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Abstract

Although much progress has been made in understanding how gene expression patterns are
established during development, much less is known about how these patterns are related to
the growth of biological shapes. Here we describe conceptual and experimental approaches to
bridging this gap, with particular reference to plant development where lack of cell movement
simplifies matters. Growth and shape change in plants can be fully described with four types
of regional parameter: growth rate, anisotropy, direction, and rotation. A key requirement is
to understand how these parameters both influence and respond to the action of genes. This
can be addressed by using mechanistic models that capture interactions among three
components: regional identities, regionalizing morphogens, and polarizing morphogens. By
incorporating these interactions within a growing framework, it is possible to generate shape
changes and associated gene expression patterns according to particular hypotheses. The
results can be compared with experimental observations of growth of normal and mutant
forms, allowing further hypotheses and experiments to be formulated. We illustrate these
principles with a study of snapdragon petal growth.
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Although much progress has been made in understanding how
gene expression patterns are established during development,
much less is known about how these patterns are related to the
growth of biological shapes. Here we describe conceptual and
experimental approaches to bridging this gap, with particular
reference to plant development where lack of cell movement
simplifies matters. Growth and shape change in plants can be fully
described with four types of regional parameter: growth rate,
anisotropy, direction, and rotation. A key requirement is to un-
derstand how these parameters both influence and respond to the
action of genes. This can be addressed by using mechanistic models
that capture interactions among three components: regional iden-
tities, regionalizing morphogens, and polarizing morphogens. By
incorporating these interactions within a growing framework, it is
possible to generate shape changes and associated gene expres-
sion patterns according to particular hypotheses. The results can be
compared with experimental observations of growth of normal
and mutant forms, allowing further hypotheses and experiments
to be formulated. We illustrate these principles with a study of
snapdragon petal growth.

Research in developmental biology over the last two decades
has led to a broadly accepted view of how patterns are

elaborated during development of multicellular organisms (1–3).
Regional identity is specified by a combination of transcription
factors, which can be modified in response to signaling mole-
cules, sometimes called morphogens. Changes in identity may in
turn lead to production of further signaling molecules, allowing
the pattern of identities to become progressively elaborated.
Although this process can account for the establishment of
regions with different gene activities, it is unclear how it is
coupled to the generation of shape. For example, the mecha-
nisms by which the developing Drosophila wing becomes subdi-
vided through the action of signaling molecules, such as Dpp, has
been studied extensively (4), yet the link between these processes
and the final shape of the wing remains unknown.

One reason for this lack of progress is that, whereas some
aspects of regional patterns can be described qualitatively,
growth and shape require quantitative descriptions. For exam-
ple, it is possible to convey a repeating pattern (e.g., of spots,
stripes, hairs, or leaves) or a sequence of regional distinctions
along an axis without giving detailed measurements. Similarly,
branching topology can be described qualitatively. Mutations
that affect particular aspects of such patterns can therefore be
recognized and interpreted through their qualitative effects. By
contrast, recognizing growth patterns requires detailed mea-
surements of lengths and angles over time (metric descriptions).
It is therefore more difficult to interpret mutations affecting
shape simply from visual inspection of the phenotype. This
means that understanding shape transformations requires a
quantitative framework.

Changes in the shape of a developing multicellular structure
can be driven by three types of behavior: (i) Tissue growth,
involving cell proliferation and�or enlargement. In some cases,
growth alone accounts for the shape changes observed. This
situation applies to plants where cell walls normally prevent cells

from sliding relative to each other (5). (ii) Cell movement, such
as cell migration or rearrangement. There are many shape
changes that rely purely on movement. For example, in Dictyo-
stelium, the movements of the slug and its transformation into
the stalk and fruiting body are driven by cell migration and
rearrangement (6). Similarly, gastrulation and the generation of
the tubular structures during Drosophila embryogenesis largely
involve cell movement (7). There are also many systems, such as
the vertebrate limb bud, in which both growth and cell movement
contribute to development. Conceptually, growth and cell move-
ment can be distinguished from each other, because they rep-
resent distinct cellular behaviors. However, the distinction is less
easy to make experimentally, because both growth and rear-
rangements cause cells to be displaced. (iii) Cell death, which can
lead to local arrest of growth or loss of tissue.

In this review, we consider the frameworks needed to under-
stand the generation of shape associated with tissue growth.
Principles are illustrated by presenting a preview of ongoing
research. Most of the examples are drawn from plant develop-
ment, where the lack of cell movement simplifies issues. Many of
the principles, however, may also be extended to aspects of
animal development.

Measuring Growth and Shape Changes
One way of comprehensively describing the growth of a structure
is by the velocities at which its points move relative to a fixed
coordinate system. These displacement velocities can be repre-
sented by vectors, which may vary from point to point, forming what
is known mathematically as a vector field. For example, a velocity
vector field for a disk growing uniformly in all directions at all
positions (isogonic growth) is shown in Fig. 1a. In this case, velocity
increases linearly with increasing distance from the central refer-
ence point (if the disk doubles in radius, a point 1 mm away from
the center will travel a distance of 1 mm, whereas a point 10 mm
from the center will travel 10 mm).

There are many different ways in which a transformation in
overall shape can be brought about. Enlargement of a disk, for
example, could reflect radially directed growth mainly near the
rim rather than isogonic growth, corresponding to a different
velocity field (Fig. 1b). The changing outline of a structure alone
therefore gives little indication of the underlying velocity field.
Consequently, velocity fields need to be determined experimen-
tally by using internal markers.

The most direct way of obtaining this information is by
tracking the position of multiple landmark positions over time.
For example, growth of individual leaves has been tracked with
ink dots or natural landmarks (8–13). This is limited to later
stages of development, when leaves are large enough to be
tracked effectively. Earlier stages have been monitored by using
scanning electron microscopy of epoxy resin casts of plants to
track cell outlines (14–16). In animals, cell-labeling experiments
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have mostly been used to follow particular lineages rather than
for defining velocity fields, although fluorescent-labeled cells
have been used to derive quantitative data on neural elongation
in Xenopus explants (17).

Although velocity fields can give a comprehensive account of
growth, they are not the most useful representation from a
biological perspective, because they refer to properties of points
rather than regions. In the isogonically growing disk, for exam-
ple, the relevant biological property is that each region grows at
the same rate in all directions. This is not conveyed directly by
the velocity field (Fig. 1a). Moreover, the velocity field depends
on the choice of reference point. If velocities are measured
relative to the base of the disk instead of the center, the field will
look quite different (Fig. 1c).

A more useful description of growth is in terms of the local
growth characteristics of regions (18–22). If we subdivide a
structure into a large number of small regions (ideally of
infinitesimal size), each region may undergo changes during
growth that can be accounted for by four types of parameter (Fig.
2). (i) Growth rate, the rate at which a region changes in size
(e.g., area or volume), which may eventually drop to zero as the
structure attains a final size. (ii) Anisotropy, the degree to which
growth occurs preferentially in any direction, which can be
expressed by the ratio in growth rate along orthogonal axes.
These axes correspond to directions of maximal or minimal
growth (also known as the principal directions of growth). If
growth is equal in all directions, then growth is isotropic. (iii)
Direction, the angles at which the principal directions of growth
are oriented. One of these will be the direction of maximal
growth (i.e., main direction of growth). (iv) Rotation rate, the
angle through which the region turns relative to other regions per
unit time. Unlike the other parameters, rotation is not a regional
growth property, because there is no change in shape or size, only
a change in relative orientation.

For a 2D structure, four parameters are needed to specify the
behavior of each region during a given time step (one for growth
rate in area, one for anisotropy, one for direction, and one for
rotation rate), whereas for a 3D structure, nine parameters are
needed (one for growth rate in volume, two for anisotropy, three
for direction, and three for rotation). These parameters can also
be captured by a single measure termed a growth tensor, with
four or nine components, depending on dimensionality (21).
Once the parameters are known, the way a region will be
deformed during a time step and hence the velocities of its
vertices can be computed. Conversely, once the velocities of the

vertices are known, it is possible to estimate the growth param-
eters for a region.

When describing shape changes, we need to consider growth
parameters for multiple regions over multiple time steps, which
can be done in two ways, depending on how regions are specified
(19). For example, suppose we start with a 2D structure divided
into a regular grid of nine regions, labeled with a pair of indices
(1,1), (2,1) . . . (i,j) according to their spatial coordinates (Fig.
3a). Over a time step �t, growth will deform the grid and give
corresponding regions at a slightly later time (Fig. 3b).

For the next time step, we have two options. The Lagrangian
approach is to use the deformed grid (Fig. 3b) as a new starting
point and to determine how each of its regions is deformed
further. Repeated application of this option over successive time
intervals will lead to an increasingly deformed array of regions
(Fig. 3c). Conceptually, the Lagrangian approach defines regions
in terms of their material constituents. The pattern of connec-
tions between regions (regional topology) is maintained, but the
indices of regions at later times are not directly related to their
spatial coordinates. Thus, regions reflect history rather than
absolute position in space.

With the Eulerian approach, regions are respecified after the
first time step according to the original spatial coordinate system
(Fig. 3d). The newly defined regular array is then used as the
starting point for the next growth step. Repeating this procedure
of growth followed by grid adjustment over successive time steps
leads to the introduction of more regions as the structure
occupies more of the predefined space (Fig. 3e). As the structure
grows, each region effectively remains fixed while material of the
structure passes through it. Thus, cells in the region labeled (1,1)
at a later time need not be derived from cells of region (1,1) at
an earlier time. Regions are defined on the basis of position
rather than history.

In describing changes in overall shape of a structure in terms
of its component regions, we have assumed that the connectivity
between regions is maintained as the structure grows (i.e.,
regions do not slide relative to each other). This situation applies
to plant development where cell movement is restricted. For
animal development, this assumption may not hold when regions
correspond to individual cells, because these can often slide
relative to each other. However, it may be a reasonable approx-
imation for some multicellular regions. For example, connectiv-
ity is broadly preserved during wing formation in Drosophila, as
evidenced by the fact that marked clones remain contiguous. For

Fig. 1. Velocity fields for a growing disk. (a) Isogonic growth with velocities
shown relative to the center. (b) Growth mainly near the rim with velocities
shown relative to the center. (c) Isogonic growth with velocities shown relative
to the base of the disk.

Fig. 2. Four types of regional parameter for describing growth properties.

Fig. 3. Initial shape with nine regions (a) grows during a time interval �t to
a new shape (b). With a Lagrangian specification, the same material points are
progressively followed, leading to a deformed grid (c). With an Eulerian
specification, regions are redefined at each time step according to a fixed
coordinate system (d), leading to further regions being added to a regular
grid (e).
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vertebrate limb bud development, cells from clones can become
intermixed with neighboring cells. However, even here cell
dispersion is limited, allowing reliable fate maps with preserved
connectivity to be generated (23, 24).

Regional Specification
Because growth parameters may vary from region to region, a
first step in explaining shape is to account for how regional
differences are elaborated during development. Although La-
grangian (material) and Eulerian (spatial) specifications are
useful for describing shape changes over time (i.e., the outcome
of development), they are much less appropriate for understand-
ing how regional differences are established, because regional
specification during development is neither a Eulerian nor a
Lagrangian process.

In the Eulerian view, regions are specified by position relative
to a fixed external coordinate system. However, in biological
development, regions are largely specified through interactions
within the organism rather than with respect to a fixed external
framework. A Lagrangian system might therefore seem more
appropriate, because it deals with regions based on the organ-
ism’s material parts. However, a full Lagrangian description
would require a correspondence to be established between
material in the final state (e.g., the adult or mature organ) and
that in the initial state (e.g., the egg or primordium). Such a
one-to-one mapping can be performed only if all of the regions
in the mature structure are already present in the earlier state
(e.g., a mosaic egg or primordium with all of the regions of the
mature structure already specified). However, a key feature of
development is that regions arise progressively rather than being
prefigured.

One way of dealing with this might be to retain the Lagrangian
approach but specify new material points and subregions as the
structure grows. For example, as region (1,1) grows larger, it
could be subdivided into two regions, distinguished by a further
index as (1,1,A) and (1,1,B). With further growth, more subdi-
visions could be added, with labels reflecting the lineage of each
region. This approach has been used, for example, to describe
Caenorhabditis elegans development in terms of cell lineage
(each region corresponding to a cell). However, although such an
approach is reasonable for documenting the outcome of devel-
opment, it does not capture the mechanism by which regions are
specified, because these do not depend on cell lineage alone,
even in the case of C. elegans (e.g., ref. 25).

To understand the mechanisms by which regions arise during
development, we therefore need different frameworks for re-
ferring to regions and their dynamics. These frameworks are
based on local interactions and combine spatial and historical
aspects of development.

Mechanistic Modeling
One approach is to treat the organism as a continuum, with
regions identified by local properties, such as the concentration
of a particular substance. Regional properties are not specified
by reference to a fixed coordinate system, but arise through a
series of local interactions that operate over infinitesimal neigh-
borhoods. The pattern of concentrations observed at any time
depends on the history of these local interactions. Mathemati-
cally, this behavior can be captured by partial differential
equations (i.e., equations that differentiate with respect to both
space and time), an important class of which are reaction–
diffusion systems (26, 27). These types of model have been used
extensively to generate patterns such as spots and stripes ob-
served on organisms (28, 29). The approach can also be com-
bined with the notion of thresholds to define discrete regions,
such as a region where the concentration of a substance is greater
than a certain amount.

A problem with this approach is that it does not naturally
capture the modular aspects of development. For example,
discrete cellular properties are not inherent to a system that
treats the organism as a continuum. To address this problem, we
can consider regions as reflecting local interactions between
discrete modules (e.g., cells). Changes in module state are driven
by processes within the module and by interactions with neigh-
boring modules. This approach has been used to model the
expression pattern of transcription factors or signaling molecules
in the Drosophila embryo, considered as a linear sequence of
nuclei (30) or cells (31). It has also been used to model genetic
interactions controlling lateral inhibition (32). These models are
based on systems of nonlinear ordinary differential equations
(i.e., equations that differentiate only with respect to time).

Local mechanisms for regional specification may be consid-
ered within growing or static structures. For growing systems, we
need to consider the effect of growth on regional differences. For
example, growth may change the distance between sources and
sinks of substances, thus changing the overall pattern of their
concentrations. Capturing these effects requires methods for
incorporating growth into continuous or discrete frameworks.

For continuous models, growth can be implemented by intro-
ducing growth parameters defined in a continuous manner over
the whole structure. For example, a structure could extend by
local isotropic growth with a rate that is uniform throughout
(isogonic growth) or that varies continuously from one region to
the other. Because the structure is treated as a continuum, the
concentrations of substances will be modified according to the
various processes operating within it (33–36).

In discrete models, growth can involve two processes: change
in module dimensions (i.e., shape and size) and change in
module number. To capture change in module dimensions, each
module can be treated as a region that grows continuously
according to certain parameters. Change in module number has
typically been dealt with in two ways. In the case of models based
on cellular automata (37–39), new modules can be added only to the
outer boundaries of the structure (accretion; Fig. 4a). In the case of
Lindenmayer systems, also called L-systems (40, 41), new modules
can also arise by subdivision within the structure (Fig. 4b).

Understanding the generation of shape requires defining not
only how growth may affect regional differences, but also how
regional differences influence growth. This two-way interaction
between growth and patterning can be illustrated by the fila-
mentous bacterium Anabaena. In environments that do not
contain nitrogenous compounds, each filament of this organism
comprises dividing vegetative cells and evenly spaced nondivid-
ing heterocysts. Heterocyst differentiation is mediated by a
genetic network, at the heart of which is the interaction between
two genes: HetR, producing a protein responsible for the main-
tenance of the heterocyst identity, and PatS, producing a dif-
fusible protein that inhibits the differentiation of new hetero-

Fig. 4. Growth in module number, illustrated with a 1D filament. (a) For
cellular automata, the array is predefined, and modules are added by accre-
tion (arrows). (b) In L-systems, the array grows in parallel with subdivision of
modules.
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cysts in the neighborhood of the existing ones (42). The genes
interact such that HetR up-regulates its own activity and that of
PatS, whereas PatS down-regulates the activity of HetR (Fig. 5a).

The observed spacing pattern of heterocysts has been cap-
tured by using several L-system models (41, 43–45). In the last
of these models, the regulatory network is described by a growing
system with reaction–diffusion equations of the activator–
inhibitor type (27) and represents the gene regulation network
shown in Fig. 5a (45). The spacing pattern results from a two-way
coupling between genes and growth. On the one hand, growth
and division of vegetative cells influence the expression of genes
HetR and PatS by moving heterocysts, sources of inhibitor PatS
protein, away from each other. On the other hand, HetR
influences growth by promoting differentiation of vegetative
cells into nondividing heterocysts (Fig. 5 b–d).

In this example, growth needs to be considered along only one
dimension, because Anabaena is a filamentous organism. This
means that only a single (scalar) regional growth parameter, the
local growth rate in length, needs to be considered. However, for
growth in two or three dimensions, all components of the growth
tensor need to be accounted for, covering the four types of
regional parameter: growth rate, anisotropy, direction, and

rotation. In trying to relate these parameters to gene activity, it
is helpful to consider how they might be specified at the cellular
level.

Specifying Growth Rate, Anisotropy, and Direction
Two of the regional parameters, growth rate and anisotropy,
could in principle be specified by local levels of gene activity
within a cell. For growth rate, the level of gene activity could
influence chemical processes in a cell that lead to a change in cell
size. This growth may be coupled to cell division so that average
cell size is maintained over time, or it may occur without division,
leading to larger cells. In the case of anisotropy, if a cell has
defined main axes, based for example on its cytoskeleton, then
levels of gene activity might influence the relative rate of growth
along these different axes.

This begs the question of how the main axes, and hence the
principal directions of growth of a cell, might be specified and
coordinated within a tissue. One mechanism would be for cells
to align their main axes along morphogen gradients. The gradi-
ents could arise through gene activity in particular regions
leading to the production of signaling molecules that diffuse and
decay or flow away to sinks. A problem with this model is that
for a gradient operating over many cells, the differences in
concentration across individual cells might be very small. One
way of resolving this problem would be for small concentration
differences across a cell to be amplified by intracellular mech-
anisms (46). However, this would have a tendency to intro-
duce errors through amplification and fixation of random
fluctuations.

An alternative to long-range gradients is to have a relay
mechanism whereby signaling molecules act locally on neigh-
boring cells, which in turn produce further signals. Although this
mechanism can align nearby cells, directions may tend to drift
over a longer range (47). Thus, although such a mechanism may
contribute to local coordination of direction, other mechanisms
may still be needed to coordinate direction over greater dis-
tances (48).

A further possibility would be for cells to measure the
direction of morphogen flow rather than the gradient in con-
centration (49, 50). However, it has been unclear how, in
principle, a cell might measure direction of flow. One suggestion
is that the morphogen releases a chemical fragment before
passing through a channel between two cells and then binds the
fragment on emerging from the channel (51). This is a specific
example of a general solution, which is to couple morphogen
movement across cell membranes to the transport, synthesis, or
release of a specific molecule (Fig. 6). Because, on average, more
morphogen will pass in one direction than the other over time,
the coupled molecule would effectively keep a tally of net
morphogen flow. If the tally molecule were localized at the
membrane, its concentration would be raised or lowered on one
side according to whether the morphogen flows into or out of the
cell. In the example illustrated in Fig. 6, the concentration of tally
molecule on the inner side of the cell membrane is raised at the
top of the cell, where morphogen is f lowing out, and lowered at
the base of the cell, where morphogen is f lowing in. This process
allows a difference in tally molecule concentration to be built up
across the inside of the cell, which could then be used to orient
the cell axis. The mechanism effectively amplifies the initial
gradient by integrating morphogen flow over time, in contrast to
other amplification mechanisms that amplify the gradient
present at a particular time.

Whatever the detailed mechanism for aligning cell axes with
gradients, these considerations indicate that morphogens play
two distinct roles in the generation of shape. The first is a
regionalizing role, involved in elaborating differences between
regions, such as levels of gene activity, growth rate, or anisot-
ropy. The second is a polarizing role, involved in specifying

Fig. 5. (a) Core gene regulation network that controls heterocyst differen-
tiation in an Anabaena filament. Nondiffusing protein HetR is responsible for
the maintenance of the heterocyst state. Diffusing protein PatS inhibits
differentiation of new heterocysts in the neighborhood of the existing ones.
Red indicates high concentration of HetR, and dark blue indicates high
concentration of PatS (courtesy of Carla Davidson, University of Calgary).
(b–d) Development of an Anabaena filament, simulated by using an L-system
model based on ref. 45. Vertical bars above filaments indicate concentrations
of HetR protein; bars below filaments indicate concentrations of PatS protein.
High concentration of HetR (red) indicates heterocysts. (b) Two heterocysts
separated by a sequence of vegetative cells. (c) Vegetative cells grow and
divide, moving the heterocysts apart. As a result, the concentration of inhib-
itor near the center of the filament decreases and the concentration of the
activator increases, leading to differentiation of a new heterocyst. (d) The new
heterocyst modifies the distribution of the inhibitor, which prevents cluster-
ing of heterocysts.
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directions of cell axes. Morphogens with a regionalizing role
often act by influencing transcription factors, which in turn can
affect parameters such as growth rate and anisotropy. Cells
respond only to the overall concentration of these morphogens,
not to the direction of their gradient. Morphogens with a
polarizing role, on the other hand, influence the orientation of
cell axes and can hence determine the principal directions of
growth. Cells respond to the highest slope of the morphogen
gradient or to the direction of morphogen flow. Such responses
are unlikely to be mediated by transcription factors, as the
directional information would be lost through conversion to a
gene expression level.

In principle, regionalizing and polarizing roles could reflect
the action of a single type of molecule. However, this would place
great constraints on the range of growth patterns, because
different types of parameter (e.g., growth rate and direction)
would be correlated. It is therefore more likely that these roles
often involve distinct types of molecule, which may be conve-
niently referred to as regionalizing morphogens and polarizing
morphogens.

Signaling molecules that specify directions (i.e., polarizing
morphogens) have been invoked in studies on the polarity and
movement of cells (46, 50, 53, 54). For instance, the genes
controlling bristle orientation on a fly wing are thought to act by
influencing responses to underlying polarizing morphogens (48).
It is possible that the polarizing morphogens that influence cell
polarity and movement are related to the polarizing morphogens
that influence growth. The bristles on a fly wing, for example,
tend to be oriented along the main direction of wing growth,
raising the possibility that a common polarizing morphogen
underlies the orientation of both bristles and growth. In support
of this, some of the genes implicated in establishing bristle
orientation, such as four-jointed, also have effects on proximo-
distal growth (54).

Growth Integration
If all regions in a structure grow with the same growth rate,
anisotropies, and directions, then it is relatively straightforward

to calculate the changes in overall shape as the structure
develops. For example, if each region extends in a similar way
along a given direction, this will result in the structure as a whole
undergoing a stretch in that direction. However, for many
biological structures, growth is not uniform throughout, so
regions are forced to rotate relative to each other as they are
displaced. For example, consider a rectangle in which growth is
locally isotropic but the rate of growth increases from one end
to the other (Fig. 7a). As growth proceeds, the regions at the
faster-growing end will start to rotate relative to each other, and
the initially parallel lines will diverge because of the way
neighboring regions displace each other. In this case, the regions
rotate within the plane of the figure, but it is also possible for
regions to rotate out of the plane. For example, if a disk grows
isotropically with a higher rate or for a longer period at the
periphery than in the center, it will bend out of the plane to form
a wavy edge (Fig. 7b).

According to this view, the effect of genes on rotation stems
from the way growing regions are connected to each other rather
than being a property that is directly specified for each region.
For example, leaves of Antirrhinum normally grow as approxi-
mately planar structures. However, in cincinnata (cin) mutants,
leaves show extensive rippling at the edges, reflecting greater
growth at the margins (55). This effect on curvature results from
a delay in growth arrest at the margins of the leaf. Thus, the CIN
gene influences rotation rate by affecting relative growth, which
leads to bending because of the way regions are interconnected.

To understand the generation of shape, it is therefore essential
to take account of rotations that result from regional intercon-
nections. One way of incorporating this into modeling frame-
works is to assign elastic properties to components of the
structure so that regions can adjust to each other during growth
(56). Such mutual adjustment allows all four types of regional
parameter (growth rate, anisotropy, direction, and rotation) to
be integrated within a single model. In the simplest case, points
in the structure can be interconnected with springs (41, 57).
Growth occurs by changing the resting lengths of the springs
according to the specified growth rates, anisotropies, and direc-
tions. Increasing the resting length of a spring is equivalent to
inserting an extra length of spring material into it (Fig. 8).
Rotation rate can then be computed by finding the equilibrium
where the energy stored in the springs is minimized (i.e., the
forces balance). An alternative to springs is to treat the regions
themselves as comprising elastic material by using 2D or 3D

Fig. 6. Model for coupling cell polarity to direction of morphogen flow.
Morphogen molecules M diffuse (or are transported) in and out of the cell,
whereas tally molecules (black dots) are localized at the cell membrane. The
gradient of M is such that there is a net flow from the bottom of the cell to the
top (vertical black arrows). M also crosses the membrane in the opposite way,
but to a slightly lesser extent (gray arrows). Passage of M across the cell
membrane is coupled to the movement (or synthesis�degradation or release�
capture) of a tally molecule so that the tally molecule is transported across the
membrane in the opposite direction to M. (a) Initially there is an equal
concentration of tally molecules on each side of the membrane. (b) With time,
the internal concentration of tally molecules increases at the top and de-
creases at the bottom of the cell until equilibrium is reached. The distribution
of tally molecules would change gradually when the gradient of M changes
orientation, leading to a change in cell polarity.

Fig. 7. (a) Rectangle with isotropic growth rate increasing exponentially
from left to right gives a curved final shape. (b) Flat disk with isotropic growth
rate greater at the margins than at the center results in bending out of the
plane and a wavy edge.
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finite elements (58). In this case, growth is implemented by
changing the resting shape and size of the elements.

To capture the effects of genes on growth, continuous or
discrete regional models can be incorporated within intercon-
nected frameworks, allowing the growth properties of each
region in the framework to be influenced by gene action. As
described in previous sections, growth rate and anisotropy can be
specified through local interactions involving regionalizing mor-
phogens. Directions can be specified through responses to
polarizing morphogens. Rotation rates then emerge from the
way interconnected regions grow in relation to each other. The
resulting changes in shape and size will in turn modify the local
interactions. This provides a general approach for modeling
shape change as a two-way interaction between patterning and
growth.

Modeling growth in this way may lead to stresses accumulating
in a structure as it grows. For example, consider a sphere in which
growth is locally isotropic but for which the rate of growth at the
core of the sphere is greater than in the outer layer. This sphere
would be modeled by increasing the resting lengths of elements
in the core to a greater extent than elements near the surface.
However, because the regions are interconnected, the inner and
outer elements would constrain each other. The inner elements
would be under compression and not attain their resting lengths,
whereas the outer elements would be under tension and exceed
their resting lengths (the magnitude of the forces would depend
on element stiffness). Equilibrium would be reached when these
compressive and tensile forces balance. The extent to which such
stresses develop would depend on the geometry of the structure
and the growth parameters that are applied.

It is possible that stresses that arise within a growing organism
could themselves influence growth by feedback. For example, if
a region is under tension or compression, this might be sensed,
say by mechanoreceptors, leading to modified growth of the
region (59). This could be modeled by adjusting the resting
lengths of the elements according to the stresses that accumu-
late. Such feedback mechanisms may be an important way of
adjusting growth, ensuring that excessive stresses do not build up.

A Case Study: Genes and Petal Shape
These issues will be illustrated further with the generation of
petal shape in Antirrhinum (snapdragon). Antirrhinum f lowers
have five petals, which are united in their proximal regions to
form a tube, whereas their distal regions form five distinct lobes
(Fig. 9a). The flower is asymmetric along its dorsoventral axis,
having two dorsal petals, two lateral petals, and one ventral
petal. The dorsal and lateral petals are asymmetric, whereas the
ventral petal is bilaterally symmetric, which is more readily seen
when the petal lobes are removed and flattened (Fig. 9b).

The asymmetry of petals and of the flower as a whole depends
on the activity of the CYCLOIDEA (CYC) and DICHOTOMA

(DICH) genes (61–63). In cyc dich double mutants, all petals
resemble ventral petals (Fig. 9c). Conversely, mutants that
express CYC ectopically have petals with dorsal identity in all
positions (Fig. 9d). CYC and DICH encode proteins belonging to
the TCP family of transcription factors and are both expressed
in dorsal regions of the flower from an early stage of develop-
ment. CYC is expressed throughout the dorsal domain, whereas
DICH is restricted to the dorsal half of each dorsal petal (dark
blue region in Fig. 9). How does regional activity of these
transcription factors influence petal shape?

To begin to address this question, parameters underlying
growth of the dorsal petal lobe were determined through clonal
analysis (60), which involves genetically marking dividing cells
followed by identification of their mitotic descendants (64).
Some growth parameters can be inferred by analysis of the
resulting clone patterns. For example, clones induced at various
times in developing leaves or Drosophila wings have provided
estimates of the distribution and rates of cell division (65–71).

Although less direct than tracking for monitoring growth, the
advantage of clonal analysis is that information can be extracted
when the structure is at an easily accessible stage (often the
mature organ). However, the approach does not permit rotations
and hence overall shape changes to be calculated directly. This
limitation can be overcome by incorporating clonal analysis data
within a spring model (60). This allows changes in shape and
associated rotations to be computed for a sequence of develop-
mental stages (Fig. 10).

Comparisons among simulations using observed and simpli-
fied parameters show that the major determinant of petal lobe
asymmetry is the overall direction of anisotropic growth, rather
than heterogeneities in growth rates within the petal lobe. The
amount of anisotropy determines the extent to which the petal
elongates, whereas the main direction of growth determines
petal asymmetry.

As the flower grows, the base of the petal lobe gradually turns
through an angle of �45° relative to the proximodistal axis of

Fig. 8. Modeling growth with springs. Growth of each region shown in a is
implemented by changing the resting lengths of the springs and letting them
equilibrate (b), which is equivalent to inserting extra lengths of material (gray
segments in b) into the springs.

Fig. 9. (a) Antirrhinum flower shown in side view (Left) or face view (Right).
Regions are color coded as blue (dorsal), brown (lateral), and yellow (ventral).
The dorsal half of the dorsal petal is shown in darker blue [reproduced with
permission from ref. 60 (Copyright 2003, Nature Publishing Group, www.
nature.com).] (b–d) Flattened petal lobes of wild-type (b), cyc dich double
mutant (c), and mutant expressing CYC ectopically (d).
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the flower. The rotation reflects greater growth on the most
dorsal side of the tube (Fig. 11 b–d). Despite this rotation,
growth direction in the petal lobe is maintained roughly parallel
to the proximodistal axis throughout development, suggesting
that a polarizing morphogen (arrows in Fig. 11 b–d) acts
continuously during development to maintain growth direction
along the proximodistal axis of the petal as a whole. If growth
directions were fixed at an early stage, they would rotate with the
lobe, which, therefore, would not become asymmetric (Fig. 11
e–g).

To see whether this hypothesis could account for what is
observed, a growth model for the developing dorsal petal was
constructed by using 2D finite elements (our unpublished work).
The model starts with several regional identities, which can act
in a combinatorial fashion where they overlap (Fig. 12). These
identities provide distinctions along different petal axes: a tube
and lobe region along the proximodistal axis, a dorsal and lateral
half along the dorsoventral axis, and three regions along the
mediolateral axis (Fig. 12 a–c). Finally, the base of the tube is
defined as a source of a polarizing morphogen, for which the
distal edge of the lobe is a sink: this forms a gradient along the
proximodistal axis (Fig. 12d). The various regional identities
proposed in Fig. 12 a–d can be considered as having arisen
through responses to regionalizing morphogens.

As a first approximation to normal petal development, growth
parameters can be set in the following way. The main direction
of growth is set by the gradient of polarizing morphogen, which

acts continuously during petal growth. This alignment tends to
orient growth along the proximodistal axis. Growth rate is
enhanced in the lobe (dark pink), in the middle of the tube (light
green and pale pink), and in the dorsal side of the tube (dark
blue, dark green, and pale pink). Anisotropy is enhanced in the
tube (pale pink). In addition, the base and dorsal edge of the tube
are kept horizontal and vertical, respectively, because they are
constrained through connections to other parts of the flower.
Finally, to minimize rotation of the sink relative to the source,
the sink is rendered inactive at the lateral edge of the lobe
(brown, dark green, and pale blue).

A simulation based on these assumptions gives a reasonable
match to the observed shape (Fig. 13a). This does not prove that
all features of the model are correct, because other assumptions
may also be compatible with the observations, but shows that the
model provides one plausible explanation for the recorded
growth patterns. The model can also be used to simulate growth
of a mutant, backpetals, in which CYC is expressed ectopically
(62). This mutant gives some petals that resemble mirror image
duplications of the lateral half of a dorsal petal (Fig. 9d). In the
model, this mutant should correspond to removing the distinc-
tion between the dorsal (dark-blue) and lateral (light-blue)
halves of the petal, such that both have a more lateral (light-blue)
identity. The petal shape predicted by this is a reasonable
match to the observed dorsalized petals in the ectopic mutant
(Fig. 13b).

A general point to emerge from this analysis is that shape
changes during growth can arise from the interplay among three

Fig. 10. Shape changes in petal lobe from early to late stages. Lines show
main directions of growth for each region at each stage when anisotropy was
�1.05 per cell division. Petals have been scaled to the same size and aligned
such that the average direction of growth is vertical. The scaling factor in area
between P32 and P46 is 105.

Fig. 11. (a) Flattened dorsal petal color coded as in Fig. 9 showing boundary
between tube and lobe. Vertical arrow indicates the proximodistal axis. (b–d)
Change in shape when growth direction is continuously coordinated along
the whole petal (arrows arbitrarily shown pointing up rather than down).
Lobe is white and tube is blue, with dorsal regions darker blue. Initially, the
lobe is bilaterally symmetrical (b). Dorsal side of the tube grows preferentially,
resulting in a change in the orientation of the tube-lobe boundary (c). As
growth direction is maintained parallel to the proximodistal axis, anisotropic
growth results in the lobe becoming asymmetric (d). (e and f ) Change in shape
if the direction of growth becomes fixed at an early stage. Initially (e), growth
direction is vertical as in b, but, as the tube-lobe boundary changes orienta-
tion, the direction of growth within the lobe rotates together with the lobe
( f), leading to a bilaterally symmetrical lobe (g).

Fig. 12. Wild-type dorsal petal at an early stage of development with
regional identities distinguished along different axes. (a) The petal is divided
along the proximodistal axis into a tube (pale-pink) and lobe (dark-pink)
region. (b) The petal is divided along the dorsoventral axis of the flower into
a more dorsal (dark-blue) and lateral (light-blue) half. (c) The petal is divided
along its mediolateral axis into middle (light-green), intermediate (medium-
green), and side (dark-green) regions. (d) A region is defined at the base of the
petal (bright yellow) that provides a source of polarizing morphogen that
diffuses (arrows) toward a distal sink (brown). (e) Subdivision of petal into
finite elements.

Fig. 13. Final petal shapes resulting from growth models operating on the
starting shape shown in Fig. 12. Only distinctions along the dorsoventral axis
are color-coded. Tube-lobe boundary is highlighted in black, and the main
directions of growth is indicated with short pale-yellow lines. (a) Model of
wild-type dorsal petal with direction determined by a polarizing morphogen
acting continuously during growth. (b) Same as a except that dark blue has
been removed, capturing the development of the backpetal mutant.
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components: regionalizing morphogens, regional identities, and
polarizing morphogens. By incorporating these within an inter-
connected framework of regions, it is possible to generate shape
changes according to particular hypotheses. The results can be
compared to observed parameters and shapes. The hypotheses
can also be further examined by seeing how well they account for
mutants.

The combination of modeling, genetics, and growth analysis
described here begs many questions, such as the nature of the
morphogens, the targets they affect, as well as what causes

regional shapes to change or stop changing. Nevertheless, we
believe the approach provides a useful quantitative and testable
framework for beginning to assess the interplay between gene
action and shape.
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