Erickson 1983] or disk [Vogel 1979]. Using
ideas similar to Vogel’s, Lintermann and Deussen [1999] developed
an analytic description of spiral phyllotactic patterns on the surface
of a sphere. Fowler et al. [1992] and Prusinkiewicz et al. [2001]
extended the range of modeled patterns to primordia of varying
size distributed on an arbitrary surface of revolution. The latter ap-
proach, based on an extension of Vogel’s model by Ridley [1986], is
well suited for computer graphics applications due to its flexibility
and robustness.
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Figure 10: Geometric elements
of the extended Ridley phyl-
lotaxis model.

Ridley assumed that the support-
ing surface is defined by rotat-
ing a planar generating curve
C around the surface axis (Fig-
ure 10). The position of pri-
mordium i is expressed by two
parameters: angle αi with re-
spect to a reference direction, and
position si along the generating
curve. Ridley proposed to calcu-
late the displacement si+1 − si
of primordium i + 1 with re-
spect to primordium i by equat-
ing primordium area Ai with the
area of a circular band circum-
scribing the supporting surface
at the elevation of these primor-
dia. This leads to the equation
[Prusinkiewicz et al. 2001]:∫ si+1

si

2πr(s)ds = Ai or
∫ si+1

si

2πr(s)

Ai
ds = 1, (2)

where r(s) is the distance of point s on the generating curve C from
the axis of the supporting surface. Given the initial position s0 and
a sequence of primordium areas {Ai}, Equation 2 (left or right)
can be solved iteratively for s1, s2, . . . , yielding the sequence of
primordium positions {si} along the generative curve C. In model-
ing practice it is usually more convenient to define the primordium
areas as a function A(s) of their positions s rather than index i,
which results in ∫ si+1

si

2πr(s)

A(s)
ds = 1. (3)

With consecutive primordia positioned along the generative curve
according to Equation 3, and the divergence angle αi+1 − αi be-
tween consecutive primordia equal to the golden angleϕ ≈ 137.5◦,

Figure 11: Earlier and later stages of phyllotactic pattern forma-
tion. (a) Centripetal fractionation. (b) Divergent fractionation. (c)
Segregation. Colors indicate the age of primordia (green: younger;
red: older).

the primordia are packed in a dense spiral phyllotactic pattern [Ri-
dley 1986]. We define function A(s) interactively to make the dis-
tribution of floret sizes in the generated pattern match that observed
in real inflorescences used for reference.

Modeling the dynamics of phyllotaxis. We extend Ridley’s
model to capture not only the static distribution of primordia, but
also the dynamics of their production and distribution over time.
From the dynamic perspective, a plant may produce florets in
two distinct modes, termed fractionation and segregation [Classen-
Bockhoff and Bull-Hereñu 2013]. In the case of fractionation, the
meristem is initially bare or “naked”, and becomes gradually cov-
ered by the emerging primordia. In the case of segregation, new
primordia originate near the tip of a continuously growing meris-
tem when and where room is created for them.

We simulate two distinct cases of fractionation, as well as segre-
gation, using a unified model. The reproductive meristem is di-
vided into three regions: the naked inner and outer regions, and
the primordium-carrying intermediate region (Figure 10). In cen-
tripetal fractionation (Figure 11a), commonly observed in develop-
ing heads, the outer region is absent, and the inner region initially
occupies the entire meristem. Beginning at its rim, consecutive
primordia are produced at fixed time intervals at positions deter-
mined by Equation 3, building up the primordium-carrying region
at the expense of the inner region from the outside in. This process
terminates when the area of the inner region falls below that of a
single primordium. In divergent fractionation [Harris et al. 1991]
(Figure 11b), both the inner and outer regions are initially present.
Primordium formation begins at the boundary between these re-
gions and proceeds simultaneously inward and outward. Finally,
in the case of segregation (Figure 11c), the initial conditions are
similar to those in the centripetal fractionation, but the meristem
is small, commensurate with a primordium. A new primordium
is produced when the area of the growing inner region exceeds a
threshold value. The inner region’s area is then reduced by the area
of the primordium, falling below the threshold until further growth
increases it again. A sequence of primordia is thus produced, with
the period dependent on the growth rate of the inner region.

In general, both the meristem and the primordia may grow over
time. The growth rates of the inner and outer regions are specified
as functions of the meristem age. Likewise, the growth of each pri-
mordium is a function of its age. The modeler defines all functions
using a graphical function editor. The same function is used for all
primordia of the same type.

The last element of the phyllotaxis model is the growth of the sup-
porting surface – the surface of a meristem or a receptacle – as
a whole. To model changes in its size and shape, we interpolate



Figure 12: Development of a recursive, self-similar phyllotactic
pattern on a uniformly growing flat meristem.

between graphically-defined generating curves C that describe the
profile of the supporting surface at select points in time. Further-
more, to coordinate the size of the supporting surface with the size
of its regions, we sum up the current areas of all regions present
(the primordium-carrying area is calculated by adding up the areas
of all primordia) and scale the supporting surface to match that sum.
The growth and changes in the shape of the supporting surface are
featured in the simulations in Figure 11.

Figure 13: Two-level hierar-
chical phyllotaxis with conical
meristems.

Modeling hierarchical and
recursive patterns. When
modeling compound inflores-
cences, we assume that a pat-
tern element created at level n
may become a meristem and
start producing next-level el-
ements (meristems or primor-
dia) upon reaching a thresh-
old size. For example, Fig-
ure 12 shows a pattern gener-
ated by recursive segregation
on a flat exponentially growing
space. This figure also illus-
trates the relative orientation of

pattern elements at different levels: consistent with the Hofmeis-
ter rule the first element at level n + 1 within the parent meris-
tem at level n is positioned as far as possible from the centre of
the “grand-parent” meristem at level n − 1 (cf. [Kirchoff 2003]).
Figure 13 shows a two-level pattern, in which meristems have an
approximately conical shape.

5 Determining floret type

Previous work. As discussed in Section 1, inflorescences may
comprise florets of different types, thus exhibiting floral dimor-
phism. In computer graphics practice to date, dimorphism has
been modeled in the context of heads: a user-specified number of
florets at the rim of the head was assigned the fate of petal-like
ray florets, and the remaining florets were modeled as disk flo-
rets [Prusinkiewicz and Lindenmayer 1990; Fowler et al. 1992].
Inspired by [Hirmer 1931], Battjes and Prusinkiewicz [1998] pro-
posed a mathematical model of ray floret differentiation based on
the packing of primordia on the rim of a head. They demonstrated
that for the divergence angle ϕ ≈ 137.5◦ the numbers of ray florets
are numerically canalized to the Fibonacci series, as often observed

α

O

P

(P)

a b c

α

Figure 14: Principle of evaluating floret fate in dimorphic inflores-
cences. (a) Definition of cone K(P ) associated with floret P in a
head or umbellet with centre O. The cone has opening angle α.
(b) The fate of a floret depends on other florets that may be within
its cone. (c) The simplest case of floret differentiation: a floret be-
comes a ray floret if no other floret is within its cone.

in real heads. Neither model suffices, however, to capture dimor-
phism in compound inflorescences, in which the fate of each floret
may depend on its position within the inflorescence in a relatively
complex manner. Addressing this limitation, we propose an algo-
rithm that applies to both simple and compound inflorescences. The
algorithm is based on the biological hypothesis that the fate of flo-
rets depends on available space [Classen-Bockhoff 1992].

The model. Our algorithm operates under the assumption that the
floral canopy is approximately planar. Each floret P in the set S of
all florets is associated with a cone K(P ) originating at P (Fig-
ure 14a). This cone is oriented away from the centre O of the
highest-level head or umbellet to which P belongs. In the simplest
case, the fate of floret P is determined by the presence or absence
of another floret in the cone K(P ) (Figure 14b,c). In general, this
fate may also depend on the minimum distance dmin(P ) between
P and a floret Q ∈ K(P ). In order to find this distance, we first
calculate the distances d(P,Q) between P and all florets Q ∈ S
using the formula:

d(P,Q) =

{
‖Q− P‖ if P̂Q · ÔP < cosα
∞ otherwise

(4)

Here ÂB denotes the normalized vector from A to B, and α is
the opening angle of cone K(P ). The distance d(P,Q) is thus set
formally to infinity if floret Q lies outside this cone. The minimum
distance dmin(P ) is then calculated as

dmin(P ) = min
Q∈S

d(P,Q). (5)

Application of this formula to simple flower heads is illustrated in
Figures 15 and 16. All patterns were generated assuming diver-
gence angle ϕ = 137.5◦ and primordia of fixed size. In both fig-
ures, a floret P becomes a disk floret upon dmin(P ) < ∞. Fig-
ure 15 shows the dependence of the number of ray florets N on
the total number of florets n, assuming a constant opening angle.
We observe that the numbers of ray florets which emerge on heads
of different sizes tend to be Fibonacci numbers. A similar bias to-
wards Fibonacci numbers occurs if the number of florets n is fixed
and the cone opening angle α is changed instead (Figure 16). Fi-
bonacci numbers occur for large ranges of α values.

Examples of floret fate determination in a hierarchically compound
inflorescence are shown in Figure 17. In all cases, the fate of florets
is controlled by distance thresholds. In Figure 17a, threshold Tha

is larger than the distance between florets within a second-order
head, but smaller than the distance between these heads. A floret
P becomes a ray floret if and only if dmin(P ) > Tha. In this
case, ray florets differentiate independently in each second-order
head. In Figure 17b, floret P becomes a ray floret if and only if
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Figure 15: Dependence of the number of ray florets N on the total
number of florets n for a constant cone opening angle α = 75◦.

dmin(P ) > Thb, where Thb is larger than the distance between
second-order heads. In this case, the differentiation of ray florets
is dominated by their position within the entire inflorescence. The
model in Figure 17c combines both mechanisms. Large ray florets
emerge when dmin(P ) > Thb, and smaller ones when Tha <
dmin(P ) ≤ Thb. In the latter case, the size of the enlarged petals
is proportional to the amount of available space, dmin(P ), resulting
in a continuum of florets sizes.

6 Branching structure generation

Previous work. In inflorescences in which florets are supported
by a branching structure (as opposed to a receptacle), this struc-
ture is an inherent component of the model. Computational mod-
eling of branching inflorescence structures was an early biological
[Frijters 1978] and computer graphics [Prusinkiewicz et al. 1988;
Prusinkiewicz and Lindenmayer 1990] application of L-systems.
The use of positional information [Prusinkiewicz et al. 2001] facil-
itated specification of inflorescences by providing the modeler with
direct control over the extent and density of branches. Sketch-based
methods [Ijiri et al. 2005; Ijiri et al. 2006; Anastacio et al. 2006]
facilitated modeling further by introducing a more intuitive user in-
terface. With all these approaches, the distribution of flowers in
space was determined by the underlying branching structure. Such

Figure 17: Differentiation of florets in hierarchically organized in-
florescences. Ray florets emerge: (a) at the level of second-order
heads, (b) at the level of the entire inflorescence, and (c) at both
levels of inflorescence organization. In all cases α = 53◦.

branching-first models work well for many inflorescences (e.g., the
lilac in Figure 8), but do not easily capture inflorescences with flo-
rets arranged into a smooth, planar canopy. To model these inflores-
cences we employ the florets-first paradigm (Section 1 and Figure
2), in which a spatio-temporal floret distribution is generated first
and provides input for synthesizing the branching structure. Our
method is inspired by the algorithm for generating vascular patterns
in leaves and modeling trees proposed by Rodkaew et al. [2003]
(see also [Neubert et al. 2007]). Rodkaew’s algorithm operates cen-
tripetally, i.e., from the outside in. For example, in the case of trees,
it begins by distributing leaves at the periphery of the tree canopy,
initiates branches at these locations, and gradually extends them to-
wards the trunk. Rodkaew et al. described this process in terms of
particles that trace branches by moving through space while being
attracted to the base of the tree and to their nearest neighbor. Par-
ticles that approach each other merge, forming branching points.
Our choice of Rodkaew’s algorithm as a basis for modeling the ar-
chitecture of flat-topped branching inflorescences was motivated by
two factors. At the microscopic level it can be viewed as a geomet-
ric analog of auxin canalization, which defines the vascular system
of young inflorescences. It is plausible that this vasculature defines
the branching structure of inflorescences in reality (Section 1). At
the macroscopic level, Rodkaew’s algorithm is a stepping stone for
generating three-dimensional branching structures that support flo-
rets in predefined positions.

Extended Rodkaew algorithm. To model inflorescences, we ex-
tended Rodkaew’s algorithm in several directions.

Attraction to branches. According to the original formulation of the
algorithm, particles interact with each other: they do not interact
with the emerging branching structure. Consequently, a moving
particle may run unnaturally close to a branch formed earlier and/or
cross it. To avoid this artifact, we consider not only the moving
particles, but also the entire structure developed so far (i.e., past
positions of all particles) as candidate attracting points (Figure 18a).
Furthermore, we consider the previous direction of particle motion
~H as a factor influencing the next direction ~H ′. Assuming that

Figure 16: Dependence of the number of ray florets N on the cone opening angle α for a constant total number of florets n = 82.



AA

P
B

A H
H´

a b

Figure 18: Elements of the extended Rodkaew algorithm. (a) Parti-
cleP extends a branch segment in direction ~H ′, which is a weighted
average of the previous segment direction ~H , vector ~A pointing to-
ward the inflorescence base A, and vector ~B pointing towards the
nearest branch or particle. (b) The umbellets of a compound umbel
are generated separately from the main umbel. Both the positions
of the florets (empty circles) and the umbellet and umbel centers
(small blue circles) are determined by a phyllotaxis model.

all vectors defined in Figure 18a have unit length, direction ~H ′ is
calculated in each simulation step as

~H ′ =
1

wa + wb + wh
(wa

~A+ wb
~B + wh

~H). (6)

Figure 19: The dependence of
branching point configuration on
function wb(d).

Weights wa, wb and wh pro-
vide a degree of control over
generated forms. With wa > 0
and wb = 0, all particles con-
verge directly on the inflores-
cence base, creating an umbel
(Figure 20a). Increasing wb

results in branching structures
(Figure 20c,e). Making wb a

function of the distance d to the closest neighbor provides a means
for controlling the shape of branches near the branching points, pro-
ducing smaller or larger branching angles (Figure 19). Increasing
weight wh > 0 prevents biologically improbable [Kim et al. 2012]
highly non-planar branch arrangements at the branching points. It
also reduces the curvature of branches, making them more smooth.

Particle initialization. In the original formulation, the initial po-
sitions of the particles are random, and all particles begin their
motion simultaneously. To model inflorescences, we assume that
initial particle positions and the times of their creation are deter-
mined by the dynamic phyllotactic model (Section 4). The tim-
ing of floret emergence has a significant impact on the resulting
branching structure. With primordia created at large time intervals,
during which particles can travel relatively long distances com-
pared to the distances between primordia, the emerging branches
have a monopodial architecture characterized by clearly delineated

Figure 21: A growing branching structure generated using the ex-
tended Rodkaew algorithm. Florets (white spheres) are formed in
a recursive phyllotactic pattern and emerge at different points in
time according to the model in Figure 12. The emergent branch-
ing structure supports all florets in the same plane, as needed for
modeling corymbs.

axes (Figure 20b,c). In contrast, if primordia are created quickly,
branches have a sympodial architecture characterized by sequences
of short segments positioned laterally with respect to their parents
(Figure 20d,e).

Growth. We model growth of the branching inflorescence struc-
ture as a gradual free-form deformation [Sederberg and Parry 1986]
of the space including branches and moving particles. This defor-
mation is coordinated with the dynamic phyllotactic patterning of
floral primordia and the canopy they produce. In the models im-
plemented so far, we assumed uniform or allometric expansion of
this space. In the allometric case, this space expands at different,
size-dependent rates along different axes of the coordinate system,
resulting in changes to the branching angles and overall proportions
of the inflorescence over time. These deformations do not affect
branch width, which is determined independently. An example of
the development of a branching structure supporting primordia in a
recursive phyllotactic pattern is shown in Figure 21.

Figure 20: Examples of branching structures generated using the extended Rodkaew algorithm. (a) All particles are attracted to the inflo-
rescence base. (b) Early and (c) final stages of pattern formation with primordia produced slowly. (d) Early and (e) final stages of pattern
formation with primordia produced quickly. Colors of primordia indicate their age, as in Figure 11.



Figure 22: Photograph and model of dahlia ‘Jomanda’. Photograph courtesy of the Victoria Dahlia Society, adapted under fair use.

Distinct hierarchy levels. Some inflorescences (e.g. corymbs of
heads and compound umbels) are organized into distinct hierarchi-
cal levels. We generate branching patterns of these inflorescences
by considering each level of the hierarchy separately (Figure 18b).

Branch width. We assume that terminal branch segments have the
same diameter and determine the diameter of interior segments us-
ing the formula dp = dp1 + . . . + dpm. Here d is the diameter of
the branch below the branching point (closer to the inflorescence
base), and d1 . . . dm are the diameters of the branches supported at
this point. Power p controls the rate at which branch widths accu-
mulate towards the inflorescence base. Variants and extensions of
this formula have been used in different contexts [Shinozaki et al.
1964; MacDonald 1983; Prusinkiewicz and Lindenmayer 1990]; a
special case, with p = 2, was proposed by Leonardo da Vinci to
capture the relation between branch diameters in trees. In the mod-
eling of inflorescences, smaller changes in diameter obtained for
p > 2 usually lead to more realistic results.

7 Implementation

We devised the modeling software within the Virtual Laboratory2,
which provides an environment for exploratory programming and
experimentation with simulation models. The presented algorithms
are implemented as a suite of programs that communicate via
shared files. The files transferred from one program to the next
represent the entire developmental sequence, as opposed to a sin-
gle developmental stage. The flow of information is shown in Fig-
ure 3. The input to the models consists of: (i) key poses of the
florets, specified interactively using the floret editor (Section 2);
(ii) two graphically-defined functions that define the polygoniza-
tion of petals for each floret type (Section 2); (iii) three graphically-
specified functions that define the growth of the floret primordia and
the inner and outer regions of the supporting surface (Section 4);
(iv) two profile curves that specify the initial and final shape of this
supporting surface (Section 4); and (v) a small number (about 5 per
program) of numerical parameters controlling each element of the
pipeline. The amount of input increases in hierarchical structures,

2http://algorithmicbotany.org/virtual laboratory/

where phyllotactic patterns at different levels of the hierarchy may
require separate definition. Models are assembled by a a C++ pro-
gram that instantiates florets of the type defined by the dimorphism
model at the locations and orientations defined by the phyllotaxis
model, simulates inflorescence development while resolving colli-
sions, and produces a temporal sequence of meshes that represents
the developing floral canopy (Figure 3f). This canopy is integrated
with the branching structure at the rendering time (Figure 3h). We
have rendered final models using Blender3. To improve rendering,
we employed Blender to subdivide petals and slightly extrude them
to allow for subsurface light scattering. We have also incorporated
scanned textures and environment maps from the sIBL Archive4.

8 Results

Collision detection is the central feature of the dahlia model in Fig-
ure 22. This particular variety has a ball-shaped inflorescence pop-
ulated almost exclusively by incurved, almost tubular ray florets
that touch each other and accommodate their shape to the pres-
ence of their neighbors. The distribution of florets in the model was
generated using a phyllotaxis model operating on an approximately
spherical surface.

Gaillardia (Figure 23) is an example of an inflorescence with
strongly dimorphic florets. In the variety shown, ray florets are
tubular. The emergent number of ray florets in the model (21)
is consistent with their numerical canalization in real Gaillardia
heads, where Fibonacci numbers commonly occur. The phyllotac-
tic patterning of floret primordia was modeled using the fractiona-
tion scheme (Figure 11a). In addition to disk and ray florets, this
model incorporates involucral bracts: specialized leaves that sur-
round the head and protect it in its early development. Hairs on all
surfaces have been modeled using a built-in Blender function. Fig-
ure 24 shows a simulation of head development, with the receptacle
changing size and shape. All three organs types were animated us-
ing intrinsic interpolation and were subject to collisions.

3https://www.blender.org/
4http://www.hdrlabs.com/

http://algorithmicbotany.org/virtual_laboratory/
https://www.blender.org/
http://www.hdrlabs.com/


Figure 23: Photograph and model of Gaillardia x grandiflora cultivar ‘Oranges and Lemons’. Photograph licensed under CC BY SA 3.0.

Figure 24: Selected frames from an animation of Gaillardia growth.

Figure 25: A model of a sunflower.

The sunflower (Figure 25) is another example of an inflorescence
with strongly dimorphic florets. As in the case of gaillardia, the
emergent number of ray florets in the model (34) is a Fibonacci

number. Ray florets are bilaterally symmetric. Three large fused
petals point outward, giving the appearance of a single large petal.
The remaining two petals are highly reduced. We have only in-
cluded the conspicuous large petals in the model. Densely packed
disk florets have five-fold dihedral symmetry, with petals fused into
a tubular corolla almost up to the petal tips. As the flowers open,
sexual organs - stamens, then pistils - raise above the level of the
petals [Sammataro et al. 1986]. We modeled these organs summar-
ily as cylinders growing along the central axis of the florets. The
florets open in a centripetal sequence, so that outer florets are more
advanced in their development than those in more central positions.
This phase effect has also been captured in the model.

Figure 26: A magnified view of
Dyssodia’s florets.

The next three models illustrate
different cases of floral dimor-
phism. The inflorescence of
Dyssodia (Figure 27) consists
of a central head surrounded
by 5 other heads. Florets
with enlarged petals emerge
at the level of the entire in-
florescence as in Figure 17b
[Classen-Bockhoff 1992]. In-
cidentally, the modification of
disk floret shapes due to colli-
sions is particularly conspicu-
ous in this model (Figure 26).



Figure 27: Photograph and model of Dyssodia decipiens.

Figure 28: Photograph and model of a yarrow. Photograph courtesy of Frank L. Hoffman, http://www.all-creatures.org.

Yarrow (Figures 28 and 29, left) is a typical example of a corymb
inflorescence. The branching structure supports small heads with
disk and ray florets. Their dimorphism has been captured using the
model in Figure 17a. The seemingly irregular shape of the yarrow
inflorescence was accurately captured by the recursive phyllotaxis
algorithm shown in Figure 12. The branching structure (Figure
29, left), supporting the florets in a single plane, was modeled us-
ing the extended Rodkaew algorithm: as illustrated in Figure 21,
but with parameters promoting a more elongated structure. Leaves
were generated using the positional-information method described
in [Prusinkiewicz et al. 2001].

The model of orlaya (Figures 1 and 29, right) integrates most ele-
ments discussed in this paper. The inflorescence is a compound um-
bel. Both the umbellets within the main umbel and the individual
florets within the umbellets exhibit spiral phyllotaxis. The florets
in inward positions within the umbellets are small and have five-
fold symmetry. Select outer florets have enlarged petals, with the
size depending on the available space. Finally, select florets on the
periphery of the whole inflorescence have very large petals. The di-

morphism model in Figure 17c accurately captures this multiplicity
of forms. The florets are supported in a single plane by a branching
structure organized into two levels of whorls. We reproduced this
branching system by modeling each level separately (Figure 18b).

9 Discussion

We have advanced previous methods for modeling inflorescences
by introducing methods for: (i) modeling and animating florets
with (partially) fused petals; (ii) detecting and resolving collisions
that may occur in densely packed inflorescences using position-
based dynamics extended to growing surfaces; (ii) extending Ri-
dley’s phyllotaxis model to simulate and animate the dynamics of
phyllotaxis in simple, hierarchical, and recursive patterns; (iv) algo-
rithmically determining floret type, size, and developmental stage
in dimorphic inflorescences; and (v) modeling branching inflores-
cence structures as a self-organizing process driven by the distribu-
tion of florets. This process is particularly useful when modeling
inflorescences with a smooth floral canopy, such as corymbs. Vi-

http://www.all-creatures.org


Figure 29: Branching structures of yarrow (corymb of heads) and orlaya (compound umbel) modeled using the extended Rodkaew algorithm.

sual evaluations suggest that our methods can capture the form and
animate the development of diverse inflorescences. This makes our
methods applicable to computer imagery and supports the biolog-
ical hypotheses at the foundation of our methods. From a broader
perspective, our results demonstrate the usefulness of the geometric
approach to morphogenesis, where the emergence of patterns and
forms is described in geometric rather than chemical terms.

Our work exposed many open problems deserving further research.
They include more detailed modeling of flowers, detection and res-
olution of collisions between all elements of the plant structure
(not only between petals), and view-dependent model generation.
The latter would optimize viewing by adjusting the level of detail
to the scale at which the models are presented, and suppressing
the generation of elements that lie outside the field of view or are
obscured. Our method for simulating flower opening by blending
key poses works well in practice, but does not conserve petal area,
and could potentially be improved by using current methods for
shape-preserving mesh transformation, e.g., [Lipman et al. 2007].
Furthermore, our collision-detection method is satisfactory when
the initial configuration is collision-free, but in some cases this as-
sumption is difficult to satisfy. Problems occur, for example, when
florets are packed in a bud. A possible solution may be to place
all elements of the initial inflorescence in an artificial yet easy-to-
specify collision-free configuration, then procedurally assemble all
elements into the desired structure while detecting and resolving
collisions. From a broader perspective, a similar technique could
lead to the solution of another challenging problem in computer
graphics: modeling bouquets of flowers.

Acknowledgements
We thank Adam Runions, Lawrence Harder and Faramarz Sama-
vati for stimulating discussions, Pascal Ferraro and Brendan Lane
for contributions to the Virtual Laboratory software, Lynn Mercer
for editorial help, and the referees for their insightful, constructive
comments. Support of this research by grants from the Natural Sci-
ences and Engineering Research Council of Canada, Canada First
Research Excellence Fund (PP), and Deutsche Forschungsgemein-
schaft (RC-B) is gratefully appreciated.

References

ANASTACIO, F., COSTA SOUSA, M., SAMAVATI, F., AND JORGE,
J. 2006. Modeling plant structures using concept sketches.

In Proceedings of the 4th International Symposium on Non-
photorealistic Animation and Rendering, ACM, 105–113.

BATTJES, J., AND PRUSINKIEWICZ, P. 1998. Modeling meristic
characters of Asteracean flowerheads. In Symmetry in Plants,
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