
THE UNIVERSITY OF CALGARY

Design and Implementation of Global Virtual

Laboratory - a Network-Accessible Simulation

Environment

by

Pavol Federl

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
CALGARY, ALBERTA

DECEMBER, 1997

(c) Pavol Federl 1997

aduate
irtual
derl
THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Gr
Studies for acceptance, a thesis entitled “Design and Implementation of Global V
Laboratory - a Network-Accessible Simulation Environment” submitted by Pavol Fe
in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. Przemyslaw Prusinkiewicz

Dr. Robert Kremer

Dr. Brian Wyvill

Dr. Claude Laflamme

Date

cts or
d and
ment
s and
them.
 part of
shared
ws of
 visual
rol of
faces.
ous
made
Abstract

Many activities in computer graphics can be regarded as experiments on virtual obje
models. In the process of experimentation the existing models are gradually improve
new model categories emerge. The Virtual Laboratory (VLAB) is a software environ
designed to support model development by facilitating the manipulation of model
providing mechanisms for retrieving and storing large numbers (e.g., thousands) of
This thesis describes a number of VLAB extensions I designed and implemented as
my master’s research. As a result of these extension, the models in VLAB can be
between many users who may work at different geographical locations. Alternate vie
databases can be maintained, allowing users to access objects in different orders. A
parameter editor was implemented, providing intuitive mechanism for external cont
parameters used in experimentations through user configurable graphical user inter
The overall performance and portability of VLAB was improved, and vari
customization mechanisms for adjusting visual appearances of VLAB applications
available.

e he

ussing

times.

rom a

nd my

 to my

ort,

ocess

ble

anan
Acknowledgments

I would like to thank my supervisor, Dr. Przemyslaw Prusinkiewicz, for the advic

offered to me during my research, for the countless hours he spent with me on disc

various aspects of VLAB, and for helping me to edit and proofread this thesis many

I could never have finished this research without him. Learning to conduct research f

world-class researcher was a pleasure. My next thank-you goes to my mother a

brother, for supporting my academic career in every possible way. Special thanks go

girlfriend, Jennifer Walker, for proofreading this thesis. Her moral and emotional supp

as well as her incredible patience while I was writing this thesis, made the whole pr

enjoyable. Finally, I would also like to thank all users of VLAB for their valua

comments and suggestions, most importantly to Przemyslaw Prusinkiewicz, Jim H

and Radomir Mech.

Table of contents

......2
....4
....5
.....7
...13
.....13

.....15
....16
......16
.....18
......18
.....19
.....19

....21
....21
....22
....22
....23
..23
...23
...25
...25
....28
.....28
Chapter 1: Introduction 1

1.1. Motivation ..
1.2. Overview of Virtual Laboratory 2.0 and its limitations

1.2.1. VLAB objects and object oriented filesystem
1.2.2. VLAB 2.0 components ...
1.2.3. Portability..

1.3. Summary ...

Chapter 2: Statement of objectives 15

2.1. Alternative views of object databases ...
2.2. Support for collaboration ...
2.3. Panel manager ..
2.4. Portability ..
2.5. Performance improvements..
2.6. User customization..
2.7. Summary ...

Chapter 3: Survey of related concepts and previous work 21

3.1. Concepts related to VLAB ...
3.1.1. Monolithic versus open hypertext systems................................
3.1.2. Prototype-extension model ..
3.1.3. Graphical versus command line interfaces
3.1.4. Tools ..

3.2. Previous work related to the implementation of VLAB
3.2.1. Two way extensibility...
3.2.2. Building graphical user interfaces ..
3.2.3. Frameworks for experimentation..
3.2.4. External parameter control...

3.3. Summary ...

x TABLE OF CONTENTS

.....31
......34
....34
...35
....40
......40
.....42
.....43
.....43
....43
.....44
...44
.....49
...50
...50
......50
...51
.....51
...51
.....52

....55
..56
...57
.....58
.....59
......59
.....59
.....60
...61
....61
...62
....64
......64
.....64
....68
.....74
..74
...76
...80
Chapter 4: Remote access server 31

4.1. Background ...
4.2. Requirements..

4.2.1. Implementation models..
4.2.2. Evaluation of implementation models ..
4.2.3. Conclusion ...

4.3. Design...
4.4. User’s perspective of RAserver...

4.4.1. Daemon mode ...
4.4.2. Setup mode..
4.4.3. Related files ...

4.5. Implementation details ..
4.5.1. Overall structure of RAserver...
4.5.2. Communication mechanism and format of messages...............
4.5.3. Implementation of RAserver’s setup mode
4.5.4. Account file format ...

4.6. Remote access library...
4.6.1. Optimization ...
4.6.2. Return values ..
4.6.3. Example of using RAlibray ..

4.7. Summary ...

Chapter 5: Panel manager 55

5.1. Background - panel manager in VLAB 2.0..
5.1.1. Panel definition file format ..
5.1.2. Interfacing with an application ...
5.1.3. Example of usage..
5.1.4. Drawbacks of panel manager 2.0..

5.2. Requirements and design ...
5.2.1. Requirements ..
5.2.2. Parameter types...
5.2.3. Extensibility ..
5.2.4. Component hierarchy...
5.2.5. Specification of parameter location ..
5.2.6. Dual mode of operation ...

5.3. User’s perspective of panel manager ...
5.3.1. Run mode..
5.3.2. Edit mode...

5.4. Implementation details ..
5.4.1. Panel definition file format ..
5.4.2. Implementation of run mode...
5.4.3. Implementation of edit mode..

TABLE OF CONTENTS xi

....85
.....88

......89

...89

....90
.....91
...92
.....99
...104

...105

...107

.108
...109
.109
.109
...111
..111
...111

....113

..113
...114
..114
..115
.115
..116
...116
..116
.117
.118
..119
..119
..120
...120
...121
5.4.4. Options dialog..
5.5. Summary ...

Chapter 6: Browser 89

6.1. Design...
6.1.1. Support for external references to VLAB objects.......................
6.1.2. Objects and oofs databases in VLAB 3.0

6.2. User’s perspective of browser ...
6.2.1. Start-up information..

6.3. Implementation details ..
6.4. Summary ...

Chapter 7: Metatext 105

7.1. Structure of metatext ...
7.2. User’s perspective of metatext ..

7.2.1. Start-up information..
7.3. Implementation Details ...

7.3.1. Index file format ...
7.3.2. Frame file format ..
7.3.3. Organization of metatext databases ..
7.3.4. Customization ..

7.4. Summary ...

Chapter 8: Hyperbrowser 113

8.1. Requirements and design ...
8.1.1. Shortcomings of metatext ..
8.1.2. Design goals..
8.1.3. Implementation models..
8.1.4. Hyperobjects ..
8.1.5. Hyperobject file system ..
8.1.6. Hyperbrowser...

8.2. User’s perspective of hyperbrowser..
8.2.1. Overview..
8.2.2. Start-up information..
8.2.3. Invoking hyperobjects...
8.2.4. Changing the order of hyperobjects...
8.2.5. Invalid hyperobjects...
8.2.6. Renaming hyperobjects..
8.2.7. Adding hyperobjects to hofs databases.....................................

8.3. Implementation details ..

xii TABLE OF CONTENTS

..121
..121
.122
...123

...125
..125
126
..126
..127
..127
..127
...128
...129
...129
....129
.130
...130
.131

..143
...147
....149
8.3.1. Structure of hyperobjects ...
8.3.2. Format of the node file...
8.3.3. Implementation of hyperbrowser..

8.4. Summary ...

Chapter 9: Conclusion and future work 125

9.1. Conclusion...
9.1.1. Accomplishments...
9.1.2. Impact of VLAB 3.0 ..

9.2. Limitations and future work...
9.2.1. Find ..
9.2.2. Improved GUI designer for panel manager
9.2.3. Undo...
9.2.4. Extended objects ...
9.2.5. Extended hyperobjects ..
9.2.6. Unified oofs and hofs databases ...
9.2.7. Unique access to databases ..
9.2.8. Multiple inheritance..
9.2.9. Alternate methods for storing databases...................................
9.2.10. Distribution of external programs...

Appendix A: RA class 137

Appendix B: More on panel manager 143
B.1. Example of creating a control panel ..
B.2. Component attributes..
B.3. Class component ..

List of tables

..19
....35
......81
...147
...149
2-1 Performance comparison of VLAB 2.0 and VLAB 3.0, in seconds........
4-1 Evaluation of implementation models ...
5-1 Class event ...
B-1 Component attributes..
B-2 Class component ...

List of figures

...5
.....7
......8
......9
..10
....11
...12
...12

.....17
....20

......32
.41
......49

..56

...57

......65

......69
.....71
....71
Chapter 1:Introduction

1-1 Example of VLAB object’s directory organization..................................
1-2 Structure of VLAB’s objects ..
1-3 Snapshot of the VLAB 2.0 browser...
1-4 Snapshot of VLAB 2.0’s object manager ..
1-5 Inter-client communication in VLAB 2.0..
1-6 Snapshot of VLAB 2.0’s panel manager ...
1-7 Communication in VLAB 2.0’s panel manager
1-8 Metatext in VLAB 2.0 ..

Chapter 2:Statement of objectives

2-1 Snapshot of panel manager 3.0 in graphical build mode......................
2-2 Snapshot of browser’s customization dialogs..

Chapter 3:Survey of related concepts and previous work

Chapter 4:Remote access server

4-1 Database access in VLAB 2.0 (left), desired database access (right)..
4-2 Communication flow between two VLAB applications and RAserver....
4-3 Message Format in Remote Access Extension

Chapter 5:Panel manager

5-1 Communication flow in VLAB 2.0’s panel manager
5-2 Example of a control panel and its definition file...................................
5-3 Panel manager 3.0 in run mode..
5-4 Panel manager 3.0 in edit mode...
5-5 Popup menu for panel components...
5-6 Attribute editor for panel components ...

xvi LIST OF FIGURES

...72
....72
...73
.....76
......84

....91
...92
....96

....98

..100

..100

..102

.....106

....107
..110

..117

..118

..119

..144

.144

.145
5-7 Attribute editor for label components ...
5-8 Attribute editor for integer range components.......................................
5-9 Attribute Editor for Choice Components..

5-10 Example of a component tree ...
5-11 Resize cursors ..

Chapter 6:Browser

6-1 Browser’s window ...
6-2 Browser’s login window...
6-3 Browser’s find dialog...
6-4 Browser’s customization dialogs: a) main dialog, b) color

chooser dialog, c) font chooser dialog ...
6-5 Two different tree layout methods: sparse (left) and

compact (right)...
6-6 Different tree drawing methods ...
6-7 Tree clipping in browser ..

Chapter 7:Metatext

7-1 Structure of a) metatext database, b) metatext processes
7-2 Snapshot of metatext without (top) and with (bottom)

expanded menus...
7-3 Example of metatext display..

Chapter 8:Hyperbrowser

8-1 Example snapshot of hyperbrowser’s window
8-2 Action menu in hyperbrowser..
8-3 The order of database traversal using the Next and Previous

functions in hyperbrowser..

Chapter 9:Conclusion and future work

Appendix A:RA class

Appendix B:More on panel manager

B-1 Invoking panel manager in edit mode..
B-2 Setting the panel’s title in panel’s attribute editor
B-3 Using the floating point range’s attribute editor and the font chooser ...

LIST OF FIGURES xvii

..145
..146
...146
B-4 Panel manager in edit mode with two components
B-5 Editing choice’s attributes..
B-6 Final appearance of the control panel ...

xviii LIST OF FIGURES

e, and
ation,
various
nt of
ering
would
ratory

erent
[21].
 and

 The
ation.
and an
 plant
orms
- to be

d his
LAB
ster’s
out
direct
ithout
995,

 its
owsing
as
some
 new
ted to
n of
s of
CHAPTER 1 Introduction

Computers in the current technological era are becoming more powerful, easier to us
more affordable every day. They are now in widespread use in industry, educ
research and homes. In scientific research, computers are used by scientists for
purposes such as organization of work, electronic collaboration, developme
algorithms, and simulation of experiments. Various software applications exist, off
adequate functionality for each of these tasks. However, a unified environment that
support all these existing applications in a consistent way is needed. Virtual Labo
(VLAB) is a software environment designed to address this problem.

VLAB is based on an electronic analogy of a laboratory, offering scientists a coh
platform for performing and organizing computer assisted experiments [13][18][20]
The idea behind VLAB emerged from the need for an environment for organizing
simplifying work related to computer based simulation of biological phenomena.
large number of files representing models of plants require structured organiz
Numerous parameters used in plant modeling demand a tool which provides a fast
intuitive mechanism for their modification. Frequent operations, such as rerunning
generating programs or invoking editors on different files, require a tool which perf
such actions quickly and conveniently. VLAB’s design aims to address these issues
an interactive environment for creating, managing and conducting experiments.

The authorship of the concept of VLAB belongs to Dr. Przemyslaw Prusinkiewicz an
graduate students Lynn Mercer and Jim Hanan [20]. In 1990, the first version of V
(version 1.0) was designed and implemented by Lynn Mercer as part of her Ma
Programme research [21]. VLAB 1.0 provided only very limited visual information ab
the experiment databases and a very simple user interface, which was a
consequence of being implemented under a limited window management system (w
support for widgets, dialogs or other GUI components now readily available). In 1
Earle Lowe created a new version of VLAB (version 2.0) by redesigning
communication mechanism and introducing fundamental changes to its database br
capabilities [18]. Unfortunately, much of the new functionality in VLAB 2.0 w
implemented as a prototype, resulting in low performance and reduced reliability in
of its components. These shortcomings interfered with testing and verifying the
concepts introduced and implemented in VLAB 2.0. Some of the deficiencies rela
the new browsing capabilities of VLAB 2.0 were addressed in my reimplementatio
browser - a VLAB application used for navigating and managing database

2 CHAPTER 1: INTRODUCTION

duate
ve its

puter
metry,
tion of

 new
 this
B. It
he old
rsion
ater

us to
ating
ning

stics.

ams to
 large
phical
, which
iety of
 data
 files
at can
experiments. Browser’s reimplementation was the topic of my project in an undergra
computer science course [7]. I selected VLAB as the topic of MSc research to impro
design and to add to its functionality.

VLAB has been successfully used to support a wide variety of activities in com
science, such as simulations of biological phenomena, experiments in fractal geo
rendering and animation of complex scenes, presenting tutorials for classes, prepara
papers for publication and maintenance of source code.

In my MSc research I made many improvements to VLAB’s design and added
functionality to its applications. These will be the topic of this thesis. The rest of
chapter is organized as follows. In Section 1.1 I discuss the motivation behind VLA
should help the reader to understand the concepts which are implemented in t
version of VLAB, and also provide a background for the requirements of the new ve
of VLAB. In Section 1.2 I introduce VLAB 2.0 and outline its shortcomings, needed l
in the thesis as the basis for describing my own contributions.

1.1. Motivation

Scientists often use computers on a regular basis to perform tasks analogo
experiments in their fields. Whether this involves running existing experiments, cre
new ones or deriving experiments from existing ones, writing papers, desig
presentations or producing animations, these tasks share many common characteri

Maintenance of relationships between programs and data files

All of the above tasks need a group of one or more data files and the related progr
be run on these files. For example, physically based simulations usually require
amounts of data (stored in data files) and the simulation programs. Modeling of gra
scenes is another example, where data files describe the geometry of the models
are then used as input to a modeler or a ray-tracer. With a large number and var
experiments it becomes difficult to keep track of which programs to run on which
files, in what order, and with which options. Therefore, relationships between data
and programs need to be effectively maintained, for example, as a set of actions th
be performed on an experiment.

CHAPTER 1: INTRODUCTION 3

old
sually
 for

rk of

ons of
sed to
ization
’s stress

meter
s, the
editor,
which
 using
inate
g the
reater
 since
.

 still
being

iate files
o be
grows,
ickly.
 user
e user
ted with
h as
User definable actions

As scientists experiment with new ideas or simply modify and improve the
experiments, the related groups of data files are repeatedly worked on. This u
involves rerunning parts, or whole experiments numerous times. A mechanism
convenient invocation of actions within an experiment is needed to simplify the wo
users, and thus enhance their efficiency.

The need for such a mechanism also emerges from the fact that live presentati
computer based experiments require numerous reruns of simulations. If typing is u
invoke programs, the presenters must concern themselves with command memor
and possible typographical errors. These can lead to delays, increase the presenter
factor and be disruptive for the audience.

Parameter editor

For many types of experiments it is very important to thoroughly examine the para
space of a problem. When the parameters for the simulation are stored within file
search for optimal parameters usually requires editing the appropriate files in a text
and then rerunning the simulation program on the modified data. A tool is needed
will allow the users to examine the parameter spaces in a more intuitive manner -
graphical user interfaces. Using visual controls for parameter exploration will elim
much of the tedious and non-productive work spent by typing in a text-editor, givin
user the possibility to examine the vast parameter combinations faster and in g
detail. Such a tool can also be utilized for presentation and teaching purposes,
changing parameters visually is more intuitive for audiences than using a text-editor

Version management and organization of experiments

Scientists often need to work on different versions of experiments in parallel, while
requiring easy access to the original versions. Old experiments are constantly
retrieved, new versions created and documented, bad ideas discarded and appropr
deleted. Such activities inherently yield a large number of files which need t
effectively maintained. Also, as the number of experiments in a scientist’s database
it becomes increasingly important to be able to find the appropriate experiments qu
Therefore, a tool is needed to hierarchically organize experiments, while giving the
an intuitive interface to the database’s management. Such a tool has to provide th
with a visual representation of the database, where each experiment can be associa
its own depiction. This tool will also provide functions for modifying the database, suc
addition, deletion, moving, copying, searching, etc.

4 CHAPTER 1: INTRODUCTION

related
This is
re the
access
urity to

ntexts.
t of a
tural
f data
 for

etween

ction.
 good
object,
o this
 user
 adding

nted
Collaboration

Scientists often collaborate on the same set of experiments, which requires all data
to these experiments to be transferred several times between different computers.
especially true if the group of scientists working on the same problem do not sha
same geographical location. A mechanism providing the scientists with transparent
to remote databases of experiments is required. This mechanism should offer sec
prevent unauthorized access.

Alternative views of object databases

An object in a database of computer experiments may be of interest in several co
For instance, a mass-spring simulation of a cloth could be developed as a par
comparative study of various techniques for simulating physical behaviors of na
objects, but it may also serve as an example of an animation technique, illustration o
triangulation or simply as the source of a picture for a publication. A mechanism
creating alternative views of object databases, reflecting conceptual associations b
the objects is needed.

Support for interaction

One of the main design goals of VLAB is to encourage and support user intera
Giving the users freedom to experiment without fear of destroying the originals is a
approach toward achieving this goal. Once the user decides to experiment with an
it should be copied to a temporary location, where modifications can be made t
temporary copy without affecting the original. After the experimentation is over, the
must have the option of saving the changes into the database, either by replacing or
a new version to the original.

1.2. Overview of Virtual Laboratory 2.0 and its
limitations

VLAB consists of experimental units called ‘objects’ organized in an object orie
filesystem, and various utility programs (tools) that operate on these objects.

CHAPTER 1: INTRODUCTION 5

nted
ion) is
 all

lated
a file
very

tored.
 easy

riented
sions

. This
UNIX
1.2.1. VLAB objects and object oriented filesystem

The organization of VLAB’s object databases is based on theprototype-extension model
described by Lieberman [17]. The prototype-extension model is an object orie
approach for storing knowledge about objects. In this model, a new object (extens
created by describing how it differs from an existing objects (prototype), inheriting
other knowledge from the prototype. Multiple inheritance is also supported.

Each VLAB object represents an experiment by encompassing all of its re
information in files. These files can be divided into two groups: files with data, and
containing information about actions which can be performed on the data files. E
VLAB object is assigned a separate directory, where the object’s data files are s
VLAB objects are associated with textual names, as well as graphical icons (for
visual inspection while browsing the database).

VLAB objects are organized into hierarchical databases, also referred to as object o
file systems (or oofs). In these databases, any VLAB object can have exten
(children), stored as subdirectories in the directory of the prototype (parent object)
mechanism for storing object extensions as subdirectories is well supported by the
hierarchical filesystem.

FIGURE 1-1: Example of VLAB object’s directory organization

object A

object
specification

file
icon data-file

1
data-file

2
ext/

6 CHAPTER 1: INTRODUCTION

bject

of
ions
s the

n is
global
lation
hole

ach

ans a
efining
which
AB is
ase as
ones
lative
ithout
ld be

e 1-2.

tries,
bject
s

s

Figure 1-1 demonstrates an example of an object with two data files. Every VLAB o
consists of any number† of data files, and three special-purpose files:

specifications(a required file for all VLAB objects) This file contains two types
information: list of data files included in the object and a description of act
which can be performed on these data files. This list of actions also define
layout of the popup menus from which the user can invoke these actions.

icon (an optional file) This file stores an image in the SGI’s RGB file format. The ico
user defined, and is used for visual representation of an experiment in the
view of the database. Icons are usually chosen by taking snapshots of simu
results. If an object does not have an icon, a default icon defined for the w
database is used.

ext (an optional directory) In theext directory the object stores its extensions. Since e
object is stored as a directory, theext directory will only contain sub-directory
entries.

VLAB’s object oriented filesystem supports single inheritance on objects, which me
user can derive new objects from old ones, inheriting selected data/actions and d
new ones. Changes in the parent object are reflected in all of its children objects
inherit the data files to which these changes were applied. Single inheritance in VL
achieved by the following mechanism: whenever an object B is inserted into a datab
a child of object A, all files of object B are compared against A’s files, and only the
that differ are stored in B’s directory. Files that match are stored as symbolic links re
to A’s files. Therefore, if an object was to be created as an extension of a prototype w
making any changes to this extension, all files in the new extension’s directory wou
relative symbolic links to the files in the prototype’s directory.

To demonstrate the inheritance mechanism in VLAB, consider the example in Figur
Objectmodel_1 has 6 entries in its directory. The first two are thespecifications
and icon files. The last one is the directory for extensions. The remaining en
data1 , data2 anddata3 , are user defined data files needed for the experiment. O
model_1.1 is an extension ofmodel_1 . It has 7 entries in its directory: it inherit
icon , data2 anddata3 from its prototype (model_1), redefinesspecifications
and data1 , and also adds an extra filedata4 . Model_1.1.1 contains modified
specifications andicon , inheriteddata1 anddata2 from model_1.1 and an
extra filedata5 . Filesdata3 anddata4 are not part ofmodel_1.1.1 .

In this scenario, if a user made a change to filedata3 in model_1 , such a change would
propagate tomodel_1.1 , but model_1.1.1 would be unaffected. If the change wa
made todata2 in model_1 , such a change would be reflected in bothmodel_1.1 and

† only limited by the UNIX operating system

CHAPTER 1: INTRODUCTION 7

ist the
object
s each

 for
ject
e user
r hide
model_1.1.1 objects. Naturally, any modification todata1 in model_1 would not
affectmodel_1.1 , normodel_1.1.1 . Any change applied todata1 of model_1.1
would propagate tomodel_1.1.1 while changes made todata3 or data4 would not.

It should be noted that VLAB objects do not inherit extensions.

1.2.2. VLAB 2.0 components

VLAB offers various tools to help access the databases of VLAB objects, and ass
users in experimenting with these objects. The most important tools are: browser,
manager, VLAB daemon and panel manager. The remainder of this section describe
of these components. Their shortcomings are analyzed where appropriate.

Browser

Browser is a VLAB component that provides the user with a visual interface
navigating through the hierarchy of objects. It can be invoked on any VLAB ob
database, displaying its hierarchy as a two dimensional tree graph (Figure 1-3). Th
can expand specific parts of the hierarchy tree by showing or hiding children, show o

model_1

model_1.1

model_1.1.1

specifications

icon

data1

data2

data5

ext/

specifications

icon

data1

data2

data3

data4

ext/

specifications

icon

data1

data2

data3

ext/

FIGURE 1-2: Structure of VLAB’s objects

8 CHAPTER 1: INTRODUCTION

ents.
s for
 also

o
user
d to
and

annot
oration

lying
rovide
utes to

s, the
ttings
uch as
icons for individual objects or entire sub-trees, and textually search for experim
Browser also makes it simple to modify the object hierarchy by supporting operation
cutting, copying, pasting, renaming, dragging & dropping of objects. Browser can be
used to invoke object manager (described in the text section) on selected objects.

The main limitations and shortcomings† of VLAB 2.0 browser can be summarized int
three categories: lack of support of collaboration, low performance and
customization. VLAB 2.0 browser’s lack of support for collaboration can be attribute
the fact that the entire VLAB up to and including version 2.0 was designed
implemented as a single user system. Browser’s most important limitation is that it c
be used to access databases stored on remote computers, making the collab
between scientists at different geographic locations difficult.

Being a prototype implementation, having large parts implemented in Tcl/Tk and re
on external programs to supplement its internal functionality, browser 2.0 does not p
the speed needed for browsing in practice. For example, the user has to wait min
recursively display icons in a reasonably sized tree.

As VLAB became a popular environment for experimentation by many researcher
drawbacks of its inability to customize its appearance were identified. The default se
(colors, fonts, tree layout, icon sizes, etc.) were not appropriate for some activities, s

† I use the wordlimitation when describing missing concepts or design flaws, and
the wordshortcoming when describing flaws in the implementation.

FIGURE 1-3: Snapshot of the VLAB 2.0 browser

CHAPTER 1: INTRODUCTION 9

der for
ferent

bject.
t are
odify
n an
n
menu,
tions.

 to the

r the
 to

cy of
ol need
n is
ds it,
interactive demonstrations, where the font and icon sizes must be increased in or
the audiences to be able to recognize them. Also, different users have dif
preferences.

Object manager

Object manager (Figure 1-4) is a tool used to manipulate the internals of a specific o
When object manager is invoked on a VLAB object, all files constituting this objec
copied to a temporary space, called the “lab table” [21], where the user can safely m
them without worrying about destroying the original. The set of possible actions o
object is read from itsspecifications file, displayed on the screen as a pull-dow
menu. The user can then perform actions on an object by choosing items from this
without any detailed knowledge of the programs and data files involved in these ac
The changes made to an object while it is on the lab table can be saved back
database, added to the database as a new extension, or ignored altogether.

VLAB daemon

The Daemon is a VLAB component which provides a communication mechanism fo
rest of the VLAB components (Figure 1-5). Almost all components of VLAB need
maintain some sort of inter-client communication in order to preserve consisten
displayed information. For example, changes to the object database made by one to
to be reflected by all other tools displaying the same information. VLAB Daemo
transparent to the user, as it is invoked automatically by the first VLAB tool that nee
and is shut down by the last one to quit.

FIGURE 1-4: Snapshot of VLAB 2.0’s object manager

10 CHAPTER 1: INTRODUCTION

eters
ored in
r by a
 editor
uld be
ach of
ontrols
on. In
 GUI
 to the
ted by a
a file.

l for
nel’s
hical
nning
s to be
nient,
Panel manager

Panel manager (Figure 1-6) is a VLAB program used to control simulation param
during experiments. The parameters which panel manager can control are usually st
text data files, and their locations are specified either by line and column numbers, o
prefix string after which the parameter follows. Panel manager therefore acts as an
of text data files. The creator of an experiment decides which parameters sho
editable, and constructs a file with the description of a graphical user interface for e
the editable parameters. This file is used by object manager to display the set of c
on the screen, presenting the user with a visual interface for parameter modificati
VLAB 2.0 there are two GUI components available: buttons and sliders. Each of the
components is associated with a message which will be sent by object manager
standard output as soon as the component is activated. This message is then transla
special-purpose filter program into an appropriate editing action on the specified dat

Panel manager in VLAB 2.0 has the following shortcomings: the lack of a too
building graphical interfaces and one-way communication. The descriptions of pa
user interfaces for panel manager are written in textual form. Designing a grap
interface for a panel therefore involves editing the textual description and then re-ru
object manager on the new description to see the result. Often, this process ha
repeated until a satisfactory result is obtained. This process is rather inconve
particularly when specifying the layout.

Vlab
Daemon

Metatext

Browser 2

Object
Manager 1

Object
Manager 2Browser 1

FIGURE 1-5: Inter-client communication in VLAB 2.0

CHAPTER 1: INTRODUCTION 11

he filter
There
a file,
 in the

ecent
efault

rder,
ed on

enu
enu,

lected

and
e types
Panel manager 2.0 only supports one way communication - sending messages to t
program which performs the editing operations on the actual data files (Figure 1-7).
is no mechanism to find out the current values of the parameters from the dat
therefore the values in a newly displayed panel often disagree with the actual values
data files. There is only one way to avoid this asynchronism in VLAB 2.0 - the most r
parameter values have to be manually encoded into the panel’s definition file as d
values for the associated GUI components.

Metatext

Metatext is a tool which makes it possible to access VLAB objects in arbitrary o
independent of the hierarchical organization of the database [29]. Metatext is invok
an index file, which contains a list of entries converted by metatext into a pull-down m
(Figure 1-8). When the user selects one of these entries from the pull-down m
metatext will load and interpret a frame file whose file-name corresponds to the se
choice. For example, if the user chose the itemPhyllotaxis, metatext would load and
interpret a frame filePhyllotaxis .

The frame files consist of a mixture of textual information, UNIX commands
messages to the VLAB Daemon. Before interpreting, metatext separates these thre

FIGURE 1-6: Snapshot of VLAB 2.0’s panel manager

12 CHAPTER 1: INTRODUCTION

NIX
nt to the
tatext
nvoke
of information. Then the text from the frame is displayed in a separate window, U
commands executed in the order they are found in the frame file, and messages se
VLAB Daemon. UNIX commands are commonly used to spawn other copies of me
(on different index files), and the messages to the VLAB Daemon are used to i
object manager.

Panel
Definition

Data
File

Simulation
Program

Filter
Panel
Manager

FIGURE 1-7: Communication in VLAB 2.0’s panel manager

% metatext Vlab

File ’Vlab’

Australia-94
Alife-92
Demo
Demo.old
Plants
Phyllotaxis
Cells
Test

FIGURE 1-8: Metatext in VLAB 2.0

CHAPTER 1: INTRODUCTION 13

blem
odes,

a text
n of
 date
etatext
never

ing
rent
that it
to SGI
2.0
rating

m, it
sh or
AB

t for
ussed
wing
Maintaining a large number of metatext index and frame files presents a similar pro
to the one of maintaining a large number of experiments. Organization of metatext n
such as moving, adding, renaming or modifying require the use of a UNIX shell and
editor - not a very convenient interface for the user. The most important limitatio
metatext, however, is keeping the links in metatext frames to the VLAB objects up to
while the object database keeps changing. Because there is no support offered by m
to this end, it is the user’s responsibility to manually update the affected frames whe
the referenced objects are modified (e.g. moved, renamed or deleted).

1.2.3. Portability

In order to prove the usefulness of VLAB as a general tool for perform
experimentation, it is desirable VLAB be tested by users under many diffe
environments. In order to make VLAB accessible to wider audiences, it is essential
is portable to many other operating systems (not all researchers have access
workstations, and most biologists have primarily PC’s). Implementation of VLAB
uses many features specific to SGI workstations, making it unportable to other ope
systems. Since the entire VLAB is very closely tied to the UNIX operating syste
would be a major undertaking to port it to operating systems like OS/2 or Macinto
Microsoft’s Windows environment. To start addressing the issue of portability, VL
should be portable at least to other flavors of UNIX.

1.3. Summary

In this chapter I have introduced the Virtual Laboratory 2.0 - a software environmen
computer based experimentation. Various components of VLAB 2.0 have been disc
and their limitations pointed out. These limitations are further discussed in the follo
chapter, where I present the statement of objectives.

14 CHAPTER 1: INTRODUCTION

more
LAB
ch and

tially
ative
odes

d and
These
s of
ugh
rface

rlink
which
date of
vel of
 point
tabase
tically
CHAPTER 2 Statement of objectives

The objective of my research is to extend VLAB 2.0 by designing and implementing
functionality. I approached this by addressing the limitations and shortcomings of V
2.0, as identified in Section 1.2. This chapter defines the specific goals of my resear
briefly outlines how I accomplished these goals.

2.1. Alternative views of object databases

VLAB users often wish to use their objects in several different contexts. Metatext par
addressed this need in VLAB 2.0, by providing limited support for creating altern
views of object databases. Metatext only provides support for traversal of n
containing hyperlinks to objects. Metatext nodes have to be created, update
organized manually, as Metatext does not offer any mechanism to this end.
limitations greatly limit Metatext’s usefulness as a tool for creating alternative view
object databases. A new mechanism, providing all functionality available thro
metatext, with support for an automatic update of hyperlinks and a user friendly inte
for management of hyperlink databases was required.

I have designed a new system for hyperlink organization - a hierarchical hype
database. I have also developed a new VLAB application, called hyperbrowser,
allows users to navigate and effectively maintain such databases. The automatic up
hyperlinks has been addressed in my implementation by introducing an extra le
indirection between hyperlinks and objects, using an object lookup table. Hyperlinks
to objects through this table, which is automatically updated whenever the object da
is modified. Any modifications to the database of real objects are therefore automa
reflected in the database of hyperlinks.

16 CHAPTER 2: STATEMENT OF OBJECTIVES

mote
s was

daemon
r runs on

y VLAB
e been
cess to
ng with
 can be
ses. To

erver, a
 access
TTP
be used

aintains
ed by an
pported
mote
ccess,

h full
atabase
ver.

irst, a
ating

ation
d the

ions, I
user to
2.2. Support for collaboration

In order to improve VLAB’s support for collaboration, a mechanism for accessing re
databases and controlling permissions for modifications to collaborator’s database
needed.

To allow users to access remote databases (located on remote filesystems), a new
(remote access server) has been designed and implemented. Remote access serve
the remote computer and performs actions on the remote database as requested b
tools accessing the database. Browser, hyperbrowser and object manager hav
modified to take advantage of this new daemon. From the user’s perspective, ac
remote databases is transparent, since there is almost no difference between worki
objects located in local and remote databases. The objects in remote databases
accessed, moved between databases or modified just as they are in local databa
make it easy for an application developer to request services from remote access s
remote access library has been written. Both remote access server and remote
library can be easily extended to offer more functionality when needed. Similar to H
daemons used today for WWW access, remote access server has the potential to
by scientists to offer information to the general Internet community.

To address the issue of controlling outside access to object databases, RAserver m
a list of accounts for each user with access to the database. Each account is protect
encrypted password, and is assigned a level of access. Two levels of access are su
in the current implementation: read-only and full access. The owner of the re
database can decide which person gets which type of access. With read-only a
RAserver will not permit any modification to the database for the connected user. Wit
access (only given to the most trusted colleagues) the remote user can modify the d
in any way. A facility for maintaining an account list of remote users is part of RAser

2.3. Panel manager

The following two goals were to be accomplished with respect to panel manager. F
tool was needed for visual design of panels, which would simplify the process of cre
and modifying panels for parameter modifications. Secondly, two-way communic
had to be implemented for automatic synchronization of displayed information an
contents of the parameters at start-up.

After a detailed evaluation of the existing panel manager and the required extens
decided to redesign and re-implement this tool. The new panel manager allows the

CHAPTER 2: STATEMENT OF OBJECTIVES 17

set of
When
shot of

ould
flected
 into
2. This
cies
ta files.
o one
 files.
meter
sted to
panel
ncept

vel of
build and modify panels through a visual interface. Eventhough the implemented
controls in panel manager 3.0 is small, extensibility was a major issue in its design.
needed, future developers can easily extended the set of controls. A sample screen
the new panel manager’s user interface builder is presented in Figure 2-1.

The design of panel manager present in VLAB 2.0 focused on flexibility, so that it c
be used for editing of parameters under many different circumstances. This was re
in its implementation by separating the visual interface and text editing functionality
two separate components: panel and parameter editor, described in Section 1.2.
implementation limited the communication flow to one way, causing inconsisten
between values of parameters being displayed and values of parameters in the da
Panel manager 3.0 combines the user interface and text editing functionality int
application, allowing two-way communication between panel manager and the data
When panel manager 3.0 is invoked on a panel definition file, the current para
settings are read from the appropriate data files, and the controls are then adju
reflect these values. Integration of user interface and text editing functionality allows
manager 3.0 to synchronize the displayed and stored information, similar to the co
presented in [1]. Although panel manager 3.0 does not achieve the same le

FIGURE 2-1: Snapshot of panel manager 3.0 in graphical build mode

18 CHAPTER 2: STATEMENT OF OBJECTIVES

t in,

a more
s the

ing
ating
to be
 in my
ner
wo

 new
s of

 than a
pletely
es,
 panel
 version
.0 of
s for
ble in

r

flexibility† as the old implementation, it has a wide range of editing functionality buil
sufficient for the purposes of editing parameters in data files.

The language used by panel manager to specify panels was redesigned into
structured language, improving its readability and extensibility. Chapter 5 describe
design and implementation issues of the new panel manager in greater detail.

2.4. Portability

VLAB 2.0 was developed on the SGI platforms running IRIX (flavor of UNIX) operat
system. It used many IRIX specific features, making it unportable to other oper
systems. To make VLAB accessible to a wider spectrum of users, VLAB has
portable to a number of different operating systems. I have addressed this issue
implementation of VLAB by developing all of its components in a UNIX-portable man
[15][35]. I have tested and verified VLAB’s portability by successfully porting it to t
different flavors of UNIX - SunOS 4.1.4 and Linux 2.0.

2.5. Performance improvements

The main objective in the area of performance improvements was to make the
implementation of browser work faster, particularly on operations involving subtree
objects. The main goal was to guarantee that the user would not have to wait more
few seconds for the most common tasks to finish. To this end, browser 3.0 was com
implemented in C++ in combination with Motif/OpenGl libraries. Many inefficienci
such as the use of external programs, were removed from both browser and
manager. These changes have brought significant speed improvements over the old
of browser. Table 2-1 compares the timings I performed on versions 2.0 and 3
browser. Most importantly, however, browser 3.0 allows its users to display icon
entire subtrees of objects in a reasonable time. This functionality was not even availa
browser 2.0 - the users could only display one icon at a time.

† panel manager 3.0 can only be used for editing data files, while panel manage
in VLAB 2.0 could be used for other purposes - by writing a different filter pro-
gram for responding to the messages sent out by the panel component

CHAPTER 2: STATEMENT OF OBJECTIVES 19

oses,
 low. A
s was

owser
e color
ze and
object
er are
ser
toolkit

 the
 for
 and

mote
 files
 will
2.6. User customization

The default visual appearance of VLAB applications is not well suited for some purp
such as presentations, because the fonts are too small and the color contrast is
mechanism allowing the users to change the visual appearance of VLAB application
needed. To this end I have developed dialog windows through which the look of br
and hyperbrowser can be easily customized. The user can, for example, choose th
of various components of the two dimensional rendering of the database, the font si
type, icon size and even the layout of the graphical tree representation of the
hierarchy. The various dialogs used in the customization of browser and hyperbrows
shown in Figure 2-2. Since all VLAB tools now use Motif library for their graphical u
interfaces, it is also possible to modify their appearances through the standard X-
application resources mechanism [24].

2.7. Summary

The main goal of my thesis is to implement a new version VLAB, which will address
shortcomings and limitations of the previous version. Namely, a new mechanism
creating and maintaining alternate views of object databases will be designed
implemented. A remote access extension will allow VLAB users to access re
databases transparently. A new panel manager will allow VLAB users to edit data
using graphical controls, which can be created and modified visually. The new VLAB
also improve in the areas of performance, portability and customization.

Table 2-1: Performance comparison of VLAB 2.0 and VLAB 3.0, in seconds

Action VLAB 2.0 VLAB 3.0

showing a sub-tree of 1000 extensions 32 20

searching in a tree of 1000 extensions 45 20

showing an icon 3 0

drag/drop a node 15 1

copy & paste 100Kb 2 2

copy & paste 1Mb 25 2

20 CHAPTER 2: STATEMENT OF OBJECTIVES
FIGURE 2-2: Snapshot of browser’s customization dialogs

w they
s. In
e in

ata as
eing
diting
lying
ms is

 do not
lopers
s the
ges of

ervice
onal
otocol
 of the
uires
ries
 to be
 to its
CHAPTER 3 Survey of related concepts and
previous work

This chapter discusses concepts and previous work related to VLAB, as well as ho
influence and relate to VLAB’s design. The chapter is organized into two section
Section 3.1 I discuss previous work conceptually related to VLAB’s design, whil
Section 3.2 I discuss previous work related to VLAB at the implementation level.

3.1. Concepts related to VLAB

3.1.1. Monolithic versus open hypertext systems

Monolithic hypertext systems are hypertext systems which manage the storage of d
well as linking information. Their main drawback lies in their fundamental design - b
complete tools they support only a limited range of media types and provide e
capabilities only through applications that are closely coupled with the under
hypertext system. Also, the node data representation in these hypertext syste
structured and proprietary. As a result, these systems are closed, because if they
provide the particular media type editor the user requires, only the system’s deve
can add the required functionality. The inability to link to external objects, as well a
inability to access the objects in the hypertext from the outside, are other disadvanta
closed systems.

The drawbacks of monolithic hypertext systems were addressed by Sun’s Link S
[26]. Link Service provides support for creation and maintenance of bidirecti
relationships between autonomous front-end applications. It does so by defining a pr
for open hypertext system. The system only maintains the links, the representation
actual endpoints (objects) is left to the actual application. Link Service req
application side support for hypertext functionality, so it merely supplies the libra
which makes adding such support easier. For example, if an existing text editor was
used in this system, the developers of this editor would have to add a mechanism

22 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

 new
ntain

anisms
stem.

ave to
 such
ve the

jects
ta files
 by the

 not
ations

is gives
reedom
 Thus,
ertext

nted
reate
itially
ified,
etc. A
ctive
jects
sages.
m their

basic
reated
and J.
ntosh
internals, which would allow the user to indicate the position in the text composing a
node. Also, some visual indication would have to be shown on parts of text that co
links to other nodes. This means existing application that do not support these mech
would have to be patched and recompiled in order to support such hypertext sy
Another drawback of Link Service’s approach is that the data files for nodes do not h
be stored in a standard place, which would make it nearly impossible to manipulate
database as a whole, e.g. search for information, delete a group of nodes, mo
database to a different file system, etc.

The design of VLAB objects is based on the open hypertext system model. VLAB ob
contain the necessary data files as well as the linking information between the da
and related applications. Users can invoke applications on the data files as specified
linking information stored with every object. However, the format of data files is
dictated by the system but rather by the associated applications. Similarly, the applic
are not part of the system, they are entirely user defined, external to the system. Th
the user absolute freedom to choose any media type for data representation, and f
to choose any appropriate editor or any other application for the given media type.
VLAB does not impose the same limitations on the user as do most monolithic hyp
systems.

3.1.2. Prototype-extension model

The mechanism for organization of VLAB objects originated from the object orie
design, namely the prototype-extension model described in [17]. VLAB users can c
new objects as extensions of existing objects (prototypes), where extensions in
inherit all properties from their prototypes. Any of these properties can be later mod
for example, by adding new actions or data files, changing simulation parameters,
similar prototype-extension model was used in the implementation of an intera
system for simulation, modeling and animation presented in [3]. In this system, all ob
at creation time have the same properties, which change only by receiving mes
Extensions can be derived from prototypes, and these extensions can then differ fro
prototypes by having received different messages.

3.1.3. Graphical versus command line interfaces

Scientists have often wondered how the world would be affected if some of the
assumptions and principles of science were violated. It was these scientists who c
new concepts, like non-Euclidean geometry, positrons and anti-matter. D. Gentner
Nielson tried to explore the types of interfaces that could result if the classical Maci

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 23

 good
cons,
, this
rly for

is that
rs are
hen

ask of
 which
NIX
andard
t
in its
 and

 and
ping
 on a
rs are
LAB

nvoke

isting

-

human interface design principles were reversed [10]. Macintosh interface is a very
example of the current interface paradigm, often referred to as WIMP (windows, i
menus, pointer), which dominates the current user interface world. Undoubtedly
paradigm suits the needs of average computer users very well, but does very poo
experienced computer users. One of the main drawbacks of pure WIMP models
everything has to be done through the point and click interface. Experienced use
limited to performing complex tasks inefficiently, as many UNIX users have noticed w
exposed to a Macintosh-like user interface. As an example, consider a simple t
finding all files on a file system that have been modified less than 6 days ago and
contain the phrase ‘University of Calgary’. This task can be performed on a U
operating system by executing one line at the command prompt, whereas on a st
Macintosh system each file would have to be inspected individually†. The need to suppor
an experienced user was recognized in VLAB’s design and was addressed
implementation. VLAB’s users can switch to a command line mode at any time
continue working with the objects without the limitations of a point and click model.

3.1.4. Tools

The idea of having tools associated with objects was used in Menv - Modeling
Animation Environment developed at Pixar [31]. Menv is an environment for develo
production-quality and cost-effective modeling and animation systems. It is based
modeling language called ML, used to describe and animate 3D models. Use
allowed to write their own tools, which can change various aspects of the models. V
users can also associate tools with components of VLAB objects and conveniently i
these tools during experimentations.

3.2. Previous work related to the implementation of
VLAB

3.2.1. Two way extensibility

Most inheritance based object oriented models provide support for extending their ex
hierarchy of classes in two ways:

† At the time of writing this theses, the most recent version of MacOS did not pro
vide any scripting capabilities.

24 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

er all
n the
ssible

archy.
e of

thod to
 of the
asses,
thod.
rk-
 to have
r large

per by
ed for

]. The
e, in
node.
ilarly,
 Open
s in the

g a
idual
ld be
ke a

a file,
m, the
add a
ver,
uch as
ility.
• by adding a new class which will inherit methods from its superclasses;
• by adding a method to a superclass, which will be inherited by its sub-

classes.

However, in many OO designs this two way extensibility cannot be achieved und
circumstances. For example, the two way extensibility in C++ is not available whe
sources of an existing class hierarchy are not available to the developer. It is still po
to create a new class by deriving it from one of the classes in an existing hier
However, it is very difficult (and many times impractical) to add a new method to on
the classes in the existing hierarchy.

As an example, consider the following situation: a developer needs to add a new me
a group of classes distributed as a library. If the user has access to the sources
library, the new method can be simply added to a common parent of all affected cl
the library would be then recompiled, and all classes would inherit the new me
Unfortunately, if the library is distributed in binary form, this is impossible to do. A wo
around solution exists, where new subclasses are created from all classes that need
the new method added, but this is an unattractive and possibly unfeasible solution fo
libraries.

This two way extensibility problem and a reasonable solution was described in a pa
P. Strauss and R. Carrey [37]. This paper presents an object-oriented toolkit design
developers of interactive 3D graphics applications, now known as Open Inventor [42
problem of two way extensibility was solved by using a two dimensional virtual tabl
which each entry is a method that implements a certain action for a particular
Therefore adding a new action involves adding a new row to the table, and sim
adding a new node is equivalent to adding a new column. Since each action in
Inventor is defined as a separate object, adding a new function to all standard node
system involves creating anew_action class by deriving it from the providedaction class.
The resulting syntax for applying the new action to a node is thennew_action->
apply(node) .

VLAB partially manages to address the two way extensibility problem by havin
configuration file for object manager, in which the user can define actions that indiv
objects can associate with their data files. For example, an action called ‘EDIT’ cou
defined in this configuration file as a set of sub-menus, each of which would invo
different text editor. Then any object can use this EDIT action to be invoked on a dat
giving the user a choice of an editor to use. When a new editor is installed on a syste
only change needed to make this new editor available with all existing objects is to
new item to the description of ‘EDIT’ in object manager’s configuration file. Howe
this assumes that the creator of objects will have to use globally defined functions, s
EDIT in this example, in order to take advantage of this support for two way extensib

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 25

was
 [2].
r, or
e. The
also
or by a
ing

user
ution
d.

d their
Group

bjects
ere is
s the

s of
hese

 was
y to
 done
ging
pen
orithm
nd the

 great
3.2.2. Building graphical user interfaces

A similar idea for building user interfaces as used in VLAB’s panel manager
described in a system called FormsVBT by G. Avrahami, K, Brooks and M. Brown
This system allows building of user interfaces using a graphical (WYSIWYG) edito
using a textual description of the user interface through a special purpose languag
similarity comes from the fact that the description files for each VLAB panel are
defined in a special purpose language, which can be edited either by a text editor,
graphical (WYSIWYG) editor. Another system that deals with similar issues of build
graphical interfaces for programs is GROW [3] [32].

The Forms Library (XForms) is a library of C routines that allows the user to build
interfaces with buttons, sliders, input fields, dials, etc. Every regular XForms distrib
includes a GUI builder utility calledfdesign, where interfaces can be visually assemble
In fdesign, the individual components can be added, deleted, moved, resized, an
attributes, such as color, font, and appearance, can be edited in option dialogs.
manipulation of objects is also possible, although editing of attributes on groups of o
only works if all objects in a group are of the same type (i.e. buttons). Therefore, th
no easy way to change an attribute for all components in a window, such a
background color or the font.

3.2.3. Frameworks for experimentation

In this section I examine three different software environments used in area
experimental algorithms, technical computing and 3D modeling, respectively. All of t
environments have some common characteristics with VLAB.

CSLAB

A framework for creation, configuration and execution of experimental algorithms
implemented in CSLAB [5]. It is a prototype of a simulation environment that is eas
use, dynamic and WWW accessible. Running and configuring experiments can be
either through its visual interface or through the use of script files. For mana
experiments and their results, CSLAB provides a workbook. CSLAB is an o
architecture, therefore new building blocks can be added to the system. Since all alg
objects in CSLAB are written in Java, they can be easily shared between users arou
world, whether as individual objects, or as whole experiments. This makes CSLAB a
tool for collaboration and education in the area of experimental algorithms.

26 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

ugh
ess to

ively
 many
 such
ork in
ctured
ation
anized

 either
e first
rge
s into
d on.
oating
book.
n be
in the
d the

n be
ing the
an be
nus.
create
n.

for
gular-
gs and
oject
ere are
sults,
jects,
VLAB also provides visual interface for managing and running experiments, thro
browser and object manager. Collaboration is encouraged in VLAB by making acc
remote oofs databases transparent to its users.

Mathematica

Mathematica is a fully integrated environment for technical computing [43], extens
used in research and teaching. It is well suited for various user communities, as its
specialized toolkits allow for rapid system prototyping and experimentation in areas
as signal processing and control systems. The most common way to organize w
Mathematica is through the use of its notebooks. Mathematica notebooks are stru
interactive documents organized into a sequence of cells. Each cell contains inform
of certain type, e.g. text, graphics, sounds or Mathematica expressions. Cells are org
into groups where a group can also include other groups. A group of cells can be
open or closed. When open, all its cells and groups are visible, when closed, only th
cell (or the heading cell) is shown. This allows for more comfortable viewing of la
documents. Notebook actions can be programmed, for example by inserting button
cells, and then programming the actions that will be invoked when the button is clicke
Buttons can be also organized into palettes, which are shown in Mathematica as fl
windows, and these buttons can then be used in conjunction with any other note
Mathematica notebooks also provide simple hypertext functionality. Hyperlinks ca
inserted into documents, which can take the user to a specific point anywhere
notebook. The data in notebooks can be experimentally modified at any time, an
results can be automatically recomputed and then examined.

VLAB users also organize their work hierarchically, into oofs databases, which ca
visually accessed using browser. Object trees can be expanded or collapsed, allow
user to control the level of detail displayed on the screen. Various external tools c
associated with VLAB objects and invoked in object manager from pull-down me
Eventhough VLAB does not provide support for hypertext documents, users can
alternate views of oofs databases and thus access objects in non-hierarchical fashio

Alias

Alias from Alias/Wavefront [1] is a powerful 3D modeling environment developed
industrial designers, with a main focus on creation of mathematically accurate re
shaped objects as well as freeform organic shapes, and photorealistic renderin
animations. Alias organizes its projects with the help of the UNIX filesystem: each pr
contains a set of subdirectories, where all files related to a project are stored. Th
separate subdirectories for wireframe models, textures, lights, rendering re
temporary plot outputs, stages, etc. VLAB users organize their experiments in ob

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 27

ent is

s in
r hot
 3D
ithin
gh it is

 icons,
fully
from,
us are
ed to

hat it
rs to
ations
s. User
xternal

nt of
s on the
jects
ork,

 these
lso be
using a
n made

stage
d when
ser to
cts as

type-
easily
 not
t be
represented as separate directories, where all information pertinent to the experim
stored in data files.

User interface in Alias is highly consistent and yet fully customizable. Most function
Alias are invoked either through menus, tool palette, tool shelf, marking menus o
keys. Menu functions are functions that do not require interaction within the
workspace, while the tool palette contains all functions that do require interaction w
the 3D workspace. Menus and the tool palette cannot be customized by users althou
possible to change their layout and appearance to a certain extent, i.e. size of
vertical/horizontal organization, and position on the screen. Tool shelf is a
customizable version of tool palette - tools in it can be added to, removed
rearranged, options set and their icons modified with a paint program. Marking men
similar to popup menus, and although they come predefined, they can be modifi
include any functionality. Finally, any action in Alias can be assigned a hot-key, so t
can be invoked directly using a keyboard. Object manager in VLAB allows use
perform operations on objects using pull down menus. There are two types of oper
that can be invoked in object manager: predefined actions and user defined action
defined actions can be arranged into sub-menus, and are used to invoke e
applications on data files in objects.

Alias encourages experimentation by offering various tools for flexible manageme
objects, e.g. templates, layers and stages. The user can lock any subset of object
screen by putting them into ‘template mode’, and then modify the unlocked ob
without affecting the locked (templated) ones. For a more flexible organization of w
layers can be used. Any model can include multiple layers of components, and
layers can be made fully editable, only visible, or completely hidden. Objects can a
developed independently of each other and then combined together in stage sets
stage editor. Each object can be loaded into its own stage, and stages can be the
active, visible, or invisible. If a stage is active, all of its objects can be modified. If a
is in a visible mode, its objects are shown on the screen, but cannot be modified, an
in invisible mode, the objects are completely hidden from the user. This allows the u
combine and reuse existing objects in complicated scenes, while keeping the obje
independent entities. VLAB also allows reuse of existing objects through the proto
extension mechanism for object organization. New extensions of objects can be
created and modified, while the originals remain intact. Unfortunately, VLAB does
offer any support for multiple inheritance, and therefore, multiple objects canno
combined to create a single new object.

28 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

rnal
ed in

ports
anel

d for
 the
. These
 by an
 of the
d for

CofA

nt in
ed in

mory.
 tools,
in ML
riables)

have
ted to

w they
s. In
3.2.4. External parameter control

This section briefly describes two systems which implement functionality for exte
parameter control. Both systems allow their users to change parameters us
applications at run time through interfaces external to the application. VLAB sup
similar functionality for external modification of parameters at run time, through p
manager.

UCofA

UCofA is a software environment for creating and running user interfaces use
external parameter control [14][27]. A visual tool for building interfaces is part of
system. The controls used for parameter modification are associated with messages
messages are sent out by UCofA when the control is manipulated and intercepted
interface program. The interface program translates them according to the needs
external application whose parameters are being controlled. UCofA can be use
editing parameters in data files, by writing an interface program which translates U
messages into file editing operations.

Menv

As described earlier (Section 3.1.4), Menv is a modeling and animation environme
which 3D models are described using ML modeling language [31]. The variables us
ML programs can be modified by external tools at run time, through shared me
These variables are referred to as articulated variables. Users can write their own
which can communicate with each other and also modify articulated variables used
programs. Since various aspects of models can be changed (through articulated va
while being animated, animators can achieve a very high level of control.

3.3. Summary

In this chapter I have described previous work related to the Virtual Laboratory. I
discussed previous work conceptually related to VLAB as well as previous work rela
VLAB’s implementation.

This chapter discusses concepts and previous work related to VLAB, as well as ho
influence and relate to VLAB’s design. The chapter is organized into two section

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 29

e in
Section 3.1 I discuss previous work conceptually related to VLAB’s design, whil
Section 3.2 I discuss previous work related to VLAB at the implementation level.

30 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

tabases
ing
ibrary,
ses in
 4.2 I
ed for
sign of
ection

rs
to be
tween
 the
ssing
ntations
lines

er the two

The
l be no
CHAPTER 4 Remote access server

This chapter describes an extension that adds the capability of accessing remote da
of objects to VLAB’s functionality. The implementation of this extension involved writ
a new VLAB daemon, remote access server (RAserver), and a corresponding l
RAlibrary. In Section 4.1 I discuss the general problem of accessing remote databa
VLAB and summarize the issues considered in the design of its solution. In Section
present a feasibility study, in which I evaluate four alternative mechanisms consider
the implementation of the remote access extension. In Section 4.3 I discuss the de
RAserver. In Section 4.4 I describe RAserver from the user’s perspective, and in S
4.5 I discuss its implementation details. In Section 4.6 I describe RAlibrary.

4.1. Background

The support for collaboration in VLAB 2.0 is very limited. Tools in VLAB 2.0 allow use
to access databases of VLAB objects only on local filesystems. Objects have
transferred manually (e.g. by FTP or e-mail) between users, making collaboration be
scientists working from different geographic locations difficult. In order to improve
support for collaboration in VLAB, it is necessary to provide a mechanism for acce
databases on remote computers over the Internet. The old and the desired impleme
of database access in VLAB are graphically illustrated in Figure 4-1. The dotted
between workstations and databases represent supported database accesses und
implementations.

At the conceptual level, the purpose of the remote access extension in VLAB is to:

• simplify collaboration (e.g. interchanging objects);
• allow users to modify experiments remotely (e.g. when working from

home),
• make it possible to present research to the public.

At the implementation level, the new extension must fulfill the following goals.
remote access mechanism should be transparent to the user, so that there wil

32 CHAPTER 4: REMOTE ACCESS SERVER

itations
mote
must be
bases.
ime to
hen
ble for

LAB,
n top

n is the
hich
difference between accessing local or remote databases. There should be no lim
imposed on the user with regard to the functionality available when working on re
objects, or as few as necessary. The remote access should also be secure. It
difficult, if not impossible, for unauthorized users to gain access to the remote data
Finally, remote access should be fast and reliable. Waiting for extended periods of t
obtain information over the network, or having to worry about loosing information w
working with remote objects, would render such a remote access extension unusa
VLAB’s’ users.

It should be mentioned that the goal of this extension is not to re-design the entire V
nor is it to take a fundamental departure from its old versions. The goal is to build o
of existing (and most importantly - working) implementation, and to extend it.

Division of work between client and server

One of the most important issues related to the design of the remote access extensio
division of work between a client and a server. The client is the workstation from w

System 1

System 2

object
database 1

Workstation A

Workstation B

object
database 2

Workstation C

Workstation D

Workstation X

System 1

System 2

object
database 2

object
database 1

Workstation C

Workstation D

Workstation A

Workstation B

Workstation X

FIGURE 4-1: Database access in VLAB 2.0 (left), desired database access (right)

CHAPTER 4: REMOTE ACCESS SERVER 33

hich the
e access
n the

 and
ases
der to

s are
 on the
werful
rity of

ning
s to
orks.

hich
ions
 file a
ork -
ata to

remote
ase to
 from

tion.
rge
 could
sign
s on

 plays
ly. If

-

the user accesses a remote database. The server is the computer system on w
remote database resides. The problem to be addressed in the design of the remot
extension is in determining which tasks will be performed on the client, and which o
server.

There are two types of programs executed by a VLAB user: VLAB applications
external programs†. VLAB applications are used for general management of datab
and objects, and for invocations of objects. External programs are required in or
experiment with the actual objects.

Execution of external programs

It is desirable that all simulation programs invoked from remotely retrieved object
executed on the users’ workstations, as opposed to running the simulation programs
computer containing the object. First, the server cannot be assumed to be a po
system, able to execute simulation programs of multiple users. Second, a vast majo
simulation programs used with VLAB to date are graphically intensive. Run
simulations remotely would require the graphical information from these simulation
travel over a network, considerably inhibiting the user’s interaction even on fast netw

Execution of VLAB applications

The question regarding which VLAB applications should be run locally and w
remotely is more difficult to answer. The disadvantage of running VLAB applicat
locally is related to the amount of data being transmitted over the network. For every
VLAB application requires access to, it would need to be transferred over the netw
from the server to the client. Such implementation is likely to cause unnecessary d
travel over the network. For example, if a user decided to copy and paste part of a
database using browser, the information being copied would be sent from the datab
Browser (the copy operation) and then the same information would be sent back
Browser to the database (the paste operation).

The most obvious disadvantage of running VLAB tools remotely is slow user interac
Although the amount of graphical information for most VLAB applications is not la
(such as Object Manager or Metatext), browsing large databases using Browser
become undesirably slow. Another limitation of this implementation is that its de
would have to include a mechanism to allow VLAB users to run external program
their workstations. Also, the distribution of tasks between the client and the server
an important role when deciding whether to run VLAB applications locally or remote

† External programs are applications which are not part of VLAB, such as simula
tion software, compilers, etc. They are required to experiment with objects.

34 CHAPTER 4: REMOTE ACCESS SERVER

asks,
n of

e of the
mote

grams.
ntain
tion of
grams
igned to
 would
it will
is issue

tation
bject
rmine
ibe the

w
 on a
mote
hen all
rface
VLAB applications were run remotely, the server would have to perform most of the t
while displaying the results would be the client’s only responsibility. Such distributio
work is unwelcome, since it could imply heavy work-loads on the server.

A compromise must be met to address as many of these problems as possible. Som
VLAB applications should be run directly on the server (having direct access to the re
database), and others on the client (so that the interactivity can be preserved).

Distribution of external programs

It should be noted there is yet another very important issue related to external pro
VLAB objects do not store the external programs they require, they merely co
descriptions of how to run these programs on their data files. This raises the ques
how to distribute external applications to the users when objects requiring such pro
are invoked. Some answers can be found by considering the use of languages des
be portable across multiple platforms - such as Java or Python, but many questions
remain unanswered still. Since I have not found a feasible solution to this problem,
not be addressed in the implementation of the remote access extension. I look at th
in more detail in Section 9.2.10 as suggested future work.

4.2. Requirements

Before a final decision was made regarding which method to use for the implemen
of the remote access extension for VLAB, four five solutions were examined. The su
of this section is an evaluation of these five implementation types, conducted to dete
how the remote access extension requirements would be met by each. I first descr
five implementation models, and then evaluate them in ten different categories.

4.2.1. Implementation models

Model 1: X-display redirection This method is based on the capability of X Windo
System to run applications remotely, while displaying their graphical user interface
local computer [30]. Using this implementation, VLAB users trying to access a re
database would have to login remotely into the server containing the database. T
VLAB tools and external programs would be run on this server, having their user inte
displayed on the local workstation.

CHAPTER 4: REMOTE ACCESS SERVER 35

ost
ote

stem.

 to
ss and
te

g
 NFS-
r. This

 NFS-
 must
n their
simply
LAB

n
r and
 to the
n would
any

ferent
ed in
Model 2: FTP implementationThis approach would take advantage of the fact that m
UNIX computers run an FTP daemon at all times [9]. All VLAB’s accesses to a rem
database would have to be performed by an FTP daemon running on the remote sy

Model 3: rsh/rcp implementation This implementation would require the remote user
have shell access to the system serving the VLAB object database. With shell acce
an appropriate setup of the.rhosts file, it is possible to perform any action on a remo
file using the combination ofrsh andrcp commands [9].

Model 4: NFS implementationThis model is based on the ability of the UNIX operatin
system to mount filesystems across a network, using NFS [34]. Once a filesystem is
mounted on a workstation, it can be accessed as if it resided directly on the compute
implementation type requires the server to be properly configured, so clients can
mount the part of the server’s filesystem containing the VLAB database. The client
also be appropriately configured, so users are allowed to NFS mount filesystems o
workstations. The process involved in accessing a remote database by a user
involves NFS mounting the remote filesystem containing this database. V
applications can then access the database as if it resided on a local filesystem.

Model 5: Special purpose daemonFor this implementation type, a new VLAB daemo
would be designed and implemented, which would run on the remote compute
perform actions as requested by other VLAB tools. In essence, this model is similar
FTP model, but instead of using a standard FTP daemon, a special purpose daemo
be written. As I will show in the following section, this approach would bring m
advantages over the FTP implementation.

4.2.2. Evaluation of implementation models

Each of the implementation models were evaluated and compared in ten dif
categories. The ordering of implementations from each category are summariz
Table 4-1.

Table 4-1: Evaluation of implementation models

Implementation Type

Type 1:
X-displ.

Type 2:
FTP

Type 3:
rsh/rcp

Type 4:
NFS

Type 5:
daemon

amount of work required 2 3 4 1 5

36 CHAPTER 4: REMOTE ACCESS SERVER

quired
odel,
econd
tions

er two
d to

ore
ave to
most
 new

of the
tion is
ould
ield a
tion
AB
Category 1: Amount of work required for implementation

In this category the implementations were evaluated based on the amount of work re
for their development. The winner of this category is the NFS implementation m
since its implementation does not require changes to any of the VLAB tools. The s
best implementation is the X-display redirection mechanism. Only minor modifica
would be required for some of the VLAB tools, namely, assuring theDISPLAY
environment variable is properly propagated to all spawned processes. The oth
implementations would require significant modifications to all VLAB tools which nee
access VLAB databases. rsh/rcp implementation would require slightly m
programming than the FTP implementation, because all remote shell scripts would h
be written. Finally, the special purpose daemon implementation would require
amount of work, as all VLAB applications would have to be modified, as well as a
daemon would have to be written.

Category 2 - Interactivity of the user interface

In this category, I examine the impact these models would have on the interactivity
user interfaces of VLAB applications accessing remote databases. X-display redirec
the only implementation model in which VLAB applications and external programs w
run on the server and display its graphical user interface on the client. This would y
significantly inhibited user interface interaction, since all of the graphical informa
would have to travel over the network. In the other four models, both the VL

user interface interactivity 2 1 1 1 1

file access speed 1 3 4 2 2

availability of public access 2 1 2 2 1

security 1 1 1 1 1

inter-client communication 2 1 1 1 1

limitations of functionality 3 2 2 1 1

involvement of sys. adm. 2 2 2 3 1

extensibility 1 3 2 1 1

division of tasks 4 3 2 3 1

Total 20 20 21 16 15

Table 4-1: Evaluation of implementation models

CHAPTER 4: REMOTE ACCESS SERVER 37

ng the

 file
how fast
 access
LAB
access
daemon
tabase
ized,

ions in
ainly
sed and
ach file
s, as

tension
ation
ce of
sons
ired on
is time
er and

is not
uting

up time
ed with
ode.
y the
o

bjects,
applications and the external programs would run on the user’s workstation, preservi
same speed of user interaction as achieved when working with local databases.

Category 3 - File access speed

Here I evaluate each implementation model by how fast VLAB tools could perform
related operations on remote databases. The speed of such operations determines
VLAB applications can complete database management operations. The fastest file
would be achieved using the X-display redirection implementation, because all V
tools would be run directly on the server containing the database, thus having direct
to the database. The second best implementation models are the special purpose
and the NFS approaches. Eventhough all file operations performed on a remote da
have to travel over the network, the NFS communication mechanism is well optim
and so could be the communication with the special purpose daemon. File operat
the FTP implementation model would be slower than in the NFS implementation, m
because the messages between an FTP daemon and an FTP client are text-ba
therefore need to be parsed. FTP also requires opening separate sockets for e
transmission. The rsh/rcp implementation would yield the slowest file operation
explained below.

Prototype implementation of the remote access extension

I designed, implemented and tested a simple prototype of the remote access ex
using the rsh/rcp implementation model. The main drawback of this implement
surfaced during the testing period - a very noticeable degradation in performan
VLAB applications was observed when working with remote objects. Two rea
causing such degradation of speed were identified. First, a large setup time is requ
the server to execute even a simple script supplied by an rsh command. During th
the operating system on the server must perform authentication of the connecting us
then set up the environment for running a shell script. Therefore, this setup time
affected by the speed of network. I performed and timed various tests of exec
commands using rsh over a fast local network, and the results revealed that this set
was often as long as one second per call. Additionally, there is an overhead associat
each call tosystem() , needed to execute rsh and rcp commands from within C++ c
The prototype implementation revealed that the combined setup time required b
server and the overhead of callingsystem() rendered the rsh/rcp implementation to
inefficient. Common tasks, such as showing extensions of an object and invoking o
would require 5 and 20 seconds to complete, respectively.

38 CHAPTER 4: REMOTE ACCESS SERVER

would
the only
erver
en for
[9].

r three
 is not
 secure
rious
he X-
e has a
public

se the

, none
f the
emote
ls use

and are
ual in

AB
mong
aste,
ithout

ient
rent
from
Category 4 - Availability of public access

In this category the evaluation is based on whether the implementation method
provide public access to remote databases. Special purpose daemon and FTP are
implementation models which support public access. Anonymous FTP allows the s
running an FTP daemon to be set up so that certain parts of its filesystem are op
browsing by general public, without compromising the server’s overall security
Similar functionality can be achieved using the special purpose daemon. The othe
implementation types do not provide any reasonable means for public access. NFS
suitable for this purpose mainly because its design focused on the use of fast and
networks. Allowing to NFS mount parts of the server’s filesystem can introduce va
security holes to the entire system, and result in high loads on the server. T
redirection and rsh/rcp models require that the user accessing the remote databas
shell account on the server. Providing anonymous shell accounts for the general
also has the disadvantages of possible security holes and high loads on the server.

Category 5 - Security

Here I evaluate the implementation models based on how much they would decrea
existing level of security for:

• the owner of the remote database,
• the entire system containing the remote database.

If public access is eliminated from the requirements of the remote access extension
of the discussed implementation models would reduce the existing security o
database’s owner, or the existing security of the entire system which contains the r
database. This statement is based on the fact that all of the described mode
mechanisms (shell access, X-display, FTP and NFS) which are considered secure
widely used on most UNIX based systems. All implementations are considered eq
this category.

Category 6 - Interclient communication

The current implementation of VLAB only supports communication among VL
applications running on the same computer. Since inter-client communication a
VLAB tools is necessary for providing functionalities such as cut, copy and p
transferring objects between remote and local databases would be impossible w
interclient communication. It would be possible to redesign the inter-cl
communication mechanism in VLAB to support applications running on diffe
systems, but this would eliminate the X-display redirection implementation model

CHAPTER 4: REMOTE ACCESS SERVER 39

h the
tools
 of the
 paste

n the
AB
 would
 models
be
emote
would
ing

among

ystem
 the first
d. For

tem
trator is
ntation

nt the
stem

jects
ss to
s which
FTP
s many
ion are
the category of straightforward solutions. The only implementation type under whic
interclient communication would be affected is the X-redirection model, because
operating on remote database would be running on a different host than the rest
tools. This means that with X-redirection model, operations such as cut, copy and
would not work between tools operating on different remote databases.

Category 7 - Limitations of functionality

The evaluation of models in this category is based on the limitations they impose o
functionality of VLAB when operating on remote databases. The functionality of VL
applications would be unaffected using the NFS approach, because the applications
access remote databases as if they resided on local filesystems. FTP and rsh/rcp
would preserve the functionality of all VLAB applications. However, it would
impossible to execute external programs which require direct access to files in r
databases, such as file managers or shells. The X-display redirection method
introduce the most limitations to the functionality available to VLAB users when work
on remote databases. This would be caused by broken inter-client communication
VLAB applications run remotely and those run locally.

Category 8 - System administrator’s involvement

The implementations are evaluated in this category based on the amount of s
administrator’s involvement (root access) necessary to access remote databases. In
four implementation models the system administrator of the server has to be involve
the NFS method, the system administrator has to add an appropriate entry to the/etc/
exports file, so that the server will allow the new client to NFS mount the filesys
containing the remote database. For the other three methods, the system adminis
needed to create new accounts on the server for each new user. The NFS impleme
method would also require the system administrator of the client system to mou
filesystem with the remote database. The only implementation time for which sy
administrator is not needed is the special purpose daemon.

Category 9 - Extensibility

It is anticipated that in the future versions of VLAB, a need for new operations on ob
will arise. For example, file locks might be needed to control simultaneous acce
remote databases. The FTP model is the least extensible model, as the operation
can be performed on remote files would be limited by the functionality of the
daemon. The rsh/rcp implementation takes the second last place in this category, a
file operations cannot be performed using shell scripts. The other three implementat
equally extensible.

40 CHAPTER 4: REMOTE ACCESS SERVER

and a
poorly
ient is
lso not
 non-

hes to
he rsh/
mputer
ty. The
tended

nsion,
public
general
 used
stem to
ng too
suited
ffered
AB’s
t of
bove

ice for

 most
ity to
er is
 users),
cant

for its
Category 10 - Division of tasks

Here I try to evaluate to what extend it is possible to divide work between the client
server in each of the implementation models. The X-redirection model scores most
in this category, since it requires that all tasks be performed on the server. The cl
only responsible for displaying the results of operations. FTP and NFS models are a
well suited for task division, as both the FTP and NFS daemons provide a fixed and
extensible functionality. For example, it would be impossible using these to approac
ask the server to scale the icons of objects before they are transferred to the client. T
rcp approach does support division of tasks, however, the tasks on the remote co
would have to implemented using scripting languages - i.e. large performance penal
special purpose daemon is a clear winner in this category, as it can be infinitely ex
to perform any task entirely on the remote system.

4.2.3. Conclusion

The NFS model is not well suited for the implementation of the remote access exte
mainly because one of the requirements of the remote extension is to provide
access to remote databases. System administrators would be reluctant to allow
internet community to NFS mount file systems. The X-display redirection cannot be
for similar reasons - system administrators cannot give out shell accesses to their sy
general public. The rsh/rcp model was rejected on a similar basis, in addition to bei
slow in its prototype implementation. The FTP mechanism seemed to be the most
implementation model for the remote access extension. However, the functionality o
by an FTP daemon is fixed and therefore not extendible. In the future, when VL
functionality will have to increase, such inability to extend an FTP daemon’s se
operations could render the whole FTP implementation obsolete. From the a
evaluation, it is obvious that the special purpose daemon is the most suitable cho
implementing the remote access extension.

4.3. Design

A new VLAB daemon, called Remote Access Server (RAserver) was developed. The
important advantage of this implementation over the FTP mechanism is its abil
address the needs for new functionality in future versions of VLAB. Also, RAserv
entirely managed by the user (such as maintaining his own database of authorized
thus removing the need for a system administrator’s involvement. The only signifi
disadvantage of the RAserver implementation model is the amount of work required

CHAPTER 4: REMOTE ACCESS SERVER 41

ons
.

ugh
 at the
ly, as
.

erver
 back to
rver

ocess
NIX
ocess
ected,
 of the

of the
process
lients
ulti-

tems.
essor

over a
ources
ystem
atabase
ocess
implementation. In addition to the work needed to modify all existing VLAB applicati
to take advantage of this new daemon, the RAserver daemon itself had to be written

Originally, RAserver was implemented to operate at the level of individual files, altho
its functionality has been later extended to add operations which perform requests
level of VLAB objects. This extension can perform certain operations more effective
in the case ofRA_GET_EXTENSIONS_REQUEST operation, described in Section 4.5.1

VLAB applications can request file operations to be performed by RAserver. RAs
attempts to perform such requests, and then sends the results of these operations
the application. The communication flow between two VLAB applications and RAse
is graphically illustrated in Figure 4-2.

RAserver spawns a separate process for each new client. This multipr
implementation of RAserver provides a clean design, consistent with the U
philosophy of multiprocessing. It has very important advantages over a single-pr
solution. First, if a process serving one client crashes, the other clients will be unaff
since each process runs in a separate address space. Secondly, the utilization
server’s resources will be higher than with a single-process implementation. Most
requests made to RAserver daemon require disk access services. In a single
implementation, if one of the clients requested a lengthy operation, the rest of the c
would have to wait until such an operation is finished. This problem is avoided in a m
process implementation because of the multitasking nature of UNIX operating sys
Last, multi-process implementation can automatically take advantage of multi-proc
workstations, where each process could be run on a separate processor.

There is one aspect of single-process implementation which could make it favorable
multi-process implementation. The single-process solution is less demanding on res
of the host computer, because with each process running on a UNIX operating s
there is an associated overhead. If the number of concurrent users of a remote d
was to become large, a conversion of RAserver daemon to a single-pr

Server

RAserver

Client

Browser

Object
Manager

FIGURE 4-2: Communication flow between two VLAB applications and RAserver

42 CHAPTER 4: REMOTE ACCESS SERVER

ng too

rver is
server
 that
level of
e user
d-only
fy its
t in its
ad-only
lt in

r the
write
er A’s
ss for
t one
-only

count
r file1
sing

 is
a local
the
uesting

ntation
ation
g as the
ll be

ases
puter,
implementation would have to be considered, to prevent system loads from becomi
high.

The level of access to remote files granted to VLAB applications connected to RAse
determined by two factors. First, since RAserver is run as a user’s process, RA
cannot provide functions on files that would not be granted directly to the user
invoked RAserver. The second factor that determines file access permissions is the
access granted to the remote user, specified by the user running RAserver. Th
running RAserver can set up two different levels of access for each remote user: rea
and read-write. When a new VLAB application connects to RAserver, it has to identi
user by a login and password. RAserver then looks up the corresponding accoun
own database and determines its level of access. If the account is associated with re
level of access, RAserver will refuse to perform any operation which would resu
modifications to the filesystem.

To illustrate how the level of file access using RAserver is determined, conside
following example. User A has set up two accounts for RAserver: account one with
permissions, and account two with read-only access. There are three files on us
computer: file1, file2 and file3. User A has read/write access for file1, read-only acce
file2 and no access to file3. VLAB applications connected to RAserver using accoun
will have the same permissions to all three files as user A: read/write for file1, read
for file2 and no access for file3. VLAB applications connected to RAserver using ac
two have read-only access for file1 and file2, and no access for file3. Write access fo
has been effectively removed for all VLAB applications connected to RAserver u
account two.

The RAlibrary is designed to automatically detect when the VLAB application
accessing a database on a local filesystem. When accessing a database on
filesystem, the operations of RAlibrary are optimized - by directly performing
requested operations on the database using ordinary system calls, instead of req
these operations to be performed by RAserver. This design allows a clean impleme
of all VLAB applications requiring remote access, since the developer of the applic
does not have to distinguish between accessing local and remote databases. As lon
application uses RAlibrary for all its file-related operations, such an application wi
automatically optimized when accessing local databases.

4.4. User’s perspective of RAserver

RAserver is a VLAB tool allowing other VLAB applications to access remote datab
through the Internet. A remote database is located on the filesystem of a remote com

CHAPTER 4: REMOTE ACCESS SERVER 43

ccess
. In the

hrough
.

r in the

iple

pt:

with a
 their
nts. The
Their

rmined
and this filesystem is not shared with the computer from which the user is trying to a
the database. RAserver can be run in two different modes: daemon and setup mode
first mode RAserver acts as a daemon, and serves VLAB applications connected t
the Internet. In the setup mode accounts are created and managed for remote users

4.4.1. Daemon mode

The user wishing to provide remote access to his/her databases invokes RAserve
daemon mode, by issuing the following command at the shell prompt:

% raserver

RAserver then listens for connections from VLAB clients, establishes mult
connections and provides services to all authorized connections.

4.4.2. Setup mode

To invoke RAserver in setup mode, the following command is typed at the shell prom

% raserver -pe

When the user starts RAserver in the setup mode, RAserver presents the user
command line interface for editing user accounts. At this prompt commands and
parameters can be entered, requesting information or changes to the user’s accou
following commands are available: quit, help, ls, add, del, chlog, chpass, toggle.
meaning and syntax can be obtained through the on-line help (by typing ‘help’).

4.4.3. Related files

RAserver stores the account information about remote users in the account file dete
at runtime by evaluating the following expression:

$VLABCONFIGDIR/rapasswords

44 CHAPTER 4: REMOTE ACCESS SERVER

 exist,
mon

d and

nclude
lity to

ake
e
nts on
ld
an be

arate
ed in

ill
sible
sword.
d are
The account file is accessed by RAserver in both of its modes. If this file does not
RAserver in setup mode will automatically create an empty one. If RAserver in dae
mode is invoked while there is no rapasswords file, the user is appropriately notifie
RAserver automatically starts setup mode.

4.5. Implementation details

In this section the implementation details of RAserver are discussed. These details i
information necessary for maintaining the code as well as for adding new functiona
RAserver.

4.5.1. Overall structure of RAserver

The RAserver daemon works in the following way. When started, RAserver will m
sure that therapasswords file exists. If it does not exist, RAserver will switch to th
setup mode. If the rapasswords file does exist, RAserver starts to listen for new clie
a port defined insrc/RA/RA.h asRA_PORT. When a new client is connected, a chi
process is spawned to serve the client. The overall algorithm for VLAB daemon c
described with this pseudocode:

if option ‘-pe’ present on the command line:
start setup_mode

if rapasswords file does not exist:
issue warning to the user
start setup_mode

loop:
accept new connection
spawn a new child process
if child:

serve_client()

serve_client() is a function that serves each client independently, on a sep
socket connection [36]. The input to this function is the socket connection establish
the main code. Beforeserve_client() serves any requests of the client, it w
establish the identity of the user. The VLAB tool connecting to RAserver is respon
for sending a login request as the very first request, with a login name and a pas
Whenserve_client() receives a login request, the login name and the passwor
matched against the entries in therapasswords file. If a match is not found,

CHAPTER 4: REMOTE ACCESS SERVER 45

ion.

ses.
r does
quested

n a
ction.

which
serve_client() will return a negative response and will terminate the connect
When authorization is confirmed,serve_client() will determine whether write
access is granted for the connected user. Then theserve_client() will enter an
infinite loop in which it will accept and perform requests, and return respon
Performing operations which modify the filesystem are disabled if the connected use
not have read-write access. In such a case a response indicating a failure of the re
operation is returned to the client. The pseudo-code forserve_client() follows:

serve_client(connection):
receive request
if request is not LOGIN request:

terminate connection
quit

create an encrypted password from password
lookup entry in rapasswords based on login

and encrypted password
if entry not found:

send negative response
terminate connection
quit

if entry indicates writable access:
set writable flag

else:
clear writable flag

while 1:
receive request
if request is a LOGOUT request:

do_logout()
close connection
quit

else if request is an UNLINK request:
do_unlink()

else if request is a RENAME request:
do_rename()

else if ...
.
.
.

Onceserve_client() establishes an authorized connection it will only quit whe
LOGOUT request is sent, or when the client unexpectedly terminates the conne
RAserver currently implements 17 requests, designed to mimic the operations
VLAB applications need to perform on files when operating on databases:

46 CHAPTER 4: REMOTE ACCESS SERVER
RA_COMPFILE_REQUEST

• 2 parameters: file name 1, file name 2
• requests comparison between two local files located on the server

RA_COPYFILE_REQUEST

• 2 parameters: source_file_name, dest_file_name
• requests to perform a copying operation on the server

RA_DELTREE_REQUEST

• 1 parameter: directory name
• requests recursive deletion of a directory

RA_FETCH_REQUEST

• 1 parameter: filename
• requests contents of a file

RA_GETDIR_REQUEST

• 1 parameter: directory name
• requests a list of directory entries

RA_GET_EXTENSIONS_REQUEST

• 1 parameter: path to a VLAB object
• requests a list of extensions and their attributes for a VLAB object.

This request has been added to eliminate unnecessary network traffic
(the same functionality could be achieved by calling
RA_GET_DIR_REQUEST, and thenRA_STAT_REQUEST multiple
times).

RA_LOGIN_REQUEST

• 2 parameters: login name, password
• requests access to RAserver

RA_LOGOUT_REQUEST

CHAPTER 4: REMOTE ACCESS SERVER 47
• no parameters
• requests RAserver to terminate connection

RA_MKDIR_REQUEST

• 1 parameter: directory name
• requests creation of an empty directory

RA_PUTFILE_REQUEST

• 2 parameters: file name, contents of a file
• requests creation of a file with supplied contents

RA_READLINK_REQUEST

• 1 parameter: name of a symbolic link
• requests the contents of a symbolic link

RA_REALPATH_REQUEST

• 1 parameter: file or directory name
• requests real path (unique full name) of a file

RA_RENAME_REQUEST

• 2 parameters: file name 1, file name 2
• requests rename

RA_RMDIR_REQUEST

• 1 parameter: directory name
• requests deletion of an empty directory

RA_UNLINK_REQUEST

• 1 parameter: filename
• requests deletion of a file

RA_STAT_REQUEST

• 1 parameter: file or directory name
• requests information about a file, such as file type (regular, directory,

symbolic link, etc), and its attributes (readable, writable, executable)

48 CHAPTER 4: REMOTE ACCESS SERVER

which is
ponses

nclude

nt of

ngle
ding
te
 of
Each of the above requests is associated with an appropriate response message,
always returned to the client - both in the case of a success and a failure. Some res
include only information about the success of the requested operation, some also i
data. The format of messages is explained in the next section.

The following C++ classes have been implemented to simplify the developme
RAserver and the associated RAlibrary (RAlibrary is the subject of section 4.5).

class Message;
class MessagePipe;

Message is a data structure implemented for holding information about a si
message.MessagePipe class has been implemented to simplify the process of sen
and receiving objects of typeMessage through socket connections. To demonstra
usefulness of these two classes I will show a complete implementation
do_unlink() , which is called as a response to theRA_UNLINK_REQUEST.

void do_unlink(const char * fname, MessagePipe & pipe)
{
 if(read_only)
 {

// this client does not have a write access
// send FAILURE to the client
Message m(RA_UNLINK_RESPONSE, “n”, 2);
pipe.send_message(m);
return;

}

if(unlink(fname) // try to unlink the file
{

// unlink() failed
// send a FAILURE to the client
Message m(RA_UNLINK_RESPONSE, “n”, 2);
pipe.send_message(m);

}
else

RA_SYMLINK_REQUEST

• 2 parameters: source destination
• requests creation of a symbolic link

CHAPTER 4: REMOTE ACCESS SERVER 49

P/IP
age is a

ple by
ytes
 of the

ossible
ge could

 for
{
// unlink() was successful
// send a SUCCESS response to the client
Message m(RA_UNLINK_RESPONSE, “y”, 2);
pipe.send_message(m);

}
}

4.5.2. Communication mechanism and format of messages

The communication between RAserver and VLAB tools is implemented using TC
sockets. Each message sent between RAserver and a client, whether the mess
request or a response, follows the same format, as shown in Figure 4-3.

The first four bytes of each message determine the type of the message, for exam
encoding the RA_SYMLINK_REQUEST constant into four bytes. The next four b
determine the length of the user data included within the message. The remainder
message is composed of user data. The total length of each message is:

4 + 4 + user_data_length

and can be determined by reading the first 8 bytes of the message. The shortest p
message is therefore 8 bytes (message with no user data), and the longest messa
be approximately 4 GB long (8 + 2^32 bytes).

Strings are encoded in messages by including the terminating\0 . If more than one string
is to be sent with a message, such strings are simply concatenated, having\0 ’s as
separators. If a variable number of strings are to be sent, for instance

message type
(4 bytes in
LSB-first
format)

user data length
(4 bytes in
LSB-first
format)

user data

FIGURE 4-3: Message Format in Remote Access Extension

50 CHAPTER 4: REMOTE ACCESS SERVER

tional

e user
if the

e it is

 the
e are

e,
count,
counts

y for
rary
a class
mon

tically
RA_GETDIR_RESPONSE message, the strings are also concatenated, and an addi
empty string is included at the end.

Another common convention for all response messages is to set the first byte of th
data portion of the message to ‘y’ if the request was successfully performed, or ‘n’
request failed.

4.5.3. Implementation of RAserver’s setup mode

The implementation of RAserver’s setup mode is discussed only very briefly, becaus
simply a command line interface for modification of therapasswords file. RAserver
does not cache any information regarding therapasswords file - each time RAserver
needs an account information, it reads the most current information from
rapasswords file. Also, changes made to the account list in RAserver’s setup mod
immediately written to therapasswords file. This allows the user to modify the
account list without shutting down the RAserver.

4.5.4. Account file format

The rapasswords file stores the following information about each user: login nam
encrypted password, and file access level. This information is stored one line per ac
where the fields are separated by colons. For example, the account file with three ac
could contain:

peter:qwZ9JWBYMpS/M:n:
dan:qwDq11qMqxuw2:y:
guest:qwGiniA4POTqY:n:

4.6. Remote access library

Remote Access Library (RAlibrary) has been implemented to provide an easy wa
developers of VLAB to access the functionality offered by RAserver daemon. RAlib
has been written in C++, as a set of functions encapsulated as static methods of
calledRA (Appendix A). These methods have been designed to provide the most com
operations which an application performs on files. Each of these methods automa

CHAPTER 4: REMOTE ACCESS SERVER 51

aits for

le. For
me
are
 files
cated
ssing
ve to

s,
 is to

anism

a file
hine.
composes an appropriate request message, sends it over the network to RAserver, w
a response, parses the response and returns the decoded result.

4.6.1. Optimization

The methods in RAlibrary were designed to optimize as many operations as possib
instance, ifCompare_files() method is called on two remote files located on the sa
computer, a simpleCOMPFILE request is issued to the remote server, which will comp
the files directly on that machine. An alternative solution would be to download both
to the client and perform the comparison locally. On the other side, if both files are lo
on a local host, the operation is performed on a local computer, without acce
RAserver. Only if the connections point to two different hosts, one (or both) files ha
be transferred over the network. and compared on a local computer.

4.6.2. Return values

The convention for all methods which return typeint as a result is to return 0 on succes
and values other than 0 for failure. For functions that return pointers, the convention
return NULL in case of a failure, other values indicate success. There is a mech
provided in class RA for determining more detailed cause of an error.

4.6.3. Example of using RAlibray

The following is source code of a complete C++ program that uses libRA to obtain
from a remote host, display it on the screen, and then delete it from the remote mac

#include <stdio.h>
#include <stdlib.h>
#include <RA/RA.h>

int main(void)
{

// open a new connection to RAserver daemon on
// rikki.cpsc.ucalgary.ca,
// and login as ‘guest’ with password ‘guest’

RA_Connection * connection = RA::new_connection(

52 CHAPTER 4: REMOTE ACCESS SERVER

ion. It
invoke
 been
atabase
pted
“rikki.cpsc.ucalgary.ca”, “guest”, “guest”);
if(connection == NULL)
{

fprintf(stderr, “RA::new_connection() “
“ failed.\n”);

exit(-1);
}

// retrieve the contents of file /tmp/test.txt
// from rikki
char * buff;
long size;
if(RA::Read_file(connection, “/tmp/test.txt”, buff,

 size))
{

fprintf(stderr, “RA::Read_file() failed.\n”));
exit(-1);

}

// display the contents of the received file
for(long i = 0 ; i < size ; i ++)

putchar(buff[i]) ;

// delete file /tmp/test.txt on rikki
if(RA::Unlink(connection, “/tmp/test.txt”))
{

fprintf(stderr, “RA::Unlink() failed.\n”);
exit(-1);

}

// logout and close the connection
RA::close_connection(connection);
return 0;

}

4.7. Summary

In this chapter I described a new extension to VLAB, called remote access extens
allows users of VLAB to transparently access remote databases, making it easy to
and interchange objects among collaborators. A new daemon, RAserver, has
developed, which runs on a remote computer and performs actions on the remote d
on request by other VLAB tools. RAserver maintains a list of accounts with encry

CHAPTER 4: REMOTE ACCESS SERVER 53

tabases.
nt of
passwords and access levels, thus preventing unauthorized access to remote da
RAlibrary was designed and implemented to aid programmers in the developme
applications that require RAserver’s services.

54 CHAPTER 4: REMOTE ACCESS SERVER

o the
 stored

merous

based
 to the

 panel
als for
ription
ger’s
of this

ments.
 user
into a
VLAB

panel
. The

o panel
f the
CHAPTER 5 Panel manager

Performing computer simulated experiments often involves frequent changes t
parameter spaces of the inputs to the simulation programs. If these parameters are
in data files, such modifications can be done using text-based editors. There are nu
disadvantages of using text-based editors for parameter modifications, such as:

• text-editing is time consuming,
• text-editing can interrupt the natural flow of a presentation,
• text-editing requires memorization of the location of parameters and

valid options for parameters.

Panel manager 2.0 is a VLAB system tool designed to eliminate the need for text-
editors for parameter modification. The issues discussed in this chapter are related
development of a new panel manager, version 3.0. First, the old implementation of
manager is described, and some of its flaws identified. Then, the implementation go
the new panel manager are set out, followed by the description of its design. Desc
from the user’s point of view is given together with a short example for panel mana
usage. Implementation details related to panel manager are included at the end
chapter.

5.1. Background - panel manager in VLAB 2.0

Panel manager is a VLAB system program used to control parameters during experi
It displays and allows manipulation of a user-defined control panel with graphical
interface components. Every action performed on a GUI component is translated
message, which is sent to a parameter editor. Parameter editor is a separate
program which listens for messages from the controlling program (such as
manager), and performs editing actions based on the received messages
communication flow in VLAB 2.0 involving panel manager is shown in Figure 5-1.

Panel manager is invoked as a separate process from the application. The input t
manager is a panel definition file, which describes the layout and functionality o

56 CHAPTER 5: PANEL MANAGER

ation
xt, etc.,

, labels
l be on
wn in

ages.
al user-
urrent

e and

utton.

 and
ides a

ed to
be on
interface panel manager is to display. The panel specification file contains inform
about both the appearance of every GUI component, such as size, position, color, te
as well as the messages to be sent whenever the GUI component is activated.

Panel manager 2.0 supports five types of components: sliders, buttons, menu items
and pages. Bistable buttons may be grouped so that only one button in the group wil
at any given time. An example of a panel and its associated specification file is sho
Figure 5-2.

Controls may all appear in a single window or may be divided among several p
Popup menus are used for switching between pages, and may also contain option
defined items. A message format is specified for each control, and may refer to the c
value returned by the control. When a control is modified, the manager will updat
display its value, and send its associated message to the standard output device (stdout).
Controls are manipulated by the left mouse button, and menus by the right mouse b

5.1.1. Panel definition file format

The panel definition file contains all necessary information to create, display
manipulate the control panel. It first describes the window to be used, and then prov
description of each control (slider, button or menu item). Blank lines may be us
separate each control’s specifications, but the details of a single control must
consecutive lines. The panel definition file may contain the following specifications:

panel
definition

file

panel
manager

parameter
editor

data
file

application

FIGURE 5-1: Communication flow in VLAB 2.0’s panel manager

CHAPTER 5: PANEL MANAGER 57

meter
has the
ce is
• The panel window
• Page definition
• Slider definition
• Button definition
• Group definition
• Label definition
• Menus

5.1.2. Interfacing with an application

Simulation programs in the virtual laboratory are assumed to obtain their initial para
values from data files. Panel manager can be interfaced to any such program that
ability to reread its data files. The resulting communication flow in such an interfa
shown in Figure 5-1 on page 56.

type: BUTTON
name: dbl buffer
colors: 7 4
origin: 40 130
value: 1
message: o 1 %d

type: BUTTON
name: clear
colors: 7 4
origin: 40 80
value: 1
message: o 2 %d

type: BUTTON
name: scale
colors: 7 4
origin: 40 30
value: 0
message: o 3 %d

panel name: Animate
background: 0
size: 170 400

type: SLIDER
name: Last frame
colors: 7 1
origin: 20 330
min/max: 0 100
value: 34
message: n 6 1 0 %d

type: SLIDER
name: First frame
colors: 7 1
origin: 20 265
min/max: 0 40
value: 0
message: n 5 1 0 %d

type: SLIDER
name: Swap interval
colors: 7 1
origin: 20 200
min/max: 0 20
value: 10
message: n 4 1 0 %d

FIGURE 5-2: Example of a control panel and its definition file

58 CHAPTER 5: PANEL MANAGER

ponding
re-read
s are:

 two
r needs

pace of
meter
 and

he

ssage

ta
The parameter editor interprets messages from panel manager and edits the corres
parameter in the appropriate data file. The modified data file may be subsequently
by the application program. Thus, the steps involved in modification of the parameter

• user applies an action to one of the GUI components in the panel,
• panel manager sends messages to the parameter editor;
• the editor modifies the parameter file according to the messages

received;
• the user instructs the application to reread the modified file.

The advantage of separating the user interface and file editing functionality into
applications (panel manager and parameter editor), is that only the parameter edito
to be modified when connecting a panel to a different application†.

5.1.3. Example of usage

Assume a user is running an experiment, in which a simulation programsimulate is to
be invoked with file parameters.dat , where parameters.dat holds the
parameters needed for the simulation. The user wishes to explore the parameter s
this experiment, and decides to use panel manager to assist him with para
modifications. The panel specification file describing the panel’s layout is created
stored inparameters.panel . To invoke the experiment, the user would type t
following command at the command line:

% simulate parameters.dat &

To start up panel manager, the user would type:

% panels parameters.panel | awkped parameters.dat &

This command tells panel manager to read in the layout information and the me
formats for each component fromparameters.panel file. As the user manipulates
the controls in the displayed panel, panel manager sends its messages toawkped , a
parameter editor.awkped then performs editing actions on the fileparameters.dat
based on the messages it receives from panel manager.

† This assumes that the data file format does not change. If the format of the da
file does change, the parameter editor has to be modified.

CHAPTER 5: PANEL MANAGER 59

AB, it
hese
their

tor. In
licitly
sfactory

ssages
anager
 values
e only
he last
ntrol
f the

panel
ck of
B

direct
 5.1.4.
5.1.4. Drawbacks of panel manager 2.0

Although panel manager 2.0 has proven to be an invaluable tool for the users of VL
has a number of shortcomings, which were identified during its frequent use. T
deficiencies were generally summarized in Section 1.2.2, and the following is
elaboration.

Panel specification files have to be written in a special language using a text edi
order to design a control panel the user has to edit the panel definition file, exp
reload it in panel manager to see the result, and then repeat the process until a sati
result is obtained.

Panel manager 2.0 only supports one way communication - for sending out the me
required to perform the editing on the data files. There is no mechanism in panel m
to determine the current values of the parameters from the data file. Therefore, the
in a newly displayed panel could disagree with the actual values in the data files. Th
way to avoid this asynchronism when using panel manager 2.0 is to manually store t
settings of parameters directly to the panel definition file, so that next time the co
panel is invoked, the values shown by the controls will agree with the values o
parameters in the data file.

The graphical user components are implemented using an IRIS GL library, tying
manager 2.0 to the SGI platforms. Another problem stemming from this fact is the la
look-and-feel consistency with the rest of VLAB applications. All other VLA
applications use the Motif library for their user interfaces.

5.2. Requirements and design

5.2.1. Requirements

I have established the design goals for the new version of panel manager in
correspondence with the limitations of the old panel manager, as stated in Section
They are:

60 CHAPTER 5: PANEL MANAGER

 two
d as:
l these

e user
ten the
is non-
value
es for

ameter
alternate
ify the
 above
• A graphical user interface builder for designing panels will be devel-
oped, where the user can design all aspects of the control panel visually
(instead of using a text editor).

• A method for automatic synchronization of displayed information in
control panels and the values of parameters in data files at initialization
time will be incorporated into the design of the new panel manager.

• The new panel manager will provide facilities for editing various types
of parameters, such as numbers and strings.

• Panel manager will allow flexible specification of parameter locations.
• Panel manager will be extensible to include new control types.
• The Motif library will be used in the new implementation for the graph-

ical user interface, to preserve the consistency of GUIs among all VLAB
components.

5.2.2. Parameter types

At the lowest level, all parameter types in ASCII data files can be categorized into
groups: numeric and non-numeric. Numeric parameters can be further classifie
integers and real numbers. Panel manager is designed to allow its users to contro
three types of parameters.

Non-numeric parameters

For non-numeric parameters, panel manager provides a control component giving th
a set of a predefined choices which can be used for the parameter’s value. It is of
case that the actual parameter values in data files are specified in a form which
intuitive to the user. Consider, for example, a parameter which can contain a
representing an RGB color, formatted as a hexadecimal number. The possible valu
this parameter could be:

 #ff0000 (Red) #ffffff (White)
 #000000 (Black) #0000ff (Blue)
 #00ff00 (Green) #ff9900 (Orange)
 #ffff00 (Yellow) #7f00ff (Purple)

It is desirable the panels be constructed in such way, that alternate names for par
values are presented to the user. The user makes the selection based on these
names, while panel manager will automatically use the corresponding value to mod
parameter. In the above example, the user would be given a list of colors (as shown

CHAPTER 5: PANEL MANAGER 61

o their
value.

r the
 of the
rity of
ort for
bound

trols.
ed. To
mmon
a group
virtual
ger’s

e. The
ren of

 the
elds
 well
reated
ound
in brackets) to choose from. Panel manager would automatically translate these int
hexadecimal equivalents and set the parameter in the data file using this translated

Numeric parameters

In order to use simple sliders for controlling numerical parameters, a valid range fo
parameter must be specified. Panel manager will not allow the user to set the value
parameter outside of this range. This design decision was made since the majo
numeric parameters can be controlled in this way, and Motif does not offer any supp
controlling unbound numerical values. Interfaces, through which a user can set un
numeric values, have been previously designed and implemented [33].

5.2.3. Extensibility

The first implementation of panel manager 3.0 only supports a limited number of con
However, it was designed to be easily extendible when more control types are need
this end, each component type is defined as a C++ class, derived from a co
superclass. The superclass defines default behavior for all components, as well as
of methods which have to be defined when deriving a new component (using pure
functions). The process of adding a new control type to the panel mana
implementation simply involves deriving a new class from this superclass.

5.2.4. Component hierarchy

The components of each panel are hierarchically organized into a component tre
component at the top of the tree represents the window of the entire panel. The child
the top component can be:

• control components (used for actual modification of parameters); or
• information components (e.g. labels); or
• decoration components (e.g. frames); or
• ‘group’ components, which themselves contain other components.

This design for hierarchical organization of GUI components stems directly from
model used in Motif applications for organization of widgets [4][12], and therefore yi
a straightforward implementation. This design has many other good qualities. It is
suited for automatic inheritance of attributes. For instance, when a component is c
with a specific background, then all children of this component inherit this backgr

62 CHAPTER 5: PANEL MANAGER

an be
ted the
s of
vided

type-
xisting

 of a
 the
onent

der to
 build
m for
ferent

ring
wing
color at their creation time. Another advantage of this design is that components c
grouped and then manipulated (such as resized or moved) together. It should be no
current implementation of panel manager 3.0 only supports the first two type
components (control and information components), although an infrastructure is pro
for the implementation of the other two types (decoration and group components).

An extension to this design could base the component hierarchy on the proto
extension model. Each new component would be created as an extension of an e
one, only defining how it differs from its prototype. A change made to an attribute
prototype would then automatically propagate to all of its extensions (provided
extensions have not redefined that particular attribute). Such a model for comp
organization would allow the user to create similar looking components efficiently.

5.2.5. Specification of parameter location

Flexibility was a very important issue in the design of the new panel manager. In or
maintain a reasonable flexibility of panel manager, it is desirable that the user can
control panels which operate on parameters in multiple files. Also, the mechanis
specifying the location of parameters within data files must accommodate many dif
file formats.

Panel manager requires the location of a parameter is specified for each control by:

• the name of the data file containing the parameter,
• the location of the parameter in the data file.

The location of the parameter in the data file can be specified in two different ways:

• by specifying the line number and the field number containing the
parameter, or by

• specifying a prefix (given as a string) which can be found immediately
before the parameter.

The first mode of specifying parameter’s location is suitable for data files sto
parameters in table format. For example, consider a data file with the follo
information:

1.2 9.81 0.0 3 5
12.3 20.7 7

CHAPTER 5: PANEL MANAGER 63

cation

which
le can
ravity

r will
long as
thod
 data
The user would like to assign a control to the parameter whose current value is20.7 . He
could do so by specifying its location as:line=2, field=2 . The drawback of this
method for giving locations of parameters is that the parameter cannot change its lo
within the data file.

The second mode for specifying the location of parameters is suitable for data files
store parameters together with their textual descriptions, and their position in the fi
vary. For example, consider the case where the user would like to control the g
parameter in the following file:

Time Step: 0.00001
Gravity: 9.81
Friction: 1.02

The location of this parameter would be given as:prefix=’Gravity:’ . A control
associated with a parameter whose location has been given in this manne
successfully locate the parameter even if the parameter’s location is changed - as
the string ‘Gravity:’ is positioned directly before the parameter. For example, this me
would allow panel manager to correctly locate the gravity parameter in the following
files:

Time Step: 0.00001
Gravity: 9.81
Friction: 1.02

Friction: 1.02 Gravity: 9.81 Time Step: 1.02

Gravity: 9.81
Friction: 1.02

Time Step: 0.00001
Gravity:

9.81
Friction: 1.02

64 CHAPTER 5: PANEL MANAGER

al user
into a
spond
el for
 the
d in

he run
ted by

modify
ager in

e 65

. It is
s. At
for all
of the
 values.
5.2.6. Dual mode of operation

The implementation of panel manager 3.0 consists of two components: the graphic
interface builder and the visual parameter editor. Both components are combined
single application, which can be run in two different modes. These two modes corre
to whether the user wants to design a panel, or use an existing control pan
modification of parameters. This dual mode of operation is consistent with
implementation of RAserver, which can also run in two different modes (describe
Section 4.4).

5.3. User’s perspective of panel manager

Panel manager can be run in two different modes: run mode and edit mode. In t
mode, the user manipulates the controls displayed in the panel, immediately transla
panel manager into editing actions. In the edit mode, the user can design new, or
existing panels. The rest of this section will describe these two modes of panel man
more detail.

5.3.1. Run mode

To invoke panel manager in a run mode, the user enters the following command:

% panels file-name

file-name determines the location of the panel definition file. Figure 5-3 on pag
shows an example of panel manager in run mode.

Each control in a control panel can be associated with a parameter in a data file
possible to set up a control panel with controls modifying parameters in multiple file
the initialization time, panel manager determines the current values of parameters
of its controls. These are then reflected in the displayed information. If the values
parameters are out of range, the user is notified and the affected controls display no

Panel manager currently supports 5 types of controls:

CHAPTER 5: PANEL MANAGER 65

. Each
or the
• Integer range,
• Floating point range,
• Choice,
• Label, and
• Panel.

Integer range

Integer range is used to control parameters whose domain is a range of integers
instance of this type must be associated with a minimum and a maximum value f
parameter it controls. Integer range control is made of three components:

FIGURE 5-3: Panel manager 3.0 in run mode

66 CHAPTER 5: PANEL MANAGER

. The

erform
 value

r of the
trough
r, and
lly, the
 of the
meter.
tes the
 drags
The title component shows a user defined text, set at the creation time. Thecurrent value
of the parameter is shown in a separate window in the left lower corner of the irange
parameter can be modified by ascrollbar, which has 3 different manipulation
mechanisms. The two arrows located at each end of the scrollbar are used to p
simple increments and decrements on the current value. The amount by which the
increments or decrements when these arrows are used is defined by the creato
panel. Another way to increment and decrement the current value is to use the
component of the scrollbar. Trough is displayed as the background of the scrollba
when clicked the value increments or decrements by a user definable amount. Fina
user can change the value by dragging the slider left and right. The relative position
slider with respect to the size of the scrollbar determines the new value of the para
The parameter is automatically updated in the data file every time the user manipula
irange control, even when the change is not completely finalized (i.e. while the user
the slider without releasing it).

title

current
value

scrollbar

CHAPTER 5: PANEL MANAGER 67

s their
. The

e of a
d in the
n time.
Floating point range

Floating point range is used to control parameters which can contain real numbers a
values. It is almost identical in its appearance and functionality to the integer range
difference is that floating point range controls floating point numbers.

Choice

Choice is a control that allows the user to modify parameters which can only hold on
predefined set of possible values. The values (their alternative names) are displaye
control panel as a set of radio boxes, of which only one can be set active at any give
The choice control consists of two parts:

title

current
value

scrollbar

radio
buttons

title

68 CHAPTER 5: PANEL MANAGER

e radio
tton is

active.
l panel

 in the

 other
le the
created
anel
ger in

. The

mode,
The title shows a label that has been defined when the control panel was created. Th
buttons show the possible choices for setting the parameter’s value. Each radio bu
associated with a string describing the choice.

Label

The label component does not modify any parameters, and hence is not inter
Label’s sole purpose is to display a user defined text. The label appears in the contro
as a frame with a text inside:

Panel

Panel is another non-interactive component. Its function is to hold other components
control panel. Panel is usually seen as the background of control panels.

5.3.2. Edit mode

The edit mode of panel manager is used to create or modify the layout and various
attributes of control panels. The editing actions are associated with controls whi
panel is being built. When the design of the panel is done, the user saves the newly
control panel into a panel definition file. This panel definition file is then used with p
manager in a run mode, to modify parameters in data files. To invoke panel mana
edit mode, the user enters one of the following commands:

% panels -e
% panels -e file-name

The first command will open up an empty window, where a new panel will be created
second command will result in opening an already existing panel specification filefile-
name. Panel manager in edit mode has a slightly different appearance than in run
namely, a menu bar is included in its window (Figure 5-4).

CHAPTER 5: PANEL MANAGER 69

e-
The menu bar contains three pull down menus:

FIGURE 5-4: Panel manager 3.0 in edit mode

New deletes all current components and cr
ates an empty panel

Save... saves the current work into a user
selectable file

Quit quits panel manager

70 CHAPTER 5: PANEL MANAGER

 It can
present
active

nt

-

When a new component is created, it is given default colors, fonts, size and position.
be then moved, resized and have the rest of its attributes modified by the user. To
the user with a visual identification of the component that is being manipulated, the
component always changes its border color to yellow.

Label creates a new label component

Choice creates a new choice component

Irange creates a new integer range compone

Frange creates a new floating point range com
ponent

Grid allows the user to control the granular-
ity of the placement and resizing of the
components

CHAPTER 5: PANEL MANAGER 71

Figure
menu:
ted
.

 each
e user
5).
ntrol

a

f
.

y,

e
s
y

e bar
ribute
hen
The first mouse button is used to reposition
an existing or a newly created component in
the panel. No components can be moved
completely outside of the panel component -
panel manager will make sure that at least a
portion of the component will remain visible.
The second mouse button is used to resize a
component. This is achieved by holding
down the middle mouse button while the
cursor is somewhere in the component, and
then dragging the cursor in whichever
direction the component is to be resized. The
third mouse button is used to display a pop-up menu for a component, as shown in
5-5. Panel manger currently supports only two of the actions offered by the pop-up
Delete andEdit Attributes. TheDelete menu item allows the user to remove the selec
component, but a warning message is first displayed to prevent accidental deletions

Attributes such as background, foreground, font style, title, etc. can be edited for
component using attribute editors. To invoke an attribute editor for a component, th
selects theEdit Attributes function from the component’s pop-up menu (Figure 5-
Attribute editors can be displayed simultaneously for every component in the co
panel.

Attribute editor for panel components

When the attribute editing function is
invoked on a panel component,
dialog similar to the one in Figure 5-6
is displayed. The current attributes o
the panel are displayed in this dialog
To modify the background or the
foreground color, the user has to click
the mouse in box 1 or 2 respectivel
which will pop-up a color-chooser
dialog. Clicking the mouse button in
box 3 will bring up a font-chooser
dialog. The title and the name of th
data file on which the panel control
will operate can be changed b
editing text boxes 4 and 5

respectively. The contents of the title will determine the text that will appear in the titl
of panel manager window when invoked in run mode. Any change made in the att
window will be immediately reflected in the panel component (for example w

FIGURE 5-5: Popup menu for panel
components

1
2
3
4
5

FIGURE 5-6: Attribute editor for
panel components

72 CHAPTER 5: PANEL MANAGER

will

e
er
an

ge

5.
e

e

he

 is
r
al
modifying the background color by clicking on different colors in a color-chooser
immediately change the background color of the displayed panel).

Attribute editor for label components

The attribute editor dialog for Label
components appears in Figure 5-7. All
attributes can be modified the same way
as in the attribute editor for Panel
components. The contents of thetitle text
box specify the text which will be
displayed in the Label component.

Attribute editor for integer range
components

The attribute editor dialog for integer rang
components is shown in Figure 5-8. Integ
Range components have 13 attributes that c
be modified. Besides theBackground,
Foreground andFont, the color of theTop and
Bottom Shadows, as well as theTrough Color
can be modified. TheTitle field determines the
text displayed on the top of the Integer Ran
control. Min, Max, Increment and Page
Incrementshave been explained on page 6
The parameter that the integer rang
component will modify is specified by two
fields: File and Field Prefix. The File field
specifies the name of the file in which th
parameter is located. TheField Prefix field
determines the position of the parameter in t
file by specifying its prefix.

Attribute editor for floating point range
components

The attribute editor for Floating Point Ranges
almost identical to the attribute editor fo
Integer Ranges. The difference is that re
numbers can be entered intoMax, Min,

Increment andPage Increment fields.

FIGURE 5-7: Attribute editor for
label components

FIGURE 5-8: Attribute editor for
integer range compo-
nents

CHAPTER 5: PANEL MANAGER 73

try

 of
elds,
ange
s, the
 and

nager
ot
ly

he
Attribute editor for choice components

Choice component’s attribute editor
allows the user to edit 11 different
attributes (Figure 5-9).Background,
Foreground, Top Shadow, Bottom
Shadow, Font, Title, File and Field
Prefix attributes have the same meaning
as the ones described with the range
components. The two new attributes are
Toggle Color andChoices fields.Toggle
Color defines the color of the toggle of
the active radio button.Choices field
describes the choices available to the
user. Each choice is described with two
text fields: the left field contains the text
to be displayed in a radio button, while
the right field determines the value of
the parameter which will be inserted
into the data file when that particular
radio button is selected. To delete a
choice from the list, the user invokes the
Delete button on the right side of the
choice to be deleted. To add a new
choice to the list, one of theInsert buttons is used - the position of the newly created en
will be based on the button’s relative position from the top.

General comments for all attribute editors

There are two kinds of fields available in attribute editors for direct entering
information: text and numeric fields. When the information is being changed in text fi
the attribute editor notifies the associated component immediately with every ch
made. However, when the information is being changed in one of the numeric field
user has to press theenter key to register the changes. The reason for handling text
numeric fields differently is explained below.

When the user enters an incorrect value for one of the numeric fields, panel ma
issues a warning. For example, the value in theMax field of both range components cann
be smaller than the value in the correspondingMin field. Since entering numbers usual
requires intermediate states, in which the number might be in an illegal state†, the changes

† Consider entering a value of 100 as an example. When the user starts typing, t
field contains no information, then ‘1’, ‘10’ and finally ‘100’.

FIGURE 5-9: Attribute Editor for Choice
Components

74 CHAPTER 5: PANEL MANAGER

events
. To

rts, and
lete

onent.
 first,
n and
t and
to the
panel

 lexical
are not registered until the user explicitly indicates that the changes are final. This pr
multiple warning dialogs being displayed while the numbers are being typed in
visually remind the user of having to press theenter key when the modification of the
number is done, the background of these fields turns pink as soon as the typing sta
remains pink until theenter key is pressed. A detailed example of creating a comp
control panel for a sample data file is presented in Appendix B.1.

5.4. Implementation details

5.4.1. Panel definition file format

Every control panel is defined as a tree of components, starting with one root comp
In the panel definition file, the values for attributes for each component are defined
and then its children. Syntactically, any component can have any number of childre
attributes of any type. Panel definition files are stored in a structured text forma
parsed by a parser built by yacc [16]. The structure of the file corresponds directly
component tree of the control panel which the file represents. The grammar of
definition files in yacc format is:

all-> component
components-> |

component components
component-> ID ‘{‘ assignments components ‘}’
assignments-> |

assignments assignment
assignment-> ID ‘=’ value ‘;’ |

ID ‘=’ value
value_list-> ‘[‘ ‘]’ |

‘[‘ values ‘]’
values-> value |

values ‘,’ value
value-> STRING |

INTEGER |
REAL |
value_list

All capitalized tokens above are defined as regular expressions, and are parsed by a
analyzer built by flex [16], using following rules:

CHAPTER 5: PANEL MANAGER 75

mars:

efined
LETTER [a-zA-Z]
DIGIT [0-9]
WHITE [\t]+
ALNUM {LETTER}|{DIGIT}
COMMENT #.*
ID {LETTER}({ALNUM}|”_”)*
INTEGER {DIGIT}+
REAL -?[0-9]+(.[0-9]+)?
STRING \”([^\”\n]|(\\\”))*(\n|\”)

The following is an example of a file that has a valid syntax based on the above gram

panel {
 width = 260 ; height = 470 ;
 title = “Animate” ; background = “gray60” ;

 irange {
 x = 30 ; width = 100 ; file = ‘simulation.dat’;
 y = 30 ; height = 60; prefix = ‘N-iterations:’;
 label = ‘Number of iterations’;
 min = 1; max = 100; inc = 1; page_inc = 10;
 font = “-adobe-helvetica-bold-r-normal--12-*’;

}

 choice {
 x = 30 ; y = 60 ; width = 100 ; height = 120 ;
 choices = [[“Wireframe”, “wire”],
 [“Flat”, “flat”],
 [“Goraud”, “goraud”],
 [“Phong”, “phong”]
];
 }
}

A graphical representation of the component tree representing the control panel d
using the above file is shown in Figure 5-10.

76 CHAPTER 5: PANEL MANAGER

ve any
urrent
which

, each
gnment
ave an
ent

e. Some
tribute
of the
for a
to an
 each

n file
 parsed
ta file
ee is
Semantically, the root of the component tree must be of type panel, and it can ha
number of children. Panel’s children can be of any type except Panel. In the c
implementation of panel manager only the Panel components can have children,
effectively limits the depth of the component tree to two.

Syntactically, any type of a value can be assigned to any attribute. Semantically
component has a pre-defined set of attributes and their types. Therefore an assi
‘min = -20’ in a Panel component would cause an error, because panel does not h
attribute called ‘min’. Also, assignment ‘min = “red”’ in the integer range compon
would cause an error, because min attribute has been defined as an integer variabl
attributes do not have to be defined for a component, while some have to. If an at
that does not have to be defined is not specified in the definition file, the value
attribute is set to a default one. Similarly, if an attribute has to be specified
component but isn’t, a semantic error occurs. Assigning a value multiple times
attribute also results in a semantic error. The list of attributes and their types for
component are compiled in Table B-1.

5.4.2. Implementation of run mode

When panel manager is invoked in a run mode, it first parses the panel definitio
supplied on the command line and creates a component tree corresponding to the
information. Then each component is asked to retrieve its initial settings from the da
with which it is associated. After all components are successfully initialized, the tr

Panel

Choice
Integer
Range

FIGURE 5-10:Example of a component tree

CHAPTER 5: PANEL MANAGER 77

 each
el, the
thods,
 the

actual

It has
recursively rendered on the screen and callbacks are appropriately setup for
component. When the user starts manipulating the components in the control pan
appropriate callbacks are invoked. Each component type defines its own callback me
but their functionality is similar. The callback method is first responsible for updating
interface of the component which triggered the callback, and then for updating the
parameter in the corresponding data file.

The following is the algorithm used in panel manager to invoke its run mode:

 // initialize a new Motif interface
 ...
 // create a new instance of parser
 Parser p;
 // parse file_name and create tree of components
 Component * top_panel = p.parse(file_name);
 // report errors and warning (stored in p.messages[])
 ...
 if(top_panel == NULL) {
 // fatal error occurred in parsing - report to
 // the user and exit
 ...
 }
 // initialize all components
 if(top_panel-> init()) {
 // components could not be initialized (i.e. the
 // data file is missing for one of the components)
 // report to the user and exit
 ...
 }
 // render the components
 top_panel-> render(top_shell);
 // realize the whole Motif application and enter the
 // infinite event loop
 ...

Parser is a C++ class which encapsulates code generated by flex and yacc.
following methods and variables:

public:

 Parser ();
 ~Parser ();

78 CHAPTER 5: PANEL MANAGER

rs and
ed in an

up all

e code
ss. To
 Parser
 had to

class by
 Component * parse(const char * fname);
 long n_errors;
 long n_warnings;
 char ** messages;

 static Parser * curr;

 void add_error(const char *);
 void add_warning(const char *);
 long line_num;
 Component * tree;
 char * fname;

Theparse() method parses a file defined by the supplied argumentfname and returns
a pointer to a tree of components. If a fatal error occurs in parsing,parse() will return a
NULL pointer. Theparse() method also sets variablesn_errors andn_warnings
to the number of errors and warnings that occurred during parsing, so that erro
warnings can be shown to the user. The actual error and warning messages are stor
arraymessages of sizen_errors + n_messages .

The constructor is responsible for initializing the variables, and the destructor frees
memory allocated by the Parser class. The static variablecurr was created for a lack of a
better mechanism for incorporating flex/yacc generated code into C++ classes. Th
generated by flex/yacc is a plain C code, and cannot be easily included in a C++ cla
allow this generated code to access variables and methods of the instance of the
class that invoked this code, a global variable holding a pointer to the class instance
be created. Just before the parsing is started, theparse() method sets thecurr pointer
and then calls the yacc generated functionyyparse() :

this-> curr = this;
yyparse();

The code generated by flex/yacc can access methods and variables of the Parser
using thecurr pointer, for instance:

Parser::curr-> add_warning();

or

Parser::curr-> line_num ++;

CHAPTER 5: PANEL MANAGER 79

and

to
d. The
ent is

ager
n to all

tual, so
 types,

erived

d ones.
panel
The variableline_num is used at parse time to store the current line number,
fname contains the copy of the file name passed toparse() . These two variables are
needed byadd_error() andadd_warning() methods to format the messages
include the file name and the line number on which a parse error or warning occurre
variable tree is set in the code generated by yacc when the top panel compon
parsed in, and then used as a return value inparse() .

Component is a C++ class, from which all other component types in panel man
have to be derived. It defines a base set of types, methods and variables commo
other components, such asEvent type, foreground variable andadd_child()
method. Some of the methods in the Component class are declared to be pure vir
that every derived class has to implement such methods. The list of Component’s
methods and variables with appropriate descriptions can be found in Table B-2.

All five controls currently supported by panel manager have their own classes, d
from the Component class:IRange , FRange, Panel , Choice and Label . These
classes define some new attributes and methods and override some of the inherite
As an example, consider the Label class definition - the simplest component of
manager:

class Label : public Component {

public:
 Label(AssignmentList * al);
 Label();
 virtual ~Label();
 virtual char * to_str(void);
 virtual void render(Widget parentw);
 virtual void set_geometry(long x_ret,
 long y_ret,
 long width_ret,
 long height_ret);
 virtual void get_root_xy(long & x,
 long & y);
 virtual Widget get_rwidget(void);
 virtual void edit_settings(void);
 virtual void redraw(void);
 virtual void dump(Mem_IO &,
 long indent = 0);
 char label[256];

private:

80 CHAPTER 5: PANEL MANAGER

w new

erefore

ure for
pplied
ise an
de, by
the
infinite
 // callback for the EDIT mode event handler
 static void xtEventHandlerProc(Widget,
 XtPointer,
 XEvent *,
 Boolean *);
 void CommonConstructor(void);
 void _set_highlight(Boolean h);
 // callback for the options dialog
 static void options_cb(const char *,
 const void *,
 void *);
 Widget label_w;
 Widget frame;
};

Label only overrides the pure virtual methods of the Component class, and adds a fe
methods needed in the edit mode. ThextEventHandlerProc() is installed as an
event handler for all widgets of the Label component. Theoptions_cb() is a callback
needed by the OptionsDialog class. Both are only needed in edit mode, and are th
explained in Section 5.4.3.

5.4.3. Implementation of edit mode

Panel manager’s setup procedure for invoking the edit mode is similar to the proced
setting up the run mode, which was described in Section 5.3.1. If a file-name is su
on the command line, the component tree is created by parsing this file, otherw
empty tree is created. Then each component in the tree is setup for the edit mo
calling theset_edit_mode() method of the root component of the tree. After that
menu bar is created and the whole tree rendered. Then the control is given to the
Xt event loop:

 if(file_name was specified) {
 // create a new instance of parser
 Parser p;
 // parse file_name and create tree of components
 Component * top_panel = p.parse(file_name);
 // report errors and warnings
 ...
 if(top_panel == NULL) {
 // fatal error in parsing - report to the
 // user and exit

CHAPTER 5: PANEL MANAGER 81

ree
to the

nel
t tree.

nt
lf.
 ...
 }
 }
 else
 top_panel = NULL;

 // create the interface (menu-bar, etc.)
 ...
 // initialize all components
 if(top_panel != NULL) {
 top_panel-> set_edit_mode(handler);
 if(top_panel-> init()) {
 // report initialization failure to the user
 // and exit
 ...
 }
 // render the components
 top_panel-> render(top_shell);
 }
 // display the entire interface and give up control
 // to Motif. Callbacks will be called automatically
 // whenever the user invokes any action.
 ...

Calling set_edit_mode() of the root component puts every component in the t
into an edit mode. When a component is in edit mode, all mouse actions applied
component are intercepted by the component’sxtEventHandlerProc() method.
This method will then call the function specified in the call toset_edit_mode() , and
pass to it an instance of theEvent class (Table 5-1). Therefore in the edit mode, pa
manager is notified of any mouse events which occur anywhere in the componen
These events are then translated into editing actions (such as move and resize).

The type of the handler function is defined as:

 void handler(Component & c, Component::Event & ev);

The first argument which is passed to thehandler() is the reference to the compone
which sent the event. The second argument contains the details about the event itse

Table 5-1: Class event

int type;

82 CHAPTER 5: PANEL MANAGER

panel

e by
red
 file

 level
he old
Now I discuss the implementation details for every function available to the user in
manager’s edit mode:

Save...

Saving is implemented by first obtaining the description of all components in the tre
calling thedump() method of the root level component. This information is then sto
in a file specified in the Motif’s file-chooser dialog. A warning is issued if an existing
is to be over-written.

New

The existing component tree is first destroyed by calling the destructor of the root
component, and then a new Panel component is created with no children. Before t
panel is destroyed, the user is notified and given a chance to cancel the operation.

// This variable describes the type of the event. Possible values are:
// ButtonPress , ButtonRelease andMotionNotify .

int mouse_x, mouse_y;

// coordinates of the mouse cursor

long button_num;

// number of the button pressed or released

Event();

// constructor

XEvent * xevent;

// xevent contains a copy of the original event as sent to the
// component’s event handler by the Xt toolkit.

Widget widget;

// widget contains the widget which triggered the event. For example,
// the label component is made of three different components:
// XmFrame, XmForm andXmLabel .

Table 5-1: Class event

CHAPTER 5: PANEL MANAGER 83

es sure
tor that
reation

ode,

lways
.

f

t this
s. The

t
the
 of the
ts
of

ith the
Quit

The user is asked for a confirmation, and then the program exits.

Create

When one of the four component types is selected for creation, panel manager mak
that the currently selected component can accept children. If not, its closest ances
can have children is found, and the new component is added to this component. C
of a component involves constructing it, adding it to the parent, setting it to an edit m
initializing and rendering.

Grid

Selecting a new grid results in setting a global variablegrid_size to a new value. Grid
size affects only move and resize functions. For moving, the left upper corner a
snaps to the closest grid point. Resize snaps the resized edge to the closes grid line

Move

Moving involves three events received by thehandler() function. Moving is initialized
with a ButtonPress event with thebutton_num set to 1. Then a series o
MotionNotify events follow. Moving operation is finished when aButtonRelease
event is received.

ButtonPress event is handled by storing the pointer to the component which sen
event, its original geometry and the coordinates of the mouse cursor in state variable
selected component is also highlighted, by first callinghighlight_off(True) on
the root component, and thenhighlight_on(False) on the component that sen
the event. WhenMotionNotify event is received, the displacement between
original and the new position of the mouse cursor is added to the stored geometry
component, then snapped togrid_size and applied to the component by calling i
set_geometry() method.ButtonRelease event will cause a reset of the state
thehandler() , so that furtherMotionNotify events will not result in moving of any
components.

Resize

Resizing is also implemented as a response to the three events mentioned w
description of the move operation. The response to theButtonPress and

84 CHAPTER 5: PANEL MANAGER

ith
ed is
eing
d to the
 cursor

uctor of
t, such
ce the

ut the

 the
ButtonRelease is almost identical as with the move operation, except that w
ButtonPress , an additional state variable indicating which edges are being resiz
initialized. When a MotionNotify event is received, depending on which edges are b
moved, the geometry of the selected component is updated, or new edges are adde
ones being moved. When the set of edges being moved is updated, the mouse
changes the shape appropriately, as shown in Figure 5-11.

Delete

The delete operation is executed by destructing the selected component. The destr
the component is responsible for releasing all resources allocated by the componen
as colors, fonts, widgets, other dialogs (color choosers, font choosers), etc. Sin
destructor in the base classComponent includes a call toremove_child() method
of the parent component, the parent component will be automatically notified abo
deletion of its child.

Edit Attributes

Edit attributes is performed by calling the selected component’sedit_settings()
method. This method in turn creates an instance of a classOptionsDialog , which will
create a user interface for editing all component’s attributes. The following is
implementation of theLabel::edit_settings() method.

void Label::edit_settings(void)

None Top Top-Right Right Bottom-Right

Bottom Bottom-Left Left Top-Left

FIGURE 5-11:Resize cursors

CHAPTER 5: PANEL MANAGER 85

s only
 of the
ill be
e

The

 new
f the
ed in
{
 // if options dialog not created, create:
 if(this-> options_dialog == NULL)
 {
 char title[4096];
 sprintf(title, “Options for %s”, name);
 options_dialog = new OptionsDialog();
 options_dialog-> init(
 top_shell,
 “label_settings”,
 title,
 options_cb,
 (void *) this,
 “l1”, OD_LABEL, “Settings for Label”,
 “--”, OD_SEPARATOR,
 “c1”, OD_COLOR, “Background:”,
 background.get(),
 “c2”, OD_COLOR, “Foreground:”,
 foreground.get(),
 “f1”, OD_FONT, “Font:”,
 font.get(),
 “--”, OD_SEPARATOR,
 “t1”, OD_TEXTFIELD, “Title:”, label,
 NULL);
 }
 options_dialog-> manage();
 return;
}

The options-dialog is only created once per component. At all subsequent times it i
managed. The above code makes it possible for the user to modify four attributes
label component (as shown in Figure 5-7 on page 72). The options-dialog w
responsible for calling theoptions_cb() method of the Label component any time th
user makes a modification to one of the four attributes.options_cb() will be then
responsible for updating the current rendering of the Label component.
OptionsDialog class is explained in more detail in Section 5.4.4.

5.4.4. Options dialog

The OptionsDialog class has been developed to simplify the development of
components, namely for providing of user interfaces needed for modification o
various attributes of components (Attribute Editors). OptionsDialog has been design

86 CHAPTER 5: PANEL MANAGER

efault
alled
ement

g the

og as
e
n be

, and
f the

n, with
ize of

ontal

plied
such way that the programmer simply lists all attributes (their names, types, and d
values) when the dialog is being created, and supplies a function which will be c
every time one of these attributes changes. OptionsDialog is responsible for manag
of the user interface allowing modifications of these attributes and also for callin
supplied callback function with the new values of the attributes. Theinit() method has
the following type:

void OptionsDialog::init(Widget parent,
 const char * widget_name,
 const char * title,
 OptionsCallback callback,
 void * user_data,
 ...);

parent is usually the top shell widget of panel manager and is used in options dial
a parent of its own widget hierarchy.widget_name specifies the name which th
options dialog will assign to its top level widget’s instance, so that the dialog ca
customized through the standard X-resources mechanism.title specifies the name to
appear at the top of the options dialog’s window.callback is a pointer to the function
which will be called whenever one of the parameters is modified by the user
user_data is a user supplied data which will be passed to this callback. The rest o
parameters is a list of interfaces to be created in the dialog, terminated by aNULL pointer.
The format of each entry in this list is:

name, type, arguments

wherename is a user defined name of the interface,type determines the type of the
interface, andarguments is a list of parameters (depending ontype , zero or more
parameters can follow). The interfaces requested in the list are rendered in a colum
an optional scrollbar displayed on the right side of the dialog when the combined s
the entire dialog would exceed 1/2 of the screen size.OptionsDialog currently
supports 8 types of interfaces:

OD_SEPARATOR

This interface is used to separate other interfaces in the OptionsDialog by a horiz
line. It does not generate any callbacks.

OD_LABEL, title(char *)

Label is used to add text between interfaces. The text is determined by the sup
parametertitle . Label does not produce callbacks.

CHAPTER 5: PANEL MANAGER 87

n

r
x, a
.

ont.

ck,

 an
ent
sses
OD_TEXTFIELD, title(char *), default(char *)

Textfield is used to modify strings.title specifies the text to be displayed in the
interface, whiledefault is used as an initial value of the text to be modified. Whe
the user modifies the text (displayed in anXmTextFieldWidget), the user callback
function is called with the value of the new text.

OD_COLOR, title(char *), default(char *)

Color interface is used to modify colors.title is a string which is displayed in the
interface, anddefault is the initial value of the color. The current value of the colo
is displayed in the interface as a square of that color. When clicked in this bo
ColorChooser dialog is displayed which will allow the user to modify the color
When the color is modified using theColorChooser , theOptionsDialog will
invoke the callback function with the new value of the color.

OD_FONT, title(char *), default(char *)

This interface is used to select different fonts.title specifies the text to be displayed
in the interface, whiledefault determines the initial font. The current font is shown
in the dialog as a rectangle displaying the letters ABC in the currently selected f
Clicking anywhere in this rectangle will bring up aFontChooser dialog , where
the user will be able to modify the font. Any change to the font will result in a callba
passing the new value of the font as a parameter.

OD_INTEGER, title(char *), default(long)
OD_REAL, title(char *), default(double)

These two interfaces are used to modify integer and real values.title specifies the
label of the interface, anddefault is the initial value of the number. As with the
OD_TEXTFIELD interface, the current values are displayed and can be modified in
XmTextFieldWidget . The changes made to the numbers are however not s
automatically to the callback function, instead, they are sent only when the user pre
the ENTER key.

88 CHAPTER 5: PANEL MANAGER

e
o the
to

 a new
e new

stency
 data

 in

 made
ists
The type of the callback function used by options dialog is defined as:

 void callback(const char * comp_name,
 const void * data,
 void * user_data);

When this function is called by theOptionsDialog as a result of a change to one of th
values,comp_name contains the user defined name of the component, data points t
new value, and user_data contains the data as passed
OptionsDialog::init() .

5.5. Summary

The design of panel manager has been improved, resulting in the implementation of
version. Panel manager now allows users to create and modify panels visually. Th
panel manager also supports two-way communication, thus removing the inconsi
between the information displayed in the panel and the information contained in the
files.

OD_DOUBLE_LIST, title(char *), n_values(long),
 list1(char **), list2(char **)

This interface is used to modify two lists of strings. The two lists are specified
list1 andlist2 parameters, and their length inn_values . The current values of
both lists are displayed in two columns ofXmTextFieldWidget s. Buttons for
insertion and deletion anywhere in these lists are also created. When a change is
to the double list, the callback function is called with the new contents of the l
passed as a pointer to aDoubleListCBD structure with fields:size(long) ,
list1(char **) andlist2(char **) .

ofs
gn was
 new
. Also,
ance

d past
uage/
ide a
te re-

 oofs
 invalid
ing an
ation
 for an
s of the
ntation
ter 8.
CHAPTER 6 Browser

Browser is a VLAB program which allows easy browsing and modification of o
databases. This chapter describes my implementation of browser 3.0, whose desi
largely based on the functionality provided by browser 2.0. Browser 3.0 implements
design concepts, namely support for collaboration and external references to objects
compared to version 2.0, the new version improves the areas of portability, perform
and customization.

6.1. Design

Browser 2.0 was designed and written by Earle Lowe. Since it was never develope
the prototypical stage, large parts of it remained implemented using Tcl/Tk (lang
library combination). Browser 2.0 was noticeably slow, unreliable and did not prov
consistent user interface with the rest of the VLAB tools. Browser 3.0 is a comple
implementation of version 2.0, with many additional features.

6.1.1. Support for external references to VLAB objects

There is no support in VLAB 2.0 for maintenance of external references to objects in
databases. External references have to be stored as UNIX paths, often rendered
with the smallest organizational change made to an oofs database (e.g. by renam
object). This problem has been addressed in VLAB 3.0 by assigning an identific
number (ID) to each object, unique within its oofs database. Once generated, the ID
object does not change. External references to objects can now be stored as the ID
referenced objects. This new support for external references is used in the impleme
of a mechanism for creating alternate views of object databases, described in Chap

90 CHAPTER 6: BROWSER

.0 are
Two
ternal

te the
 for
 a file

root of
 a new
s
 a
6.1.2. Objects and oofs databases in VLAB 3.0

Organization of data in objects and overall structure of oofs databases in VLAB 3
almost identical to those implemented in VLAB 2.0, described in Section 1.2.1.
changes have been introduced in VLAB 3.0 to accommodate the support for ex
references:

• addition of an identification number to all VLAB objects;
• addition of an object lookup table for each oofs database.

Identification numbers

The ID number is stored in textual form in a file.id located in the object’s directory.

Object lookup table

Given the ID of an object, it is inefficient to traverse the entire oofs database to loca
matching object. To this end, VLAB 3.0 maintains the list of objects and their IDs
every oofs database in an object lookup table. The object lookup table is stored in
.dbase , located in the directory of the root object and has the following format:

number-of-objects
ID1 location_1
ID2 location_2
ID3 location_3

.

.

.

Object locations in an object lookup table are stored as their relative paths from the
the oofs database. This makes it possible to move the entire oofs database to
location without rendering the contents of its.dbase file invalid. Whenever a change i
made to an oofs database, its.dbase file is automatically updated to reflect such
change.

CHAPTER 6: BROWSER 91

. Each
otypes
folder
esent
s to
sers).
tes the

, the
6.2. User’s perspective of browser

Browser provides the user with a two-dimensional view of the database (Figure 6-1)
object is represented by a folder symbol, object name, and an optional icon. Prot
and extensions are connected by lines forming a tree structure. Objects with
symbols of type 3 have extensions, while objects with folder symbols type 1 repr
leaves of the tree. Folder symbols that contain the letter ‘L’ indicate symbolic link
different object databases (usually the object oriented file systems of other u
Whenever objects are created, copied, moved, or deleted, browser dynamically upda
displayed tree. If the tree of the object hierarchy does not fit into the window
scrollbars can be used to adjust the view in both horizontal and vertical directions.

FIGURE 6-1: Browser’s window

object symbol type 2
(symbolic link)

menu bar

scrollbars

object symbol type 1
(no extensions)

object name

object symbol type 3
(extensions)

icon

92 CHAPTER 6: BROWSER

s login
pecified
tified
6.2.1. Start-up information

Browser is usually invoked from the command line, using the following syntax:

browser [-p password] [[[login@]hostname:]dirname]

Valid examples of invoking browser are:

browser
browser ~/vlab/oofs
browser acs6.acs.ucalgary.ca:/scratch/vlab/oofs
browser joe@cs2:/usr/u/vlab/oofs
browser -p ecret678 joe@cs2:/usr/u/vlab/oofs

Browser assigns the following default values for unspecified parameters:

password = NULL (unspecified)
login = the current user name (whoami)
hostname = localhost
dirname = $(VLABROOT)/oofs

When browser is invoked on a remote database, the user is prompted to enter hi
name and password (Figure 6-2), unless both the login name and password are s
on the command line. If the authentication process with RAserver fails, the user is no
and prompted for the login information again.

FIGURE 6-2: Browser’s login window

CHAPTER 6: BROWSER 93

. The

g
lable
Menu bar

The menu bar provides an interface to most of the functionality available in browser
File menu groups actions related to general operations of browser. TheView menu
contains operations used to change the view of the database. TheObject menu groups
actions for database management and object invocations. TheFind button is used for
searching through object databases. TheHelp menu contains operations for invokin
browser’s on-line documentation. A detailed description of the operations avai
through these menus follows:

File: New browser

Invokes a new browser window with the initial view of the same
oofs database.

File: New hbrowser

Invokes a new hyperbrowser window with a view of the hofs
database associated with the oofs database currently being dis-
played by browser.

File: Open shell

Opens a UNIX shell window. The directory in this window is
automatically set to be the directory of the selected object. This
is a useful feature for users wishing direct access (command
line) to the internals of objects.

File: Open file

Displays a file selection dialog, listing files in the directory of
the selected object. If no object is selected, the files in the direc-
tory of the root object are listed. When a file is selected from the
file selection dialog, browser invokes a text editor on this file.

File: Customize

Opens a dialog window where the user can customize the visual
appearance of browser, i.e. change the colors, font, etc.

File: Exit

Exits browser.

94 CHAPTER 6: BROWSER
View: Show extensions/Hide extensions

Toggles the display of immediate extensions of the selected
object.

View: Show all extensions

Shows (recursively) all extensions for this object. Symbolic
links to objects are not expanded, unless the currently selected
object is a symbolic link. This prevents browser from entering an
infinite loop when owners of oofs databases have cyclical links
to each other’s databases.

View: Show icon/Hide icon

Toggles the display of the thumbnail icon for the selected object.

View: Show all icons

Recursively shows thumbnail icons for the highlighted object
and all of its displayed extensions.

View: Hide all icons

Recursively hides all thumbnail icons of the selected object and
all of its displayed extensions.

View: Center object

Adjusts the view of the database so that the position of the
selected object in the browser’s window is as close to the center
as possible.

View: Begin tree here

Hides all ancestors of the selected object. After this operation is
applied, only the tree starting at the selected object remains visi-
ble. This operation can be reversed by the following operations.

View: Show parent

The immediate parent of the selected object and all of the par-
ents extensions are displayed.

CHAPTER 6: BROWSER 95
View: Begin tree from root

Shows the tree beginning at the root of the object hierarchy inde-
pendently of the currently selected object.

Object: Get

Invokes the object manager on the selected object.

Object: Rename

Allows the user to rename the selected object. The user is
prompted for a new name which has to be entered in a dialog
window. If the selected object cannot be renamed as requested,
the user is notified appropriately.

Object: Cut

After a confirmation is obtained from the user, the selected
object and all its extensions are recursively copied into a tempo-
rary space (clipboard) and then deleted from the original loca-
tion. This entire tree can be later copied into any other location
(including different databases) using thePaste function.

Object: Copy node

Copies a single object (without its extensions) to the clipboard,
from where it can be pasted.

Object: Copy subtree

Copies the selected object and its entire subtree to the clipboard
for a subsequent paste operation.

Object: Paste

The object and its extensions, if any, stored in the clipboard
become an extension to the selected object. The user is notified
if the paste operation cannot be completed.

Object: Delete

After a confirmation from the user, the selected object and all of
its extensions are removed from the object oriented file system.
If the delete operation cannot be completed, the user is notified.

96 CHAPTER 6: BROWSER
Object: Keep h-links/Move h-links

The state of this toggle button determines how the object IDs are
affected when objects are copied. When the toggle button is set
to ‘Keep h-links’, the IDs remain associated with the original
objects and new IDs are created for the new copies. When the
toggle button is set to ‘Move h-links’, the IDs are re-assigned to
the copies, while new IDs are generated for the original objects.

Find

Makes it possible to search for an object in the object tree by
specifying a substring of the name that is being looked for.
When a match is found, the object is located in browser’s win-
dow by expanding the appropriate branches of the database tree,
and the user is given the option to either continue searching for
the next match, or to abort the search completely. The choice of
whether the find algorithm will expand symbolic links when
searching for the object is selectable by the user (Figure 6-3).

Help: About

Displays general information about the current version of
browser.

Help: On-line help

Invokes an on-line documentation using SGI’s showcase.

FIGURE 6-3: Browser’s find dialog

CHAPTER 6: BROWSER 97

rform a

ltiple
 of the
ases,

ag/drop
r can
 to a
istency
e user
 one user
Mouse operations

In addition to selecting menus from the menu bar, the mouse can also be used to pe
number of actions.

Left Button

• Clicking on an object's folder symbol, name or icon selects the object.
• Double clicking on the object's folder symbol places the object on the

lab table by invoking the object manager on the object.
• Double clicking on the object's name shows or hides object extensions.

Middle Button

• Selects an object and makes it possible to copy it using thedrag and
drop operation. The user selects an object and drags it to a new location,
where a new child is created. The view of the object hierarchy is auto-
matically scrolled if the destination object is located outside the viewing
area.Drag and drop operation only copies the object, not the object's
extensions. Its functionally is equivalent to performing Copy node and
Paste operation. Dropping an object on itself or releasing the mouse but-
ton with no object selected cancels thedrag and drop operation.

Right Button

• Clicking on the object's name or folder symbol shows or hides the
object's thumbnail icon (toggle action).

Advanced features

In order to allow the user to simultaneously view different parts of a database, mu
copies of browser can be invoked and each browser can then display different parts
database. Similarly, multiple copies of browsers can be invoked on different datab
allowing the user to easily transfer objects between databases through the use of dr
or cut/copy/paste functions. All instances of browser invoked by the same use
communicate using VLAB daemon, described in Section 1.2.2. Changes made
database in one browser are broadcasted to all other browsers to maintain cons
between the real and displayed information. It should be noted that if more than on
accesses the same database at the same time, changes made to this database by
are not automatically reflected in browser invoked by the other users.

98 CHAPTER 6: BROWSER

ugh a
cting
play,

zoom
4b and
ading
ngs are

rce file

, c)
Customization

The look of the visualized object database can be customized by the user thro
customization window. The customization window (Figure 6-4a), is invoked by sele
theCustomize menu item. The user can choose various colors used in browser’s dis

change the format of the tree display, modify fonts and select icon size and icon
methods. Colors and fonts can be changed using color and font chooser (Figure 6-
Figure 6-4c). Push-buttons are located in the bottom of the window for saving or lo
the selected settings, and to apply or cancel the selections. By default, custom setti
saved in a file specified by$(VLABCONFIGDIR)/browser . A different file can be
specified by the user for saving and loading settings for browser.

The appearance of browser can also be changed by modifying its application resou
[6][24][30]. This file is stored in a fileapp-defaults/Browser .

FIGURE 6-4: Browser’s customization dialogs: a) main dialog, b) color chooser dialog
font chooser dialog

CHAPTER 6: BROWSER 99

 all of
cts of

s all
Since

ser’s
tween
ases is
se on a
ing the
tion of

rver is
ration

 has to
e
ts entry
k into
to
ould
bject
fferent

. The
ee, so
rsively
rithm is
gs to
ng lines
6.3. Implementation details

Since the implementation of browser consists of over 12,000 lines of C++ code, not
its implementation details can be covered in this thesis. Only the essential aspe
browser’s implementation are discussed.

Remote access

To take advantage of the functionality provided by RAserver, browser perform
filesystem operations on the object databases using methods from RAlibrary.
RAlibrary is optimized for performance when operating on local filesystem, brow
performance is not affected by this design. Also, when the network connection be
browser and the remote database is fast, the speed of browsing remote datab
comparable to the speed of browsing local databases. Accessing a remote databa
server connected to the client on a fast local network is even faster then access
database using NFS. Such speed improvement can be attributed to a better distribu
tasks between a client and a host when using RAserver, especially when RAse
performing tasks at an object level as opposed to at a file level (e.g. the ope
associated withRA_GET_EXTENSIONS_REQUEST, described in Section 4.5.1).

Support for external references

Every time an object database is modified, the object lookup table for that database
be appropriately updated. In some cases the.id files for each involved object have to b
adequately adjusted. For example, when an object is cut from an object database, i
has to be removed from the object lookup table. But when the object is pasted bac
the database at a different location, its old.id file has to be re-used and re-entered in
the object lookup table. Otherwise external references to the modified object w
become invalid. However, if an object is cut and pasted between two different o
databases, the.id file cannot be reused, because each object database has a di
numbering scheme.

Drawing trees

Two distinct algorithms for graphical tree layout have been implemented (Figure 6-5)
sparse layout algorithm allocates a separate vertical space for each sibling’s subtr
that other siblings cannot intersect this vertical space. This vertical space is recu
determined by summing up the heights of each subtree of a node. The second algo
based on the algorithm developed by Moen [22], which allows the trees of siblin
intersect each other’s vertical space, as long as the actual nodes and interconnecti

100 CHAPTER 6: BROWSER

 where

versus
arious
r with

zable.

rawing
4 bit
lling

bject
ead. If
d could
do not cross. This algorithm is based on calculating and merging contours of trees,
the contours are represented as poly-lines.

Some minor options for tree renderings have also been added, namely diagonal
vertical lines, and parent positioning center versus top. Figure 6-6 illustrates these v
modes of rendering using the compact layout. These rendering methods, togethe
selectable font styles and sizes, colors and icon sizes make browser highly customi

To increase the performance of browser, OpenGL display lists have been used for d
of all folder symbols, icons and texts. The tree is drawn into a double buffered 2
OpenGL widget. Double buffering was used to create the effect of smooth scro
through large trees.

Clipping

Browser uses OpenGl library for drawing the graphical tree representation of o
databases. Every OpenGl function call is associated with a certain amount of overh
every node of the tree was to be drawn for a reasonably sized tree, such overhea

FIGURE 6-5: Two different tree layout methods: sparse (left) and compact (right)

FIGURE 6-6: Different tree drawing methods

CHAPTER 6: BROWSER 101

 at a
To this
he tree
rmed

volves
 node
of the
If the
f this

Figure
t nodes
cts

base is
of the

everal
of the
nce of
ing the
 result

wsers
emon.
asts this
uspend
easily accumulate into a few seconds. In order to keep browser’s interactivity
reasonable level, as many OpenGl function calls had to be eliminated as possible.
end, a customized clipping mechanism has been implemented, where only parts of t
that are potentially visible are drawn. The rendering of trees in browser is perfo
recursively, using the following pseudo-code:

void render(NODE * node):
render_folder(node)
render_name(node)
render_icon(node)
for all children of node:

render_line(node, child)
for all children of node:

if(! out_of_view(child))
render(child)

First, the folder, name and the optional icon for a node is rendered. The next step in
drawing a line between the node and each of its children. At last the children of the
are rendered recursively. However, before a child is rendered, the bounding box
subtree starting at that child is checked for intersections with the viewing area.
bounding box of the subtree does not intersect the viewing area, then no part o
subtree will be visible to the user and the entire subtree is skipped (not rendered).
6-7 demonstrates clipping of trees on a sample tree: the shaded objects represen
that are rendered (i.e.render() is called upon these nodes), while the empty obje
depict nodes which are not rendered.

Support for multiple instances of the browser

For certain operations browser requires unique access to a database. If the data
modified by another application while browser is performing such an action, some
information could be inadvertently lost. As an example, consider the action ofcopying a
subtree of objects. If the subtree is sufficiently large, such an operation could take s
seconds to execute. The copy operation is performed by archiving the contents
subtree into an external file, as described in the previous section. If another insta
browser attempted to change the same subtree while the first browser was creat
archive file, some of these changes could be reflected in the archive file. This would
in inconsistencies between the contents of the source and destination subtrees.

To prevent corruption of databases resulting from simultaneous access, bro
synchronize themselves by sending each other messages through VLAB da
Whenever one instance of browser needs unique access to a database, it broadc
request too all other browsers. Upon receiving such a message, all other browsers s

102 CHAPTER 6: BROWSER

unique
all other
ormal
ong

s been
at race

 about
oadcasts
ation it
 reflect
use of
cted

ser
. This
ed for
their user interfaces, so the user cannot invoke any actions. When the browser with
database access completes its operation, it issues the second broadcast to notify
browsers that the database is unlocked. At this point, all browsers resume their n
mode of operation. It should be pointed out that this mechanism only works am
browsers run by the same user on the same workstation. No mechanism ha
implemented for locking access to databases for remote users. Also, it is possible th
condition occurs among browser instances run by the same user.

Communication between instances of browser is also used to notify other browsers
updates to databases. Each time a database is modified, the responsible browser br
a message identifying the affected database and includes details about the oper
performed. This ensures all other browsers can update the displayed information to
the real contents of the database. However, if a database is modified without the
VLAB tools (e.g. through a UNIX shell), such changes will not be automatically refle
in browser.

Speed improvements

Browser 3.0 is implemented entirely in C++. It uses Motif library for its graphical u
interface, and OpenGl library for rendering graphical representations databases
combination of a fast language and efficient libraries delivers the performance need
browsing in practice.

CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC

screen

FIGURE 6-7: Tree clipping in browser

CHAPTER 6: BROWSER 103

to read
re in
ternal

tood
ithin

volves
for a
tes to

wing
RGB
ogram

ollows.
porary
e time

 as an

iving
ndard
ar is
lities
or use
lative
n the

by the
The most evident speed bottleneck in browser 2.0 is the mechanism it implements
in and display the thumbnail icons for objects. The icon files stored with objects a
IRIS RGB format. Since browser 2.0 does not understand this format, it uses an ex
utility to convert the icon file to a GIF file. Now that the format of the image is unders
by browser, it is read in and displayed. The process of invoking external programs w
other programs is associated with large amounts of overhead, since it usually in
spawning a new UNIX process and loading a new program. Showing icons
reasonably sized subtree of objects in browser 2.0 can easily take several minu
complete.

Browser 3.0 implements a native support for IRIS RGB files. To speed up the dra
process, it also adds support for scaling of icons. The routines for reading IRIS
pictures and scaling of images have been acquired from the sources of the XV pr
and adequately modified†.

Implementation of cut, copy and paste

The cut, copy and paste operations have been implemented in browser 3.0 as f
When a copy or cut operation is applied to an object, its contents are stored in a tem
location (and in the case of cut, the object is also removed from the database). At th
of paste, the object stored in the temporary location is copied into its new location
extension of the selected object.

Objects are stored in the temporary location as archive files. A customized arch
library has been developed to this end, which has very similar functionality to the sta
UNIX utility tar . The reason for developing a new archiving library instead of using t
two-fold. First, for performance reasons it is desirable to avoid using external uti
whenever possible. Second, tar does not archive symbolic links in a suitable way f
with oofs databases. In order to properly archive a subtree of VLAB objects, all re
symbolic links of the top level object have to be expanded, while all other objects i
subtree have to be archived as symbolic links.

The archived subtree is stored in a file determined by evaluating the expression:

${VLABTMPDIR}/cutCopyPaste< userid >/data.ar

The name of the top level object in the above file is stored in a separate file given
expression:

† with the permission from John Bradley, author of XV

104 CHAPTER 6: BROWSER

uickly
ect. An
has an

s. An
ld be
le for
 paste

aves
paste
.

 and
d with

es, as
r the

er - a
object
ces to
n and
${VLABTMPDIR}/cutCopyPaste< userid >/---FILENAME---

The reason for storing the name of the root object in a separate file is to be able to q
determine whether an object can be pasted as an extension to the selected obj
object subtree from the archive cannot be pasted if the selected object already
extension with the same name as the archived object.

The oofs format would be an alternative way to store temporary copies of object
archiving library would not have to be developed, as a simple recursive algorithm cou
used for such an implementation. However, the advantage of using an archive fi
storing temporary copies of files can be seen in the performance of cut, copy and
operations. The cut and copy operations need only create two files:data.ar and---
FILENAME--- , independent of the size of the object subtree being copied. This s
browser a lot of the overhead associated with creation of files. Similarly, the
operation only needs to read two files, saving browser many file opening operations

Another benefit of this implementation is the possibility of speeding up the cut, copy
paste operations when working with remote databases. RAserver could be extende
high-level operations allowing the transfer of entire subtrees of objects as archiv
opposed to the current implementation where individual files are being sent ove
network.

6.4. Summary

This chapter described the design and implementation of the new version of brows
VLAB tool assisting users in navigation and management of object databases. An
lookup table is maintained with every oofs database - to support external referen
VLAB objects. Browser also takes advantage of the new remote access extensio
allows users to browse and modify remote object databases.

hical
ant to
loped

ss to
f the
f the

nality
ibing
 a re-
ded

es and
ther
des a

ecuted

n be
allows
s oofs

ivided
CHAPTER 7 Metatext

VLAB users often need to access objects in an order different from the hierarc
organization of the databases in which they reside. For example, a user may w
present the results of his work - a number of different models of plants, each deve
and located in its own object subtree. Metatext is a VLAB utility which allows acce
VLAB objects in an arbitrary order, independent of the hierarchical organization o
databases [13][29]. Using metatext, it is possible to create many different views o
same object database.

This chapter describes my implementation of metatext 3.0, based on the functio
provided by the previous version 2.0. A small sub-section (Section 7.2) descr
metatext from the user’s point of view is included. Eventhough metatext 3.0 is only
implementation of version 2.0 using C++ and the Motif library, its description is inclu
here as the basis for the discussion of hyperbrowser (Chapter 8).

7.1. Structure of metatext

A metatext database, as shown in Figure 7-1a, consists of two types of files: fram
index files. A frame is the basic information unit in metatext. It contains links to o
metatext nodes as well as links to objects in oofs databases. A frame also inclu
textual description and a list of commands. This text is displayed and commands ex
when the frame is invoked.

An index file is a list of names grouping related frames into a section. A frame ca
listed in several index files and an index file can be included in several frames. This
metatext users to build graphs of any shape, not restricted to tree structures a
databases.

Metatext runs as a number of concurrent processes (Figure 7-1b), which can be d
into four classes:

• metatext processes, which read index files and allow the user to interac-

106 CHAPTER 7: METATEXT

ecuting
g at the
tively select a frame,
• text display processes, which display the frame text,
• object manager processes corresponding to the links to objects listed in

the frame,
• application processes, corresponding to the commands in the frame.

Metatext processes are created in the same way as any application process, by ex
the commands as extracted from frames. Many instances of metatext can be runnin
same time, offering the user alternative views of the database.

Index 1

Frame A Frame B Frame C

Index 2

Frame EFrame D

FIGURE 7-1: Structure of a) metatext database, b) metatext processes

Vlab
daemon

Metatext

Text
Viewer

Text
Viewer

Object
Manager

Application

Metatext

Application

Object
Manager

CHAPTER 7: METATEXT 107

s four
7.2. User’s perspective of metatext

A running metatext process is manifested by a
small window (Figure 7-2) with 4 buttons and the
name of the current index file. The right most
button is a down arrow, which is used to create an
extended window (Figure 7-2) with the metatext
menu. The extended menu may also be displayed
as a popup style menu, using the right mouse
button. This menu includes an item for each frame
in the section, plus several additional items. The
other three toggle buttons turnon or off operations
invoked automatically when a frame is selected,
specifically:

• Exec - turns on or off execution of
UNIX commands extracted from the
frame,

• View - turns on or off display of text
extracted from the frame,

• Edit - turns on or off automatic invoca-
tion of a text-editor in which the frame
can be edited.

Two additional buttons are included in the
extended window:

• Next - selects the next item on the menu.
Allows stepping through the frames in
forward order. The button associated
with the last invoked frame has a distinct color in the extended window,
giving the user a visual clue as to what frame will be invoked next.

• Previous - selects the previous item on the menu, allowing stepping
through the frames in reverse order.

Metatext menu

The metatext menu contains the list of frames as specified in the index file, as well a
additional menus:

FIGURE 7-2: Snapshot of
metatext without
(top) and with
(bottom)
expanded menus

108 CHAPTER 7: METATEXT
• Modify - gives the user a shell window with the current working direc-
tory set to the one of the index file, so that the user can modify the
index/frame files with his favorite editor,

• Reread - rereads the index file and updates the menu,
• Restart - restarts the metatext process,
• Quit - quits the metatext process.

7.2.1. Start-up information

Metatext is invoked from the command line using the following syntax:

metatext [-e] [-exec] [-view] [-edit]
 [-md|-mc|-mt]
 [-rootdir oofs] index_file

The following settings determine the state of metatext when invoked:

• -e metatext is open with the extended menus
• -exec set the executable toggle
• -view set the view toggle
• -edit set the edit toggle
• index_file the name of the index file

In addition, the following settings are provided for backwards compatibility:

• -md demo mode (equivalent to -exec -view)
• -mc command mode (equivalent to -exec)
• -mt text mode (equivalent to -view)
• -rootdir specifies the location of the default oofs database. When an

object manager is invoked, it needs to know where the root of the oofs
database resides, so that the.dbase can be updated if needed. In the
previous version of VLAB, .dbase file did not exist and therefore old
frames contain links to objects which do not provide the root directory
of their oofs databases. If such a link is found, object manager is
invoked with root directory set to the value specified with this command
line option.

CHAPTER 7: METATEXT 109

tatext
are then
n the

one of
 file is
cally,
 that
 2D-

w
NIX
wn in
7.3. Implementation Details

7.3.1. Index file format

An index file is a text file that contains the names of some or all frames in the me
database. Each name must be listed on a separate line; these frame names
included in the metatext menu. For example, the following index file Demo resulted i
menu shown in Figure 7-2:

2D-plants
barentree
lychnis-demo
random-moss
cypress

7.3.2. Frame file format

Frame files contain a mixture of text and UNIX commands. When the user selects
the menu items read from the index file, the text portion of the corresponding frame
displayed in a window and the included UNIX commands are executed. Syntacti
every line that does not start with a ‘:’ is considered part of the text and every line
starts with a ‘:’ is assumed to include a UNIX command. For example, the frame file
plants could contain the following information:

Understanding A Formalism
2D Plants
:xclock
:object /usr/u/vlab/oofs/ext/plants/ext/2D-plants

If the user now selects the2D-plants item in the menu shown in Figure 7-2, then a windo
including the descriptive text associated with the object will be displayed, and the U
commands embedded in the frame file will be executed. The resulting display is sho
Figure 7-3. Window 2D-plants shows the object ‘2D-plants ’ as a result of the last
command ‘:object ’. The xclock window is a consequence of the ‘:xclock ’
command. The xless window displays the text from the2D-plants frame file.

110 CHAPTER 7: METATEXT

tarting
tatext
frames.
er,

 found.

played
wsers’
trated

o

It should be noted that all commands which invoke object manager (commands s
with :object) are treated as special cases in metatext 3.0. In the old version of me
such commands were simply executed as any other commands extracted from the
Since, in VLAB 3.0, it is VLAB daemon’s responsibility to invoke object manag
metatext must send a message to VLAB daemon whenever such a command is
Furthermore, metatext also sends a message to all currently running browsers† whenever
object manager is invoked. Browsers respond to this message by updating the dis
database tree, so that the invoked object is selected and centered in the bro
windows. This allows the metatext user to see automatically where the demons
object is located in the object database.

† this is done by sending the message to VLAB daemon, which re-distributes it t
all running browsers

FIGURE 7-3: Example of metatext display

CHAPTER 7: METATEXT 111

ames.
 these
re also

wing

 file.
list of
to be

er,
, it is
hapter
y the
use of
7.3.3. Organization of metatext databases

Metatext does not enforce any restrictions on the organization of nodes and fr
However, it is common to organize related index frame files into sub-directories, and
sub-directories into tree hierarchies. Cyclic references between metatext nodes a
possible.

7.3.4. Customization

Users may specify which external applications to use for performing editing and vie
functions by editing the ${VLABCONFIGDIR}/metatext file. For example, the file
could contain the following information:

Editor xwsh -e vi
Viewer xless -auto

The first line tells metatext how to invoke an external text-editor on the frame
Metatext invokes a text-editor on a frame file when the frame is selected from the
frames while theEdit toggle is set. The second line specifies the external application
used to view the textual contents of frames.

7.4. Summary

Metatext is a VLAB utility which allows access to VLAB objects in an arbitrary ord
independent of the hierarchical organization of the databases. Using metatext
possible to create many different views of the same object database. This c
described my re-implementation of metatext, based on the functionality provided b
previous version. The main difference between the new and the old version is the
the Motif library for the graphical user interface in my implementation.

112 CHAPTER 7: METATEXT

 model
 for
ecture,
le of
plex

 VLAB
ws of
ign and

s of
d by
 two

rrent

LAB
n the
 oofs
 visual
support
tabases

e and
 are
ase is
te and
CHAPTER 8 Hyperbrowser

An object in the database may be of interest in several contexts. For instance, a
originally developed as a part of a comparative study of lilac inflorescences
horticultural purposes may also serve as an example of a particular branching archit
an illustration of model construction according to field data, an instructional examp
programming using L-systems, a realistic model available for incorporation in com
scenes, and the source of an image for a paper. To facilitate the presentation of a
object in several different contexts, a new mechanism for maintaining alternative vie
oofs databases was designed and implemented. This chapter describes its des
implementation.

8.1. Requirements and design

In this section I describe the design for VLAB’s new support for alternate view
databases. First I look at the shortcomings of the hypertext functionality offere
metatext in VLAB 2.0. Then I describe the requirements for the new system and
potential implementation methods. Lastly, I detail the overall design of the cu
implementation.

8.1.1. Shortcomings of metatext

Basic functionality for creating alternative views of object databases is provided in V
1.0 and 2.0 by metatext. Unfortunately, metatext imposed significant limitations o
user, which narrowed its usefulness as a tool for maintaining alternative views of
databases. The most visible drawback of metatext is that it does not provide a clear
representation of the organization of metatext databases, and it does not offer any
for the management of metatext databases. The user has to organize metatext da
manually, from the UNIX shell prompt, and a text editor has to be used to creat
update links to VLAB objects. Another important drawback which metatext users
exposed to is the issue of dangling links. Whenever an object in the oofs datab
moved or renamed, all metatext frames referring to this object become out of da

114 CHAPTER 8: HYPERBROWSER

minor
des is
 when
 with a

was
on the

idered.
ments,
uld

in oofs
listic

fully

on. In
ntains
tible

8.1.2, I
rchical
hence unusable. These frames have to be laboriously found and fixed. Another,
limitation of metatext, is related to the fact that each representation of metatext no
displayed on the screen in a separate window. This often becomes a problem
browsing large databases of metatext nodes, as the screen becomes cluttered
multitude of windows.

8.1.2. Design goals

A new mechanism for supporting alternative views of oofs databases in VLAB
developed. The design goals for such a system were mostly derived based
limitations of metatext, as identified in the previous section:

• The new system should implement a well organized structure for storing
hyperlinks. It should also provide an intuitive interface for the manage-
ment of such databases.

• Hyperlinks in the database should be automatically updated whenever
the objects they refer to change their locations.

• The new system should provide a convenient visual representation of
hyperlink databases.

8.1.3. Implementation models

Two models for representing alternate views of object databases have been cons
Under the first model, the alternate views would be represented as hypertext docu
where textual information is mixed with hyperlinks in a single flow. The hyperlinks wo
represent pointers to other hypertext documents, or pointers to the actual objects
databases. This model is similar to the design used in HTML documents. A simp
mechanism for invoking VLAB objects from HTML pages has been success
developed, verifying that an implementation of this model is possible.

Using the second approach, hyperlinks would be organized in a hierarchical fashi
this model, each hyperlink can be associated with a textual description which co
information pertinent to the linked object in its current context. This design is compa
with the organization of objects in oofs databases.

Since both models could be developed to satisfy the design goals stated in Section
have chosen the second approach, the easier one to implement. A similar hiera

CHAPTER 8: HYPERBROWSER 115

s and

LAB
 with

jects,

s the
 from

t the
is a
k of
ectory
.

model has already been implemented in VLAB for storing objects in oofs database
has proven successful.

8.1.4. Hyperobjects

To accommodate the information needed to be stored with each hyperlink, a new V
entity, called hyperobject, has been designed. The following information is stored
each hyperobject:

• hyperlink to an object in an oofs database. Not all hyperobjects need to
point to an object in an oofs database. Those that do not contain a hyper-
link are used as place-holders for other hyperobjects.

• textual description of the hyperobject. This description is usually related
to the object the hyperlink points to under the given context.

• name of the hyperobject. If a hyperobject does not specify its name, the
name of the object it points to is used instead. If the object later changes
name (e.g. is renamed in the oofs database), the hyperobject automati-
cally changes its name as well.

• children. Each hyperobject can contain other hyperobjects, forming a
tree structure, as described in the following section.

• order of children. The order of children in a parent can be changed,
which affects the traversal of hyperobject databases.

Hyperobjects take advantage of VLAB’s new support for external references to ob
described in Section 6.1.1 The hyperlink in a hyperobject is specified as theID of the
object to which the hyperobject points, allowing hyperlinks to stay intact as long a
objects to which they point remain in the oofs database. Quick access to objects
hyperobjects is made possible by using the object lookup table.

8.1.5. Hyperobject file system

Hyperobjects are organized hierarchically into an hyperobject file systems (hofs). A
implementation level, the structure of hofs is similar to the structure of oofs - it
hierarchy of UNIX directories and files forming a directory tree. It is possible to thin
hyperobjects as symbolic links in a UNIX file system, and of hofs databases as dir
hierarchies entirely composed of symbolic links associated with textual descriptions

116 CHAPTER 8: HYPERBROWSER

bases.
 for this
d for
ensions

cribe

ating,
apter

and its

ing the
owser
avoid

fferent

hy of
and
wser’s
le, by

ed in
f
t in the

lected
However, there is a very important conceptual difference between oofs and hofs data
Hofs databases are not based on the prototype-extension mechanism. The reason
design decision is simple - the prototype-extension mechanism is not neede
hyperobject databases. The prototype-extension model is advantageous when ext
share data with their prototypes, but this is uncommon for hyperobjects.

The hierarchical organization of hyperobjects allows VLAB users to create and des
various conceptual relations between objects.

8.1.6. Hyperbrowser

Hyperbrowser is a VLAB program designed and implemented to assist users in cre
modifying, and navigating through hyperobject databases. The rest of this ch
describes hyperbrowser. The user’s perspective of hyperbrowser is presented,
implementation details follow.

8.2. User’s perspective of hyperbrowser

Both hyperbrowser and browser operate on databases which store information us
same file structure. To preserve consistency between VLAB applications, hyperbr
offers the same interface for database manipulating functions as browser. To
unnecessary repeating, I will only describe the features of hyperbrowser that are di
from those of browser.

8.2.1. Overview

Hyperbrowser is manifested on the screen as a window displaying a hierarc
hyperobjects (Figure 8-1). Notice the evident similarity between browser’s
hyperbrowser’s appearances. To avoid confusion between browser’s and hyperbro
windows, the user may customize hyperbrowser differently than browser, for examp
changing its background color and the icon size.

The title of the window indicates the location of the hypertext database display
hyperbrowser. The location is given in a formathost:path, where the host is the name o
the computer on which the database resides, and path indicates the root level objec
database. The bottom part of the window contains linking information about the se

CHAPTER 8: HYPERBROWSER 117

t is not
ser’s
object
hildren
at are
 tree.
o the
hidden

er:
object, i.e. the name of the associated object in the oofs database. If the hyperobjec
associated with any object in oofs, this field is empty. The middle part of hyperbrow
window graphically depicts the hypertext database. Similar to browser, each hyper
is represented by a folder symbol, object name and an optional icon. Parents and c
are connected by lines forming a tree structure. Hyperobjects with folder symbols th
filled have children, while objects with single folder symbols represent leaves of the
The graphical tree is automatically modified whenever a change is introduced t
hypertext database. Scrollbars can be used to shift the displayed tree to display
parts of the database.

8.2.2. Start-up information

The syntax used to invoke hyperbrowser is identical to the syntax for invoking brows

hbrowser [-p password] [[[login@]hostname:]dirname]

The meaning of the command line parameters has been described in Section 6.2.

FIGURE 8-1: Example snapshot of hyperbrowser’s window

118 CHAPTER 8: HYPERBROWSER

ctions
oggle
xt
nd the

.

 with
 object
ser can

grayed
n,
on a
n file.

bjects

 the

ed (it
8.2.3. Invoking hyperobjects

The most obvious difference between interfaces of
browser and hyperbrowser is the additional pull-down
menuAction in hyperbrowser’s menu bar (Figure 8-2).
Functions available from this pull-down menu are
related to the traversal of hypertext databases and the
way hyperobjects are invoked.

Hyperbrowser allows its users to systematically
traverse the hierarchies of hyperobject databases. It
does so through the use ofNext andPrevious buttons.
When the user invokes theNext button, hyperbrowser
automatically highlights the next† hyperobject in the
hofs hierarchy, and invokes this hyperobject. Invoking
a hyperobject in hyperbrowser results in performing a combination of the three a
described below. This combination of actions is determined by the state of the t
buttons at the bottom of theAction pull-down menu. The algorithm for selecting the ne
hyperobject is depth-first traversal. Figure 8-3 shows an example of an hofs tree a
order in which the hyperobjects in this tree would be selected if theNext button was used
in succession. ThePrevious button would access the hyperobjects in the reverse order

The Get object function is used to invoke a panel manager on the object associated
the selected hyperobject. When the selected hyperobject is not associated with any
in an oofs database, this button is grayed out and not available to the user. The u
view the textual description associated with the selected hyperobject using theShow text
button. When the selected hyperobject does not contain a description, this button is
out and not available to the user. TheEdit text button is used to create a new descriptio
or to modify an existing description of the selected hyperobject. When invoked
selected hyperobject, hyperbrowser spawns an external text editor on the descriptio

There are three toggle buttons at the bottom of theAction pull-down menu, specifying
what are the default actions performed on a hyperobject when it is invoked. Hypero
can be invoked either by double-clicking on their folder icon, or by using theNext and
Previous buttons.Get object toggle specifies whether object manager is invoked on
object associated with the selected hyperobject.Show text andEdit text toggles determine
how the textual description associated with the selected hyperobject will be display

† If the next hyperobject is hidden, the currently selected object is automatically
expanded by one level.

FIGURE 8-2: Action menu in
hyperbrowser

CHAPTER 8: HYPERBROWSER 119

ditor

bases,
nge the
lected
 the
d child

estion
jects
s a

n

can be: not shown at all, displayed in a text dialog window, or displayed in a text e
where it can be edited).

8.2.4. Changing the order of hyperobjects

A method for changing the order of hyperobjects is needed for hyperobject data
because this order determines their traversal. Hyperbrowser allows the users to cha
order of children of a hyperobject using the keyboard. To change the position of a se
child, theUP andDOWN arrow keys are used. The UP arrow key is used to move
selected child one position upwards, and the DOWN key is used to move the selecte
one position downwards.

8.2.5. Invalid hyperobjects

To indicate invalid hyperobjects in hofs databases, hyperbrowser displays three qu
marks in the name field of invalid hyperobjects. Invalid hyperobjects are hyperob
which contain pointers to nonexisting objects. Invalid hyperobjects result a

initial
object

12

13

14

1

15

16

17

2

6

7 8

3

4

5 9

10

11

18

19

FIGURE 8-3: The order of database traversal using the Next and Previous functions i
hyperbrowser

120 CHAPTER 8: HYPERBROWSER

rrently
n oofs

er uses
object,

ays:

in the
ation
eated
 then

either
ting an
h the
h the

 Notice
ases.
consequence of deleting information from oofs databases. Unfortunately, there is cu
no mechanism implemented in browser to warn the user when an operation on a
database results in making some of the hyperobjects invalid.

8.2.6. Renaming hyperobjects

A hyperobject can be renamed in hyperbrowser using the same interface as brows
to rename objects. However, the user can specify an empty name for a hyper
indicating that the hyperobject should inherit the name from an object it points to.

8.2.7. Adding hyperobjects to hofs databases

The user can create a new hyperobject in an hofs database in one of the following w

• by copying a (single) object from browser, and pasting it into a hyper-
browser; or

• by dragging an object from browser into hyperbrowser.

Hyperbrowser will respond to both of these actions by creating a new hyperobject
selected destination, with a hyperlink pointing to the source object. No textual inform
will be associated with this new hyperobject, and the name of the newly cr
hyperobject will be empty (i.e. inherited from the source object). A description can be
added to the hyperobject by invoking theEdit text function from theAction pull-down
menu.

It is also possible to transfer a hyperobject from hyperbrowser into browser, using
the copy and paste, or the drag and drop operations. Such transfer results in crea
extension of the destination object, where the extension is the object linked wit
source hyperobject. This operation is therefore identical to copying the object to whic
source hyperobject points to using a browser, and pasting it into an oofs database.
that hyperobject which do not contain hyperlinks cannot be transferred to oofs datab

CHAPTER 8: HYPERBROWSER 121

tion
bject’s

bject.

to an

bject
his
t with

n hofs
tabase
he root-

der
 oofs

atter
8.3. Implementation details

8.3.1. Structure of hyperobjects

Similar to VLAB objects, hyperobjects are represented as directories. All informa
pertinent to a hyperobject (as described in Section 8.1.4) is stored in the hypero
directory. The textual description associated with the hyperobject is stored in a filetext .
This file can be missing, indicating no description has been provided with the hypero
The children of a hyperobject are stored in theext subdirectory. The rest of the
information is stored in a filenode .

8.3.2. Format of the node file

The node file, present in every hyperobject, contains three components: hyperlink
object, name of the hyperobject, and order of children. The format of thenode file is:

ID
name
number-of-children
child1
child2
.
.
.

The ID is an integer, specifying the object in the oofs database to which the hypero
points. If the ID contains a value of-1 , the hyperobject does not point to any objects. T
is useful for creating a parent for a number of children, without associating the paren
any object from the oofs database. It should be noted that all hyperobjects in a
database can point to object located within only one oofs database. The oofs da
associated with an hofs database is assumed to reside in the same directory as t
level hyperobject of the hofs database.

Thename field in thenode file determines what textual name will hyperbrowser ren
in its graphical view of the object. If this field is empty, the name of the object in the
database will be used. If it is non-empty, the contents of the field will be used, no m
what the corresponding object in the oofs database is called. For anID of -1 the
hyperobject always has to have a non-emptyname field.

122 CHAPTER 8: HYPERBROWSER

st
er of

 hofs
ilar and
rowser

 were

ser
oofs

 entire

layed
cal
dren,

 that

owser
 to be
 the
After the ID andname fields, a list of children follows. The order of children in this li
determines in which order the children are rendered by hyperbrowser. The ord
children is important when traversing an hofs database systematically, using theNext and
Previous functions.

8.3.3. Implementation of hyperbrowser

Most of the functionality offered by hyperbrowser is related to the management of
databases. Since the organizational structure of hofs and oofs databases is so sim
browser provides all database management functionality on oofs databases, hyperb
was implemented by adopting a majority of browser’s code. Some adjustments
needed to convert browser’s code into hyperbrowser.

Names and icons

Hyperbrowser displays textual names for hyperobjects based on the contents of thename
field in their node files, as described in Section 8.3.2. The icons which hyperbrow
displays with hyperobjects are loaded from their linked object’s directories in the
database. If a hyperobject is not associated with any object, a default icon for the
hofs database is used. This default icon is stored in the root level object, calledhofs .

Ordering of children

Hyperbrowser determines the order in which the children of a hyperobject are disp
based on the order given in itsnode file, whereas browser displays them in alphabeti
order. Hyperbrowser also implements a mechanism for modifying the order of chil
accomplished by using the keyboard’s arrow keys.

Rename

The implementation of the rename operation in hyperbrowser is quite different from
of browser’s. When a hyperobject is renamed, only thename field in its node file is
affected, while the name of the hyperobject’s directory remains unchanged. Hyperbr
allows the user to specify empty names for hyperobjects, indicating that the name
displayed for the hyperobject should be obtained from its linked object). Also,
specified name for a hyperobject does not have to be unique among its siblings.

CHAPTER 8: HYPERBROWSER 123

guish
ents a
a child
ted in

ended,
ect is
link. If
If the
finish

object
rchical
es by
ser

bject
Paste and drop operations

In order to allow transfer of objects into hofs databases, hyperbrowser has to distin
whether the data being pasted is an object or a hyperobject. If the data repres
hyperobject, a new copy of the source hyperobject is simply created and added as
to the destination hyperobject. However, if the data represents an object (origina
browser) a new hyperobject has to be created, with a hyperlink to the source object.

The implementation of the paste and drop operations in browser also had to be ext
to allow transfer of hyperobjects from hyperbrowser to browser. When a hyperobj
transferred to browser, it is first asserted that the hyperobject contains a valid hyper
this is not the case, the user is properly notified and the transfer is aborted.
hyperobject contains a valid link, the object associated with this link is then used to
the paste (or drop) operation.

8.4. Summary

A new mechanism that allows the creation and maintenance of alternate views of
databases has been designed and implemented. A new system for hiera
organization of hyperlinks was designed. Hyperlinks point to objects in oofs databas
using the unique IDs stored with each object. A new VLAB application, hyperbrow
was developed, allowing VLAB users to visually manage and navigate hypero
databases.

124 CHAPTER 8: HYPERBROWSER

object
xternal
jects.

inally,
ally

prove
ntly
among
emon
uest by
 with
 remote
 remote
 and

quire

hrough
anels
oving
ation
rface,
CHAPTER 9 Conclusion and future work

9.1. Conclusion

9.1.1. Accomplishments

A new mechanism that allows the creation and maintainance of alternate views of
databases has been designed and implemented. First, support for maintaining e
references to VLAB objects has been implemented, by assigning unique IDs to ob
Secondly, a new system for hierarchical organization of hyperlinks was designed. F
a new VLAB application, hyperbrowser was developed, allowing VLAB users to visu
manage and navigate hyperobject databases.

The remote access extension to VLAB has been designed and implemented to im
VLAB’s support for collaboration. This extension allows users of VLAB to transpare
access remote databases, making it easy to invoke and interchange objects
collaborators. A new VLAB tool, RAserver, has been developed. RAserver is a da
running on a remote computer, performing actions on the remote database on req
other VLAB tools accessing the database. RAserver maintains a list of accounts
encrypted passwords and access levels, thus preventing unauthorized access to
databases. Browser, hyperbrowser and Object Manager are capable of accessing
databases using the services provided by RAserver. RAlibrary was designed
implemented to aid programmers in the development of applications that re
RAserver’s services.

The design of panel manager has been improved and a new version implemented. T
its new GUI builder facilities panel manager now allows users to create and modify p
visually. The new panel manager also supports two-way communication, thus rem
the inconsistency between the information displayed in the panel and the inform
contained in the data files. Panel manager 3.0 uses the Motif library for its user inte
making its look and feel consistent with the rest of the VLAB components.

126 CHAPTER 9: CONCLUSION AND FUTURE WORK

 been
were
 and

hange

. Its
tems
ble

upport
bject
ssfully

gn the
ing the
objects

ch of
emote
LAB is

een
ning

 on a

s stem
 its
Performance related limitations associated with the earlier version of Browser have
eliminated, allowing it users to fully explore its capabilities. Speed improvements
mainly achieved by re-implementing Browser in C++, by using faster GUI libraries,
also by reducing its dependence on external utilities.

Various customization mechanisms were implemented. The users are allowed to c
the visual appearances of most VLAB applications.

VLAB’s portability was improved to make it accessible to a wider range of users
portability was successfully tested by porting it to three different UNIX operating sys
on four architectures. A project is presently under way which will make VLAB availa
on personal computers.

9.1.2. Impact of VLAB 3.0

VLAB 3.0 has been installed in many places and with great success used to s
scientific research for over one year. The new support for alternate views of o
databases and for customizing appearances of VLAB applications has been succe
used to give live presentations. Hyperbrowser allows scientists to conveniently desi
order of their demonstrations and to add descriptions to the presented objects. Dur
actual presentations, hyperbrowser is used to systematically invoke the prepared
together with their descriptions.

Older versions of VLAB have been successfully used to support individual resear
many users around the world. With the new support in version 3.0 for accessing r
databases, many researchers use VLAB for collaboration purposes. For instance, V
currently being used for collaborative work between users in Calgary and Australia.

Thanks to the improved portability of all VLAB components, version 3.0 has b
compiled and installed in France on a previously untested platform - DEC Alpha run
Linux 2.0. Also, unmodified sources of VLAB 3.0 successfully compile and execute
new version of the IRIX operating system (6.2).

9.2. Limitations and future work

In this section I discuss ideas to be considered for future work. Most of these idea
directly from the limitations of VLAB 3.0 and from the lessons I learned during

CHAPTER 9: CONCLUSION AND FUTURE WORK 127

would

ge of
ithm to
ficient
ng the

g of
ltiple
of all
ponent
ke an

ified.

 choice
ould
onents
seful

s an
er for
longer

he first
date.
doing
implementation. Some of these ideas introduce new concepts, while others
contribute to VLAB by merely increasing its functionality.

9.2.1. Find

The find operation in the current implementation of browser does not take advanta
the object lookup tables available in every oofs database. It uses a recursive algor
traverse object trees to search for a match, and is therefore inefficient. A more ef
solution should be implemented, where the search would be performed by examini
contents of the.dbase file.

9.2.2. Improved GUI designer for panel manager

A number of improvements are needed to improve the support for visual buildin
control panels in panel manager 3.0. Support for changing attributes for mu
components is desired. For example, it is tedious to change the background
components in a control panel to the same color, as this can only be done one com
at a time. The user should be able to select multiple components and then invo
attribute editor, where common attributes for all selected components could be mod

Panel manager also needs a better selection of components. For example, the
control is not well suited for long lists of selections. A combo-box or a scrolled list w
be more appropriate for this purpose. Also, group components are desired, so comp
can be organized and manipulated in groups. Text box would be another u
component, which could allow the users to edit blocks of text using the keyboard.

9.2.3. Undo

One of the most important features which unfortunately all VLAB applications lack i
undo function. The undo functionality is mostly needed in Browser and hyperbrows
operations involving database management, as it could revert accidental, or no
wanted, modifications.

The need for an undo mechanism has been identified shortly after the release of t
version of VLAB. Unfortunately, no acceptable solution has been found to this
Undoing changes made to VLAB oofs and hofs databases is equivalent to un

128 CHAPTER 9: CONCLUSION AND FUTURE WORK

rchy of
s for
tem,
em, so
fficient

-user
te an

ion. For
e same
owser,

doing
ever,

lexity
sibility
d thus
ation
, such
d could

tural to
ub-
be

ssible
e that
tories

ion are
rm to

he data
rformed
an-up
 user
changes made to a UNIX filesystem, because VLAB databases are stored as a hiera
directories and files. Most flavors of UNIX operating system do not offer any mean
reverting modifications of filesystems. Without support from the operating sys
programs implementing undo would have to record all changes made to the filesyst
that they could be undone. The mechanism for recording such changes has to be e
if the performance of VLAB is not to suffer.

The implementation of an undo mechanism is complicated even in a single
environment. The difficulties arise, for example, when one application cannot comple
undo request because the database has been further modified by another applicat
instance, consider a scenario where the user is running two copies of Browser on th
oofs database. The user deletes an extension of a prototype using the first Br
followed by moving the prototype to another location using the second Browser. Un
the last operation in the first Browser involves recreation of the removed tree. How
this is now impossible, as the prototype was moved to another location.

The issues concerning the implementation of undo functionality increase in comp
when a multi-user environment is considered. Now one has to contemplate the pos
of other users (possibly connected remotely) modifying the same database an
impeding the execution of an undo operation. A simple solution (from the implement
point of view) is to report to the user whenever undo cannot be completed. However
solution would give the user a false sense of security, because the undo comman
fail to work in some cases.

9.2.4. Extended objects

For many classes of experiments, such as development of source code, it is na
organize information in sub-directories. VLAB’s extension which would allow s
directories to be stored within objects, is therefore imperative if VLAB is to
successfully used for the management of experiments of this kind. Although it is po
to manually store subdirectories with objects in oofs database, all VLAB tools assum
objects only contain regular files. Consequently, the information stored in subdirec
could get lost if the object was manipulated by any of the VLAB tools.

Many of the tasks invoked by users at the beginning and at the end of experimentat
routine. For example, it is common to store large text data files in a compressed fo
save space. Every time an object containing such compressed data is invoked, t
needs to be un-compressed before it can be used. Examples of routine tasks pe
when the user is finished with an experiment include: compression of large files, cle
of temporary data files, etc. VLAB should allow each object to be associated with
definable actions, executed when an object is invoked and closed.

CHAPTER 9: CONCLUSION AND FUTURE WORK 129

hofs
is hofs
ve two
bases.
user’s
t hofs
so that

 real
anage
unifying
ld either
. This

oofs
 into a
design.
ate the

hared
sent

erefore
 entire
lications
 The
f other
n be
 (such
eded
LAB
9.2.5. Extended hyperobjects

The current design of VLAB’s hypertext system has an important limitation: each
database is associated exactly with one oofs database, and all hyperobjects in th
database must point to objects its associated oofs database. It is impossible to ha
hyperobjects in the same hofs database pointing to objects in two different oofs data
This means, in particular, that users are not allowed to create hyper-links to other
objects, and that they are not allowed to copy hyperobjects between two differen
databases. The current design of hypertext system needs to be extended
hyperobjects can point to objects in any oofs databases.

9.2.6. Unified oofs and hofs databases

The only difference between objects and hyperobjects is that objects contain
information and hyperobject contain pointers to other objects. There is no need to m
these entities in two separate databases. The current design can be extended by
oofs and hofs databases into a single database. In this new database an object wou
represent a real information, or contain a hyperlink to another object in the database
would eliminate the need for two separate VLAB applications - a browser for
databases and a browser for hofs databases. Their functionality could be combined
single application. Several issues would have to be, however, addressed in such
There is no equivalent of object manager for hyperobjects - how can a user manipul
internals of a hyperobject? Could hyperobjects become prototypes for objects?

9.2.7. Unique access to databases

It is a known fact in computer science that simultaneous modifications of a s
resource may result in an unexpected corruption of information. The pre
implementation of VLAB does not prevent concurrent access to databases, and th
does not protect its users against such damage. A possible solution is to ‘lock’ the
database whenever an application is accessing the database, so that all other app
have to wait. Such locking could be implemented for example using file locks [35].
disadvantage of this simple implementation is that in some cases the performance o
concurrently running applications unnecessarily suffers. Some operations ca
performed on a database concurrently, without the fear of damaging any information
as invoking two objects, or performing two different searches). A mechanism is ne
which will guarantee unique access to databases but will affect the performance of V
applications to a minimum.

130 CHAPTER 9: CONCLUSION AND FUTURE WORK

. It is
bject
ges

 been
er of
n. For

reate
on the
present
ries.

red as
rtant
modify
ty of
s of

ith
VLAB,
portant
NIX
ign.

ly sized
. Many
ted into
g and

ficant
 disk
ze
ssary
 files
pendent
ace,
9.2.8. Multiple inheritance

The inheritance mechanism adopted by VLAB allows only one prototype per object
impossible to create an extension which would inherit from more than one o
simultaneously. This limitation of VLAB has been identified in its early design sta
[21], however no satisfactory mechanism for implementing multiple inheritance has
found to this date. Having the possibility to create extensions inheriting from a numb
prototypes would be appreciated in many areas of computer based experimentatio
example, in biological modeling of plants multiple inheritance could be used to c
gardens, where the prototypes would represent individual plants and the extensi
complete scene. In source code management domain, the prototypes could re
various libraries, while the extension could represent a program that uses these libra

9.2.9. Alternate methods for storing databases

In the current implementation of VLAB, both the oofs and hofs databases are sto
hierarchies of files and subdirectories in a UNIX filesystem. The most impo
advantage of this design is the fact that the user is able to manually access and
databases using standard UNIX tools, allowing him to augment the functionali
existing VLAB tools. This design has proven to be beneficial in the early stage
VLAB’s development, when the functionality offered by VLAB tools was limited. W
the increased database management capabilities provided by the current version of
occasions when the user has to resort to a command line are very rare. Another im
advantage of the current design is the simplicity of its implementation. The U
hierarchical filesystem and symbolic links lent themselves extremely well to this des

The disadvantages of the current design are related to the fact that even moderate
databases are usually composed of a large number of directories and small files
operations on databases need to examine contents of several files, which is transla
a number of system calls, such as opening and closing files. The action of openin
closing files under UNIX operating systems is generally associated with a signi
amount of overhead, resulting in performance penalties for VLAB applications. Also,
controllers usually read and write data in chunks†. If the data files are smaller than the si
of these chunks, most of the I/O time is spent by reading and writing unnece
information. Another disadvantage of storing a small amounts of information in many
is the waste of available resources - in this case the resource is the disk space. Inde
of its size, every file on a UNIX filesystem occupies a minimum amount of sp

† determined by the hardware - usually the size of the disk’s sectors, which is
approximately 512 bytes

CHAPTER 9: CONCLUSION AND FUTURE WORK 131

he
e this

ed in a
9], or a
 many
e work
LAB

wser
d with
ons of
ss to a
y built

of low-
be used
letely
r. If a
ign and

ption
ecifies
, etc.)

ct. It is
stalled

ternal

ting
ing
 for

nage
 won’t
equivalent to one block† [35]. If the size of an information to be stored is 1Kb, but t
information is split and stored in 10 different files, the total disk space used to stor
information is 10Kb - ten times as much as is required.

As an alternative to the current design, the oofs and hofs databases could be stor
single file using one of the general purpose database engines, such as Oracle [3
custom build database engine. The advantages of such design would be visible in
areas. For example, the speed of Browser and hyperbrowser would increase, as th
would be more efficiently distributed between the database engine and the V
applications. Most of the system calls performing file related I/O operations in Bro
and hyperbrowser could be eliminated, reducing the amount of overhead associate
many operations. Another advantage of such new design is that some of the limitati
the current design would be easier to remove, such as guaranteed unique acce
database, or the undo functionality. Many database engines have such functionalit
in.

RAserver can be considered to be a very primitive database engine, providing a set
level database operations. If an existing database engine (such as Oracle) was to
for storing of oofs and hofs databases, the need for RAserver is likely to be comp
eliminated, as such database engine could easily perform the duties of RAserve
custom based database engine was to be designed, large parts of RAserver’s des
implementation could be reused for such purpose.

9.2.10.Distribution of external programs

The information contained in a VLAB object is comprised of data files and a descri
of actions which can be invoked on these data files. The description of actions sp
how to run external programs (e.g. plant generation software, raytracers, compilers
on the particular data files. The external programs, however, are not part of the obje
assumed that the user invoking an object has all the necessary programs properly in
and setup. VLAB itself does not support any mechanism for distributing these ex
programs.

Since VLAB is to this date mostly used for plant modeling, the problem of distribu
programs is ‘solved’ by bundling the distribution of VLAB with the plant generat
software. Unfortunately, this does not eliminate the problem when VLAB is used
managing other types of experiments. For example, if VLAB is used to ma
experiments requiring some non-standard simulation software, the majority of users

† the smallest number of bytes that can be read and written at one time, usually
about 1Kb

132 CHAPTER 9: CONCLUSION AND FUTURE WORK

 most
en

ed to
ng.
ing to
bjects.
letely

everal
ong
ternal
portable
 this

all, do
ion of

tion of
oes it
is the
d other
hen

ternal
ystem
be able to invoke such experiments as the non-standard simulation software will
likely not be installed on their systems. This limitation of VLAB is most visible wh
users try to make the results of their research available to the general public.

The distribution of programs used by VLAB objects has to be properly address
improve VLAB’s flexibility and usability in areas other than biological plant modeli
VLAB users should be able to invoke any objects from any database, without hav
manually obtain, install and setup the software needed to experiment with these o
The process of acquiring and installing external software should be either comp
automated, or at least adequately assisted by VLAB.

The design of a mechanism for external program distribution has to address s
important issues. For example, how to deal with incompatibility of binaries am
different architectures and versions of operating systems? Do we distribute ex
programs as sources or as binaries? Using programming languages designed to be
across multiple platforms, such as Java [8][11] or Python [19][40], might help to solve
problem to some extent, but other issues would have be addressed still. How, if at
commercial programs get distributed? How does VLAB enforce that the proper vers
Java an Python is installed on the client?

Other questions which need to be answered in the design of mechanism for distribu
external software include: where is the external software going to be installed? D
remain installed after the experimentation with the particular object is finished? How
mechanism going to deal with software dependencies - e.g. one program may nee
programs in order to function correctly, which in turn can require special libraries. W
does the transfer of external programs occur? If the process of distributing the ex
programs is automated, how can the user downloading the software protect his s
from harmful programs such as viruses?

37-

-

-

.

.

References

[1] Anderson, P., Baran, C., Flanagan, J., Ford, L., Hiyate, S.Learning Alias V8. R.R.
Donnelley, 1996.

[2] Avrahami, G., Brooks, K. P., Brown, M. H.A Two-View Approach to Constructing
User Interfaces. Computer Graphics, Volume 23, Number 3, July 1989, pp. 1
146.

[3] Barth, P. S.An Object-Oriented Approach to Graphical Interfaces. ACM Transac-
tions on Graphics, Vol 5, No. 2, April 1986. pp. 142-172.

[4] Bernstein, D. J.Using Motif with C++. SIGS Books. March 1995. ISBN 1
884842-06-2.

[5] Chatterjee, S., Paramasivam, M., Yakowenko, M. J.Architecture for a Web-Acces
sible Simulation Environment. Computer, June 1997, pp. 88-91.

[6] Cutler, E., Gilly, D., O’Reilly. T.The X Window System in a Nutshell. O’Reilly &
Associates, second edition, April 1992. ISBN 1-56592-017-1.

[7] Federl, P.Browser and Landscape Editor for Virtual Laboratory in Biology. CPSC
502 Final project report. University of Calgary. April 1995.

[8] Flanagan, D.Java in a Nutshell. O’Reilly & Associates, first edition, 1996. ISBN
1-56592-183-6.

[9] Garfinkel, S., Spafford, G.Practical UNIX & Internet Security. O’Reilly & Asso-
ciates, 2nd edition, April 1996. ISBN 1-56592-148-8.

[10] Gentner, D., Nielson, J.The Anti-Mac Interface. Communication of the ACM
August 1996, pp. 70-82.

[11] Harold, E. R.Java Network Programming. O’Reilly & Associates. February 1997
ISBN 1-56592-227-1.

[12] Heller, D. Motif Programming Manual. O’Reilly & Associates. February 1994
ISBN 1565920163.

134 REFERENCES

/

e-

-

ect
ro-

ation

-

-

ting.

.

[13] Hernadi, I. The Virtual Laboratory. http://www.cpsc.ucalgary.ca/Redirect/bmv
vlab. March 1996.

[14] Knelsen, C.A multipurpose interface for interactive control of multiple param
ters. Master’s thesis. University of Regina. 1988.

[15] Lehey, G.Porting UNIX Software. O’Reilly & Associates. November 1995. ISBN
1-56592-126-7.

[16] Levine, J. R., Mason, T., Brown, D.lex & yacc. O’Reilly & Associates second edi
tion, 1995. ISBN 1-56592-000-7.

[17] Lieberman, H.Using prototypical objects to implement shared behavior in obj
oriented systems. In Proceedings of the ACM Conference on Object-Oriented P
gramming Systems, Languages, and Applications (New York, 1986), Associ
for Computing Machinery, pp. 214-223.

[18] Lowe, E. M.Extensions to the Virtual Laboratory. Master’s thesis. University of
Calgary, 1995.

[19] Lutz, M. Programming Python. O’Reilly & Associates. October 1996. ISBN 0
937175-75-7.

[20] Mercer, L., Prusinkiewicz, P., Hanan, J.The concept and design of a virtual labo
ratory. In Proceedings of Graphics Interface ‘90 (1990), CIPS, pp. 149-155.

[21] Mercer, L.The virtual laboratory. Master’s thesis. University of Regina. 1991.

[22] Moen, S.Drawing dynamic trees. IEEE Software (July 1990), pp. 21-28.

[23] Nardi, B. A. A small matter of programming: perspectives on end user compu
MIT Press, 1993.

[24] Nye A., O’Reilly T. X Toolkit Intrinsics Programming Manual. O’Reilly & Asso-
ciates, second edition, 1990. ISBN 0-937175-62-5.

[25] Nye, A. Xlib Programming Manual. O’Reilly & Associates, third edition, 1993
ISBN 1-56592-002-3.

[26] Pearl, A.Sun’s Link Service: a Protocol for Open Linking. Hypertext’89 Proceed-
ings, pp. 137-146, 1989.

[27] Prusinkiewicz, P., Knelsen, C.Virtual control panels. Proceedings of Graphics
Interface ‘88, pp. 185-191.

REFERENCES 135

chia,

 Infor-

i-
40,

e
IT

sis.

-

,

cle
[28] Prusinkiewicz, P., Lindenmayer, A. The algorithmic beauty of plants.Springer-
Verlag, New York, 1990 (second printing 1996). With J. S. Hanan, F. D. Frac
D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[29] Prusinkiewicz, P., Hanan, J. A hypertext environment for UNIX. In Proceedings of
Graphics Interface ‘88 (Edmonton, Canada, June 6-10). pp. 50-55, Canadian
mation Processing Society, 1988.

[30] Quercia, V., O’Reilly, T. X Window System User’s Guide. O’Reilly & Associates,
4th edition, May 1993. ISBN 1-56592-014-7.

[31] Reeves, W. T., Ostby, E. F., Leffler, S. J.The Menv Modeling and Animation Env
ronment. The Journal of Visualization and Computer Animation, Vol. 1: 33-
1990.

[32] Smith, R. G., Barth P. S., Young, R. L. A Substrate for Object-Oriented Interfac
Design. A Substrate for Object-Oriented Interface Design, pp. 253-315. M
press, 1987. ISBN 0-262-19264-0.

[33] Snider, A. An interactive, physically-based simulation system. Master’s the
University of Regina, Regina, Canada. 1992.

[34] Stern, H.Managing NFS and NIS. O’Reilly & Associates. June 1991. ISBN 0
937175-75-7.

[35] Stevens, W. R.Advanced Programming in the UNIX Environment. Addison-Wes-
ley. June 1992. ISBN 0201563177.

[36] Stevens, W. R.Unix network programming. Prentice-Hall, Englewood Cliffs,
1990.

[37] Strauss, P. S., Carey, R.An Object-Oriented 3D Graphics Toolkit. Computer
Graphics, 26, 2, July 1992, pp. 341-349.

[38] Stroustrup, B.The C++ Programming Language. Addison Wesley, second edition
1991. ISBN 0-201-53992-6.

[39] Urman. S.Oracle PL/SQL Programming; The Essential Guide for Every Ora
Programmer. Osborne, April 1996. ISBN 0078821762.

[40] Watters, A.Internet Programming with Python, with CD-ROM. M & T Publishing.
September 1996. ISBN 1558514848.

136 REFERENCES

 in
-

ub-
[41] Wegner, P.The Object-Oriented Classification Paradigm. Research Directions
Object-Oriented Programming. pp. 479-560. MIT press, 1987. ISBN 0-262
19264-0.

[42] Wernecke, J.The Inventor Mentor. Addison-Wesley, 1994. ISBN 0-201-62495-8.

[43] Wolfram, S.The Mathematica Book. Wolfram Media & Cambridge University
Press, 1996.

[44] Zeleznik, R. C., Conner, D. B., Wloka, M. M., Aliaga, D. G., Huang, N. T., H
bard, P. M., Knep, B., Kaufman, H., Hughes, J. F., Dam, A.An Object-Oriented
Framework for the Integration of Interactive Animation Techniques. Computer
Graphics, Volume 25, Number 4, July 1991, pp. 105-112.

APPENDIX A RA class

static RA_Connection * new_connection (
const char * host_name,
const char * login_name,
const char * password);

• Establishes a new connection to RAserver daemon running on a
computerhost_name . Then aLOGIN request withlogin_name
andpassword is sent. If the response received from RAserver is
positive, a valid connection is returned. The result of this function is
a pointer to an object of typeRA_Connection , which has to be
supplied to all other methods of theRA class.

• If new_connection() is called with ahost_name that repre-
sents a local machine, then RAserver is actually not accessed, but a
special type ofRA_Connection is created and flagged local. Oth-
erwiseRA_Connection is flagged remote. When performing
operations on a file through a local connection, the requests are actu-
ally not sent over a network to RAserver, but rather invoked locally,
directly from the called method. This allows for a consistent mecha-
nism for accessing any VLAB object files using the same calls,
whether in a local or a remote database.

static void close_connection (
RA_Connection * connection);

• Closes an existing connection. If connection type is remote, first a
LOGOUT request is sent, and aLOGOUT response received. Then the
socket connection is shut down. If the connection type is local, noth-
ing happens.

138 APPENDIX A: RA CLASS
static int Compare_files (
RA_Connection * connection1,
const char * fname1,
RA_Connection * connection2,
const char * fname2);

• Compares two remote files to each other. If the two connections point
to the same RAserver, a single RA_COMPFILE_REQUEST is sent
to RAserver, which will complete the operation by performing the
file comparison on the server.

• If the connections are not on the same host, but they are both remote
connections, both files are first downloaded to a local computer,
compared and then deleted. If one of the connections is remote and
the other local, only one file is downloaded to the local computer. If
both connections are local, a local comparison is performed.

static int Copy_file (
RA_Connection * src_connection,
const char * src_fname,
RA_Connection * dst_connection,
const char * dst_fname);

• Copies filesrc_fname from src_connection to dst_fname
ondst_connection . If both files are on the same remote com-
puter,RA_COPYFILE_REQUEST is sent to RAserver instructing it
to perform the operation directly on the server, without downloading
any data to the client. Otherwise thesrc_fname is downloaded
from src_connection , and then uploaded asdst_fname
throughdst_connection .

static int Unlink (
RA_Connection * connection,
const char * fname);

• Deletes a file specified byfname on the server.

static int Deltree (
RA_Connection * connection,
const char * dirname);

• Recursively removes a directory on the server specified by
dirname .

APPENDIX A: RA CLASS 139
static int Symlink (
RA_Connection * connection,
const char * src_fname,
const char * dst_fname);

• Creates a symbolic link betweensrc_fname anddst_fname on
the server.

static int Rename (
RA_Connection * connection,
const char * src_fname,
const char * dst_fname);

• Renames a file specified bysrc_fname to dst_fname .

static int Stat (
RA_Connection * connection,
const char * fname,
RA_Stat_Struc * stat_struc);

• Obtains various information about a file specified byfname . The
results are stored instat_struc .

static int Get_dir (
RA_Connection * connection,
const char * dir_name,
char *** list);

• Obtains a list of entries in a directory specified bydir_name . The
result is stored inlist as an array of strings. The end of the list is
denoted by aNULL pointer.

static int Readlink (
RA_Connection * connection,
const char * fname,
char * (& result));

• Returns the file to which a symbolic linkfname points.

static int Is_link (
RA_Connection * connection,
const char * fname);

• Finds out whetherfname on a remote host is a symbolic link.Calls
Stat() to do the actual work.

140 APPENDIX A: RA CLASS
static int Write_file (
RA_Connection * connection,
const char * fname,
const char * buffer,
const long size);

• Creates a filefname on the server. The contents of this newly cre-
ated file will be taken from the supplied parameterbuffer . The
parametersize specifies the number of bytes inbuffer .

static int Put_file (
const char * local_fname,
RA_Connection * connection,
const char * remote_fname);

• Copies a local filelocal_fname into a fileremote_fname
located on the server. This function is implemented by first reading
the contents of the local file into memory, and then calling the
Write_file() method.

static int Read_file (
RA_Connection * connection,
const char * fname,
char * (& buffer),
long & size);

• Retrieves the contents of the filefname on the server. The contents
of the file are returned to the caller inbuffer and the size of the
contents insize .

static int Fetch_file (
RA_Connection * connection,
const char * remote_fname,
const char * local_fname);

• Copies the contents of a fileremote_fname located on the server
into a local filelocal_fname . This method is implemented by first
using theRead_file() method to read the contents of the remote
file into memory, and then the local file is created with these con-
tents.

APPENDIX A: RA CLASS 141
static int Get_file_type (
RA_Connection * connection,
const char * fname,
RA_File_Type & type);

• Determines the type of a remote filefname . Uses methodStat()
to retrieve the information about the remote file, from which the file-
type is determined.

static int Mkdir (
RA_Connection * connection,
const char * path,
mode_t mode);

• Creates a directorypath with permissionsmode on the server.

static int Rmdir (
RA_Connection * connection,
const char * path);

• Removes an empty directorypath on the server. If the directory to
be removed is not empty, the operation will fail.

static int Access (
RA_Connection * connection,
const char * fname,
const int amode);

• Determines a possible access to a remote filefname . For example,
this method is used to determine whether a directory is writable.
UsesStat() method to obtain the necessary information.

static int Realpath (
RA_Connection * connection,
const char * path,
char * (& result));

• Returns a real path to the remote filepath in result .

static int Get_extensions (
RA_Connection * connection,
const char * path,
char ** (& list));

• Returns a list of extensions and their attributes of a remote object
specified bypath . The result is stored inlist as a list of strings.
Each string is composed of two parts, extension name and exten-
sion’s attribute, separated by a\0 character.

142 APPENDIX A: RA CLASS

agine
 some

 and
ethod

e edit
d on
efore

reate a
 he
’s
ttribute

 the

l. The
t spans
3) and

,

APPENDIX B More on panel manager

B.1. Example of creating a control panel

In this section I present an example, in which a complete control panel is created. Im
that the user wants to design a control panel for a data file which is to be used by
physically based simulation program. The data file is calledsimulate.dat , and
contains the following information:

Gravity: 9.81
N-iterations: 10
Rendering: gouraud

The user would like to control three parameters: gravity (ranging between -100.0
100.0), number of iterations (ranging between 1 and 100), and the rendering m
(available options being: wire, flat, gouraud and phong).

The user creates the control panel from scratch, by invoking panel manager in th
mode without specifying any file-name (Figure B-1). Since no file-name was specifie
the command line, panel manager shows an empty window with no components. B
the user can start adding new components into the control panel, he has to first c
new panel by choosingFile-> Newmenu from the menu bar. After the panel is created,
sets the title of the panel toAnimation in its attribute editor (invoked from the Panel
pop-up menu) as seen in Figure B-2. After the title is set, the user disposes of the a
editor by clicking itsHide button, located at its bottom edge.

Now the user creates a floating point range control which will be used to modify
gravity parameter - by choosingCreate-> Frange from the pull-down menus. This will
position a new floating point range (frange) at the left top corner of the empty pane
user drags the new frange into the top center of the panel, and resizes it so that i
from the left edge to the right edge. Then he invokes its parameter editor (Figure B-
sets its Font to family:helvetica(adobe) , Style:medium normal and size:14 .
After that theMin, Max, Increment andPage Increment values are set to ‘-100.0’, ‘100.0’
‘-0.01’ and ‘0.25’. Then the user sets the value of the File field tosimulate.dat , and
theField Prefix to ‘Gravity: ’.

144 APPENDIX B: MORE ON PANEL MANAGER
% panels -e

Figure B-1: Invoking panel manager in edit mode

Figure B-2: Setting the panel’s title in panel’s attribute editor

APPENDIX B: MORE ON PANEL MANAGER 145
Now the user creates an integer range control
(irange) for modifying the number of iterations
and position/resize it to fit under the frange
component. Then the attribute editor is
invoked, and the fields are set to the following
values:Min: 1, Max: 100 , Increment: 1, Page
Increment: 10 , Title: ‘Number of
iterations ’, File: simulate.dat , Field
Prefix: ‘N-iterations: ’. Figure B-4 shows
panel manager after these steps are performed.

Figure B-3: Using the floating point range’s attribute editor and the font chooser

Figure B-4: Panel manager in
edit mode with two
components

146 APPENDIX B: MORE ON PANEL MANAGER
Finally, the user creates the choice component by
choosing theCreate-> Choice menu. After resizing
and placing the choice component to be aligned
with the previous two components, he invokes its
attribute editor and set the fields toTitle:
‘Rendering Model ’, File: ‘simulate.dat ’,
and Field Prefix: ‘Rendering: ’. Since four
options are needed for the rendering type and by
default the choice control comes with only three
choices, the user adds one more entry to the list of
choices by clicking on any of theAdd buttons.
Then he initialize the list to values as shown in
Figure B-5.

The design of the control panel is now complete, so
the user saves the panel into a file called
‘panel.pnl ’. He choosesFile-> Save... from the
pull-down menus, which will display a file
selection dialog. In this dialog he enters
panel.pnl into theSelection box, and click the
OK button.

To modify the parameters in a file called
simulation.dat using the control panel that
was just created, the user would invoke panel
manager using the following command:

% panels panel.pnl

Panel manager would then read the current values
of the parameters and display the control panel as
shown in Figure B-6. Modifying the values through
the displayed controls in the control panel will
automatically result in changing the values of the
parameters in the filesimulation.dat . If the
user wants to change the interface of the control
panel, he would invoke panel manager in the edit
mode on the panel definition file, i.e.:

% panels -e panel.pnl

Figure B-5: Editing choice’s
attributes

Figure B-6: Final appearance of
the control panel

APPENDIX B: MORE ON PANEL MANAGER 147

orted
B.2. Component attributes

The following table summarizes the attributes and their types for each control supp
by panel manager 3.0.

Table B-1: Component attributes

Component
Type

Attribute
Name

Attribute
Type

Attribute
Name

Attribute
Type

pa
ne

l

width integer file string

height integer foreground string

title string background string

name string font string

in
te

ge
r

ra
ng

e

x integer label string

y integer field_prefix string

width integer file string

height integer background string

name string foreground string

min integer trough_color string

max integer bottom_shadow string

inc integer top_shadow string

page_inc integer font string

148 APPENDIX B: MORE ON PANEL MANAGER
flo
at

in
g

po
in

t r
an

ge

x integer label string

y integer field_prefix string

width integer file string

height integer background string

name string foreground string

min double trough_color string

max double bottom_shadow string

inc double top_shadow string

page_inc double font string

la
be

l

x integer label string

y integer background string

width integer foreground string

height integer font string

name string

ch
oi

ce

x integer file string

y integer background string

width integer foreground string

height integer toggle_color string

name string bottom_shadow string

label string top_shadow string

choices list font string

field_prefix string

Table B-1: Component attributes

Component
Type

Attribute
Name

Attribute
Type

Attribute
Name

Attribute
Type

APPENDIX B: MORE ON PANEL MANAGER 149
B.3. Class component

The following table describes the classComponent .

Table B-2: Class component

class Event;
typedef void (* Handler) (Component &, Event &);

• These two types are used for the callback function in edit mode.
They are explained in Section 5.4.3.

enum ComponentType type;

• stores the type of the component

char name[256];

• stores the name and number of the component (for example, choice
components would be named choice0, choice1, ...)

long x, y, width, height;

• [x,y] defines the position of the left upper corner of the component
when rendered, with respect to the parent component.width and
height define the component’s dimensions.

Component * parent;

• stores the pointer to the parent component

Component();
virtual ~Component();

• constructor & destructor

static Component * create(const char * name,
 AssignmentList * al);

• Constructor used by the Parser class to build a new component with
attributes gathered in the the parameteral . AssignmentList is a class
that holds a list of attribute names and their values as parsed in from
the file.

virtual void add_child(Component * c);

• Adds a component to the list of children. This method is declared vir-
tual, but it should not be modified by the derived class, unless the
class needs to be able to do some geometry restraints on its children
at their creation time.

150 APPENDIX B: MORE ON PANEL MANAGER
virtual char * to_str(void);
virtual void print(long indent = 0);

• Used to access the information about a component in a printable text
format.

virtual void render(Widget parent) = 0;

• Renders the component by creating and managing Xt widgets. The
top-level widget is created as a child of the supplied parameter par-
ent. After the component is rendered, therender() method is
called for every child. Every derived subclass has to define its own
method for rendering.

virtual int init(void);

• Callscommon_init() of the component, and theninit() on all
children. This method is supposed to be overloaded by all derived
classes, but if overloaded, it should still include a call to
common_init() .

void highlight_off(Boolean recursive);
void highlight_on(Boolean recursive);

• Sets/unsets the highlight for a component, and ifrecursive is set,
then for all children as well.

Component * get_root(void);

• Convenience function - locates and returns the root component of the
tree which the component is part of.

int common_init(void);

• Makes some of the current attributes to inherit the values from the
parent (i.e.background , font). Then the current parameter value
is extracted intotoken - the parameter location is defined infname
andfield_prefix .

void set_run_mode(void);

• Sets the mode of all components in the tree to the run mode. This
function should be called only on the root component of the tree.

void set_edit_mode(Handler handler);

Table B-2: Class component

APPENDIX B: MORE ON PANEL MANAGER 151
• Sets the mode of all components in the tree to edit mode, and assigns
to each component an event handler as defined by the parameter
handler . This function should be called only on the root compo-
nent of the tree.

virtual void get_geometry(long & x_ret, long & y_ret,
 long & width_ret, long & height_ret);

• Returns the geometry of the component.

virtual void get_root_xy(long & x_ret, long & y_ret) = 0;

• Returns the coordinates of the left upper corner of the rendered com-
ponent with respect to the root window (screen).

virtual void set_geometry(long x, long y,
 long width, long height) = 0;

• Every derived component has to define this function to be able to
accept resize/re-position requests. These requests can be granted or
refused.

virtual Widget get_rwidget(void) = 0;

• Returns the top-level widget used to render this component.In the
current implementation, this widget is of typeXmFrameWidget-
Class for all components.

virtual void remove_child(Component * comp);

• Removes a child from the list of children. This method should be
called in the destructor of any component on the parent component.

virtual void edit_settings(void);

• Displays the attribute editor for the component.

virtual void redraw(void);

• When attributes of a component are changed, this method has to be
called in order to synchronize the changes made to the component
with its visual appearance.

virtual void dump(Mem_IO &, long indent = 0);

• Dumps all information about the component into memory. This func-
tion is called by the main program when the user decides to save the
control panel into a file. This method also callsdump() on every
child, and therefore the calling program should only calldump() on
the root-level component.

Table B-2: Class component

152 APPENDIX B: MORE ON PANEL MANAGER
virtual void _set_highlight(Boolean highlight) = 0;

• All derived classes have to define this method. This method will
change the appearance of the class (highlight specifies whether
the border of the component should be of distinct color or not). This
method is called byhighlight_on() .

Color select_color;

• Defines the color of the highlight.

Handler callback_handler;

• Pointer to the user defined callback function. This is only used in edit
mode, and therefore will be described in the next section.

Color background;
Color foreground;
FontStyle font;
char file_name[4096];
char field_prefix[4096];

• Basic attributes for every component.

Boolean highlighted;
Boolean rendered;
char edit_mode;

• Various state variables.

Mem token;

• The value of the parameter as extracted bycommon_init() .

long n_children;
Component ** children;

• Stores the list of all children.

OptionsDialog * options_dialog;

• A pointer the attribute editor, created byedit_settings() .

Table B-2: Class component

	THE UNIVERSITY OF CALGARY
	Design and Implementation of Global Virtual Labora...
	by
	Pavol Federl
	A THESIS
	SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
	IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE...
	DEGREE OF MASTER OF SCIENCE
	DEPARTMENT OF COMPUTER SCIENCE
	CALGARY, ALBERTA
	DECEMBER, 1997
	(c) Pavol Federl 1997

	THE UNIVERSITY OF CALGARY
	FACULTY OF GRADUATE STUDIES
	Abstract
	Acknowledgments
	Chapter 1: Introduction 1
	Chapter 2: Statement of objectives 15
	Chapter 3: Survey of related concepts and previous...
	Chapter 4: Remote access server 31
	Chapter 5: Panel manager 55
	Chapter 6: Browser 89
	Chapter 7: Metatext 105
	Chapter 8: Hyperbrowser 113
	Chapter 9: Conclusion and future work 125
	Appendix A: RA class 137
	Appendix B: More on panel manager 143
	Chapter 1: Introduction
	Chapter 2: Statement of objectives
	Chapter 3: Survey of related concepts and previous...
	Chapter 4: Remote access server
	Chapter 5: Panel manager
	Chapter 6: Browser
	Chapter 7: Metatext
	Chapter 8: Hyperbrowser
	Chapter 9: Conclusion and future work
	Appendix A: RA class
	Appendix B: More on panel manager

	Chapter 1 Introduction
	1.1. Motivation
	1.2. Overview of Virtual Laboratory 2.0 and its li...
	1.2.1. VLAB objects and object oriented filesystem...
	Figure 1-1: Example of VLAB object’s directory org...
	specifications
	icon
	ext
	Figure 1-2: Structure of VLAB’s objects

	1.2.2. VLAB 2.0 components
	Figure 1-3: Snapshot of the VLAB 2.0 browser
	Figure 1-4: Snapshot of VLAB 2.0’s object manager
	Figure 1-5: Inter-client communication in VLAB 2.0...
	Figure 1-6: Snapshot of VLAB 2.0’s panel manager
	Figure 1-7: Communication in VLAB 2.0’s panel mana...
	Figure 1-8: Metatext in VLAB 2.0

	1.2.3. Portability

	1.3. Summary

	Chapter 2 Statement of objectives
	2.1. Alternative views of object databases
	2.2. Support for collaboration
	2.3. Panel manager
	Figure 2-1: Snapshot of panel manager 3.0 in graph...

	2.4. Portability
	2.5. Performance improvements
	Table 2-1: Performance comparison of VLAB 2.0 and ...

	32
	20
	45
	20
	3
	0
	15
	1
	2
	2
	25
	2
	2.6. User customization
	Figure 2-2: Snapshot of browser’s customization di...

	2.7. Summary

	Chapter 3 Survey of related concepts and previous ...
	3.1. Concepts related to VLAB
	3.1.1. Monolithic versus open hypertext systems
	3.1.2. Prototype-extension model
	3.1.3. Graphical versus command line interfaces
	3.1.4. Tools

	3.2. Previous work related to the implementation o...
	3.2.1. Two way extensibility
	3.2.2. Building graphical user interfaces
	3.2.3. Frameworks for experimentation
	3.2.4. External parameter control

	3.3. Summary

	Chapter 4 Remote access server
	4.1. Background
	Figure 4-1: Database access in VLAB 2.0 (left), de...

	4.2. Requirements
	4.2.1. Implementation models
	Model 1: X-display redirection
	Model 2: FTP implementation
	Model 3: rsh/rcp implementation
	Model 4: NFS implementation
	Model 5: Special purpose daemon

	4.2.2. Evaluation of implementation models
	Table 4-1: Evaluation of implementation models

	2
	3
	4
	1
	5
	2
	1
	1
	1
	1
	1
	3
	4
	2
	2
	2
	1
	2
	2
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	3
	2
	2
	1
	1
	2
	2
	2
	3
	1
	1
	3
	2
	1
	1
	4
	3
	2
	3
	1
	20
	20
	21
	16
	15
	4.2.3. Conclusion
	4.3. Design
	Figure 4-2: Communication flow between two VLAB ap...

	4.4. User’s perspective of RAserver
	4.4.1. Daemon mode
	4.4.2. Setup mode
	4.4.3. Related files

	4.5. Implementation details
	4.5.1. Overall structure of RAserver
	4.5.2. Communication mechanism and format of messa...
	Figure 4-3: Message Format in Remote Access Extens...

	4.5.3. Implementation of RAserver’s setup mode
	4.5.4. Account file format

	4.6. Remote access library
	4.6.1. Optimization
	4.6.2. Return values
	4.6.3. Example of using RAlibray

	4.7. Summary

	Chapter 5 Panel manager
	5.1. Background - panel manager in VLAB 2.0
	Figure 5-1: Communication flow in VLAB 2.0’s panel...
	Figure 5-2: Example of a control panel and its def...
	5.1.1. Panel definition file format
	5.1.2. Interfacing with an application
	5.1.3. Example of usage
	5.1.4. Drawbacks of panel manager 2.0

	5.2. Requirements and design
	5.2.1. Requirements
	5.2.2. Parameter types
	5.2.3. Extensibility
	5.2.4. Component hierarchy
	5.2.5. Specification of parameter location
	5.2.6. Dual mode of operation

	5.3. User’s perspective of panel manager
	5.3.1. Run mode
	Figure 5-3: Panel manager 3.0 in run mode

	5.3.2. Edit mode
	Figure 5-4: Panel manager 3.0 in edit mode
	Figure 5-5: Popup menu for panel components
	Figure 5-6: Attribute editor for panel components
	Figure 5-7: Attribute editor for label components
	Figure 5-8: Attribute editor for integer range com...
	Figure 5-9: Attribute Editor for Choice Components...

	5.4. Implementation details
	5.4.1. Panel definition file format
	Figure 5-10: Example of a component tree

	5.4.2. Implementation of run mode
	5.4.3. Implementation of edit mode
	Table 5-1: Class event
	Figure 5-11: Resize cursors

	5.4.4. Options dialog

	5.5. Summary

	Chapter 6 Browser
	6.1. Design
	6.1.1. Support for external references to VLAB obj...
	6.1.2. Objects and oofs databases in VLAB 3.0

	6.2. User’s perspective of browser
	Figure 6-1: Browser’s window
	6.2.1. Start-up information
	Figure 6-2: Browser’s login window
	Figure 6-3: Browser’s find dialog
	Figure 6-4: Browser’s customization dialogs: a) ma...

	6.3. Implementation details
	Figure 6-5: Two different tree layout methods: spa...
	Figure 6-6: Different tree drawing methods
	Figure 6-7: Tree clipping in browser

	6.4. Summary

	Chapter 7 Metatext
	7.1. Structure of metatext
	Figure 7-1: Structure of a) metatext database, b) ...

	7.2. User’s perspective of metatext
	Figure 7-2: Snapshot of metatext without (top) and...
	7.2.1. Start-up information

	7.3. Implementation Details
	7.3.1. Index file format
	7.3.2. Frame file format
	Figure 7-3: Example of metatext display

	7.3.3. Organization of metatext databases
	7.3.4. Customization

	7.4. Summary

	Chapter 8 Hyperbrowser
	8.1. Requirements and design
	8.1.1. Shortcomings of metatext
	8.1.2. Design goals
	8.1.3. Implementation models
	8.1.4. Hyperobjects
	8.1.5. Hyperobject file system
	8.1.6. Hyperbrowser

	8.2. User’s perspective of hyperbrowser
	8.2.1. Overview
	Figure 8-1: Example snapshot of hyperbrowser’s win...

	8.2.2. Start-up information
	8.2.3. Invoking hyperobjects
	Figure 8-2: Action menu in hyperbrowser
	Figure 8-3: The order of database traversal using ...

	8.2.4. Changing the order of hyperobjects
	8.2.5. Invalid hyperobjects
	8.2.6. Renaming hyperobjects
	8.2.7. Adding hyperobjects to hofs databases

	8.3. Implementation details
	8.3.1. Structure of hyperobjects
	8.3.2. Format of the node file
	8.3.3. Implementation of hyperbrowser

	8.4. Summary

	Chapter 9 Conclusion and future work
	9.1. Conclusion
	9.1.1. Accomplishments
	9.1.2. Impact of VLAB 3.0

	9.2. Limitations and future work
	9.2.1. Find
	9.2.2. Improved GUI designer for panel manager
	9.2.3. Undo
	9.2.4. Extended objects
	9.2.5. Extended hyperobjects
	9.2.6. Unified oofs and hofs databases
	9.2.7. Unique access to databases
	9.2.8. Multiple inheritance
	9.2.9. Alternate methods for storing databases
	9.2.10. Distribution of external programs

	References
	[1] Anderson, P., Baran, C., Flanagan, J., Ford, L...
	[2] Avrahami, G., Brooks, K. P., Brown, M. H. A Tw...
	[3] Barth, P. S. An Object-Oriented Approach to Gr...
	[4] Bernstein, D. J. Using Motif with C++. SIGS Bo...
	[5] Chatterjee, S., Paramasivam, M., Yakowenko, M....
	[6] Cutler, E., Gilly, D., O’Reilly. T. The X Wind...
	[7] Federl, P. Browser and Landscape Editor for Vi...
	[8] Flanagan, D. Java in a Nutshell. O’Reilly & As...
	[9] Garfinkel, S., Spafford, G. Practical UNIX & I...
	[10] Gentner, D., Nielson, J. The Anti-Mac Interfa...
	[11] Harold, E. R. Java Network Programming. O’Rei...
	[12] Heller, D. Motif Programming Manual. O’Reilly...
	[13] Hernadi, I. The Virtual Laboratory. http://ww...
	[14] Knelsen, C. A multipurpose interface for inte...
	[15] Lehey, G. Porting UNIX Software. O’Reilly & A...
	[16] Levine, J. R., Mason, T., Brown, D. lex & yac...
	[17] Lieberman, H. Using prototypical objects to i...
	[18] Lowe, E. M. Extensions to the Virtual Laborat...
	[19] Lutz, M. Programming Python. O’Reilly & Assoc...
	[20] Mercer, L., Prusinkiewicz, P., Hanan, J. The ...
	[21] Mercer, L. The virtual laboratory. Master’s t...
	[22] Moen, S. Drawing dynamic trees. IEEE Software...
	[23] Nardi, B. A. A small matter of programming: p...
	[24] Nye A., O’Reilly T. X Toolkit Intrinsics Prog...
	[25] Nye, A. Xlib Programming Manual. O’Reilly & A...
	[26] Pearl, A. Sun’s Link Service: a Protocol for ...
	[27] Prusinkiewicz, P., Knelsen, C. Virtual contro...
	[28] Prusinkiewicz, P., Lindenmayer, A. The algori...
	[29] Prusinkiewicz, P., Hanan, J. A hypertext envi...
	[30] Quercia, V., O’Reilly, T. X Window System Use...
	[31] Reeves, W. T., Ostby, E. F., Leffler, S. J. T...
	[32] Smith, R. G., Barth P. S., Young, R. L. A Sub...
	[33] Snider, A. An interactive, physically-based s...
	[34] Stern, H. Managing NFS and NIS. O’Reilly & As...
	[35] Stevens, W. R. Advanced Programming in the UN...
	[36] Stevens, W. R. Unix network programming. Pren...
	[37] Strauss, P. S., Carey, R. An Object-Oriented ...
	[38] Stroustrup, B. The C++ Programming Language. ...
	[39] Urman. S. Oracle PL/SQL Programming; The Esse...
	[40] Watters, A. Internet Programming with Python,...
	[41] Wegner, P. The Object-Oriented Classification...
	[42] Wernecke, J. The Inventor Mentor. Addison-Wes...
	[43] Wolfram, S. The Mathematica Book. Wolfram Med...
	[44] Zeleznik, R. C., Conner, D. B., Wloka, M. M.,...

	Appendix A RA class
	Appendix B More on panel manager
	B.1. Example of creating a control panel
	Figure B-1: Invoking panel manager in edit mode
	Figure B-2: Setting the panel’s title in panel’s a...
	Figure B-3: Using the floating point range’s attri...
	Figure B-4: Panel manager in edit mode with two co...
	Figure B-5: Editing choice’s attributes
	Figure B-6: Final appearance of the control panel

	B.2. Component attributes
	Table B-1: Component attributes

	B.3. Class component
	Table B-2: Class component

