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1. INTRODUCTION.

Rewriting systems can be used to generate pictures in two different ways. In the first case,
a rewriting system operates directly on two-dimensional objects, such as arrays [Kirsch 1964,
Dacey 1970], graphs [Rosenfeld and Milgram 1972, Pfaltz 1972], or "shapes" [Gips 1975, Stiny
1975]. In the second case, a string grammar (in the broad sense of the word, including parallel
rewriting systems) is used to define strings of symbols. A graphic interpretation function
subsequently maps these strings into pictures. This paper is devoted to this second approach.
After the idea of applying string grammars to pictures is put into a historic perspective in Section
2, attention is focused on L-systems. The necessary definitions related to L-systems are collected
in Section 3. Sections 4 and 5 concentrate on pictures generated by OL-systems under two
particular interpretations, the chain-code and the turtle interpretation, respectively. Examples of
pictures are given and the classes of pictures generated under both interpretations are compared.
Two approaches for extending the gamut of generated pictures are discussed in Sections 6 and 7.
The first approach relies on extending the generative power of L-systems beyond that of
OL-systems. The second approach employs more sophisticated interpretation functions. Section &

presents some open problems.

2. THE HISTORICAL BACKGROUND.

The idea of applying formal (string) languages to describe pictures emerged a few years
after Chomsky established the fundamental concept of a phrase-structure grammar. Narasimhan
[1962, 1966] and Ledley [1964, 1965] are credited with the first results in this area. Their interest
was in recognizing handwritten characters and chromosomes, respectively. An approach
designed for describing a wider class of pictures using string grammars was proposed by Shaw

[1969]. For a survey of these early results, see Fu [1980].



The early research concentrated on picture recognition. Pictures were described as strings

of symbols which represented selected primitives, such as straight segments, sharp V-tumns, wide
U-turns or branches. In some cases, relations between picture elements, such as ABOVE,
BELOW, of INSIDE, were also considered as primitives. The actual recognition was performed

by parsing the resulting strings.

For the purpose of picture recognition, the exact geometry of primitives is usually of
secondary importance, as long as they can be properly identified. In the case of picture
generation, however, the correspondence between string symbols and picture primitives must be
specified in more detail. One example of a suitable specification, known as chain coding, is due
to Freeman [1961]. Picture description using string grammars and chain coding was first
investigated by Feder [1968]. He showed that the languages of chain codes describing such
classes of figures as straight lines of arbitrary slope, circles of arbitrary radius, or convex figures
in a plane, are all context sensitive. It was subsequently pointed out (for example, by Fu [1980])
that even intuitively simpler classes of pictures, such as the set of all rectilinear squares in an
integer grid, correspond to context-sensitive chain-code languages. This discouraged to a certain
degree a further study of chain-code languages, for it is believed that context-sensitive grammars
are difficult to construct and they do not provide an intuitively clear description of languages.
Nevertheless, picture generation using Chomsky grammars and the chain interpretation has
recently received a considerable attention [Maurer, Rozenberg and Welzl 1982, Sudborough and
Welzl 1985].

In order to describe growth of living organisms, Lindenmayer [1968] introduced the
notion of parallel rewriting systems. The Lindenmayer systems, or L-systems, attracted the
interest of many researchers, and the theory of L-systems was soon extensively developed
[Herman and Rozenberg 1975, Lindenmayer and Rozenberg 1976]. However, although a
geometrical interpretation of strings was at the origin of L-systems, they were not applied to
picture generation until 1984, when Aono and Kunii [1984], and Smith [1984] used them to create
realistic-looking images of trees and plants.

This paper further investigates graphical applications of L-systems. It is shown that these
applications are not limited to the generation of trees. In particular, L-systems can be used to
generate many fractal curves. Some of these curves were discovered or popularized by
Mandelbrot [1982]. Others are believed to be presented here for the first time.



3. L-SYSTEMS.

This section summarizes fundamental definitions and notations related to L-systems. For

their tutorial introduction, see Salomaa [1973], and Herman and Rozenberg [1975].

Let V denote an alphabet, V* - the set of all words over V, and V71 - the set of all

nonempty words over V.

Definition 3.1. A OL-system is an ordered triple G = (V,®, P) where V is the alphabet of
the system, we V™ is a nonempty word called the axiom, and P ¢V x V* is a finite set of
productions. If a pair (@, x) is a production, we write a— x. The letter a and the word x are
called the predecessor and the successor of this production, respectively. It is assumed that
for any letter ae V, there is at least one word xe V* such that a—x. A OL-system is

deterministic iff for each ae'V there is exactly one xe V* such that a— x.

Definition 3.2. Let G = (V,m, P) be a OL-system, and suppose that p = a;...a, is an arbitrary
word over V. We will say that the word ¢ = x;...x, € V* is directly derived from (or
generated by) p and write p = ¢ iff foralli = I,...,n, a; > x;. A sequence S(G) of words
99, 9> 45, - such that g, = @ and q, = q; = g, =... is called a sequence generated by
G. A word z is generatedby G iff it belongs to a sequence S(G). The set of all words z
generated by G is called the language generated by G and denoted L(G).

Remark: A OL-system is deterministic iff the sequence S(G) is unique.

4. GENERATING PICTURES USING OL-SYSTEMS
WITH CHAIN INTERPRETATION.

This sections introduces the notion of a graphic interpretation of a string, defines the chain
interpretation, and provides examples of pictures generated by OL-systems under this

interpretation.

Definition 4.1. A picture  is a set of points in the plane: ©e 2% . A function I: V* —
2%xR mapping strings over alphabet V into pictures is called a (graphic) interpretation

function.
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Definition 4.2. Let 1t denote a picture drawn in a square grid by connecting 4-adjacent I vertices
of this grid with straight line segments of unit length. In general, the resulting line may be
self-intersecting, and the same line segment can be drawn more than once. Next, let each line
segment be assigned a letter A, B, C, or D, according to the slope of the lines (Fig. 1). The

string of letters representing the entire picture is called the chain representation of 7.
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Fig. 1. (a) Assignment of letters to line segments in chain coding.
(b) The chain representation of an example picture.

A picture T may have many chain representations depending, for example, on the starting

point assumed. However, a given string describes a unique figure (up to translations).
Consequently, chain coding is an interpretation function defined on the alphabet V, = {A, B, C,
D}.

Figure 2 presents chain interpretations of words z generated by some deterministic
OL-systems G over alphabet V. Data under each picture indicate the length of derivation, the

axiom @ of the L-system, and its set of productions P. Note the variety of the shapes obtained,
and the simplicity of the underlying L-systems.

5. GENERATING LINE DRAWINGS USING L-SYSTEMS
WITH TURTLE INTERPRETATION.

In this section an alternative interpretation function, called turtle coding [Papert 1980,
Abelson and diSessa 1982], is considered.

! Grid vertices (X1, ¥1) and (x5, y,) are 4-adjacent if [x;—x| + ly;=yal = 1.
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Definition 5.1. Let  denote a picture drawn in a rectangular grid by connecting adjacent vertices
of the grid with straight line segments, as described in Def. 4.2. Furthermore, let each line
segment be represented by letter F, and a +90° or —90 ° change of the segment slope with respect
to the previous segment be denoted by character + or —, respectively. The string of characters:

F, + and - representing the entire picture is called a turtle representation of .

A given picture may have many turtle representations depending, among other factors, on
the way each angle is represented. For example, a turn of 180 ° can be represented as ++, ——,
++—+, etc. However, a given string of characters F, + and — describes a unique figure (up to

translations and rotations of n-90°). Consequently, the turtle coding is an interpretation function

defined on the alphabet V, = {F, +, —}.

The Koch curve shown in Fig. 2a is generated by the following L-system:

3

F-F-F-F-

F —» F+F-F-FF+F+F-F
+ -+

= e

Analogously, L-systems generating curves shown in Figs. 2b-2d under the turtle interpetation can
be found. The existence of different L-systems generating the same sequence of figures motivates

the following definitions.

Definition 5.2. Let G = (V,w, P) be an L-system, and suppose that / is an interpretation
function defined on alphabet V. A pair H = (G, I) is then called a picture-generation

system, or P-system in short.

Definition 5.3. Let n;,, @, Typ,... and My, Tyy, Tyg,e- denote sequences of pictures
generated by deterministic P-systems H, and H, , respectively. Systems /, and H, are called

equivalent iff for any i=0,1,2,... pictures m;; and =,; are congruent.

A natural question is: What is the relationship between the families of pictures generated by
OL-systems under the chain and turtle interpretation? A partial answer to this question is provided
by theorems 5.1 and 5.2, stated here without proofs.
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Theorem 5.1. Families of figures generated by OL-systems under chain and turtle interpretation

are incomparable.

Definition 5.4. Let h denote a cyclic permutation of the sequence of letters A,B,C,D such as
h(A) = A, (B) = C, h(C) = D, and h(D) = A. A set of productions P is closed under
permutation 4 if for any production a — b;b,...b, in P, production h(a) — h(b;)h(b,)...h(b,)
also belongs to P.

Theorem 5.2. Let a P-system H_ consists of a OL-system G_ = V. @, P_) and the chain
interpretation. If the set of productions P, is closed under cyclic permutation 4 there exists a

P-system H, consisting of a OL-system G, = (V,, @, P,) and the turtle interpretation, equivalent
to H_.

Example: Systems H, exist for all pictures shown in Fig. 2, and for picture shown in Fig. 3b.

6. GRAPHICAL APPLICATIONS OF GENERALIZED L-SYSTEMS.

The gamut of pictures generated by P-systems can be extended using two approaches: by
enhancing the generative power of L-systems beyond OL-systems, or by using interpretation
functions more complex than chain or turtle interpretation. Various extensions to OL-systems have
been thoroughly studied in the past [Salomaa 1973, Herman and Rozenberg 1975, Lindenmayer
and Rozenberg 1976], and many of them have straightforward graphical applications.

2L-systems use productions of the form a<a>a, — x; this notation means that the letter a can

produce word x iff a is preceded by letter ¢, and followed by a,. Letters ¢, and a, form the left
and the right context of @ in this production. Productions in 1L-systems have one-side context
only; consequently, they are either of the form a,<a —»x or a>a, —x (Fig. 4a). OL-systems,

1L-systems and 2L-systems belong to a wider class of (k,l)-systems. In a (k,1)-system, the left
context is a word of length k, and the right context is a word of length /. L-systems can be

generalized even further by allowing productions of the form w<u>u, — x, where all three

components of the predecessor are words of arbitrary length (Figs. 4b and 4c). Additionally,
auxiliary symbols may be allowed to occur in the words being derived. In extended L-systems,
or EL-systems, auxiliary symbols have the function of nonterminal letters in Chomsky
grammars: they can be used in intermediate stages of a derivation, but must not appear in the final
words of the language. In graphical applications, another approach to auxiliary symbols is useful:
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they may occur in any stage of the derivation, but must be erased from the string just before its
interpretation (Fig. 4d).

The generalizations of L-systems outlined so far are based on modifications of the form of
productions. Another approach, based on a controlled use of productions, also seems promising.
In TL-systems productions are grouped into sets called tables. All productions used in a given
step of the derivation must belong to the same table. For example, a plant may result from
applying separate tables to generate its stem, leaves, and flowers. In this case, the sequence of
tables to be used at each step would be predetermined. Alternatively, tables can be selected

according to probabilistic rules.

7. EXTENDING INTERPRETATION FUNCTIONS.

The second approach to extending the gamut of pictures generated by P-systems involves
interpretation functions other than chain and turtle coding. A simple modification of these
functions introduces a distinction between visible and invisible line segments. The visible
segments are represented using letters A, B, C, D and F, as previously. The corresponding
invisible segments are represented by lower-case letters: a, b, ¢,d and f. The invisible segments

make it possible to define unconnected pictures (Fig. 5a).

Another modification of the interpretation functions uses a triangle or hexagonal grid
instead of the square grid; in the case of turtle coding this corresponds to associating turns of
+120° or #60° to the symbols + and — (Figs. 5b-d). Pursuing the same idea, symbols + and —

may represent turns by arbitrary angles o and 8. In consequence of the Eulerian formula, no
underlying grid can be assumed in this general case. Finally, line segments need not be confined
to the plane. For example, the chain interpretation can be expanded by symbols denoting line
segments in the positive and negative direction of axis z. A corresponding L-system will then
describe a three-dimensional object rather than a two-dimensional picture.

The original L-systems, as described by Lindenmayer [1968], used braces to group
sequences of segments into branches. This idea was preserved in L-systems generating trees for
computer imagery purposes [e.g. Smith 1984]. However, grouping lines with braces can also
be used for other purposes. For example, lines within a pair of braces may define the boundary of
a filled polygon. This is particularly attractive in the case of three-dimensional objects, since

polygons may represent faces of polyhedra.



8. CONLUDING REMARKS.

This paper shows that L-systems can be used to generate a wide variety of pictures.
However, many problems related to the graphical applications of L-systems remain open. One
possible direction of future research consists of finding L-systems and interpretation functions
suitable for generating visually attractive images. As is often the case with fractals, these images
can be appealing either because of their abstract beauty, or because of their similarity to real-life
objects. Another research direction consists of exploring formal properties of L-systems related to
picture generation. This is parallel to the study of graphical applications of Chomsky languages
initiated by Maurer, Rozenberg and Welzl [1982]. Example problems falling in this category are:
Given an L-system and an interpretation function, is the resulting line closed? Is it
self-intersecting or tree-like? Are there any segments drawn more than once? Are they drawn
infinitely many times (if the derivation length tends to infinity)? What is the function relating the
diameter of the picture to the derivation length? Answers to these and similar questions are
interesting not only from the theoretical point of view. They may also help to construct L-systems
which will generate pictures with given properties.
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3 a
ABCD

A --> ABADDABA
B -->BCBAABCB
C --> CDCBBCDC
D -->DADCCDAD

fa
fAn

4 G
ABCD
A --> AABCDAA
B -->BBCDABB
C --> CCDABCC
D -->DDABCDD

s b

B

A --> ABBDA
B -->BCCAB
C-->CDDBC
D -->DAACD

ABCD

A --> AABCDABA
B -->BBCDABCB
C --> CCDABCDC
D -->DDABCDAD

Fig. 2. Examples of pictures generated using OL-systems
under chain interpretation. Picture (a) is the quadratic

Koch island from Mandelbrot [1982].




C

A-->AB A~~5CB
B-->AD B -->BA
C-->DC C-->DA
D-->CB ‘ D-->CD

Fig. 3. Examples of pictures generated using OL-systems
under chain interpretation. Picture (a) is the dragon
curve [Davis and Knuth 1970]. Picture (b) is the C curve

from Abelson and diSessa [1982].
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BC

A>B--> ADABCB
B>C --» BABCDC
C» D -->CBCDAD
D>A -->DCDABA

A -->AA
B -->BB
C -->CC
D -->DD
4 C

FF-FFFF-FFFF-FFFF-FF
F-F-->4+F+++F+F+++F+FF-FFFF-
FFFF-FF+F+++F+F+++F+
+F+++F --> +F+++F+F+++F
F==xFF

+ ==+

i
Kiie)

e

“ o
i +%
4 Kl
AL 4
e
%
;5:*
2 b
-F++F
F++F --> F+F++F+F-F++F-F++FFF
o= FF
+ ==>+

- _-_ -

d

18

X

X --> X+F
+ ¢ F == FY

Y -->YF

F -->F

+ =-=>+

Fig. 4. Examples of pictures obtained using generalized
L-systems. In these examples the set of productions is
ordered. If more than one production can be applied, the
production higher in the list is chosen.
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YF

XF - -5 ~YF+XF+YF-
YF --> +XF-YF-XF+
+ -=> +

- == -

: b

+F+++F

Ft++F ==> F+FF+++FF+F+++F--F+++FF
F ==xFF
+ ==>+

- _..>_

8 d

YF

XF == #XF-YF=YF+
YF —=—> -XF+XF+YF-
+ —-=> 4+

e

Fig. 5. Examples of pictures generated using invisible lines
or triangular grid. Picture (a) is a "combination of lakes and
islands" from Mandelbrot [1982]. Picture (c) is an arrowhead

[Sierpiriski 1915].








