
UNIVERSITY OF CALGARY

Modeling Fracture Formation on Growing Surfaces

by

Pavol Federl

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 2002

 Pavol Federl 2002

ii

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “Modeling Fracture Formation on Growing

Surfaces” submitted by Pavol Federl in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Supervisor, Dr. Przemyslaw Prusinkiewicz, Computer Science

Dr. Brian Wyvill, Computer Science

Dr. Jon Rokne, Computer Science

Dr. Marcelo Epstein, Mechanical and Manufacturing Engineering

External Examiner, Dr. Eugene Fiume, University of Toronto

Date

iii

Abstract

This thesis describes a framework for modeling fracture formation on differentially growing, bi-

layered surfaces, with applications to drying mud and tree bark. Two different, physically based

approaches for modeling fractures are discussed. First, an approach based on networks of masses

and springs is described. Two important shortcomings of the mass-spring approach are then

identified: a tendency of the fractures to align themselves to the underlying mesh, and an unclear

relationship between the simulation parameters and the real material properties. The rest of the

thesis is focused on the second approach to modeling fractures, based on solid mechanics and

finite element method, which effectively addresses the shortcomings of the mass-spring based

approach. Two types of growth are investigated: isogonic and uniform anisotropic. The growth is

then incorporated within the framework of finite element methods, implemented using velocity

vector fields. The growth tensor is used to verify the properties of the growth. A number of

efficiency and quality enhancing techniques are also described for the finite element based

approach. An adaptive mesh refinement around fracture tips is introduced, which reduces the total

number of elements required. Construction of a temporary local multi-resolution mesh around the

fracture tips is described, which is used to calculate stresses at fracture tips with increased

accuracy but without introducing any additional elements permanently into the model. Further, a

general method for efficient recalculation of an equilibrium state is presented, which can be

employed after localized changes are made to the model. Finally, an adaptive time step control is

described, which automatically and efficiently determines the next optimal time step during

simulation.

iv

Acknowledgements

My first and most important thank-you goes to my mother, who supported my education in every

possible way. It is impossible to imagine how difficult it would have been without her support. My

next thank-you belongs to my supervisor, Przemyslaw Prusinkiewicz, for his guidance, for the

numerous hours we spent together discussing my research, for his brilliant ideas and invaluable

advice, and for offering his tremendous experience when helping to edit this thesis. A very special

thank-you goes to my girlfriend, Jennifer Walker. I would like to thank her for the incredible job of

proofreading this thesis, for patiently putting her life on hold while I busy with my research and

also for her emotional support. Finally, I would like to thank Marcelo Epstein for his valuable

advice in the area of solid mechanics, and to everybody in the graphics jungle group for creating

an enjoyable working atmosphere.

Table of Contents

Approval page... ii
Abstract .. iii
Acknowledgements.. iv
Table of Contents...v
List of Figures ... vii
List of Tables ... ix

CHAPTER 1: INTRODUCTION...1

CHAPTER 2: REVIEW OF PREVIOUS WORK..5

CHAPTER 3: MODELING GROWTH ..11
3.1. Mathematical description of growth ...11
3.2. The assumed models of bark and mud..15
3.3. Implementing growth and shrinkage ..17

3.3.1. Growth of the background layer ..19
3.3.2. Shrinkage of the material layer ..26

CHAPTER 4: THE MASS-SPRING APPROACH ..30
4.1. Skjeltorp and Meakin model...30
4.2. Modeling growth...33
4.3. Multi-layer model ...35
4.4. Non-uniform discretization...37
4.5. Rendering..40
4.6. Self-similar patterns ..42
4.7. Conclusions...44
v

CHAPTER 5: THE FINITE ELEMENT APPROACH ...45
5.1. Overview of the fracture algorithm ..46
5.2. Surface discretization..47

5.2.1. Distribution of points on a surface...48
5.2.2. Triangulation..52

5.3. The element stiffness matrix...54
5.3.1. Isoparametric coordinates ..56
5.3.2. Shape functions..56
5.3.3. Derivation of the element stiffness matrix.......................................60

5.4. The global stiffness matrix ...68
5.5. Calculating the equilibrium state ..71
5.6. Fracture modeling by removing elements ..77

5.6.1. Stress calculation ...78
5.6.2. Selecting the element for removal and adaptive time-step control..80
5.6.3. Element removal ..83
5.6.4. Dynamic subdivision ...87

5.7. Fracture modeling by splitting elements...94
5.7.1. Nodal stress evaluation ..95
5.7.2. Modeling fractures ...97
5.7.3. New fractures ...98
5.7.4. Fracture propagation and termination..99
5.7.5. Avoiding degenerate elements...101
5.7.6. Dynamic subdivision around fracture tips104
5.7.7. Adaptive mesh refinement ...105
5.7.8. Local multi-resolution meshes for nodal stress evaluation............107
5.7.9. Improving element shapes around crack tips.................................108

5.8. Adaptive relaxation...110
5.8.1. Selecting nodes for local relaxation...111
5.8.2. Local relaxation ...113
5.8.3. Adaptive control of the local relaxation radius..............................113
5.8.4. Local stress recalculation...113

5.9. Randomizing material properties..114
5.10. Discussion of results ...115

CHAPTER 6: CONCLUSIONS AND FUTURE WORK ...125

REFERENCES...132

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS138
A.1. Discrete model ...139
A.2. Continuous model ..143
vi

List of Figures

Figure 3.1: Transformation of salamander larvae (reproduced from [56])......................13
Figure 3.2: The assumed two-layered models of bark and drying mud...........................16
Figure 3.3: The effects of a growing background on the material layer.18
Figure 3.4: Shrinkage of the material layer with respect to a static background.............19
Figure 3.5: Anisotropic planar growth: a circle transforms into an ellipse......................21
Figure 3.6: Velocity vector fields corresponding to anisotropic planar growth.23
Figure 3.7: Cylindrical and spherical velocity vector fields. ...24
Figure 3.8: Local coordinate system of an infinitesimal patch of a cylindrical surface. .25
Figure 3.9: An example of uneven shrinkage. ...28
Figure 3.10: Construction of the reference shape for the wedge element..........................29

Figure 4.1: Monolayer of shrinking micro-spheres. ..31
Figure 4.2: The mass-spring model..32
Figure 4.3: Fracture propagation simulated using a mass-spring model.32
Figure 4.4: Growing background induces surface expansion and stress.34
Figure 4.5: Synthesized fracture patterns using isogonic growth.34
Figure 4.6: Synthesized fracture patterns using anisotropic growth.36
Figure 4.7: Fracture patterns obtained on cylindrical surfaces.37
Figure 4.8: Fracture pattern synthesized using a randomized surface subdivision..........38
Figure 4.9: Generated patterns affected by the level of discretization.............................39
Figure 4.10: Graphical illustration of the post-processing step. ..41
Figure 4.11: Different methods for rendering the same result. ..43

Figure 5.1: Examples of uniform discretizations of a planar surface.48
Figure 5.2: Triangulation of randomly distributed points on a plane.49
Figure 5.3: A planar material layer subdivided using wedge elements.53
Figure 5.4: Delaunay triangulation on cylindrical and spherical surfaces.54
vii

Figure 5.5: A wedge element. ..55
Figure 5.6: Isoparametric coordinates of the wedge element. ...57
Figure 5.7: Global and local node numbering..68
Figure 5.8: Graphical representation of matrix bandwidth. ...74
Figure 5.9: Distribution of the maximum principal stress. ..81
Figure 5.10: Fracture propagation using element removal. ...86
Figure 5.11: Fracture patterns for different levels of discretization.87
Figure 5.12: Subdividing an element by trisection. ...90
Figure 5.13: Subdividing an element into four elements. ..91
Figure 5.14: Subdivision of an element by bisection...92
Figure 5.15: Splitting an element with a recursive neighbor subdivision..........................93
Figure 5.16: Results obtained with and without dynamic subdivision.94
Figure 5.17: Example of element splitting at a node. ..95
Figure 5.18: Distribution of nodal stresses around a fracture. ...96
Figure 5.19: Splitting an element by a fracture plane. ...98
Figure 5.20: Tracking fracture tips during fracture propagation.99
Figure 5.21: Fracture termination. ...102
Figure 5.22: Avoiding degenerate elements by rotating the fracture plane.103
Figure 5.23: Elimination of deformed elements by edge collapsing.104
Figure 5.24: Graphical illustration of the local multi-resolution mesh method...............109
Figure 5.25: Selection of nodes for local relaxation. ...112
Figure 5.26: Synthesizing “breaking heart”. ..114
Figure 5.27: Fracture patterns generated using anisotropic growth.................................116
Figure 5.28: Fractures often form 90 degree angles with respect to each other.117
Figure 5.29: Varying density and size of cracks. ...118
Figure 5.30: Temporal sequence of a simulated fracture formation in drying mud.119
Figure 5.31: Perturbation of material properties. ...120
Figure 5.32: Synthesized fracture patterns on growing sphere.121
Figure 5.33: Synthesized bark-like patterns...122
Figure 5.34: Real bark compared to synthesized bark. ..123

Figure A.1: Discrete 1D model. ..140
Figure A.2: Fracture formation in 1D for four different levels of subdivision...............141
Figure A.3: Recursive patterns. ..142
Figure A.4: Fracture formation in 1D using the continuos model.147
viii

ix

List of Tables

Table 5.1: Gaussian quadrature points for the 6-node wedge..66
Table 5.2: Simulation parameters used to generate the bark-like fracture patterns.........124

1

CHAPTER 1 Introduction

In recent years, considerable attention has been devoted to computer-based modeling and

visualization of various natural phenomena [3]. Instead of real-life experiments,

mathematical models are used as virtual experiments. Computers can easily simulate

conditions which would otherwise be very difficult or impossible to achieve, such as

weightlessness, absolute zero temperatures or perfect vacuum. Computer simulation can

therefore be an invaluable tool for scientists wishing to perform “what-if” type

experiments. Additionally, by modeling only the essential components of experiments

[53], computers are often able to generate results within a fraction of the time required in

real life.

Due to their interdisciplinary character, computer based simulations of natural phenomena

offer synergy between computer science and other scientific fields, such as biology.

Computer graphics enhances this synergy even further, by making visualization of the

simulation results possible. Visual inspection is an important measure of success of a

theory. Upon completion of a virtual experiment, results can be easily evaluated by the

human eye, and the agreement between these virtual results and reality can function as

evidence supporting or disproving the theory on which the simulation was based1. From

the computer graphics perspective, this synergy provides tangible benefits as well. For

1. This does not contradict the importance of qualitative analysis; but qualitative analysis of pat-
terns remains a largely open problem.

CHAPTER 1: INTRODUCTION 2
example, the simulation of pattern formation models can be used to generate natural

looking textures, which are important in image synthesis. Their presence is vital for

achieving photorealism, because images lacking textures appear unrealistic and visually

uninteresting.

Many interesting and highly complex surface patterns are produced as a result of cracking.

Cracks often occur as a direct consequence of the dynamic change in a material’s

structure, as can be observed in aging paint, drying mud, old ceramics, or tree bark. A

successful model of fracture formation on growing domains can help us to study and to

better understand the processes involved in crack pattern formation in nature. It can also

lead to the synthesis of realistic textures for CG purposes. In my research, I attempt to

simulate such phenomena using physically based methods.

There are three basic types of textures used in computer graphics: image-based,

procedural and volumetric. Image-based textures are normally obtained by digitizing an

existing image, such as the photograph of a real-world pattern, and storing it as an array of

pixels. The texture is then mapped onto the surfaces being rendered. In contrast,

procedural textures are programs that determine the value of any pixel in the texture when

queried. The algorithms used in procedural textures are often designed after careful

observation of the desired real-life pattern [10]. Volumetric textures, initially introduced

by Kajiya and Kay [29] and later refined by Neyret [43], can be used to render complex

geometries. The basic idea is to first compute a pattern of 3D geometry in some reference

volume, and then tile the pattern over a desired surface in a manner similar to applying a

regular 2D texture. In the recent past, a new approach to texture synthesis has been studied

in which the generated texture is synthesized from examples of real-life textures. To some

extent, this method of texture synthesis from examples offers a bridge between the

traditional image-based and procedural textures. From the computer graphics perspective,

the area of my research can be classified as a procedural texture generation. Although

procedural textures were first introduced as many as 15 years ago (by Peachey [49] and

CHAPTER 1: INTRODUCTION 3
Perlin [50]), the design of algorithms for procedural texture generation remains an open

research problem. I believe the simulation of fracture formation I consider in my work

presents an intriguing research path for addressing this problem for a class of textures

representing models in which fracture patterns develop due to growth.

The main objective of my research is to introduce a framework for scientific simulation of

fracture pattern formation occurring on surfaces experiencing positive or negative growth.

The basic methodology of my approach is to integrate surface growth with the existing

physically based methods for simulating material deformation. I consider two such

physically based techniques: the first one is based on networks of masses and springs, and

the second is based on solid mechanics combined with the finite element method (FEM).

The main contributions of my research described in this thesis are:

• Integration of growth with an existing mass-spring based model of fracture

formation.

• Incorporation of growth into the framework of finite element methods. I

show how to implement negative growth (shrinkage) in the material, and

positive growth of the underlying background.

• Illustration of these methods using selected examples: bark and drying

mud.

I also make a number of technical contributions with respect to modeling fractures using

finite element methods:

• I demonstrate how modeling of fractures can be combined with dynamic

subdivision to avoid unnecessary increase of the global discretization level.

• I describe an adaptive technique for local recalculation of the equilibrium

solution, which diminishes the need to recalculate the solution for the

CHAPTER 1: INTRODUCTION 4
entire domain, and therefore improves the efficiency of the simulation.

• I show how adaptive time step control can be used to automatically and

efficiently forward the simulation time to a point of interest, i.e. to a point

where the next fracture will occur.

• I show how nodes can be repositioned when modeling fractures, which

reduces the number of degenerate elements.

• I describe a method which dynamically improves the shapes of the

elements around crack tips using a localized angle-based mesh smoothing

technique. I also show how the persisting degenerate elements can be

removed by edge-collapsing.

• Finally, I demonstrate how a temporary local multi-resolution mesh can be

used to calculate the stresses in the material at fracture tips, without having

to permanently increase the discretization level.

These contributions and the results are explained in full detail in the following chapters,

organized as follows. In Chapter 2 I discuss the previous work relevant to my research.

The mathematical models describing growth, together with my implementation of

negative and positive growth are discussed in Chapter 3. Chapter 4 describes how I

extended an existing mass-spring based model of fracture formation by incorporating

growth, and demonstrates why mass-spring models are limited in their capacity to

successfully model fracture formation on growing domains. Chapter 4 is later extended by

Appendix A, to which I relegate the discussion of synthesizing self-similar patterns using

a one dimensional mass-spring model. Chapter 5 describes my second approach to

fracture modeling, based on solid mechanics and finite element models. There, I also

document the results I have obtained using this approach. Finally, Chapter 6 provides a

brief summary of the contributions of my work, and concludes the thesis with potential

directions for future work.

5

CHAPTER 2 Review of previous work

In the recent past, simulation of pattern formation has been recognized by computer

graphics researchers as a viable method for generating realistic patterns and animations.

The existing models of pattern formation can be divided into two classes: models

assuming static space and models assuming changing space. An example of models

operating on a static surface are the reaction-diffusion models, originated by Turing [67]

in 1952. They generally deal with the distribution dynamics of pattern forming substances

in a medium of constant size. L-system1 models, in contrast, fall into a category of models

operating on changing domains. They deal with development, but are limited to branching

structures (see Prusinkiewicz and Lindenmayer [54]). In spite of the relative success of

some models, e.g. reaction-diffusion models that capture shell pigmentation patterns [37],

or L-system models of herbaceous plants [54], many patterns continue to elude modeling

efforts. In my research, I explore the hypothesis that some of these patterns can be

captured with fracture models operating on growing surfaces, such as bark on tree trunks

or drying mud. In this chapter I review previous work most related to my research.

Previous work in the area of simulating fracture formation can be essentially divided into

two groups based on the amount of discontinuity produced by fractures in the material. In

the first group, the models use fractures to introduce large discontinuities, i.e. they focus

1. Although they are usually not perceived as models of pattern formation, they do con-
tribute a class of morphogenetic models.

CHAPTER 2: REVIEW OF PREVIOUS WORK 6
on simulating the process of an object breaking into pieces as a result of applied external

forces, with no emphasis on the actual fracture pattern being formed. The second group of

models use fractures to produce small discontinuities in the object’s surface, and they

focus on the emerging crack patterns. The models in the second group operate either on

static or dynamic surfaces.

Models of fracture formation assuming large discontinuities

One of the earliest works in the group of models simulating large discontinuities is that of

Norton et al. [44], who investigated the use of a 3D mass-spring model to produce realistic

animations of a teapot falling onto a surface and shattering into pieces. The teapot was

discretized into cubes, connected to each other at their nodes. The internal physical

properties of each cube were simulated by a system of masses and springs. Each cube

consisted of 8 point masses and 28 springs connecting each pair of nodes. The cubes

would break when their internal springs reached the limit of elastic behavior, leading to

the formation of fractures. Since entire cubes of material were being removed from the

model, the fracture planes in the generated images were quite rugged.

An animation method for a breaking window under a spherical blast wave was developed

by Neff and Fiume [42]. Their fracture model was based on the theory of rapid fracture

propagation. Initially, a small micro-fracture was introduced, which subsequently

propagated through the material, releasing the stored energy. By randomizing various

simulation parameters, the fractures wiggled and split, producing convincing results. The

impact of a blast wave on the surrounding objects was simulated by Mazarak et al. [35].

The simulated model was discretized using a connected voxel grid. The fractures in the

material were modeled by breaking the connecting link between two voxels whenever the

pressure generated by the blast wave at their midpoint was greater than the link’s yield

threshold.

CHAPTER 2: REVIEW OF PREVIOUS WORK 7
Terzopoulos and Fleischer [63][64] investigated modeling of viscoelastic and plastic

deformations. They presented a general technique for modeling these phenomena, at the

heart of which were three energy functions used to estimate the deformation over surfaces

defined by splines. The energy functions were defined using metric tensors, and the

simulated models were discretized using various methods. Using a finite differencing

method, one of their models simulated fracture formation and propagation in torn paper

and ripped cloth. The discontinuities introduced by fractures were modeled by setting the

stiffness coefficients of the material to zero between any two nodes exceeding a maximum

prescribed threshold distance. The most significant disadvantage of this approach was the

use of finite differencing, which requires discretization of a surface by a regular

rectangular grid. The rectangular grid is unsuitable for discretizing surfaces of arbitrary

topologies. The resulting fractures also exhibited an aliasing effect caused by the imposed

grid. Metaxas and Terzopoulos later employed finite element methods for animating

deformations [38], as FEMs are generally more robust and accurate.

O’Brien and Hodgins [45] also developed a method for fracture modeling based on

continuum mechanics, with the deformation of the material expressed with strain tensors.

The continuous models were discretized into tetrahedral meshes and then modeled using a

finite element approach, as opposed to a mass-spring approach. Fractures were modeled

by splitting the elements at nodes with high stress, in the direction of the computed

fracture planes. Applications included realistic simulations of a wall being shattered by a

wrecking ball, a bowl breaking upon impact with a floor, and a slab of glass shattered by a

heavy weight. A more detailed description of this algorithm was later given by O’Brien in

his doctoral thesis [46].

A physically motivated model of rapid simulation of fracture formation in brittle materials

under impact was described by Smith, Witkin and Baraff [62]. Their model is similar to a

mass-spring model, but instead of using stiff springs, the authors framed the problem in

terms of distance-preserving constraints. The forces exerted by the distance-preserving

CHAPTER 2: REVIEW OF PREVIOUS WORK 8
constraints were calculated using Lagrange multipliers, yielding a large sparse system of

linear equations that had to be solved for each simulation time step (in this respect, their

method is very similar to the finite element approach), to which end they used a conjugate

gradient method. The modeled materials were discretized using tetrahedral elements,

modeled as point-masses interconnected by the linear constraints. The fractures were

modeled by breaking the constraints when they reached certain thresholds. The main

disadvantage of their approach lies in the resulting fractures propagating exclusively along

the mesh boundaries, resulting in jaggy cracks.

The mechanical models reviewed up to this point were directly applied to simulating

fracture formation. Various other mechanically based models exist, which simulate

deformation in materials, but lack direct application to fracture modeling. Some of these

models could be adapted to fracture formation, such as the stable and efficient algorithm

for animating mass-spring systems introduced by Desbrun et al. [8]. In their approach, the

authors employ an integration scheme derived from implicit integration. Their algorithm

is an approximated implicit predictor/corrector scheme, preserving important physical

quantities such as linear and angular moments. By diminishing the need to solve a linear

system of equations, this approach is capable of achieving interactive speeds of realistic

animations of any mass-spring network, although the authors noted that the

‘approximation cannot be used for more accurate simulations’.

Models of fracture formation focusing on the emerging crack patterns

A model of crack formation and propagation due to shrinkage of a material deposited on a

background surface was introduced by Skjeltorp and Meakin [61]. The deposited material

was physically modeled as a mono-layer of uniformly sized micro-spheres confined

between two parallel sheets of glass. The diameter of the spheres gradually decreased as

they dried out, leading to the formation of cracks. The material layer was discretized by a

hexagonal lattice of masses and springs. Experiments and simulations produced cracking

CHAPTER 2: REVIEW OF PREVIOUS WORK 9
patterns resembling those observed in thin films of paint or ceramic-coated materials. The

regular arrangement of micro-spheres, however, led to six privileged cracking directions,

rotated by 60 degrees with respect to each other. The presence of this directionality was

particularly visible in computer simulations (cf. Figure 2b in [61]).

The Skjeltorp and Meakin model was adapted to generate fracture patterns on tree bark by

Federl and Prusinkiewicz [13], by introducing anisotropic growth of the background. This

work will be reviewed in greater detail later in the thesis. Hirota et al. [24] also extended

Skjeltorp and Meakin’s model for image synthesis purposes. In their work, they related the

formation and propagation of cracks to the notions of the elasticity theory - strain and

stress. The mass-spring network was still used as a computational model, although the

authors noted it was “less suitable for the precise description of the physical characteristic

than the finite element method”. Non-isotropic behavior of the material was simulated by

adjusting the yielding criteria of springs to their initial orientations. In [25], Hirota et al.

extended their previous model to volumes. Sample applications included a cubic block of

clay that dried on the surface.

Gobron and Chiba [17] used solid mechanics techniques to analyze the relationship

between stresses and fractures in a material. The result was a semi-physically based

model, implemented as a cellular automaton operating on a 2D rectangular grid. Sample

applications included simulated fracture patterns in concrete, mud, ceramics and glaze.

Inspired by Gobron’s and Chiba’s work, Paquette [48] extended their model by adding

adhesion and curling behavior, and applied the resulting model to generate images of

aging paint.

Federl and Prusinkiewicz [14] introduced growth into the framework of finite element

methods, and applied the resulting model to simulate formation of crack patterns in drying

mud and tree bark. This work represents a large portion of my research, and therefore it

has been incorporated into this thesis.

CHAPTER 2: REVIEW OF PREVIOUS WORK 10
A phenomenological approach to synthesizing bark patterns has been recently proposed

by Lefebvre and Neyret [31]. The bark was modeled with a series of independent circular

strips perpendicular to the main axis of the tree. Each strip was modeled as a one-

dimensional system of two alternating types of springs, one representing the material, the

other representing the fracture. The fracture was initiated inside a strip when one of the

material springs was elongated beyond its threshold. The crack was modeled by splitting

this material spring and inserting a fracture spring. An existing crack was allowed to

propagate to the adjacent strips. The direction of propagation was determined by

considering both the state of the strip of the existing crack, as well as the state of the strip

into which the fracture propagated. The resulting bark patterns were quite realistic, and

included patterns synthesized for branching structures. The strength of this method lies in

its speed. By modeling only a simplified model of tree bark it is possible to run the

simulations interactively. Unfortunately, by considering only a simplified model of bark,

the capacity of the model to be used as a scientific tool is debatable. For example, the

cracks are only allowed to propagate from one strip to an adjacent strip, limiting the

application of this model to types of bark in which cracks occur vertically.

11
CHAPTER 3 Modeling growth

In my research, I consider fracture formation in materials that can be modeled by

simplifying them into two layers: a material layer and a background layer. Stress, and the

subsequent cracks, result from the growth or shrinkage of one layer with respect to the

other. I focus on two phenomena: formation of bark patterns on tree trunks, and formation

of cracks in drying mud. In the next section I describe some of the existing mathematical

techniques for expressing growth. I then show how I model bark and mud with two layers

in Section 3.2, and how I simulate growth using these layers in Section 3.3.

3.1. Mathematical description of growth

The phenomenon of growth is common to all living organisms and was therefore studied

and analyzed by many biologists, resulting in the formation of its various mathematical

descriptions. One of the earliest mathematical models representing growth of an organism

is the concept of allometric growth, termed by Huxley et al. [27]. It quantified the

relationship of two measurable traits of an organism using an exponential equation,

Eq. 3.1 ,y bxk=

CHAPTER 3: MODELING GROWTH 12
where and are constants, and and represent the measures of the two traits

compared. The allometric constant is the ratio of the two specific growth rates of the

two traits, and is therefore a pure number:

 .

The specific growth rate measures the relative change of the trait with respect to

time . For example, the specific growth rate equal to 0.1 represents a 10% growth per 1

unit of time.

A coordinate transformation approach for analytical description of the shape changes of

various organisms was proposed by D’Arcy Thompson [65,66]. Thompson used simple

geometric transformations to show how one form of an organism can be warped into a

different form. Richards and Riley [57] used Thompson’s technique to study the

development of salamander larvae (Figure 3.1). Richards and Kawanagh [55,56]

combined the Huxley’s et al. relative growth model with Thompson’s transformed

coordinate method into a single analytical technique, and illustrated the usefulness of their

new technique by determining the regions of similar specific growth rates on a tobacco

leaf. They also noted that the maximum and minimum linear growth directions are always

perpendicular to each other.

b k x y

k

k

dy
ydt

dx
xdt

--------=

dx
xdt
-------- x

t

CHAPTER 3: MODELING GROWTH 13
The relative elemental rate of growth [60,55,23], denoted as , of a segment of

length in the direction of the segment, is:

Eq. 3.2 ,

where is the displacement velocity of the segment in the direction . Erickson [11]

showed how the field of displacement velocities can be used to estimate the relative

FIGURE 3.1: Transformation of salamander larvae (reproduced from [56]).

RERGl s()

∆s

RERGl s()
∆ ∆s()
∆s∆t

∆s 0→
∆ t 0→

lim
d ds dt⁄()

ds

dVs

ds
--------= = =

Vs s

CHAPTER 3: MODELING GROWTH 14
elemental growth rates. If the velocity field is known, can be calculated by a scalar

product of and the unit vector in the direction of , i.e. . Then the relative

elemental growth rate of a segment can be written as:

 or .

The relative elemental rate of growth is defined for every direction . Since it

may be non-zero in every direction, it is neither a scalar nor a vector. Silk and Erickson

noticed this property of , and consequently used tensor fields to analyze the

growth of a plant organ [12][60]. They treated the growth of a plant organ as a

deformation in a compressible fluid, and thus expressed the growth using in terms

standard to fluid dynamics, i.e. in terms of rate-of-strain tensor

 ,

and vorticity tensor

 ,

where represents the components of the velocity field and denotes

the axis of the coordinate system used.

Hejnowicz and Romberger [23] analyzed the definition of the relative elemental rate of

growth of a line segment, and arrived at the formulation of growth tensor. Their growth

V Vs

V s Vs V es⋅=

RERGl s()
d V es⋅()

ds
--------------------= RERGl s() ∇ V es⋅() es⋅=

RERGl s() s

RERGl s()

dij
1
2

vi∂
xj∂

vj∂
xi∂

------+
 =

Ωi j
1
2

vi∂
xj∂

vj∂
xi∂

------–
 =

vi V vx vy vz, ,()= xi

i

CHAPTER 3: MODELING GROWTH 15
tensor is a second rank tensor, identical to a tensor which can be obtained by summing

up the rate-of-strain and vorticity tensors computed by Silk and Erickson, i.e.:

Eq. 3.3 .

Although the end-result of Hejnowicz’s and Romberger’s work is similar to that of Silk

and Erickson, Hejnowicz and Romberger pointed out that the growth ‘tensor concept is

evoked by the very nature of growth, not merely by its analogy to deformation or strain’.

Another important aspect of Hejnowicz’s and Romberger’s work is their definition of

principal directions of growth, in which the plant organ achieves the maximum/minimum

rates of growth. They defined these principal directions of growth as the eigenvectors of

the growth tensor.

In the next section I describe the assumed simplified models of tree bark and mud. Then I

show how to use velocity vector fields to implement anisotropic planar growth of the

background layer. I also show how the growth tensor can be used to determine such

velocity vector fields. In the case of cylindrical and spherical surface growth, I use the

growth tensor to mathematically demonstrate the isogonic and anisotropic properties of

such growth.

3.2. The assumed models of bark and mud

Tree bark consists of dead conductive tissue, phloem, which is expanded by the radial

growth of cambium inside the trunk [59]. As a result of this expansion, the bark stretches

until it reaches its limit of deformation and breaks. In my simulation I use a simplified,

two-layer model of a growing tree trunk, with the cross-section shown in Figure 3.2 on the

Tij

Tij dij Ωi j+
vi∂
xj∂

------= =

CHAPTER 3: MODELING GROWTH 16
left. The inside core grows radially and does not break. I model the cylindrical core as the

background layer. The outer layer, which I model as the material layer, represents the

bark.

As water evaporates from mud, the mud shrinks and thus changes in shape. Since water

evaporates faster from those layers closest to the surface, layers change shape at different

rates with respect to each other. This non-uniform shrinkage (or unequal growth) of the

various layers leads to the formation of stress, and consequently to the formation of

cracks. Although the presence of distinguishable layers is not as evident as it was in the

case of tree bark, I still model drying mud with two layers - by employing an ‘extreme’

discretization: The background layer is assumed to be static, representing either mud that

dries very slowly or the surface on which the drying mud rests. The material layer

represents the drying mud and is attached to the background layer. The assumed model of

drying mud is illustrated in Figure 3.2 on the right.

bark

core

FIGURE 3.2: The assumed two-layered models of bark and drying mud.

drying mud

slowly drying
mud

CHAPTER 3: MODELING GROWTH 17
3.3. Implementing growth and shrinkage

In my research I consider surfaces experiencing differential growth, caused by two

connected layers changing shape at different rates. In general, I consider three cases of

differential growth: shrinkage of a material layer with respect to a static background;

growth of an underlying background surface with respect to a static material layer; or the

combination of these two phenomena. For example, in the case of drying mud, the top

layer dries faster (shrinking) than the lower layers. In the case of tree bark, on the other

hand, the outer dead-tissue layer does not grow, but the inner living wood layer

continuously expands [59]. Furthermore, the dead bark can also shrink due to drying.

The effects of growth of the underlying background on the material layer, and how it can

lead to increased stresses is illustrated in Figure 3.3. The top of Figure 3.3 shows a mass-

spring system undergoing planar background growth. This method of discretizing a

material attached to a background using a mass-spring system was introduced by Skjeltorp

and Meakin [61]. The material layer is represented by a system of masses interconnected

with material springs. The connection to the underlying background is modeled by anchor

springs, which attach each mass to the background at an anchor point. In contrast to the

material springs, the rest lengths of the anchor springs are equal to zero. In essence, the

anchor springs model the mechanical property of the material under sheering deformation,

and by varying the stiffness of the anchor springs, materials of different thicknesses can be

modeled. As the background expands, the positions of the anchor points are adjusted to

capture such growth. Since the masses are attached to the background surface via anchor

springs, the growth of the background results in forces being exerted on the masses. To

balance these forces, the material springs elongate as well, leading to increased tensions.

At the bottom of Figure 3.3, a single finite element in the shape of a wedge is illustrated.

The wedge is attached to the growing background by the bottom three nodes. As the

CHAPTER 3: MODELING GROWTH 18
background expands, the bottom nodes are forced apart, leading to increased internal

stresses within the element.

Shrinkage of a material layer with respect to a static background surface leads to the

formation of increased stresses in an analogous manner, as illustrated in Figure 3.4. The

top of Figure 3.4 shows a material layer shrinking, which is implemented by reducing the

rest lengths of the material springs. The material springs then begin to apply forces on the

masses. Since the masses are attached to the background via anchor springs, the material

springs are prevented from achieving their rest lengths, leading to increased tensions. The

bottom of Figure 3.4 illustrates the shrinkage of the material layer, modeled by adjusting

the reference shapes of the finite element wedges. Although the reference shape of the

wedge is made smaller in each simulation step, the bottom of the wedge is still attached to

the static background, and therefore cannot assume its reference state. As a result, the

element undergoing shrinkage is deformed, leading to the presence of stresses.

FIGURE 3.3: The effects of a growing background on the material layer.

anchor point

anchor spring
mass

material spring

CHAPTER 3: MODELING GROWTH 19
3.3.1. Growth of the background layer

The material layer in which the cracks are formed is attached to the background layer. In

the case of the mass-spring implementation of my fracture simulation, the attachment of

the material layer to the background layer is modeled using anchor springs. In the finite

element approach, the connection between the material and the background layers is

modeled using fixed nodes. To simplify the discussion of my growth implementation, I

will commonly refer to both anchor points and fixed nodes as attachment points.

I simulate the growth of the underlying background layer by adjusting the positions of the

attachment points. At each simulation time step, the trajectory of each attachment point on

the background is defined by its initial position and a velocity vector .

The velocity vector describes the direction and the amount of displacement per unit of

FIGURE 3.4: Shrinkage of the material layer with respect to a static
background.

anchor point

anchor spring

mass
material spring

P 0() x y z, ,()= v

CHAPTER 3: MODELING GROWTH 20
time of a point on the growing background. The position of the attachment point

at time is calculated using the general formula:

Eq. 3.4 .

The initial positions of the attachment points are determined at the time of discretization.

The velocity vectors are set to reflect different types of growth. I investigated two types of

surface growth: isogonic and uniform anisotropic [59]. Under isogonic growth, the rate of

growth is the same in all directions and at all locations in the surface. For example, a circle

under isogonic growth will change in area, but it will remain a circle. Also, under isogonic

growth, all circles of the same initial radius will be transformed into circles of the same

radius, independent of their location1. Uniform anisotropic growth occurs when growth is

the same at all locations, but changes with respect to direction. The overall shape of the

surface under anisotropic growth is elongated by different amounts in different directions.

For example, two identical circles will transform into the same ellipses, independent of

their locations. Isogonic growth is therefore a special case of the uniform anisotropic

growth.

Although originally designed as a growth analysis tool, growth tensors can be used for

modeling purposes as well [41]. I use the mathematics of growth tensors to implement

growth of the background layer. Given a growth tensor corresponding to a desired type of

growth, I determine what the analogous velocity vector field should be. Let us consider

uniform anisotropic growth in the XY-plane, where a circle of initial radius equal to unity

is transformed into an ellipsoid with radii and . The angle represents the

maximum direction of elongation, measured from the Y-axis, as illustrated in Figure 3.5.

Since planar growth has two mutually perpendicular principal directions of growth [23], it

1. This is different from isotropic growth, under which two identical circles transform into
circles, but not necessarily of the same size.

Pk t() k

t

Pk t() Pk 0() tvk+=

r1 r2 α

CHAPTER 3: MODELING GROWTH 21
is represented by a growth tensor which has eigenvalues , and , and the

corresponding eigenvectors , and

, respectively. The last eigenvalue being zero denotes no growth along the Z-axis.

The growth tensor satisfying these properties has the form:

.

From this growth tensor, the corresponding velocity vector field can be determined. This

is achieved by substituting the above into Eq. 3.3 and solving for . The

substitution yields a set of 9 partial differential equations:

.

x

y

x

y

α

FIGURE 3.5: Anisotropic planar growth: a circle transforms into an ellipse.

r 1= r2
r1

r1 r2 0

αsin αcos 0, ,() α π 2⁄+()sin α π 2⁄+()cos 0, ,()

0 0 1, ,()

TG

r1 αsin2 r2 αcos2+ r1 r2–() αsin αcos 0

r1 r2–() αsin αcos r2 αsin2 r1 αcos2+ 0

0 0 0

=

TG v vx vy vz, ,()=

vx∂
x∂

vx∂
y∂

vx∂
z∂

vy∂
x∂

vy∂
xy∂

vy∂
z∂

vz∂
x∂

vz∂
y∂

vz∂
z∂

r1 αsin2 r2 αcos2+ r1 r2–() αsin αcos 0

r1 r2–() αsin αcos r2 αsin2 r1 αcos2+ 0

0 0 0

=

CHAPTER 3: MODELING GROWTH 22
The solution to these equations is the desired velocity vector field:

,

where , and are arbitrary constants. These three constants identify which point

on the plane is not displaced during growth. For example, by setting ,

such a point would be the point of origin (a circle centered at the point of origin

would transform into an ellipse whose center would remain at the origin). By setting

, the above velocity vector field would represent isogonic growth. Figure 3.6

illustrates the resulting velocity vector fields for various parameter values of , and

.

I also consider growth on the cylindrical surfaces of tree trunks. As a tree grows, its trunk

increases in size radially, but not in height [59]. Thus, if the main axis of the cylinder

coincides with the Z-axis, the velocity vector field will be

Eq. 3.5 ,

where denotes the rate of growth of the circular cross-section of the cylinder. A

graphical representation of this cylindrical velocity vector field is shown in Figure 3.7 on

the left. Due to the fact that the trajectory of each point on the surface of the cylinder is

vx

vy

vz

1
2
--- r1 r2+()x r1 r2–() y 2αsin x 2cos α–()+() C1+

1
2
--- r1 r2+()y r1 r2–() y 2αcos x 2αsin+()+() C2+

C3

=

C1 C2 C3

C1 C2 C3 0= = =

0 0 0, ,()

r1 r2=

α r1

r2

vx

vy

vz

rx

ry

0

=

r

CHAPTER 3: MODELING GROWTH 23
perpendicular to the Z-axis, this velocity vector field is identical to that representing

isogonic planar growth in the XY-plane. However, the surface of the cylinder under this

assumed growth expands anisotropically. For example, a circle drawn on the surface will

be transformed into an ellipse. Mathematically, this can be shown by analyzing the growth

of the surface at some point P using the growth tensor.

FIGURE 3.6: Velocity vector fields corresponding to anisotropic planar
growth.

horizontal growth
(, and)α π 2⁄= r1 1= r2 0=

vertical growth
(, and)α 0= r1 1= r2 0=

diagonal growth
(, and)α π 4⁄= r1 1= r2 0=

horizontal growth is 5 times faster
than vertical growth

(, and)α π 2⁄= r1 1= r2 0.2=

growth along one diagonal is 5
times higher than the growth

along the other diagonal

isogonic growth
()r1 r2=

CHAPTER 3: MODELING GROWTH 24
Let point P be defined in cylindrical coordinates as . We want to show that an

infinitesimal patch of surface at this point will grow at different rates in different

directions. Let us define a local 2D coordinate system of the patch, as illustrated

in Figure 3.8. Vector is perpendicular to both the Z-axis and to the surface normal at P

and vector is parallel to the Z-axis, i.e. , . The

growth tensor corresponding to the cylindrical growth implemented using the velocity

vector field defined in Eq. 3.5 is:

.

The amount and direction of growth along is calculated as

, which is non-zero if the rate of growth is non-zero. On

the other hand, the amount of growth in the direction along is ,

indicating zero growth. Thus, under this assumed cylindrical growth, the surface of a

FIGURE 3.7: Cylindrical and spherical velocity vector fields.

α r h, ,()

e1 e2,{ }

e1

e2 e1 αcos– αsin 0, ,()= e2 0 0 1, ,()=

TG

r 0 0

0 r 0

0 0 0

=

e1

TG e1⋅ r αcos– r αsin 0, ,()= r

e2 TG e2⋅ 0 0 0, ,()=

CHAPTER 3: MODELING GROWTH 25
cylinder expands at different rates in different directions. The velocity vector field defined

by Eq. 3.5 therefore represents anisotropic growth of the surface.

I also consider growth of a uniformly expanding sphere. To this end, I define the velocity

vector field in which the individual velocity vectors are in the directions of the surface

normals:

,

where is again the rate of expansion of the sphere. A spherical velocity vector field is

illustrated in Figure 3.7 on the right. This velocity vector field corresponds to isogonal

e2 e1

FIGURE 3.8: Local coordinate system of an infinitesimal patch of a
cylindrical surface.

P

the plane passing through P,

tangent to
 the cylindrical surface

vx

vy

vz

rx

ry

rz

=

r

CHAPTER 3: MODELING GROWTH 26
surface growth, which can be again demonstrated mathematically using the growth tensor.

The corresponding growth tensor is

.

We want to show that an infinitesimal patch of the spherical surface grows at the same rate

in all directions. Let us consider an arbitrary 2D coordinate system of some patch, defined

with two unit vectors parallel to the surface at some point P on the sphere. The

amount and the direction of growth along is and along it is

, indicating that any two vectors would be transformed by elongation of the

same magnitude. This means that a circle drawn on the sphere expanding as described

would transform into a circle, and also that the described growth is isogonal.

3.3.2. Shrinkage of the material layer

Shrinkage of the material layer is implemented by adjusting the reference shapes of the

elements used to discretize the material layer. In the case of the mass-spring models, the

rest lengths of the springs are modified, and in the case of the finite element approach, the

reference shapes of the wedge elements are adjusted.

TG

r 0 0

0 r 0

0 0 r

=

e1 e2,{ }

e1 TG e1⋅ re1= e2

TG e2⋅ re2=

CHAPTER 3: MODELING GROWTH 27
Modeling shrinkage in the mass-spring model

Implementation of the shrinking material layer is straightforward for the mass-spring

model. I use the mechanism suggested by Skjeltorp and Meakin, i.e. the rest length

of a material spring at time is calculated as:

Eq. 3.6 ,

where denotes the initial rest length of the material spring and represents the rate

of shrinking. For example, represents a shrinkage rate in which the material

springs would be shortened by one fourth of their original rest lengths per one unit of time.

Modeling shrinkage in the finite element model

It is possible for a material to shrink unevenly, as is the case for drying mud, where the top

layer dries faster than the bottom layer. Such uneven rates of shrinkage were not directly

considered in my mass-spring model1, but they were considered in the finite element

approach. Consequently, the implementation of shrinkage is slightly more involved in the

finite element approach.

In my models, I make the assumption that the shrinkage of the material layer is negative

isogonic growth, i.e. that the material shrinks by the same amount in all directions. Two

user-defined functions specify the amount of shrinkage over time, one at the top of the

material layer, and the other at the bottom. For example, in the case of drying mud, the

shrinkage functions might have shapes as shown in Figure 3.9 at the top. The illustrated

1. In the mass-spring model I consider uneven shrinkage only in the post-processing step,
used for rendering purposes (Section 4.5).

Li t()

i t

Li t() Li 0() 1 rt–()⋅=

Li 0() r

r 0.25=

CHAPTER 3: MODELING GROWTH 28
shrinkage functions represent a material layer which immediately starts to shrink at the

top, and continues doing so until it is completely dry and cannot shrink any more. The

material at the bottom does not shrink until later in the simulation. In the end, both the top

and bottom have equally shrunk. The shape of a finite element wedge under this scenario

would change as illustrated in Figure 3.9 at the bottom.

Shrinkage of the material layer is modeled by recomputing the reference shapes of the

wedge elements and is implemented by the following steps. Each wedge element is

defined by its original bottom face triangle and its height. The reference shape of the

wedge is computed from these two attributes, taking into consideration the amount of

shrinkage at a particular simulation time, as determined by the shrinkage functions. The

shapes of the shrunk top and bottom faces are computed independently, by scaling the

original bottom face triangle by the amounts specified by the two shrinkage functions.

to
ta

l a
m

ou
nt

 o
f

si
ze

re
du

ct
io

n
in

 %

time

to
ta

l a
m

ou
nt

 o
f

si
ze

re
du

ct
io

n
in

 %

time

the reference shape of a wedge changing
according to the above shrinkage functions:

shrinkage function for the bottom layer:

FIGURE 3.9: An example of uneven shrinkage.

shrinkage function for the top layer:

CHAPTER 3: MODELING GROWTH 29
This produces two triangles, one describing the shape of the top face of the wedge, the

other describing the bottom face. The resulting triangles are then positioned so their

centroids form a vector, equal to the normal of the original bottom face triangle multiplied

by the shrunk height of the element. The amount of shrinkage applied to the height of the

wedge is calculated as the average of the shrinkage amounts applied to the top and bottom

faces. The triangles are then connected, forming a wedge element. If the shrinkage

functions specify zero shrinkage, the above steps amount to the construction of a wedge

element by extruding a triangle along its normal. The graphical representation of the steps

for constructing the reference shape is shown in Figure 3.10.

In the next two chapters I proceed to show how the described implementation of growth

was used in my models to generate fracture patterns on surfaces. First I describe how I

extended an existing mass-spring based model of fracture formation by incorporating

growth. Then, I demonstrate the application of growth in the framework of finite element

methods.

FIGURE 3.10: Construction of the reference shape for the wedge element.

the original bottom

face triangle

the top face

the bottom face

sh
rin

ka
ge

shrinkage

w
ed

ge

he
ig

ht

re-position

re-
po

sit
io

n
the resulting wedge

30
CHAPTER 4 The mass-spring approach

Mass-spring based models are commonly used in computer graphics to simulate various

deformations in objects. Their wide-spread use can be attributed to being conceptually

simple and straight-forward to implement. The work presented in this chapter was

motivated by the success of Skjeltorp and Meakin [61], who used a simple mass-spring

system to synthesize convincing fracture patterns in a material composed of a single layer

of shrinking microspheres. I have extended Skjeltorp and Meakin model by incorporating

growth of the background and applied the extended model to cylindrical surfaces. The

goal of these extensions was to investigate whether Skjeltorp’s and Meakin’s model could

be adapted to simulating fracture patterns in tree barks. For the completeness of the

presentation, I give a brief overview of the original Skjeltorp and Meakin model first.

Then I present my extensions and discuss the results.

4.1. Skjeltorp and Meakin model

Skjeltorp’s and Meakin’s model [61] simulates the behavior of a shrinking microsphere

monolayer suspended between two parallel sheets of glass. The spheres are closely

CHAPTER 4: THE MASS-SPRING APPROACH 31
packed, as illustrated in Figure 4.1. The material layer (the monolayer of the spheres) is

discretized into regularly shaped hexagonal surface segments, approximating the

microspheres. These surface segments are modeled as single point masses, while the

bonds between them are modeled as material springs (Figure 4.2). The connections

between the spheres and the glass are modeled as anchor springs, approximating static as

well as kinetic friction. Each anchor spring connects one point mass to the background,

attached at an anchor point. The properties of the anchor springs are different from the

properties of the material springs: they have different stiffness coefficients and their rest

lengths are equal to zero. Additionally, anchor springs are allowed to slide when they

reach a maximum allowed length. The behavior of all springs in the model is governed by

Hooke’s spring law, which states that the force exerted by a spring is directly proportional

to the amount by which it is stretched.

The shrinkage of the microspheres is modeled by reducing the rest lengths of the material

springs. Since each of the point masses are attached to the static background, the

shrinkage results in increasing strains in the material layer. Some of the material springs

FIGURE 4.1: Monolayer of shrinking micro-spheres.

glass

glass
side view

top view

CHAPTER 4: THE MASS-SPRING APPROACH 32
eventually reach a threshold length, at which point they break. Such a break causes further

instability in its immediate vicinity, by decreasing the tensions on some neighboring

springs, and increasing it on others. The fracture then propagates, eventually leading to the

emergence of a crack pattern (see Figure 4.3).

point mass
spring
anchor spring
anchor point
hexagonal shapes

FIGURE 4.2: The mass-spring model.

FIGURE 4.3: Fracture propagation simulated using a mass-spring model.

a b c

d fe

CHAPTER 4: THE MASS-SPRING APPROACH 33
In Skjeltorp’s and Meakin’s model, the internal stresses in the material layer and the

subsequent fracture formation are a direct consequence of the material layer changing

shape (by shrinking) with respect to the static background (the glass supporting the

monolayer of spheres). This model is well suited for some patterns, such as ceramics,

drying mud or aging paint, where the top layer shrinks while the background remains

static. However, some fracture patterns in nature are influenced by growth of the

underlying medium. With tree bark, for example, the material layer representing bark may

be considered inactive, while the background layer representing the actively growing

wood expands. Consequently, I extended Skjeltorp’s and Meakin’s model by allowing the

background layer to grow and applied the extended model to cylindrical surfaces. These

extensions are described in detail in the following sections.

4.2. Modeling growth

As discussed in the previous chapter, I model the growth of the background surface by

updating the coordinates of the anchor points at each simulation time step. The primary

difference between the original and the extended model is the cause of stress in the

surface. As the background layer grows, the attached material layer is pulled along,

creating internal stresses in the material (Figure 4.4). This is different from the original

model where stress was induced solely by shrinkage of the material layer.

Figure 4.5 on the left shows the result of simulating isogonic planar growth of a

background with respect to a static material layer. Compare this to the result shown in the

same figure on the right, which was obtained by allowing the material layer to shrink with

respect to a static background. The two patterns are identical, showing (as expected) that

isogonic growth of the background has the same effect on the resulting pattern as the

shrinkage of the material. It is also observed that fractures have a strong tendency to align

CHAPTER 4: THE MASS-SPRING APPROACH 34
themselves to the underlying mesh of springs. As a result, fractures form almost

exclusively at 60-degree angles with respect to each other, and consequently, there are no

horizontal fractures present.

FIGURE 4.4: Growing background induces surface expansion and stress.

surface layer
anchor spring
background layer

background grows
(the anchor points
move apart)

anchor springs pull
the surface, inducing
expansion

FIGURE 4.5: Synthesized fracture patterns using isogonic growth.

isogonic planar growth of the background isogonic shrinkage of the material layer

CHAPTER 4: THE MASS-SPRING APPROACH 35
I also simulated anisotropic growth of the background, as this type of growth is

characteristic of tree bark. By mapping the cylindrical surface of a tree trunk onto a plane,

its growth can be simulated by planar growth in a single direction. The resulting pattern

can then be mapped back onto the cylinder. Figure 4.6, on the left, shows the spring

patterns obtained by applying anisotropic growth to the background. The top left pattern

was obtained by applying growth to the background only in the horizontal direction, and

as expected, the resulting fractures were predominantly vertical. The bottom left pattern

was simulated by applying vertical growth to the background. Contrary to expectation, the

resulting fractures are not predominantly horizontal. Again, it is the hexagonal mesh of

springs representing the material layer that prevents the development of horizontal

fractures.

By randomly perturbing some of the simulation parameters, the tendency of the fractures

to align themselves to the imposed mesh is weakened. This is demonstrated in the patterns

shown in Figure 4.6 on the right, generated by perturbing the break lengths of the material

springs as described by Skjeltorp and Meakin.

To show that the extended mass-spring model can be applied to non-planar surfaces, I

have generated a fracture pattern by allowing the simulation to operate directly on a

cylindrical surface. The resulting pattern, shown in Figure 4.7 on the left, was obtained by

attaching the anchor springs to a growing cylindrical background layer.

4.3. Multi-layer model

The single material layer model only allows for cracks of uniform depth. To model

fractures of varying depths, I extended the model by introducing multiple material layers.

CHAPTER 4: THE MASS-SPRING APPROACH 36
The bottom-most material layer was attached to the background through anchor springs.

Each of the remaining material layers were attached to each other through inter-layer

springs, perpendicular to the surface. The rest lengths of these inter-layer springs

represented the thicknesses of the layers. Growth was applied in a manner identical to the

two-layer model, by adjusting the positions of the anchor points. A sample result

generated by the multi-layer extension is shown in Figure 4.7 on the right.

FIGURE 4.6: Synthesized fracture patterns using anisotropic growth.

horizontal growth horizontal growth with randomly perturbed
simulation parameters

vertical growth vertical growth with randomly
perturbed simulation parameters

CHAPTER 4: THE MASS-SPRING APPROACH 37
4.4. Non-uniform discretization

Because the fracture propagation is modeled by eliminating springs from the model, the

fracture can advance only in the direction perpendicular to the spring being removed.

Therefore, at the resolution level of a single spring, the underlying mesh will affect the

direction of fracture propagation regardless of the type of the mesh used. If the entire mesh

of springs is uniform, the local effect of springs on the directionality of the fracture can

have a global impact on the overall fracture pattern, as was demonstrated earlier (Figures

4.5 and 4.6).

FIGURE 4.7: Fracture patterns obtained on cylindrical surfaces.

2-layer model multi-layer model

CHAPTER 4: THE MASS-SPRING APPROACH 38
To minimize this global effect of the imposed mesh on the directionality of the cracks, I

experimented with a pseudo-random surface subdivision. First, a set of points was

randomly dispersed over the surface area. The positions of the points were adjusted using

a particle repelling method, to prevent two points from being too close to each other (the

particle repelling algorithm will be fully described in Section 5.2.1). The resulting points

represented the centers of the surface segments and therefore determined the initial

positions of the masses in the mass-spring model. The shape of each surface segment was

determined by constructing its Voronoi region [51] and the mesh of springs connecting the

segments was established by constructing the Delaunay triangulation - a dual of the

Voronoi graph. The mass of each segment was directly proportional to its area. The

stiffness coefficient of an anchor spring was proportional to the mass of the segment it

connected to the background. The stiffness coefficients of the material springs were set to

be directly proportional to the length of the Voronoi edge shared by two surface segments,

and inversely proportional to the length of the corresponding Delaunay edge. This method

of calculating the values of stiffness coefficients is consistent with the method used by

Hirota et al. [24].

FIGURE 4.8: Fracture pattern synthesized using a randomized surface
subdivision.

initial surface discretization the final patternintermediate pattern

CHAPTER 4: THE MASS-SPRING APPROACH 39
Figure 4.8 shows the formation of a simulated crack pattern obtained using the described

non-uniform surface discretization. The pattern no longer exhibits the global directionality

of the fracture pattern observed when using a regular mesh. In this respect, the

introduction of the random subdivision is successful. However, the overall appearance of

the generated patterns is affected by the level of discretization. The results shown in

Figure 4.9 were obtained by using two different discretization levels. The patterns are

noticeably different, as the density of the cracks in the pattern on the right is much higher

than in the pattern on the left. Also, the generated cracks are much thinner when using a

finer discretization. This behavior is undesirable, as the generated pattern should not

depend on the level of discretization. I attributed this inconsistency between the generated

patterns to the mass-spring model incorrectly representing the continuous properties of the

material layer.

FIGURE 4.9: Generated patterns affected by the level of discretization.

1000 masses 4000 masses

CHAPTER 4: THE MASS-SPRING APPROACH 40
4.5. Rendering

From the visualization perspective, the inconvenience of using the mass-spring model

presented is that the shapes of the individual surface segments in the resulting pattern are

not computed. In order to improve the visual presentation of the results, the deformed

shapes of the surface segments should be considered. One approach is to incorporate the

calculation of the shapes into the simulation. Since this would negatively impact the

performance of the simulation, I decided to calculate the shapes of the resulting surface

segments in a post-processing step. To this end, I use sub-networks of masses and springs

to model the deformations of an individual surface element, similar to the method used by

Norton et al. [44]. Since the surface elements are connected to each other, the resulting

collection of such sub-networks is used to calculate the deformation of the entire surface

layer. To further increase the realism of the results, the post-processing step also considers

the 3D aspect of the model - by accounting for the height of the material layer.

The mass-spring sub-network representing each surface element is constructed as follows.

First, the 3D shape of each material element is determined by extruding its Voronoi region

along the surface normal. The mass-spring sub-networks are then constructed for each

material element, by interconnecting all of its nodes with springs. This process is

graphically illustrated at the top of Figure 4.10. The rest lengths of the springs are adjusted

to reflect the shrinkage of the material layer.

Once the mass-spring systems are constructed for each material element, the walls of

adjacent elements are merged as illustrated in the middle of Figure 4.10. The merging is

done by considering each pair of elements initially connected by a material spring. If the

material spring is not broken, the shared wall of the elements will be completely merged.

CHAPTER 4: THE MASS-SPRING APPROACH 41
su
rf

ac
e

no
rm

a l

su
rf

ac
e

he
ig

ht

FIGURE 4.10: Graphical illustration of the post-processing step.

a mass-spring system is
constructed for each material

element

the shape of each material element is determined by
extrusion of the Voronoi region along the surface normal

material spring

broken material
spring

broken material
spring

two material elements are completely glued if the
connecting spring is still present

two material elements are glued only at the bottom if the
connecting spring is broken

in ‘curl’ mode, two material elements are left
disconnected if the spring is broken

CHAPTER 4: THE MASS-SPRING APPROACH 42
If the material spring is broken, only the lower portion of the wall be joined. After the

walls are merged, the deformed shape of the surface layer is obtained by fixing the bottom

masses of each element and relaxing the mass-spring system. The result can be then

rendered in 3D, as shown in Figure 4.11.

Formation of cracks on differentially growing surfaces is often accompanied by a peeling

effect. Once a patch of the material surface has been detached from the surrounding

material, its edges may also detach from the underlying background, and then curl

upward. This curling phenomenon can be observed in some types of tree bark, and

occasionally in drying mud. To simulate such curling phenomenon, I assume that the

material layer has completely peeled from the background layer. This is simulated by

allowing the masses at the bottom of the elements to move freely, and by not merging

walls between elements whose interconnecting material spring is broken. The simulated

curling effect is demonstrated in the pattern shown at the bottom of Figure 4.11.

4.6. Self-similar patterns

While experimenting with various simulation parameters, I attempted to obtain a model

capable of generating a self-similar pattern. Such a recursive pattern should consist of

smaller parts that are similar to the overall pattern. To better understand the processes

involved when fracture formation is induced by the application of growth, I investigated

the issue of self-similar patterns using a one dimensional mass-spring system. Although

my work on the 1D mass-spring system was successful, I have not extended its results to

surfaces. I have therefore decided to include this work in Appendix A, rather than in this

chapter.

CHAPTER 4: THE MASS-SPRING APPROACH 43
FIGURE 4.11: Different methods for rendering the same result.

the result rendered as a wire-frame
model

the result rendered in 3D, using the post-processing step

the same result with the curling effect enabled

CHAPTER 4: THE MASS-SPRING APPROACH 44
The self-similarity issue has been recently addressed and solved in the domain or R-D

models by Crampin et al. [7], who successfully generated an infinitely repeating pattern

under exponential growth. Since it can be argued that both mass-spring models and R-D

models are based on short-range activation and long-range inhibition, the solution to the

posed problem of self-similarity should be similar in both domains.

4.7. Conclusions

The goal of the work presented in this chapter was to investigate the possibility of

adapting Skjeltorp’s and Meakin’s mass-spring model to simulating fracture formation on

growing surfaces, such as tree bark. To this end, I extended their model by incorporating

growth of the background and then applied the result to cylindrical surfaces. A minor

extension involved introduction of multiple material layers, which allowed simulation of

fractures of varying depths. I also presented a method for rendering the results in a

visually pleasing fashion, achieved by calculating the shape of the deformed material layer

in a post-processing step.

The results obtained by the extended mass-spring model revealed a tendency of fractures

to align themselves with the underlying mesh, which became particularly evident when

simulating anisotropic growth of the background. I attempted to reduce this directionality

of fractures by implementing a non-uniform discretization method. Although the non-

uniform discretization resulted in fracture patterns with reduced global directionality, an

undesired relationship between the generated pattern and the level of discretization was

observed. I attributed the failure of the model to scale to different discretizations to the

inability of the mass-spring model to correctly represent the continuum of the material

layer. Consequently, I continued my research of modeling crack formation using the more

robust technique of finite element methods, which I describe in the next chapter.

45
CHAPTER 5 The finite element approach

In this section I present an approach for simulating fracture formation in two-layered

materials, based on the method of finite elements. The main advantage of the finite

element approach over the mass-spring approach is that it produces more correct results

for the same level of discretization, e.g. by considering the poission ratio. Additionally, it

also allows for dynamic refinement of the discretization. Although an increased accuracy

can be attained in mass-spring models by using a finer discretization, it would lead to a

substantial increase in computation time. The only disadvantage of the finite element

method is that it is more difficult to implement.

The finite element method is a technique originally developed in solid mechanics

[5][6][18][39], to approximate the continuous properties of solid structures. FEMs are

typically used to numerically calculate stresses and strains in structures under loads. Since

their development, finite element methods have been successfully used in many other

areas of sciences and engineering [73], for example in fluid dynamics [19], heat

conduction [32] and recently in plastic surgery [30].

Generally, FEMs are used when an analytical solution to a given continuous problem is

not feasible, and a numerical solution is required. In this sense, FEMs are very similar to

CHAPTER 5: THE FINITE ELEMENT APPROACH 46
the finite differencing schemes. However, instead of a regular, rectilinear grid used for

finite differencing, an arbitrary mesh can be used for finite element methods. The ability to

discretize the domain of the problem into elements of many different shapes an sizes is

very important, since the domains of many practical applications are not rectangular.

Once the domain is subdivided into finite elements, the goal of the FEM is to numerically

calculate the solution to the problem over the discretized domain. This is achieved by first

establishing the relationships (or equations) between the values at the nodes of each

element. The derivations of the relationships between the values at the nodes in a single

element is the essence of finite element methods. Once these relationships are established,

the resulting equations for all elements are simultaneously solved to obtain the solution for

the entire system of elements.

5.1. Overview of the fracture algorithm

The overall structure of the algorithm I implemented for the fracture formation simulation

is the standard way for implementing a general FEM [74]. The first step is to discretize the

domain of the problem using finite elements. This is achieved by approximating the

surfaces on which the fractures develop using triangular wedges. The relationships

between the nodes of the elements are then calculated for each element. These equations

are then combined into a single set of equations, representing the relationships between all

of the nodes in the system of elements.

The algorithm enters the main simulation loop by calculating the equilibrium state of the

model, using a relaxation step. After relaxation, the elements are examined to detect

whether internal stress anywhere in the material layer has reached a threshold of failure

(threshold stress). If such a spot is found, a fracture in the material is formed and the

simulation returns to the beginning of the loop. If no spot is found where the threshold

CHAPTER 5: THE FINITE ELEMENT APPROACH 47
stress is exceeded, the growth and/or shrinkage is applied, the simulation clock is

incremented and another iteration is started. The simulation ends when the simulation

clock reaches a desired value. The described algorithm can be represented with the

pseudo-code in Algorithm 1. The individual steps of the algorithm will be now explained

in full detail.

5.2. Surface discretization

Triangular meshes are the simplest and most commonly used meshes in CG for

representing surfaces. There are many known techniques for manipulating triangular

meshes, such as adaptive refinement or mesh quality control. Because of their wide-spread

use, I apply triangular meshes to discretize the modeled surfaces into finite elements.

I implemented the mesh generation process in three steps. A number of vertices are first

distributed over the background layer of the modeled surface. These vertices represent the

points where the material layer is connected to the background layer. Next, a triangulation

of these points is constructed, approximating the surface of the background layer with

triangles. Finally, through extrusion of the triangles along the surface normals, the final

ALGORITHM 1: The overall simulation algorithm.

discretize the surface
for each element calculate the local relationships between its nodes
calculate the global relationship between all nodes in the system
while simulation not done

relax the model
if threshold stress exceeded then

introduce a fracture
else

increment simulation time
apply growth and/or shrinkage

output results

CHAPTER 5: THE FINITE ELEMENT APPROACH 48
mesh of finite elements is generated. The resulting shape of each element is a 6-node

wedge, also called a prism [30], shown in Figure 5.5 on page 55. A detailed description of

these steps for planar surfaces follows. For cylindrical and spherical surfaces these steps

are modified in a straightforward manner, which is briefly described.

5.2.1. Distribution of points on a surface

A uniform distribution of vertices on a planar surface results in regular triangular meshes,

such as those illustrated in Figure 5.1. Because the orientations of finite elements can have

small but undesired effects on the calculation of stress, and therefore on the directions of

fractures, I avoid uniform surface discretizations. A completely random distribution of

points, however, leads to generation of meshes which may contain degenerate triangles

(see Figure 5.2), and leads to disproportional wedge elements. Degenerate elements are

undesirable for use with FEMs, because they may incorrectly approximate the continuum

[75]. Consequently, I implemented a ‘semi-random’ distribution of points on surfaces,

where the orientations of the resulting triangles are randomly perturbed, but their shapes

remain roughly uniform.

FIGURE 5.1: Examples of uniform discretizations of a planar surface.

CHAPTER 5: THE FINITE ELEMENT APPROACH 49
When using random point distribution, the degenerate triangles are formed during

triangulation because some vertices are too close to each other. To obtain nicer triangles, a

distribution of points is needed, in which the minimum distance between points is above

some threshold. To this end, I use a particle repelling technique, similar to that suggested

by Witkin and Heckbert in [69], where each point repels every other point in the system.

After an initially random configuration of points is established, points are iteratively

repelled from each other until an equilibrium is achieved. To avoid a completely uniform

configuration of points, I modified the Witkin’s and Heckbert’s algorithm so that the

repelling force field of each point is randomly perturbed. The pseudo-code of this

algorithm is straightforward (Algorithm 2).

The repelling force between two points increases as the distance decreases, and vanishes

as the distance increases. Once two vertices are more than a certain distance apart, the

FIGURE 5.2: Triangulation of randomly distributed points on a plane.

CHAPTER 5: THE FINITE ELEMENT APPROACH 50
resulting repelling force is zero. The repelling force acts along the vector determined by

the line between two vertices. The magnitude of the force is calculated as:

Eq. 5.1

where is the distance between two vertices and is the combined radius of the two

force fields. The repelling force is zero between any two points more than distance

apart. The force field radii of each point must be chosen with some care, so that the

average value of is not too large. If it is too large, the points will eventually assume

a distribution that is very close to uniform (usually a hexagonal lattice). By

experimentation, I found the best results are produced when is kept below the value

of , where is the total area of the planar surface over which the points are

distributed.

The time complexity of the above algorithm is , because the forces are calculated

between every pair of points, making it inefficient for a large number of points. A

significant improvement in the running time can be achieved by taking the advantage of

the fact that the force function is zero between any two points more than distance

ALGORITHM 2: Simple particle repelling algorithm.

generate random points on a surface
repeat until an equilibrium is obtained:

for each point p do:
p -> total_force = 0
for each point q that is not p do:

p -> total_force += force_between(p, q)
for each point p do:

p -> position += scale * p -> total_force

forcemag
1

d
rsum
-------------–

 2

0

=
d rsum≤
d rsum>

d rsum

rsum

rsum

rsum

3.2 A nπ⁄ A

O n2()

dmax

CHAPTER 5: THE FINITE ELEMENT APPROACH 51
apart. is calculated as the sum of the two largest force field radii. Specifically, when

calculating the total force acting on a point, only the neighbors less than away must

be considered. To this end, I subdivide the entire bounding box area into squares of size

 x . Each square then keeps track of all points inside it. When the total force

acting on a vertex has to be calculated, the algorithm needs to check only the vertices in

the nine squares immediately adjacent to the square in which is located. Heckbert also

suggested a similar performance improvement to his earlier version of the particle

repelling algorithm in [22]. The pseudocode for the algorithm I implemented is given

Algorithm 3, which is very similar to the technique used by Wyvill et. al [71].

The average running time of this algorithm depends on the average number of points in

each square. Assuming a random distribution of points, the average number of points in

each square will be constant, and therefore the average running time of the inner ‘for’ loop

will be constant as well. With efficient data structures, the overhead of keeping track of

points inside the squares is constant, and the average running time of the entire algorithm

is then . Practical experiments confirmed the linear running time of this relaxation

algorithm.

dmax

dmax

dmax dmax

v

v

ALGORITHM 3: Efficient particle repelling algorithm using square grid.

generate_random_points_on_a_surface()
for each point p do:

assign a square to p
repeat until equilibrium is achieved:

for each point p do:
p -> toal_force = 0
for each point q in the adjacent 9 squares & p != q do:

p -> total_force += force_between(p, q)
for each node p do:

p -> position += scale * p -> total_force;
move p to a new square if needed

O n()

CHAPTER 5: THE FINITE ELEMENT APPROACH 52
The behavior of the points crossing the boundaries of the bounding box can be

implemented in one of two ways. The point encroaching the boundary is either snapped to

the closest boundary point, or it is moved to the opposite boundary edge (simulating a

torus manifold).

To obtain a random distribution of points on a cylinder, the surface of the cylinder is

mapped onto a plane. The points are then distributed over the flat surface as described

above. The resulting vertices are then mapped back onto the cylinder. To distribute

vertices on a sphere I also employ a particle repelling algorithm, operating directly on

spherical surfaces. Since the repelling force could actually move the points off the sphere,

they are mapped back onto the sphere after every iteration.

A different approach for obtaining a pseudo-random distribution of points was suggested

by McCool and Fiume [36]. In this approach, new random points are iteratively added to a

set of existing points, but only if no other points are within some radius. To guarantee that

the algorithm terminates, the radius is reduced by some small amount at each step. Once

the desired number of points is obtained, Lloyd’s relaxation [33] is applied to eliminate

points from being too close to each other.

5.2.2. Triangulation

Once the desired distribution of points on a surface has been generated, a Delaunay

triangulation is constructed [51]. I chose Delaunay triangulation because it results in a

mesh where the minimum angle of any triangle is maximized. Many algorithms for

obtaining Delaunay triangulations exist, differing in both the complexity of their

implementation and the worst case running time. I use the approach in which the problem

of triangulation is transformed into a problem of finding a convex hull, which is both

CHAPTER 5: THE FINITE ELEMENT APPROACH 53
simple to implement and achieves the best possible running time (which for Delaunay

triangulation is [51].

The triangulation on a planar surface is obtained by first projecting the set of points onto a

paraboloid using the coordinate transformation:

 , and .

A convex hull of the projected points is then constructed, yielding a set of triangles. The

triangles facing downward are then mapped back onto the planar surface, resulting in the

Delaunay triangulation. Triangulation of the cylindrical surface is achieved by mapping

the surface of the cylinder onto a plane. The triangulation is then executed as described

above. Finally, the resulting triangulation is transferred back onto a cylinder. Examples of

a cylindrical triangulation is shown in Figure 5.4 on the left. Since the surface of a sphere

is its own convex hull, it is trivial to find the Delaunay triangulation of points on a

spherical surface. The Delaunay triangulation is simply the 3D convex hull of the points.

O n n()log()

xnew xold= ynew yold= znew xold
2 yold

2+=

FIGURE 5.3: A planar material layer subdivided using wedge elements.

wire-frame model - top view 3D perspective view

CHAPTER 5: THE FINITE ELEMENT APPROACH 54
An example of a Delaunay triangulation of points on a spherical surface is shown in

Figure 5.4 on the right.

Once the triangulation of a surface is complete, the reference shapes of the individual

finite elements are computed as was outlined in Chapter 3.

5.3. The element stiffness matrix

In this section I derive the mathematical equations by which a wedge element

approximates the continuum it represents. These equations provide a method by which it

will be possible to calculate the forces exerted by an element at its nodes for a given set of

nodal displacements. Calculation of such forces is important in order to determine the

stable state of the overall system of elements, or its deformation. I also show how these

equations can be used to calculate strains and stresses inside the element as well as at its

nodes. For the mechanical properties of the materials modeled in my research I assume

linear elasticity, i.e. the stress generated inside the material is linearly proportional to the

FIGURE 5.4: Delaunay triangulation on cylindrical and spherical surfaces.

CHAPTER 5: THE FINITE ELEMENT APPROACH 55
strain. Although the information provided in this section is standard to FEMs [74], I am

including it in my thesis for the completeness of the presentation.

A displacement of any node (nodal displacement) is represented by a vector in .

Equivalently, using the FEM terminology, every node has 3 degrees of freedom (DOF).

Since there are 6 nodes in a wedge element, each element has 18 DOF.

Under the assumed linear elasticity model, the forces generated by an element at its nodes

are linearly related to the nodal displacements. Using matrix notation, this relationship can

be compactly written as:

Eq. 5.2 ,

which represents 18 linear equations. The matrix is an 18x1 column vector denoting

a set of 6 force vectors exerted by the element at the nodes:

Eq. 5.3 ,

Eq. 5.4 where is the force vector at node .

ℜ 3

FIGURE 5.5: A wedge element.

n2

n3n1

n5

n6n4

Fe[] Ke[] qe[]=

Fe[]

Fe[] fx
1 fy

1 fz
1 fx

2 fy
2 fz

2 ... fx
6 fy

6 fz
6, , , , , ,, , ,[] T=

fx
i fy

i fz
i, ,[] i

CHAPTER 5: THE FINITE ELEMENT APPROACH 56
The matrix is an 18x1 column vector representing the nodal displacement with

respect to the element’s undeformed state:

Eq. 5.5 ,

where each denotes the displacement of node . The nodal displacements

define the deformation of the element’s shape.

Finally, is an 18x18 element stiffness matrix. The element stiffness matrix contains

all of the coefficients needed to express the linear relationship between and .

The derivation of is described next.

5.3.1. Isoparametric coordinates

The use of Cartesian coordinates can become quite cumbersome when dealing with non-

rectangular elements, such as the wedge element used in my work. An alternative

coordinate system, which is more suited to the non-rectangular shape of the element, can

be used instead. Such coordinate systems are often called natural or isoparametric

coordinates. The isoparametric coordinates I have chosen for the 6-node wedge

element are shown in Figure 5.6.

5.3.2. Shape functions

Finite elements approximate the continuum they represent by interpolating the values at

their nodes throughout the element. For the 6-node wedge element I used multi-linear

interpolation, although higher-order interpolations can also be used by adding extra nodes

qe[]

q[] qx
1 qy

1 qz
1 qx

2 qy
2 qz

2 ... qx
6 qy

6 qz
6, , , , , , , , ,[]=

q
i

x
q

i

y
q

i

z
, , i

Ke[]

qe[] Fe[]

KE[]

ξ η ζ, ,()

CHAPTER 5: THE FINITE ELEMENT APPROACH 57
to the element. The interpolation inside finite elements is achieved using shape functions

[74].

Given a set of some known values at the nodes of an element, a value

anywhere inside the element, at a point specified by isoparametric coordinates ,

is calculated as:

Eq. 5.6 .

The functions are called shape functions. For multi-linear interpolation, they

are linear polynomials with respect to each of the variables and yield values

between 0 and 1 anywhere inside the element. To preserve inter-element continuity at the

nodes, the following conditions must also hold:

Eq. 5.7 for , and

Eq. 5.8 for ,

ζ

ξ

η
(1,0,-1)

(0,1,-1)

(0,0,-1)

(1,0,1)
(0,0,1)

(0,1,1)

-1

1

1
0

0

1

FIGURE 5.6: Isoparametric coordinates of the wedge element.

v1 v2 ... v6, , , v

ξ η ζ, ,()

v ξ η ζ, ,() viNi ξ η ζ, ,()
i 1=

6

∑=

Ni ξ η ζ, ,()

ξ η ζ, ,

Ni ξ j η j ζ j, ,() 0= i j≠

Ni ξ j η j ζ j, ,() 1= i j=

CHAPTER 5: THE FINITE ELEMENT APPROACH 58
where denote the isoparametric coordinates of the -th node. The shape

functions satisfying these conditions for the wedge element are:

Eq. 5.9 ,

Eq. 5.10 ,

Eq. 5.11 ,

Eq. 5.12 ,

Eq. 5.13 and

Eq. 5.14 .

The values which need to be interpolated over the volume of the element are vectors in

. The Eq. 5.6 can still be used for this purpose, replacing the scalar by a vector .

However, the shape functions are often assembled into a single shape function matrix

:

Eq. 5.15 .

This allows the Eq. 5.6 to be written in a more compact, matrix form:

Eq. 5.16

ξ j η j ζ j, , j

N1 ξ η ζ, ,() 1
2
---ξ 1 ζ–()=

N2 ξ η ζ, ,() 1
2
---η 1 ζ–()=

N3 ξ η ζ, ,() 1
2
--- 1 ξ– η–() 1 ζ–()=

N4 ξ η ζ, ,() 1
2
---ξ 1 ζ+()=

N5 ξ η ζ, ,() 1
2
---η 1 ζ+()=

N6 ξ η ζ, ,() 1
2
--- 1 ξ– η–() 1 ζ+()=

ℜ 3
v v[]

N ξ η ζ, ,()[]

N ξ η ζ, ,()[]
N1 0 0 N2 0 0 N6 0 0

0 N1 0 0 N2 0 ... 0 N6 0

0 0 N1 0 0 N2 0 0 N6

=

v ξ η ζ, ,()[] N ξ η ζ, ,()[] V[]=

CHAPTER 5: THE FINITE ELEMENT APPROACH 59
where a 1x18 matrix, collectively denoting the 6 vectors to be interpolated. The shape

function matrix is very handy as it simplifies the equations in many situations. For

example, it can be used to convert isoparametric coordinates to Cartesian

coordinates through the equation:

Eq. 5.17 ,

where is an 18x1 matrix containing the Cartesian coordinates for all 6 nodes when

the element is in the undeformed shape. The matrix is defined as:

Eq. 5.18 .

Shape functions are used to interpolate the displacement vector at an

isoparametric coordinate . Let denote the displacement in the X

direction, denote the displacement in the Y direction, and denote

the displacement in the Z direction. These displacements are linearly interpolated over the

element, using the shape functions:

Eq. 5.19 ,

Eq. 5.20 ,

Eq. 5.21 .

Equivalently, the above can be expressed compactly using the matrix notation:

Eq. 5.22

V[]

ξ η ζ, ,()

x y z, ,()

x ξ η ζ, ,() y ξ η ζ, ,() z ξ η ζ, ,(), ,[] T N ξ η ζ, ,()[] Qe[]=

Qe[]

Qe[]

Qe[] x1 y1 z1 x2 y2 z2 ... x6 y6 z6, , , , , , , , ,[] T=

u v w, ,()

ξ η ζ, ,() u ξ η ζ, ,()

v ξ η ζ, ,() w ξ η ζ, ,()

u ξ η ζ, ,() N1 ξ η ζ, ,()qx
1 N2 ξ η ζ, ,()qx

2 ... N6 ξ η ζ, ,()qx
6+ + +=

v ξ η ζ, ,() N1 ξ η ζ, ,()qy
1 N2 ξ η ζ, ,()qy

2 ... N6 ξ η ζ, ,()qy
6+ + +=

w ξ η ζ, ,() N1 ξ η ζ, ,()qz
1 N2 ξ η ζ, ,()qz

2 ... N6 ξ η ζ, ,()qz
6+ + +=

u ξ η ζ, ,()
v ξ η ζ, ,()
w ξ η ζ, ,()

N ξ η ζ, ,()[] qe[] T=

CHAPTER 5: THE FINITE ELEMENT APPROACH 60
Since the derivatives of the shape functions will be needed later for some calculations, I

define here a matrix containing all of the derivatives of the shape

functions with respect to the isoparametric coordinates:

Eq. 5.23 .

For the wedge element, using the linear interpolation functions, the matrix

 is:

Eq. 5.24 .

A higher degree interpolation of nodal values over an element could be used as well, in

which case the matrix would have to reflect the corresponding derivatives.

An alternative approach to refining the interpolation of nodal values over an element was

very recently suggested by Grinspun et. al. [21], which I will briefly review in Chapter 6.

5.3.3. Derivation of the element stiffness matrix

The process for obtaining the element stiffness matrix will now be described. The

general formula for calculating the elemental stiffness matrix is [75]:

Eq. 5.25 ,

which is a volume integral of a set of functions written in the matrix notation. The

definition of the matrices and will be explained later. The integral in the above

Nξηε ξ η ζ, ,()[]

Nξηε ξ η ζ, ,()[]

N1∂
ε∂

N2∂
ε∂

N3∂
ε∂

N4∂
ε∂

N5∂
ε∂

N6∂
ε∂

N1∂
η∂

N2∂
η∂

N3∂
η∂

N4∂
η∂

N5∂
η∂

N6∂
η∂

N1∂
ξ∂

N2∂
ξ∂

N3∂
ξ∂

N4∂
ξ∂

N5∂
ξ∂

N6∂
ξ∂

=

Nξηε ξ η ζ, ,()[]

Nξηε ξ η ζ, ,()[] 1
2

1 ζ– 0 1 ζ–()– 1 ζ+ 0 1 ζ+()–
0 1 ζ– 1 ζ–()– 0 1 ζ+ 1 ζ+()–

ξ– η– 1 ξ– η–()– ξ η 1 ξ– η–

=

Nξηε ξ η ζ, ,()[]

KE[]

KE[]

KE[] B[] T D[] B[] zd yd xd
z
∫

y
∫

x
∫=

B[] D[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 61
formula is specified in the Cartesian coordinate system. Unless the element is rectangular,

this integral is difficult to evaluate. To simplify the task, a change of coordinates is

commonly used [74]. Instead of using the Cartesian coordinate system, the integral is re-

written in the element’s isoparametric coordinates. Using the substitution

 we can now rewrite Eq. 5.25 as:

Eq. 5.26

where is the Jacobian matrix at coordinates :

Eq. 5.27 evaluated at .

In order to evaluate as defined above, we need to know the Cartesian coordinates of a

point . To this end we can use Eq. 5.17. Since is constant, we can write:

Eq. 5.28 ,

where is a 3x6 matrix containing the nodal coordinates of an element:

Eq. 5.29

The Jacobian matrix relates the first order derivatives in Cartesian coordinates to first

order derivatives in isoparametric coordinates. For example, the corresponding first order

dxdydz det J[] ζd ηd ξd=

KE[] B[] T D[] B[] et J[]d ξd ηd ζd
ζ 1–=

1

∫
η 0=

1 ξ–

∫
ξ 0=

1

∫=

J[] J ξ η ζ, ,()[]= ξ η ζ, ,()

J ξ η ζ, ,()[]

x∂
ξ∂

----- y∂
ξ∂

----- z∂
ξ∂

x∂
η∂

------ y∂
η∂

------ z∂
η∂

x∂
ζ∂

----- y∂
ζ∂

----- z∂
ζ∂

= ξ η ζ, ,()

J[]

ξ η ζ, ,() Q[]

J ξ η ζ, ,()[] Nεηξ ξ η ζ, ,()[] Q[] T=

Q[]

Q[]
x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

z1 z2 z3 z4 z5 z6

=

J[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 62
derivatives of the shape functions in both coordinate systems are related through the

following equations:

Eq. 5.30 and inversely, .

Material stiffness matrix [D]

Matrix in Eq. 5.26 is called a material stiffness matrix, and it relates the stress tensor

 to strain tensor by the

following equation, assuming linear elasticity:

Eq. 5.31

In my models I assume that the material layer is composed of homogeneous material. The

material stiffness matrix is therefore constant throughout an entire element, as it only

depends on the values of the Young modulus and Poisson ratio [16]:

Eq. 5.32 .

Ni∂
ξ∂

Ni∂
η∂

Ni∂
ζ∂

J[]

Ni∂
x∂

Ni∂
y∂

Ni∂
z∂

=

Ni∂
x∂

Ni∂
y∂

Ni∂
z∂

J[] 1–

Ni∂
ξδ

Ni∂
η∂

Ni∂
ζ∂

=

D[]

σ[] σ x σy σz τxy τyz τzx, , , , ,[]= ε[] ε x εy εz γxy γyz γzx, , , , ,[]=

σ[] D[] ε[]=

E υ

D[] E
1 υ+() 1 2υ–()

1 υ– υ υ 0 0 0

υ 1 υ– υ 0 0 0

υ υ 1 υ– 0 0 0

0 0 0
1 2υ–

2
--------------- 0 0

0 0 0 0
1 2υ–

2
--------------- 0

0 0 0 0 0
1 2υ–

2

=

CHAPTER 5: THE FINITE ELEMENT APPROACH 63
Matrix [B]

Matrix is a 6x18 matrix of coefficients, describing the linear

relationship between the displacement vector and strain at a point . The

implicit definition of is given by the equation:

Eq. 5.33

where represents the strain at point . The components of the strain

are defined as [16]:

Eq. 5.34 , , ,

, , .

To calculate the first component of the strain tensor, we use the definition of from

Eq. 5.19:

 .

Since the displacements are constant, we can write:

 ,

In the matrix notation this can be written as:

Eq. 5.35 ,

B[] B ξ η ζ, ,()[]=

q[] ε[] ξ η ζ, ,()

B ξ η ζ, ,()[]

ε ξ η ζ, ,()[] T B ξ η ζ, ,()[] q[] T=

ε ξ η ζ, ,()[] ξ η ζ, ,()

εx
u∂
x∂

-----= εy
v∂
y∂

-----= εz
w∂
z∂

------=

γyz
v∂
z∂

----- w∂
y∂

------+= γxz
u∂
z∂

----- w∂
x∂

------+= γxy
u∂
y∂

----- v∂
x∂

-----+=

εx u

u N1qx
1 N2qx

2 N3qx
3 N4qx

4 N5qx
5 N+ + + 6qx

6+ +=

qx
i

εx
u∂
x∂

N1∂
x∂

---------qx
1

N2∂
x∂

---------qx
2

N3∂
x∂

---------qx
3

N4∂
x∂

---------qx
4

N5∂
x∂

---------qx
5

N6∂
x∂

---------qx
6+ + + + += =

εx
N1∂
x∂

N2∂
x∂

N3∂
x∂

N4∂
x∂

N5∂
x∂

N6∂
x∂

--------- qx
1 qx

2 qx
3 qx

4 qx
5 qx

6, , , , ,[] T=

CHAPTER 5: THE FINITE ELEMENT APPROACH 64
which is equivalent to:

Eq. 5.36 .

The above is the equation for the first row of the matrix . Using the same approach for

the other 5 components of the strain, we can obtain similar formulas for the other 5 rows.

The matrix is then defined as:

Eq. 5.37 .

The above definition of includes shape function derivatives with respect to

Cartesian coordinates. I define a matrix containing the first order

derivatives of shape functions with respect to the Cartesian coordinates:

Eq. 5.38 .

εx
N1∂
x∂

--------- 0 0
N2∂
x∂

--------- 0 0
N3∂
x∂

--------- 0 0
N4∂
x∂

--------- 0 0
N5∂
x∂

--------- 0 0
N6∂
x∂

--------- 0 0 q[] T=

B[]

B[]

B[]

N1∂
x∂

--------- 0 0
N2∂
x∂

--------- 0 0
N3∂
x∂

--------- 0 0
N4∂
x∂

--------- 0 0
N5∂
x∂

--------- 0 0
N6∂
x∂

--------- 0 0

0
N1∂
y∂

--------- 0 0
N2∂
y∂

--------- 0 0
N3∂
y∂

--------- 0 0
N4∂
y∂

--------- 0 0
N5∂
y∂

--------- 0 0
N6∂
y∂

--------- 0

0 0
N1∂
z∂

--------- 0 0
N2∂
z∂

--------- 0 0
N3∂
z∂

--------- 0 0
N4∂
z∂

--------- 0 0
N5∂
z∂

--------- 0 0
N6∂
z∂

0
N1∂
z∂

N1∂
y∂

--------- 0
N2∂
z∂

N2∂
y∂

--------- 0
N3∂
z∂

N3∂
y∂

--------- 0
N4∂
z∂

N4∂
y∂

--------- 0
N5∂
z∂

N5∂
y∂

--------- 0
N6∂
z∂

N6∂
y∂

N1∂
z∂

--------- 0
N1∂
x∂

N2∂
z∂

--------- 0
N2∂
x∂

N3∂
z∂

--------- 0
N3∂
x∂

N4∂
z∂

--------- 0
N4∂
x∂

N5∂
z∂

--------- 0
N5∂
x∂

N6∂
z∂

--------- 0
N6∂
x∂

N1∂
y∂

N1∂
x∂

--------- 0
N2∂
y∂

N2∂
x∂

--------- 0
N3∂
y∂

N3∂
x∂

--------- 0
N4∂
y∂

N4∂
x∂

--------- 0
N5∂
y∂

N5∂
x∂

--------- 0
N6∂
y∂

N6∂
x∂

--------- 0

=

B ξ η ζ, ,()[]

Nxyz ξ η ζ, ,()[]

Nxyz ξ η ζ, ,()[]

N1∂
x∂

N2∂
x∂

N3∂
x∂

N4∂
x∂

N5∂
x∂

N6∂
x∂

N1∂
y∂

N2∂
y∂

N3∂
y∂

N4∂
y∂

N5∂
y∂

N6∂
y∂

N1∂
z∂

N2∂
z∂

N3∂
z∂

N4∂
z∂

N5∂
z∂

N6∂
z∂

=

CHAPTER 5: THE FINITE ELEMENT APPROACH 65
Since the shape functions have been defined in isoparametric coordinates, the inverse of

the Jacobian matrix is used to change between the coordinate systems:

Eq. 5.39 ,

where the derivatives are evaluated at a point . Using Eq. 5.23 the above can be

written as:

Eq. 5.40

Once the entries of are computed, they are used to construct matrix .

Gaussian integration

In order to avoid symbolic calculation of the integral given by the formula in Eq. 5.26, I

calculate it by using the Gaussian integration technique, which is very commonly used

technique in FEM applications. Gaussian integration evaluates the inside of an integral

only at a few, carefully chosen points. It can be described as approximating an integral

with a weighted sum:

Eq. 5.41 ,

Nxyz ξ η ζ, ,()[] J ξ η ζ, ,()[] 1–

N1∂
ε∂

N2∂
ε∂

N3∂
ε∂

N4∂
ε∂

N5∂
ε∂

N6∂
ε∂

N1∂
η∂

N2∂
η∂

N3∂
η∂

N4∂
η∂

N5∂
η∂

N6∂
η∂

N1∂
ξ∂

N2∂
ξ∂

N3∂
ξ∂

N4∂
ξ∂

N5∂
ξ∂

N6∂
ξ∂

=

ξ η ζ, ,()

Nxyz ξ η ζ, ,()[] J ξ η ζ, ,()[] 1– Nεηξ ξ η ζ, ,()[]=

Nxyz[] B[]

f x() xd

a

b

∫ wjf xj()
j 1=

n

∑≈

CHAPTER 5: THE FINITE ELEMENT APPROACH 66
where represents the number of Gaussian integration points used, and represents the

integration point. The precision of this technique depends on the nature of function as

well as the number of integration points chosen. When the Gaussian integration is applied

to Eq. 5.26, we obtain:

Eq. 5.42 .

To obtain the Gaussian points and weights for the 6-node wedge element, I combined the

3-point Gaussian quadrature for a line segment (representing the height of the wedge) with

a 3-point Gaussian quadrature for a triangle in a standard manner [74]. The result is a 9

point Gaussian quadrature specified by Table 5.1.

1 0.18518518519 0.66666666667 0.16666666667 0.77459666924

2 0.18518518519 0.16666666667 0.66666666667 0.77459666924

3 0.18518518519 0.16666666667 0.16666666667 0.77459666924

4 0.2962962963 0.66666666667 0.16666666667 0

5 0.2962962963 0.16666666667 0.66666666667 0

6 0.2962962963 0.16666666667 0.16666666667 0

7 0.18518518519 0.66666666667 0.16666666667 -0.77459666924

8 0.18518518519 0.16666666667 0.66666666667 -0.77459666924

9 0.18518518519 0.16666666667 0.16666666667 -0.77459666924

TABLE 5.1: Gaussian quadrature points for the 6-node wedge.

n j

f

KE[] wj B ξ j η j ζ j, ,()[] T D[] B ξ j η j ζ j, ,()[] et J ξ j η j ζ j, ,()[]()d

i 1=

n

∑=

i wi ξ i η i ζ i

CHAPTER 5: THE FINITE ELEMENT APPROACH 67
Modeling elemental pre-strain

Eq. 5.2 relates the nodal displacements of an element to the forces it exerts on the nodes,

which is standard for most FEM problems. However, in the following section it will be

more useful to reformulate this equation in terms of nodal coordinates, rather than in terms

of their displacements. Assume that the nodal coordinates of a node are given by a

vector . The nodal displacement of the node is related to the

nodal coordinates by:

Eq. 5.43 ,

where is the nodal coordinate of the element in its undeformed shape. For the

entire element, this is captured by:

Eq. 5.44 ,

where . Substituting Eq. 5.44 into Eq. 5.2, we obtain:

Eq. 5.45 .

Since is constant, I define a matrix as:

Eq. 5.46 ,

and rewrite Eq. 5.45 as:

Eq. 5.47 .

The above is a linear relationship between deformed nodal coordinates and the

resulting nodal forces exerted by an element. Eq. 5.47 is a more general form of Eq.

i

px
i py

i pz
i, ,() qx

i qy
i qz

i, ,() i

qx
i qy

i qz
i, ,() px

i py
i pz

i, ,() xi yi zi, ,()–=

xi yi zi, ,()

q[] P[] Q[]–=

P[] px
1 py

1 pz
1 ... px

6 py
6 pz

6, , , , , ,{ }=

F[] Ke[] P[] Q[]–() Ke[] P[] Ke[] Q[]–= =

Q[] Re[]

Re[] Ke[] Q[]=

F[] Ke[] P[] Re[]–=

P[]

F[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 68
5.2, by including the quantity , which is analogous to the definition of elemental pre-

stress [74].

5.4. The global stiffness matrix

The previous section was devoted to deriving a set of linear equations relating nodal

coordinates to the nodal forces an element generates on its nodes. In this section, I show

the standard derivation of a similar equation for the entire system of elements. Such an

equation relates the coordinates of all nodes in the system to the total force exerted by the

system on the nodes.

I start by considering the total force acting on a node . Such force is defined as the sum of

the forces exerted on the node by all elements sharing the node. As an example, consider

global node 3 in the system of triangular elements illustrated in Figure 5.7. The total force

acting on global node 3 is the sum of the forces exerted on it by elements 1 and 2. The

Re[]

i

1

2

3

4

5

1

2

3

1

3

2

1

2

3

1

2

3

FIGURE 5.7: Global and local node numbering.

2

1

1

Global node numbers

Local node numbers

Element numbers

CHAPTER 5: THE FINITE ELEMENT APPROACH 69
contribution from element 1 can be obtained from the element’s stiffness matrix by

extracting the values . Similarly, the contribution from element 2 is obtained by

extracting the values from the second element’s stiffness matrix . The

force exerted by element 1 is a linear combination of the deformed nodal coordinates of

global nodes 1, 2 and 3 and undeformed nodal coordinates of local nodes 1, 2 and 3. The

contribution from element 2 is a linear combination of the deformed nodal coordinates of

the global nodes 2, 3 and 4, and the undeformed nodal coordinates of local nodes 1, 2 and

3. The overall result is that the total force acting on node 2 is a linear combination of the

deformed nodal coordinates of global nodes 1, 2, 3 and 4 and the undeformed nodal

coordinates of the local nodes for elements 1 and 2.

In general, the global equation relating the deformed nodal coordinates of the system of

elements to the total nodal forces exerted by the system is of the form:

Eq. 5.48 ,

where the column vector represents the nodal forces in the system:

Eq. 5.49 .

The triples denote the nodal force vector at node . For a system with nodes,

 is a column vector of size . The column vector contains the nodal

coordinates of every node in the system and it is also of size :

Eq. 5.50 ,

where is the nodal coordinate of a global node . The matrix is the

global stiffness matrix, and its dimensions are by . It is computed by combining the

elemental stiffness matrices . Finally, is a column vector of size 18x1,

computed by combining the elemental pre-stress matrices .

Fe[]

Fx
2 Fy

2 Fz
2, ,

Fx
1 Fy

1 Fz
1, , Fe[]

FG[] KG[] PG[] RG[]+=

FG[]

FG[] Fx
1 Fy

1 Fz
1 Fx

2 Fy
2 Fz

2 ... Fx
n Fy

n Fz
n, , , , , , , , ,[]=

Fx
i Fy

i Fz
i, , i n

FG[] 3n PG[]

3n

PG[] Px
1 Py

1 Pz
1 ... Px

n Py
n Pz

n, , , , , ,[]=

px
i py

i pz
i, , i KG[]

3n 3n

Ke[] RG[]

Re[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 70
The global stiffness matrix is calculated directly from the elemental stiffness

matrices, by summing up the appropriate entries. Similarly, is calculated from each

element’s . The algorithm for calculating and is provided in Algorithm 4.

Eq. 5.48 can be used to calculate the total forces acting on each node in the system for a

given set of deformed nodal coordinates . It can also be used to calculate the nodal

coordinates to achieve a certain force distribution, i.e. it can calculate the deformation of

the model under applied loads. Finally, it allows the calculation of an equilibrium state

() when a deformation is introduced into the system. The deformation is

modeled by fixing some of the nodal coordinates to specific values, e.g. when modeling

growth the deformation is due to the bottom nodes being fixed to the growing background

layer.

KG[]

RG[]

Re[] KG[] RG[]

ALGORITHM 4: Algorithm for calculating global stiffness matrix.

procedure calculate_Kg_and_Rg()
allocate 3n by 3n matrix Kg and set its coefficients to 0
allocate column vector Rg of size 3n and set its coefficients to 0
for each element e do:

add_Ke_to_Kg_and_Re_to_Rg(e, Kg, Rg)

procedure add_Ke_to_Kg_and_Re_to_Rg(e, Kg, Rg):
for r = 1 to 6 do:

for c = 1 to 6 do:
rg = local_to_global(r, e)
cg = local_to_global(g, e)
for i = 1 to 3 do:

for j = 1 to 3 do:
Kg[rg*3+i, cg*3+j] += e.Ke[r*3+i, c*3+j]

for r = 1 to 6 do:
rg = local_to_global(r, e)
for i = 1 to 3 do:

Rg[rg*3+i] += e.Re[r*3+i]

function local_to_global(k, e)
// given a local node number k (in the range 1..6), this function returns
// the global number of the k-th node in element e

PG[]

FG[] 0=

CHAPTER 5: THE FINITE ELEMENT APPROACH 71
5.5. Calculating the equilibrium state

The equilibrium state is a configuration of the nodal positions in which the total nodal

forces acting on all free nodes vanish. The free nodes are all the top nodes of the elements,

and the fixed nodes are the bottom nodes which are attached to the background layer. The

fixed nodes are the sources of initial strain when modeling growth of the background

layer. Calculating an equilibrium state is equivalent to finding the nodal displacements for

the free nodes to satisfy the requirement of an equilibrium state, given some initial strain.

The equilibrium of the system of elements is calculated in three steps:

• inserting initial strain into Eq. 5.48 (to account for growth);

• inserting boundary conditions into the equations (setting the desired nodal

forces at free nodes to 0);

• solving the equations (to find the unknown nodal coordinates of the free

nodes).

The first step is to include the state of the initial strain into Eq. 5.48. To this end, the

diagonal entry in is set to 1 for each known nodal coordinate value , and

the rest of the row is set to 0’s. Further, the entry in row in is set to the value of

the known nodal coordinate , and the entry in row of is set to zero. This

method of modeling initial strain is standard in applications of FEM [74].

The next step in calculating the equilibrium state is to insert boundary conditions into the

equation. Boundary conditions reflect the fact that in the equilibrium state there should be

zero net forces acting on the free nodes. To this effect all remaining rows of are set

to zero.

There is an alternative method for modifying the set of global equations to include the

known nodal coordinates of the fixed nodes. The known variables can be completely

removed from the system (i.e. by removing the corresponding rows and columns of ,

i i,() KG[] pG
i

i i FG[]

wG
i i RG[]

FG[]

KG[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 72
 and), by substituting their known values into the equations of the free nodes.

To illustrate the difference between these two approaches, consider the following set of 3

equations of 3 unknowns:

The first approach for modifying these equations to include some known value, e.g.

, would result in a set of equations:

The second approach would modify the system by eliminating the references to the

variable altogether, i.e.:

Since one half of the nodes are fixed, this second approach results in reducing the system

of equations by 50%. Such a reduction in the number and size of equations leads to an

improved performance when solving for the unknowns, although the time consumed by

performing such adjustments (calculations + memory management) offsets some of these

gains. I have implemented and use both approaches in my simulations. I use the first

approach to recalculate the equilibrium state of the entire model, and the second approach

to recalculate the equilibrium state of a sub-model.

RG[] FG[]

3x 4y z+ + 5=

2x y 2z–+ 3=

x 2y 2z+ + 1=

z 2=

3x 4y z+ + 5=

2x y 2z–+ 3=

z 2=

z

3x 4y+ 3=

2x y+ 7=

CHAPTER 5: THE FINITE ELEMENT APPROACH 73
After all known quantities are inserted into Eq. 5.48, the unknown nodal coordinates must

be calculated. The resulting equation can be written in the more familiar form for

describing systems of linear equations:

Eq. 5.51 ,

where is the coefficient matrix, equal to , is the column vector of the

unknowns, equal to and is the right hand side of the equation, equal to

.

Many different techniques exist for solving a set of linear equations. They can be divided

into two main categories: direct and iterative methods. Direct methods solve the equations

by algebraic manipulations, while iterative methods solve the equations by improving an

existing solution in successive iterations. Iterative solutions do not guarantee an exact

solution, although they achieve a requested precision. I implemented a number of

techniques for solving a set of linear equations, which I describe next.

Gaussian elimination

Gaussian elimination falls into the category of direct solution techniques for solving sets

of linear equations. The general idea is to eliminate the first unknown from all equations

(except the first) by subtracting the corresponding multiple of the first equation from all

other equations. Then the second unknown is removed in a similar manner from all

equations except the first two. This process is repeated until the last equation contains only

the last unknown, which provides the solution for the last unknown. This solution is then

back-substituted into the second last equation to obtain the solution to the second last

unknown. The back-substitution is repeated until solutions to all unknowns are retrieved.

Clearly, an algorithm implementing Gaussian elimination will run in time, where

A[] x[] b[]=

A[] KG[] x[]

wG[] b[]

FG[] RG[]–

O n3()

CHAPTER 5: THE FINITE ELEMENT APPROACH 74
 is the number of equations in the system. For small , the algorithm’s performance is

satisfactory. However, as grows into the thousands, the running time becomes

unacceptable. Since there are often tens of thousands of nodes in the models I simulate,

Gaussian elimination is inadequate.

Gaussian elimination on banded systems

The Gaussian elimination algorithm can be made more effective when the coefficient

matrix of the linear system solved is banded. In a banded matrix all nonzero components

tend to group around the diagonal elements. Bandwidth of a matrix is a number describing

how well the given matrix is banded. It corresponds to the width of a diagonal band (or

strip) which completely encompasses all non-zero elements of a matrix (see Figure 5.8 for

a graphical interpretation of bandwidth). A matrix containing non-zero entries only on its

diagonal would have a bandwidth equal to 1, while a matrix without any non-zero entries

would have a bandwidth equal to its size.

n n

n

bandwidth

diagonal entries

non-zero entries

zero entries

coefficient
matrix

m=5

legend:

FIGURE 5.8: Graphical representation of matrix bandwidth.

CHAPTER 5: THE FINITE ELEMENT APPROACH 75
If the bandwidth of a given matrix is , then the Gaussian elimination algorithm can be

modified to execute in the worst running time of . This is achieved by modifying

a regular Gaussian elimination algorithm to perform row subtractions only in the areas

where there are non-zero entries, i.e. around the main diagonal of the coefficient matrix.

Since the efficiency of the algorithm is directly proportional to the bandwidth of the

coefficient matrix, a significant improvement over the standard Gaussian elimination

method will be seen only if .

In general, the global stiffness matrix is very sparse. In a given row it contains a

non-zero entry in column only if the nodes associated with degrees of freedom and

are connected by an edge in the geometrical model. Two nodes are connected by an edge

only if they both belong to the same element, or if they belong to two elements sharing

either of the two nodes. Therefore, the bandwidth of depends on how the numbers

are assigned to the nodes. To achieve optimum bandwidth, the numbering should be

realized in a manner which minimizes the maximum difference between the numbers

assigned to any two edge-connected nodes. Although algorithms accomplishing such node

re-numbering can be found in literature on graph theory, they are slow and quite complex

to implement. More importantly, even if they achieve optimum node re-numbering, the

bandwidth is still too large for the total running time of the algorithm to be acceptable for

large numbers of nodes.

Gauss elimination on sparse matrices

The models I use often have tens of thousands of elements and nodes. The size of a full

coefficient matrix for nodes is bytes, or

approximately gigabytes (assuming double precision arithmetic is used and that each

number requires 8 bytes of memory). At present time, it would be very difficult to find a

computer system which could accommodate such a memory intensive algorithm. The

m

O m2n()

m n«

KG[] i

j i j

KG[]

KG[] n 10000= sizeof double() 3n()2

6.7

CHAPTER 5: THE FINITE ELEMENT APPROACH 76
banded matrix offers an improvement, but the memory requirement is still excessive. A

significant improvement in the memory requirement is achieved by implementing sparse

storage for .

In my implementation, I use row-compressed sparse storage of . In row-compressed

storage, each row of the matrix is stored as a list of columns containing non-zero entries.

The entries with 0’s are not stored. Given a semi-random arrangement of nodes and the

resulting Delaunay triangulation, a node in the system is connected on average to 14 other

nodes. This means that the global stiffness matrix will have on average only

non-zero entries in each row. After insertion of the fixed nodal coordinates, this number

further reduces to about . As a result, storing the in the row-compressed format

only requires approximately coefficients, which for is

megabytes. Since the column number has to be stored with each coefficient, additional

 indices have to be stored. If each index is stored as a long, and each long is stored

using 4 bytes, then the total memory requirement to store is approximately

megabytes. Clearly, the sparse matrix storage provides a significant improvement in the

memory requirement.

Gaussian elimination can be properly modified to operate on such sparsely stored

coefficient matrices, taking advantage of the fact that it only needs to perform row

subtractions at points where there are non-zero entries. Unfortunately, the row subtraction

introduces other non-zero elements to the rows and in the end, both the memory

requirement and the total running time are still .

KG[]

KG[]

KG[] 42

21 KG

21 3n× n 10000= 4.8

21 3n×

KG[] 7

O n
2()

CHAPTER 5: THE FINITE ELEMENT APPROACH 77
Gauss-Seidel iterative method

The Gauss-Seidel method was the first iterative method I investigated for use in my

simulations. I found that its running time was acceptable, but in many cases it failed to

converge to a solution of desired accuracy.

Conjugate gradient method

The method of conjugate gradients is a very commonly used technique for solving large

sparse systems of linear equations [52]. Its main attractiveness is due to the fact that it only

uses the sparse coefficient matrix for multiplication by a column vector. This can be

very efficiently implemented, for example, by storing in the row-compressed form as

described above. Only multiplications and additions are needed on average,

based on the estimations given above. Furthermore, according to the authors, “If A is

positive definite as well as symmetric, the algorithm cannot break down (in theory!).”.

Since is both positive definite and symmetric, I selected the conjugate-gradient over

the other method described, and implemented the ordinary conjugate gradient algorithm as

described in [52].

5.6. Fracture modeling by removing elements

Cracks form in solid materials as a result of material fatigue [1]. When a material is under

load, the stresses inside the material slowly increase, until they reach a critical value - the

threshold stress (similar to threshold stress as defined for example in [1] or [16]). At the

point where the threshold stress is exceeded, an initial fracture is introduced, forming a

permanent discontinuity in the material. As a consequence of this new discontinuity in the

A[]

A[]

21 3n×

KG[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 78
material, stresses shift to other regions, and usually accumulate in the vicinity of the

existing crack tips. This leads to crack propagation.

I examined two different approaches for modeling fractures. In this section I describe the

first approach, which models fractures by removing elements in which the stress has

exceeded the material’s threshold stress. The second approach, based on splitting

elements, will be described in Section 5.7.

5.6.1. Stress calculation

The first step in determining whether a fracture will be formed is to calculate the current

state of stress in the material. The state of stress in solid mechanics is given by a stress

tensor [16], defined as a symmetric 3x3 matrix:

Eq. 5.52 .

In most FEM literature, an alternative representation for the stress tensor is used, defining

it as a column vector containing only the unique entries from Eq. 5.52, i.e.

. The stress tensor is related to the strain tensor

 by Eq. 5.31. The strain tensor varies throughout the

material, depending on the local deformation. To calculate the strain tensor at a specific

isoparametric coordinate inside an element, I use the element’s matrix evaluated at

the appropriate isoparametric coordinates, and then substitute the result into Eq. 5.33. The

result is a formula for calculating the stress tensor at a given coordinate inside an element:

Eq. 5.53 .

σ[] 3x3

σx τxy τzx

τxy σy τyz

τzx τyz σz

=

σ[] σ x σy σz τxy τyz τzx, , , , ,[] T=

ε[] ε x εy εz γxy γyz γzx, , , , ,[] T=

B[]

σ ξ η ζ, ,()[] D[] B ξ η ζ, ,()[] q[]=

CHAPTER 5: THE FINITE ELEMENT APPROACH 79
Selecting locations for stress evaluation

Since the stress tensor varies throughout the element, a coordinate at which it will be

evaluated must be chosen. For example, the geometric center of the element could be

used, with isoparametric coordinates . However, since numerical

integration was used to evaluate , which in turn was used to calculate the equilibrium

state, the values of computed stress will not necessarily be exact at all coordinates. The

highest accuracy of the calculated stresses will be attained at the Gaussian points, which

were used during the numerical integration step. Therefore, evaluating the stress at one of

the Gaussian points is a better choice. Since cracks observed on expanding surfaces

typically originate in the top layer and then propagate deeper into the material, one of the

Gaussian points near the top face of an element could be used. And since the state of stress

also varies at Gaussian points, I evaluate the stresses at all three Gaussian points closest to

the top face.

Principal stresses and principal planes of stress

The stress tensor defines the state of stress in the material, which can be different in every

direction. Positive values indicate tensile stresses and negative values indicate

compressive stresses. In some directions, the stress value will be smaller, in others it will

be greater. A stress tensor will yield up to 3 different local minimum/maximum values for

stress, called principal stresses. The planes whose normals are defined by the directions

corresponding to principal stresses are called principal stress planes. Principal stresses are

found by calculating eigenvalues of the stress tensor matrix, while the corresponding

eigenvectors correspond to the normals of the principal stress planes [16]. The algorithms

for calculating both eigenvectors and eigenvalues can be found in [52].

1 3⁄ 1 3⁄ 0, ,()

KE[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 80
To determine whether the threshold stress has been exceeded in an element, the principal

stresses of the three stress tensors are first calculated. The resulting 9 values are sorted,

and the largest one is compared against the material’s threshold stress. If the largest

eigenvalue exceeds the threshold stress, a fracture will be formed.

Stresses in the material layer increase due to applied growth and/or shrinkage. Before any

fractures are formed, stresses in the material layer tend to achieve the highest values near

the center. Once a fracture is formed, stresses are highest near crack tips, and at the centre

of un-cracked material patches. An illustration of the distribution of stresses is shown in

Figure 5.9, where the values of maximum principal stresses are used to color the elements.

5.6.2. Selecting the element for removal and adaptive time-step control

Once the equilibrium state has been obtained and the maximum principal stresses in each

element have been calculated, each element is checked to determine whether it exceeded

the material’s threshold stress. If a single element has exceeded the material’s threshold

stress, a fracture could be modeled by simply removing this element from the model.

Unfortunately, the background may grow and/or the material layer may shrink in large

enough increments for the threshold stress to be exceeded in more than one element. At

first glance, this does not seem to pose any difficulties, since multiple fractures can

develop simultaneously in real materials. A simple approach would then be to remove all

elements which exceeded the threshold stress. This, however, would lead to the removal of

large portions of the material layer, as the threshold stresses are often exceeded

simultaneously in the same neighborhoods.

To prevent the threshold stress from being exceeded in multiple elements, the time step

could be chosen to be sufficiently small before the simulation begins. This simple

CHAPTER 5: THE FINITE ELEMENT APPROACH 81
solution, however, leads to large increases in the total running time needed to complete the

simulation. The major obstacle lies in the fact that the time step would have to be chosen

at the beginning of the simulation, when it would be difficult to predict how small it

should be. If, in the middle of the simulation, it was discovered that the time step was too

large, the simulation would have to be restarted from the beginning with a smaller time

step. Furthermore, smaller time step would require more frequent applications of the

growth and relaxation steps, both of which are very time consuming procedures.

FIGURE 5.9: Distribution of the maximum principal stress.

static material layer on an
isotropically growing background

static material layer on an
anisotropically growing background

(the background is expanding

shrinking material layer on a static
background

stress distribution around a fracture

CHAPTER 5: THE FINITE ELEMENT APPROACH 82
A different approach is to keep the time step reasonable, but choose only one of the

elements whose internal stress has exceeded the materials threshold stress. In my early

implementations, I experimented by choosing the element with the highest ratio of stress

to threshold stress. This choice was based on the assumption that this element was most

likely the first to have exceeded the threshold stress. Although this method produced

satisfactory results, it is based on an assumption which I could not prove to be a fact.

The approach I took in the current implementation uses an adaptive time step control,

which I designed to quickly advance through time when no fractures develop. When time

is advanced in the simulation, nothing ‘interesting’ happens until a new fracture is

developed. The goal of the adaptive time step is to find the closest point in time when a

new fracture is formed. This is achieved as a two step process. In the first step, the lower

and upper bound on time is found, by advancing the time in successively larger time

increments. This is repeated until a point in time is found where there is at least one

fracture candidate. In the next step, a binary search is applied to find the exact time. The

pseudo-code capturing this process is given in Algorithm 5.

Unfortunately, there is no guarantee that a time step can be made small enough to avoid

threshold stress from being exceeded in multiple locations. After all, it is possible that the

threshold stress in real life materials is exceeded simultaneously. Therefore, if the time

step cannot be further reduced and there are more than one fracture candidates, the

candidate with the highest stress to threshold stress ratio is selected for the next fracture.

In case of a tie, one of the candidates is selected randomly.

CHAPTER 5: THE FINITE ELEMENT APPROACH 83
5.6.3. Element removal

Once the element has been chosen for deletion, it has to be removed from the model. The

removal process consists of two parts. First, the geometrical representation of the model

has to be adjusted to reflect the removal of the element, i.e. the associated faces and edges

must be eliminated. Second, the global stiffness matrix and must be adjusted

to reflect the missing element. A simple, precise, but very inefficient approach, is to

simply recalculate the entire and as outlined in Section 5.3. A more efficient

ALGORITHM 5: Adaptive time step control.

procedure advance_simulation_time(t)
t_min = current time
dt = smallest time step allowed
repeat:

t_max = t_min + dt
apply growth corresponding to time t_max
relax the model and recalculate the stresses
nf = number of fracture candidates
if nf > 0 then

break // we have the lower and upper bounds in t_min and t_max
repeat

if t_max - t_min < smallest time step allowed then
break

t = (t_max + t_min) / 2
apply growth corresponding to time t
relax the model and recalculate the stresses
nf = number of fracture candidates
if nf == 0 then

t_min = t
else

t_max = t
advance the current simulation to t_max

KG[] RG[]

KG[] RG[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 84
approach is to subtract the coefficients of the removed element’s stiffness matrix

from the global stiffness matrix and from , as is outlined in Algorithm 6.

To prevent roundoff errors, which could result from frequent subtractions, I implemented

a combination of these two methods. The result is an efficient but precise algorithm for

recalculation of . The removal of and from and , respectively,

is achieved by reconstructing the affected coefficients of and using the

elemental stiffness matrices of the neighboring elements. An algorithm implementing this

approach is given in Algorithm 7.

Once the element is removed from the model, the equilibrium state must be recomputed.

The new equilibrium state will result in other elements exceeding threshold stresses, most

likely in the areas of crack tips, leading to crack propagation. When no elements exceed

the material’s threshold stress, the simulation advances by increasing the simulation time

and by applying growth to the background and/or by applying shrinkage to the elements.

The propagation of fractures simulated using this method is illustrated in Figure 5.10.

Ke[]

Re[] RG[]

ALGORITHM 6: Removing and from and by

subtraction.

Ke[] Re[] KG[] RG[]

procedure sub_Ke_from_Kg_and_Re_from_Rg(e, Kg, Rg):
for r = 1 to 6 do:

for c = 1 to 6 do:
rg = local_to_global(r, e)
cg = local_to_global(g, e)
for i = 1 to 3 do:

for j = 1 to 3 do:
Kg[rg*3+i, cg*3+j] -= e.Ke[r*3+i, c*3+j]

for r = 1 to 6 do:
rg = local_to_global(r, e)
for i = 1 to 3 do:

Rg[rg*3+i] -= e.Re[r*3+i]

KG[] Ke[] Re[] KG[] RG[]

KG[] RG[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 85
Figure 5.11 illustrates the difference between fracture patterns obtained for varying levels

of surface discretization. When the number of elements approximating the surface is

small, the fractures are wide and the overall pattern looks unrealistic. As the discretization

level is increased, the visual appearance improves.

ALGORITHM 7: Removing and from and by

reconstruction.

Ke[] Re[] KG[] RG[]

procedure sub_Ke_from_Kg_and_Re_from_Rg(e, Kg, Rg):
// zero out entries of Kg and Rg affected by this element
for rn = 0 to 5 do:

grn = local_to_global(rn, e)
for cn = 0 to 5 do:

gcn = local_to_global(cn, e)
for i = 0 to 2 and j = 0 to 2 do:

Kg[grn*3+i,gcn*3+j] = 0
for i = 0 to 2 do:

Rg[grn*3+i] = 0;

// get a list of elements that share at least one node with e
elist = get_a_list_of_elements_connected_to_element(e)

// for each element in the list, add its appropriate contributions to
// the erased parts of Kg and RHSg
for every element f in elist do:

for rn = 0 to 5 do:
grn = local_to_global(f, rn)
if global node grn is not in element e then

continue
for cn = 0 to 5 do:

gcn = local_to_global(f, cn)
if global node gcn is not in element e then

continue
for i = 0 to 2 and j = 0 to 2 do:

Kg[grn*3+i,gcn*3+j] += f-> Ke[rn*3+i,cn*3_j]
Rg[grn*3+0] += f-> Re[rn*3+0]
Rg[grn*3+1] += f-> Re[rn*3+1]
Rg[grn*3+2] += f-> Re[rn*3+2]

CHAPTER 5: THE FINITE ELEMENT APPROACH 86
FIGURE 5.10: Fracture propagation using element removal.

3 elements removed 4 elements removed 5 elements removed

6 elements removed 7 elements removed 8 elements removed

20 elements removed 40 elements removed 60 elements removed

un-fractured surface first element removed 2 elements removed

CHAPTER 5: THE FINITE ELEMENT APPROACH 87
5.6.4. Dynamic subdivision

Modeling fractures by removing elements has a visually unappealing side effect: parts of

the material suddenly vanish from the model. The larger the elements, the larger the effect.

In contrast, when fractures are formed in the real world, material does not magically

disappear. To minimize this discrepancy between the simulation and the real world,

elements should be small enough that their removal goes unnoticed by the naked eye. The

FIGURE 5.11: Fracture patterns for different levels of discretization.

500 elements 1000 elements

2000 elements 4000 elements

CHAPTER 5: THE FINITE ELEMENT APPROACH 88
problem with this solution is that as the size of the elements decreases, their number must

increase, which leads to larger memory requirements and longer simulations.

It is a waste of resources to represent the entire surface with small elements, as only a

relatively small number of them are actually removed due to cracking. In areas where no

fractures develop, large number of small elements would merely contribute increased

computation time. It is therefore desirable to have these large areas covered by larger

elements, and the small elements should only be present in areas where fractures are

formed.

I implemented the above concept in the following algorithm. The surface is initially

discretized by a small number of relatively large elements. An element identified for

removal will be removed only if its size is smaller than some predefined threshold. If its

size is larger than this threshold, it will be subdivided into smaller elements. The main

simulation loop reflecting this dynamic subdivision approach is captured in the

pseudocode in Algorithm 8.

ALGORITHM 8: Dynamic subdivision.

simulation_loop()
while simulation not done do

relax model
if threshold stress exceeded then

identify element for removal
if element is small enough then

remove element
else

subdivide element
else

increment simulation time
grow surface

CHAPTER 5: THE FINITE ELEMENT APPROACH 89
To complete the description of the above algorithm, the element subdivision step must be

explained. The subdivision of a single element into one or more elements is

straightforward: the element is simply removed and replaced by a larger number of

smaller elements. However, to preserve the connectivity of the mesh at nodes, the

surrounding elements may also have to be adjusted. The problem of meshing, re-meshing

and mesh subdivision is an important problem in FEM. I examined three different

approaches, which will now be described.

Subdividing an element by trisection

Perhaps the simplest method for subdividing an element is to introduce two new nodes in

the centers of the top and bottom faces and then to split the element into 3 new elements.

This is illustrated in Figure 5.12. The only advantage of this approach is the simplicity of

its implementation, as it does not require re-meshing of the neighboring elements. The

drawback of this method lies in the rapid degeneration of the newly formed elements into

narrow wedges, as illustrated in Figure 5.12. Since finite element methods do not work

well with elements of deformed shapes, the subdivision method based on trisection is

unusable.

Subdividing an element into four elements

The next approach I investigated introduces six new nodes on the edges of the element to

be subdivided. Three of them are located on the top face and three on the bottom face. The

locations of the new nodes are the midpoints of the top and bottom face edges, as shown in

Figure 5.13 at the top. The new elements generated using this method of subdivision are

CHAPTER 5: THE FINITE ELEMENT APPROACH 90
guaranteed to have non-degenerate shapes, provided the original element is not itself

degenerate.

Because new nodes are introduced at the side walls of the old element, the geometry of the

neighboring elements also has to be adjusted. The neighboring elements are adjusted by a

bisection. Even though the element being subdivided will be replaced by non-degenerate

element, the same cannot be said about its neighbors. Figure 5.13 at the bottom illustrates

how the mesh rapidly degenerates using this method.

Subdividing an element by bisection

Another approach for element subdivision is to divide the selected element into two. This

is achieved by introducing two nodes in the middle of its longest top face edge and the

corresponding bottom face edge, as illustrated at the top of Figure 5.14. The element on

FIGURE 5.12: Subdividing an element by trisection.

Successive application leads to the formation of degenerate wedges:

CHAPTER 5: THE FINITE ELEMENT APPROACH 91
the other side of the bisected edge, if present, must be re-meshed accordingly. This

approach guarantees that the element being subdivided is replaced by nicely shaped

elements, since only the longest edge is ever split. Unfortunately, this approach also leads

to the formation of degenerate wedges in the neighboring elements, as illustrated in Figure

5.13 at the bottom. The degenerate triangles appear because the neighboring elements are

not necessarily being split along their longest edge.

The solution to this problem was introduced by Rivara and Inostroza [58], who

implemented the following algorithm. Given an element to be subdivided, split the

element along its longest edge . Find the other element sharing the edge . If is not

the longest edge of , then recursively apply the subdivision process to , until is its

longest edge. Finally, is also split along . This recursive procedure ensures that all

elements are bisected only at their longest edges. This algorithm rarely reaches deep levels

of recursion when applied to a triangular mesh with well shaped triangles (such as the

FIGURE 5.13: Subdividing an element into four elements.

Successive application leads to formation of degenerate elements in the neighbors.

e

g e2 g g

e2 e2 g

e2 g

CHAPTER 5: THE FINITE ELEMENT APPROACH 92
Delaunay triangulation). An example subdivision process using this approach is shown in

Figure 5.15. The algorithm described above can be expressed by a concise pseudo-code

given in Algorithm 9.

Once the dynamic subdivision algorithm is incorporated into the simulation, the areas of

interest are automatically subdivided when needed. This results in faster simulation times

as well as less memory consumed. Figure 5.16 illustrates the difference between results

obtained with and without dynamic subdivision. The result on the left was generated using

Successive application with trivial neighbor re-meshing.

FIGURE 5.14: Subdivision of an element by bisection.

longest edge

CHAPTER 5: THE FINITE ELEMENT APPROACH 93
a model with 7000 elements, without dynamic subdivision. The result on the right is the

result of a simulation where the original model contained only 100 elements, and the

dynamic subdivision was enabled. The model on the right eventually contained 1900

elements, and the resulting pattern was generated approximately 10 times faster than the

first pattern.

FIGURE 5.15: Splitting an element with a recursive neighbor subdivision.

ALGORITHM 9: Dynamic subdivision by recursive bisection.

procedure subdivide_element(e)
find the longest edge g on top face of e
split element e at its longest edge
repeat

find the neighbor e2 sharing the longest edge g
if neighbor e2 exists then

if the longest edge of e2 is different from edge g then
subdivide_element(e2)
continue

else
split element e2 at its longest edge and return

else
return

CHAPTER 5: THE FINITE ELEMENT APPROACH 94
5.7. Fracture modeling by splitting elements

Another approach to modeling fractures is to split elements along planes of principal

stresses. In this approach, stresses are evaluated at the surface nodes, rather than inside the

elements. The stress present at a node is called nodal stress. When one of the nodal

stresses exceeds the material’s threshold stress, the plane of fracture is computed. The

surrounding elements are then split by the computed fracture plane, as shown in the

example in Figure 5.17. This approach is similar to the one described by O’Brien and

Hodgins in [45]. The main difference is that I use wedge elements as opposed to the

tetrahedral elements used by O’Brien and Hodgins. Another difference comes from the

fact that I use the principal stresses to determine the fracture planes, as opposed to a

‘separation tensor’ used by O’Brien and Hodgins.

This approach of splitting elements along fracture planes is superior to that of element

removal in a number of ways. First of all, no material actually disappears from the model.

This is a more accurate representation of the real world. Secondly, element removal

incorrectly models the fracture, as it releases the stresses of the material in all directions

FIGURE 5.16: Results obtained with and without dynamic subdivision.

CHAPTER 5: THE FINITE ELEMENT APPROACH 95
around the removed element. This can lead to fracture propagation being influenced by the

element’s shape. The element splitting approach is more correct in this respect, as it only

releases the tensions in the material perpendicular to the plane of fracture. Finally, from

the visualization point of view, the element splitting does not create aliasing artifacts of

the same magnitude as the element removal technique. The fractures ‘cut’ through the

elements regardless of their shape.

5.7.1. Nodal stress evaluation

In order to split an element along the fracture plane, the plane of maximum stress must be

calculated. Since such a plane is calculated from the stress tensor evaluated at the node,

the nodal stresses at each node in the model must be calculated. Every node is potentially

shared by more than one element, so the stress could be determined by choosing one of

these elements, and then evaluating the stress at the isoparametric coordinate

corresponding to the node. However, the continuity of stress between elements is not

guaranteed by the FEM model. It is very likely that each element will evaluate the stress at

the same node differently. One approach is to average the stresses as computed inside each

FIGURE 5.17: Example of element splitting at a node.

node exceeding
threshold stress is

identified:

fracture plane is
computed from the

nodal stress:
surrounding elements are

split by the plane:
fracture emerges after

relaxation:

CHAPTER 5: THE FINITE ELEMENT APPROACH 96
element at the nodal coordinate. This solution, however, assumes that each element will

yield a correct stress at its nodes. This is generally not true, unless the nodes happen to be

the Gaussian integration points used to derive the elemental stiffness matrix . In the

model described here, none of the Gaussian integration points are located at the nodes. A

more common approach is to calculate the nodal stress as the average of stresses in

elements connected to the node [75]. The stress in each element is evaluated at the

Gaussian point closest to the node. This is the approach I chose for my implementation.

An example distribution of nodal stresses around a fracture is shown in Figure 5.18.

Other approaches to nodal stress evaluation exist as well, such as the superconvergent

patch recovery technique introduced by Zienkiewicz and Zhu [75]. The basic idea of the

superconvergent patch recovery method is to define a patch of elements around the node

Ke[]

FIGURE 5.18: Distribution of nodal stresses around a fracture.

The maximum principal
stresses are plotted as

vectors.

CHAPTER 5: THE FINITE ELEMENT APPROACH 97
for which the nodal stress is to be calculated. The stress tensors in each of these elements

are calculated at their Gaussian points. The nodal stress is then calculated using the least

square fit approximation [52] of these stress tensors. I implemented this approach but

found it unsuitable for my simulations. The results obtained using this method were

affected only marginally (not observable to the naked eye), but the performance suffered

dramatically due to the increased computation time required by the least squares fitting.

The evaluation of nodal stresses using the least square fitting approach was about 100

times slower than by simple averaging. I found that the precision of the nodal stress

calculation can be increased more efficiently by a finer discretization.

5.7.2. Modeling fractures

The fractures in a material occur along the principal stress plane associated with the

maximum principal stress. The surface in the vicinity of the node is split by a planar

fracture. Since the surface in the model is represented by the wedges, the geometry of the

elements has to be adjusted accordingly. This is implemented in the following stages. The

first step is to create a new copy of the node being split. All elements located on one side

of the fracture plane keep the original copy of the node, while the elements on the other

side the fracture plane are assigned the new copy of the node. There are up to two

elements which can be intersected by the fracture plane. These have to be split by the

fracture plane at the point of intersection.

If an element is split by the fracture plane, two new nodes are created at the point of

intersection of the fracture plane and the element, as illustrated in Figure 5.19. These

nodes are used to split the element into two new elements, located on the opposite sides of

the fracture plane. Naturally, if the edge being split is shared by another element, this

neighbor has to be split as well, to preserve T-junctions. Once all surrounding elements of

a node have been processed, the fracture has been introduced into the model. Following

CHAPTER 5: THE FINITE ELEMENT APPROACH 98
the relaxation step, the fracture emerges as shown in the example in Figure 5.17. The

algorithm for cutting an element along the fracture plane is given in Algorithm 10.

5.7.3. New fractures

After the nodal stress has been determined, the corresponding principal stresses and stress

planes are obtained by computing the eigenvalues and eigenvectors from the stress tensor.

If the maximum principal stress exceeds the material’s threshold stress, a new fracture is

FIGURE 5.19: Splitting an element by a fracture plane.

fr
ac

tu
re

 p
la

ne two new nodes are created
at the point of intersection
with the fracture plane

ALGORITHM 10: Element cutting.

procedure cut_elements_at_node(Node n)
create a copy of node n, called cn
for every element e connected to node n do:

if e is on the left of the fracture plane then
replace its reference to n by cn
continue

if e is on the right of the fracture plane then
continue

split the element along fracture plane
remesh the neighbor

CHAPTER 5: THE FINITE ELEMENT APPROACH 99
formed. If the threshold stress is exceeded at more than one node, the one with the highest

ratio of stress to threshold stress is selected, as described in Section 5.6.2.

5.7.4. Fracture propagation and termination

To capture the propagating behavior of fractures, I keep track of all fracture tips in the

model, illustrated on an example in Figure 5.20. If the fracture is allowed to propagate at

ft#4ft#4

ft#3

ft#2

ft#3

FIGURE 5.20: Tracking fracture tips during fracture propagation.

4.)
fracture continues at fracture tip
#2, and a new fracture tip #4 is

identified

1.)
point of initial fracture is found

3.)
fracture continues at fracture tip
#1, and a new fracture tip #3 is

identified

5.)
fracture continues at fracture tip

#3, no new fracture tips are
created

6.)
fracture tip continues at fracture
tip #4, no new fracture tips are

created

2.)
initial fracture is formed, and 2

fracture tips are identified

ft#1

ft#2

CHAPTER 5: THE FINITE ELEMENT APPROACH 100
the tip, the adjacent elements are split as described in the previous section, and the fracture

tip advances. The simulation loop accommodates the fracture propagation at fracture tips.

When the algorithm is looking for nodes where the next fracture will occur, the fracture

tips are examined first. Only when there are no more fracture tips left, new fractures are

introduced.

Once a new fracture is formed, it propagates through the material until it terminates. Two

approaches exist to determine how long the fracture propagates in elastic materials. The

approach introduced by Inglis [28] is based on evaluating the stress intensity at the

fracture tips as a function of distance from the tip. The second approach was introduced by

Griffith [20], which states that a fracture propagates as long as the potential energy

released by the fracture exceeds the energy required to form the fracture. I have

implemented the Griffith energy approach, because it could be integrated with the rest of

my model easier than the Inglis’s approach.

The implementation of Griffith criteria (Algorithm 11) for fracture termination is based on

measuring the elastic strain energy of the system before () and after () a crack

extension. If the amount of energy released by a crack extension per unit area () is larger

than the amount of energy needed to open the fracture (), then the fracture extends. If

the amount of energy released is too small, the fracture is terminated. The stored elastic

strain energy in the material layer is calculated as a sum of elastic strain energies of all

elements. The elastic strain energy of a single element is calculated as a dot-product of the

displacement vector and the corresponding nodal force vector. Finally, is a material

property, called fracture toughness, indicating what the intensity factor around a fracture

tip has to be in order for the fracture to propagate. The example in Figure 5.21 illustrates

how fractures terminate when the crack tips reach an area of decreased stresses.

e1 e2

G

GIC

KIC

CHAPTER 5: THE FINITE ELEMENT APPROACH 101
5.7.5. Avoiding degenerate elements

When the fracture plane intersects an element close to one of its nodes, a degenerate

wedge may be formed as a result of splitting. Some way of dealing with these degenerate

elements has to be devised. One possible way is not to allow degenerate elements to be

created - a method suggested by O’Brien and Hodgins [45]. When a fracture plane

intersects an element too close to one of its nodes, the fracture plane is rotated by a small

amount, as if it passed directly through that node. The element then does not have to be

divided at all, since it is entirely located on one side of the plane. Figure 5.22 illustrates

this technique. Unfortunately, this approach suffers from fracture directions being

occasionally influenced by the geometry of the surface subdivision. Namely, when the

ALGORITHM 11: Griffith criteria for fracture termination

procedure extend_fracture_at_tip(t)
e1 = measure_elastic_strain_energy()
introduce_fracture_at_tip(t)
a = area of the newly formed fracture wall
find the equilibrium of the model
e2 = measure_elastic_strain_energy()
G = # G=released energy per unit area
Gic = # Gic=energy required to extend fracture by one unit
if(G > Gic)

accept crack extension and continue fracture
at a newly created fracture tip

else
terminate fracture

function measure_elastic_strain_energy()
total_energy = 0
sum up the strain energies of all elements
for each element e do

F = nodal forces of e # F is a 18x1 vector
u = nodal displacements of e # u is a 18x1 vector
total_energy = F.u # dot product

return total_energy

e2 e1–() a⁄
1 υ2KIC

2–() E⁄

CHAPTER 5: THE FINITE ELEMENT APPROACH 102
fracture plane is too close to an existing edge, it will be ‘snapped’ to match the direction of

the edge.

The approach I adopted in my implementation is opposite to the one suggested by O’Brien

and Hodgins [45]. Instead of snapping the fracture plane to a nearly parallel edge, such

edge is snapped to the fracture plane. This is implemented using edge collapsing, which is

a technique used in triangular meshes to remove undesired edges from the triangulation

(for a sample application see [26]). An edge can be collapsed if one of its nodes is

completely surrounded by triangles. Edge collapsing is implemented by removing one of

the edge’s nodes (the one that is surrounded by elements), and then adjusting all triangles

that referenced the removed node to point to the other node of the edge. Naturally, the

triangles which used to share the edge that was collapsed degenerate into a single line and

therefore must be removed from the system. An extension of this algorithm to wedge

FIGURE 5.21: Fracture termination.

the velocity vector field implementing
anisotropic growth (much more stretching at

the bottom than at the top)

the resulting pattern - fractures initiate at the
bottom, propagate to the top but terminate

before reaching the other side

CHAPTER 5: THE FINITE ELEMENT APPROACH 103
elements is straightforward - collapsing an edge is equivalent to collapsing one of the

sides of the wedge elements. The element cutting algorithm is given in Algorithm 12. An

illustration of the above algorithm is given in Figure 5.23.

FIGURE 5.22: Avoiding degenerate elements by rotating the fracture plane.

fracture plane intersects the
shaded element close to an edge

if the element is split by the
fracture plane, degenerate
element(s) will be formed

the fracture plane is rotated into
a direction parallel with the edge

- no degenerate elements are
formed

ALGORITHM 12: Element cutting combined with edge collapsing.

procedure cut_elements_at_node(Node n)
create a copy of node n, called cn
for every element e connected to node n do:

if e is above fracture plane then
replace its reference to n by cn
continue

if e is below fracture plane then
continue

split the element along fracture plane
remesh the neighbor
if one of the resulting 2 triangle is degenerate then

collapse the corresponding edge

CHAPTER 5: THE FINITE ELEMENT APPROACH 104
5.7.6. Dynamic subdivision around fracture tips

Smaller elements lead to higher accuracy when calculating nodal stresses, which is a

special concern in the areas near fracture tips. If the error in the calculation of the nodal

stress at a fracture tip is too large, the fracture might incorrectly change the direction of

propagation, or even stop propagating altogether. A simple solution would be to globally

increase the level of discretization, so that all elements are small enough to achieve

acceptable accuracy. Obviously, such an approach is undesirable since it would lead to

increased memory requirements and prolonged simulation times. A better solution is to

refine the mesh around the fracture tips dynamically, as the simulation progresses. I

implemented such an algorithm, as described below.

Once the node at which the fracture will be formed is located, all elements in the vicinity

of the node are examined. If any of these elements are too large, they are subdivided using

the Rivara et al. algorithm [58] presented in Section 5.6.4. This process is repeated until

all elements in the neighborhood of the node are smaller than some desired value. To

FIGURE 5.23: Elimination of deformed elements by edge collapsing.

node to be
removed by edge

collapsing

degenerate element
formed as a by-

product of a
fracture

the degenerate
element is
completely
removed

CHAPTER 5: THE FINITE ELEMENT APPROACH 105
define the elements in the “vicinity” of a node, I use the following procedure. First, all

elements sharing the node are placed in a list. Then, the neighbors of each element in the

list are also added to the list. By controlling the number of iterations of the second step,

larger or smaller neighborhoods of elements around the node can be selected. I found that

a single iteration leads to satisfactory results.

This dynamic subdivision of elements around fracture tips is analogous to the dynamic

subdivision used for modeling fractures by element removal. It allows the use of large

elements in areas of no fractures, as it refines the mesh only in places where the increased

precision is required. By using the dynamic subdivision, resources are automatically used

where they are most needed. The end result is smaller memory requirements and faster

simulation times.

5.7.7. Adaptive mesh refinement

As mentioned earlier, the nodal stresses evaluated in each element can be quite

discontinuous. Such discontinuities can be used as an indicator that the discretization of

the continuum is not fine enough, and that the error in the stress calculations will be

significant. The discontinuities of stress at nodes also indicate where the mesh should be

refined. To further improve the accuracy of the generated fractures, I implemented an

adaptive mesh refinement algorithm to minimize the nodal stress discontinuities.

The basic idea of the algorithm is to refine all elements which share a node at which the

discontinuity (or error) in the nodal stress is unacceptable. To decide whether the

discontinuity is acceptable or not, I use the refinement indicator suggested by Bastian et

al. [4]. The discontinuity is unacceptable if the relative difference of the Von-Mises

CHAPTER 5: THE FINITE ELEMENT APPROACH 106
stresses [16] from each surrounding element at the node is larger than some user-

controlled threshold. The Von-Mises stress is defined as:

 ,

where the ‘s denote the eigenvalues of the stress tensor. The relative difference of the

Von-Mises stress calculated at the node is computed by calculating the difference between

the maximum and minimum values of obtained at the node, divided by the

maximum eigenvalue encountered. The resulting algorithm implementing the adaptive

mesh refinement is given in Algorithm 13.

σVM

σ1 σ2–()2 σ1 σ3–()2 σ2 σ3–()2+ +

2
---=

σi

σVM

ALGORITHM 13: Adaptive mesh refinement based on Von-Mises stress
indicator.

procedure refine_mesh(vm_threshold)
max_eigenvalue = smallest possible number
for each node n do:

reset n.max_vm and n.min_vm
for each element e sharing node n do:

calculate stress s in element e at gauss. point closest to n
calculate eigenvalues s1,s2 and s3 from s
max_eigenvalue = max(max_eigenvalue, s1, s2, s3)
calculate Von-Mises stress svm from s
if n.max_vm < svm then n.max_vm = svm
if n.min_vm > svm then n.min_vm = svm

for each node n do:
diff = (n.max_vm - n.min_vm) / max_eigenvalue
if diff > vm_threshold then

mark all elements sharing node n
for each marked element e do:

subdivide element e

CHAPTER 5: THE FINITE ELEMENT APPROACH 107
5.7.8. Local multi-resolution meshes for nodal stress evaluation

The dynamic subdivision of elements near fracture tips outlined in Section 5.7.6 improves

the accuracy of nodal stress calculations by refining the mesh around fracture tips. Yet,

although it provides a significant performance improvement over the approach in which

the discretization is increased globally, it still yields an unmanageable number of elements

for large models. It is possible to improve on this design even further.

The elements around a fracture tip must be quite small in order to calculate the stress at the

fracture tip correctly. I observed that after the nodal stress is calculated, the need for the

small elements disappears. This observation prompted me to design a local multi-

resolution mesh method for evaluating nodal stresses at fracture tips.

Multi-resolution meshes are sometimes used in FEM applications to calculate nodal

values with increased accuracy. The overall algorithm is straightforward. First, the

geometry of the original mesh is stored, so that it can be later recovered. Next, the entire

mesh is refined to the desired level and the nodal values are calculated. The result is then

superimposed onto the original, stored mesh. In the end, the original mesh is retained, but

the accuracy of the results has been improved.

Since the increased accuracy of nodal stresses is only needed around the fracture tips,

there is no need to refine the entire mesh. Refinement of the entire mesh would negatively

affect the performance of the simulations, as the multi-resolution mesh would have to be

constructed every time a change is introduced into the model, which happens with the

formation of every new fracture. Consequently, I implemented a local multi-resolution

mesh, constructed only around fracture tips. This is achieved by cutting out the part of the

mesh in the neighborhood of the fracture tips, and then refining the extracted sub-model.

The sub-model is selected by first marking all nodes in some user specified radius around

CHAPTER 5: THE FINITE ELEMENT APPROACH 108
the fracture tips, and then selecting all elements connected to the marked nodes. The

marked elements define a mesh, which is passed to the multi-resolution processing. This

approach of sub-model extraction assumes that the elements beyond the radius of the sub-

model do not affect the calculation of the stresses at the crack tip. To this end, all

unmarked nodes in the sub-model are treated as fixed nodes. Once the sub-model is

extracted, it is refined around the fracture tip as described in Section 5.7.6. The nodal

stress is then calculated at the fracture tip and transferred back to the original model. A

graphical illustration of this process is shown in Figure 5.24.

5.7.9. Improving element shapes around crack tips

The accuracy of the nodal stress calculation depends on both the size of the elements

around the node, as well as their shape [74]. The optimum shape of the wedge element

would have the top and bottom faces as 60-degree triangles. Even though the edge-

collapsing technique prevents formation of badly shaped triangular faces, it still produces

elements of sub-optimal shapes.

To further improve the quality of elements near fracture tips, I extended the mesh

smoothing technique developed by Zhou and Shimada [72] to three dimensions. The mesh

smoothing proposed by Zhou and Shimada is based on a system of torsion springs. Each

node is iteratively repelled into a position where the force acting on it is in an equilibrium.

The adaptation to three dimensions consists of assuring that the nodes are not forced off

the surface. This is achieved by snapping the nodes back onto the background surface after

each iteration. To make the method work on discretized surfaces, the position to which the

node is snapped is derived purely from the triangulation. This is achieved by first

determining the average surface normal from the surrounding triangles. A plane is then

constructed which passes through a node and is perpendicular to the node’s normal. When

CHAPTER 5: THE FINITE ELEMENT APPROACH 109
FIGURE 5.24: Graphical illustration of the local multi-resolution mesh
method.

a) view of an existing fracture b) the nodes in some radius around the fracture tip are
selected

c) the elements connected to selected nodes are
selected

d) the unmarked nodes in the sub-model are
treated as fixed nodes

e) the sub-model is refined around the
fracture tip and the nodal stress is

calculated f) the nodal stress is used to propagate the fracture

CHAPTER 5: THE FINITE ELEMENT APPROACH 110
the node is repelled into a position off its plane, the node is simply projected back onto this

plane. This process is repeated for each iteration.

Because global application of the mesh smoothing would require re-computation of all

elemental stiffness matrices, I apply the smoothing locally, only in the neighborhood of

the fracture tips. For every new fracture tip, all nodes in a user controlled radius around

the fracture tip are marked. From these marked nodes, the ones which are not completely

surrounded by elements (nodes on the boundaries of the material) are unmarked. The

positions of the remaining marked nodes are adjusted using the angle-smoothing

algorithm. After the nodal positions are adjusted, the reference shapes of each element

have to be recomputed. Since the elemental stiffness matrices are defined in terms of

elements’ reference shapes, they have to be recalculated as well. Naturally, by changing

the elemental stiffness matrices, the global stiffness matrix is properly adjusted to reflect

the changes.

5.8. Adaptive relaxation

To speed up the process of finding an equilibrium state of the model, I designed and

implemented an adaptive relaxation algorithm. This algorithm is based on the idea that

local changes in the geometry of the model, such as introduced by fracture formation,

splitting elements or repositioning of nodes during mesh smoothing, do not affect all

nodes in the system. Consequently, it is a waste of resources to perform the relaxation on

all nodes in the system. Only those nodes in the areas where the changes were introduced

need to be relaxed.

The adaptive relaxation proceeds in three steps. In the first step, the nodes affected by the

the local change are marked. In the second step, the relaxation is performed on the marked

nodes, treating the remaining nodes as fixed nodes. Finally, the error of the new solution is

CHAPTER 5: THE FINITE ELEMENT APPROACH 111
calculated. If the error is unacceptable, a global relaxation is applied and the radius of

local relaxation is increased for future use. Otherwise the radius is reduced. These steps

are now explained in full detail.

5.8.1. Selecting nodes for local relaxation

The model needs to be relaxed whenever a change is introduced into the model. Changes

to the model may be caused by various actions, such as fracture formation or element

splitting. To find the nodes affected by such change in the model, the local relaxation

procedure must determine where the change has taken place. One solution is to keep track

of the local changes introduced into the model, and then pass this information to the local

relaxation algorithm. The local relaxation algorithm would then select all nodes in the

areas where the changes were applied. In order to make the local relaxation algorithm

more general, I implemented a simple, yet efficient way to automatically determine where

the local changes were applied.

Whenever the model needs to be relaxed, the error of the current solution is calculated in a

manner identical to that used by the conjugate gradient method. Specifically, the error is

calculated by evaluating the left hand side of Eq. 5.48 on page 69 by setting to the

current nodal coordinates, and then subtracting the right hand side of Eq. 5.48 from the

result. The resulting column vector indicates which nodal coordinates contain an

unacceptable error. These nodes are marked for recalculation.

The next step is to mark all nodes that will likely be affected by the relaxation of the

already marked nodes. They will lie in the proximity of the marked nodes, and will also

have to be relaxed in order to achieve an equilibrium state. To this end I select all nodes

whose closest distance to any marked node is less than some threshold value, which I call

the ‘local relaxation radius’. To take into account both the curvature of the surface, as well

P[]

CHAPTER 5: THE FINITE ELEMENT APPROACH 112
as the discontinuities of the surface introduced by fractures, I define the distance between

two nodes as the shortest edge path along the top faces of elements. By defining the

distances this way, discontinuities in the material caused by fractures will present natural

barriers - i.e. two nodes separated by a fracture, even if physically close to one another,

will likely have no effect on each other. Figure 5.25 illustrates how the nodes are selected

on a cylinder and in a plane containing a fracture.

FIGURE 5.25: Selection of nodes for local relaxation.

the nodes with error are in the center of the
selected areas

CHAPTER 5: THE FINITE ELEMENT APPROACH 113
5.8.2. Local relaxation

Once the nodes in the neighborhood of local changes have been marked, a local relaxation

is applied to find their equilibrium state. This is implemented by treating all remaining

nodes as fixed and solving Eq. 5.51 on page 73 for the unknowns. Since in many cases the

number of marked nodes is much smaller than the number of unmarked nodes, the Eq.

5.51 reduces to a very small system of linear equations. Such a small system of linear

equations is solved very efficiently, improving the overall performance of the relaxation.

5.8.3. Adaptive control of the local relaxation radius

Since it is difficult to estimate a good value for the local relaxation radius ahead of time, I

decided to adaptively modify this radius as the simulation progresses. After a local

simulation step is applied, the global error of the solution is re-evaluated using Eq. 5.51 on

page 73. If the global error is larger than the required precision, the global relaxation is

applied. The presence of the global error indicates that the current value of the local

relaxation radius is too small and therefore must be increased. If the global error after the

local relaxation is acceptable, the local relaxation radius is reduced.

5.8.4. Local stress recalculation

Following the relaxation step, the stresses in the system must be recalculated. Recall that

two types of stresses are calculated: elemental stresses and nodal stresses, the nodal

stresses being calculated from the elemental stresses. If local relaxation was successful,

i.e. global error was acceptable and global relaxation therefore did not have to be applied,

then it is not necessary to recalculate all elemental stresses in the system. Specifically,

since only a small subset of nodes actually changed their coordinates, elemental stresses

CHAPTER 5: THE FINITE ELEMENT APPROACH 114
need only be recalculated in elements sharing such nodes. Nodal stresses are then re-

calculated only for those nodes shared by elements whose elemental stresses were

recalculated.

5.9. Randomizing material properties

Real life materials are rarely truly homogeneous. To model non-homogeneous properties

of materials in my simulations, I allow the material properties of each element to be

perturbed by a small amount. The level of perturbation is specified by a gray-level texture

image, which is mapped onto the surface. The material properties at a given point on the

surface are determined by finding the value of the pixel mapped at that coordinate. To find

the perturbation of the material property for an element, all pixels of the gray-level image

which map inside the element are averaged. This is done both when the initial mesh is

generated, as well as during simulations (for example after local refinement and Delaunay

re-triangulation). Figure 5.26 (left) shows a gray-level texture map representing a heart,

which is used to perturb the threshold stresses over the surface. The dark gray represents

FIGURE 5.26: Synthesizing “breaking heart”.

the gray-level image used to
perturb the levels of threshold

stress

the result

CHAPTER 5: THE FINITE ELEMENT APPROACH 115
areas of lowered threshold stress. From the resulting pattern (Figure 5.26 right) in can be

seen that cracks only formed in areas of lowered threshold stress.

5.10. Discussion of results

The main reason for abandoning the mass-spring approach for simulating fracture

formation was its inability to represent the continuous properties of the material layer.

This deficiency of the mass-spring model was particularly visible when I attempted to

simulate anisotropic planar growth. The underlying mesh of springs affected the

directionality of the fractures at a global level. In the finite element approach, the

generated fractures are not affected by the underlying mesh, at least not to the same degree

as the mass-spring approach. This is illustrated in Figure 5.27, where the results were

generated using the same mesh, and only varying the velocity vector fields.

One of the observed properties of real cracked mud is the tendency of the cracks to form

90 degree angles with respect to each other. To verify that the simulated mud behaves the

same way, I synthesized a mud pattern by allowing the material layer to shrink with

respect to a static background. The result is illustrated in Figure 5.27. The fractures in the

synthesized mud indeed often intersect each other perpendicularly.

Another interesting property of drying mud is that more and thinner fractures form in

areas where the mud is thin. This behavior of cracks was successfully simulated by

changing the height of the material layer modeled. The resulting mesh of elements, as well

as a comparison of a synthesized pattern to real cracked mud is illustrated in Figure 5.29.

The dynamic subdivision method was used on an initial mesh of 100 elements. The result

contained approximately 40,000 elements. The result was produced with the element

removal technique, and the aliasing effect on fractures can be noticed.

CHAPTER 5: THE FINITE ELEMENT APPROACH 116
FIGURE 5.27: Fracture patterns generated using anisotropic growth.

T
he

 g
en

er
at

ed
 p

at
te

rn
s.

T
he

 v
el

oc
it

y
ve

ct
or

 f
ie

ld
s

us
ed

 to
 g

en
er

at
e

th
e

pa
tte

rn
s

on
 th

e
le

ft
.

CHAPTER 5: THE FINITE ELEMENT APPROACH 117
A visually more pleasing result was obtained on the same model by using the element

splitting technique, illustrated in Figure 5.30 at the bottom. The superiority of modeling

fractures using the element splitting technique can be observed by comparing this result to

the one shown in Figure 5.28. The fracture surfaces in the synthesized pattern are free of

aliasing artifacts, although the final result contained only 9,000 elements. The temporal

sequence shown at the top of Figure 5.30 illustrates the ability of the presented model to

capture the development of the fracture pattern.

To model non-homogeneous materials, I allow various material properties to be perturbed

by user-specified textures. Figure 5.31 at the top illustrates the result of perturbing the

Young modulus and the threshold stress of the material. The simulated growth was

anisotropic - exclusively in the horizontal direction. As a result of the perturbation of the

simulation parameters, the fractures are no longer straight (compare to the pattern at the

bottom of Figure 5.27). A similar twisting effect on the fractures can be obtained by

applying growth to a material layer of non-uniform thickness, as illustrated in Figure 5.31

at the bottom.

FIGURE 5.28: Fractures often form 90 degree angles with respect to each
other.

real mud synthesized mud (using element removal)

CHAPTER 5: THE FINITE ELEMENT APPROACH 118
The methods for simulating fracture formation I presented in this thesis can be applied to

arbitrary surfaces. To demonstrate this, I have synthesized crack patterns on a growing

sphere, considering both isogonic and anisotropic growth. The pattern in Figure 5.32 on

the left was generated when the sphere grew at the same rate in all directions, while the

pattern on the right was obtained by allowing the sphere to elongate 4 times faster along

the Z-axis.

FIGURE 5.29: Varying density and size of cracks.

the thickness of the modeled material
layer changes linearly from left to right

1cm

4cm

the resulting mesh

real mud synthesized mud

CHAPTER 5: THE FINITE ELEMENT APPROACH 119
FIGURE 5.30: Temporal sequence of a simulated fracture formation in
drying mud.

a b

c d

e f

CHAPTER 5: THE FINITE ELEMENT APPROACH 120
A number of interesting, bark-like patterns have been obtained by simulating anisotropic

growth on cylindrical surfaces while varying some of the simulation parameters. A

selection of the synthesized patterns is shown in Figure 5.33. Some of the generated

patterns are compared to real-life bark in Figure 5.34. Although the difference between the

real and synthesized patterns is noticeable, the correspondence between the geometries of

the real and simulated fracture patterns is significant. The simulation parameters used to

generate the patterns in Figure 5.33 are listed in Table 5.2.

FIGURE 5.31: Perturbation of material properties.

the height of the surface layer was perturbed

Young modulus and threshold stress were perturbed using the texture
on the left

CHAPTER 5: THE FINITE ELEMENT APPROACH 121
It is interesting to note that some of the generated patterns are not observed in real life

(e.g. patterns a, b, g and j in Figure 5.33). This raises an intriguing question: Which

combinations of parameters lead to patterns that cannot be observed in nature and why? I

believe that finding the answer to this question would be a worthwhile direction of future

research as it could help us better understand nature.

This concludes my presentation of the finite element approach to modeling fractures on

differentially growing bi-layered surfaces. In the next chapter, I end the thesis by

summarizing the contributions of my work and by suggesting areas for future research.

FIGURE 5.32: Synthesized fracture patterns on growing sphere.

isogonic growth anisotropic growth

x y

z

CHAPTER 5: THE FINITE ELEMENT APPROACH 122
FIGURE 5.33: Synthesized bark-like patterns.

a
b c d

e
f g

h i j
k

l m n

CHAPTER 5: THE FINITE ELEMENT APPROACH 123
FIGURE 5.34: Real bark compared to synthesized bark.

real and synthesized siberian elm real and synthesized spruce pine

real and synthesized flowering dongwood real and synthesized black hickory

CHAPTER 5: THE FINITE ELEMENT APPROACH 124
Pattern
Young

modulus
[MPa]

Poisson
ratio

threshold
stress
[kPa]

Fracture
toughness

[J]

Rate of
growth of
the radius

Shrinkage
rate top

Shrinkage
rate

bottom

Thickness at
top (initial/

final)
[cm]

Thickness at
bottom

(initial/final)
[cm]

Fig. 5.33a 10000 0.3 200 1000 1.0 0 -0.5 0.5/10.0 1.0/20.0

Fig. 5.33b 10000 0.3 100 700 0.5 0.1 -0.2 0.25/1.5 0.5/2.5

Fig. 5.33c 10000 0.3 200 1400 0.27 0 0 0.03/0.2 0.06/0.4

Fig. 5.33d 10000 0.3 200 1400 0.3 0 0 0.03/0.3 0.06/0.6

Fig. 5.33e 10000 0.3 100 300 1.0 0 -0.5 1.0/5.0 2.0/10.0

Fig. 5.33f 10000 0.3 100 700 0.43 0 0 0.2/1.0 0.4/2.0

Fig. 5.33g 10000 0.3 1000 14000 1.0 0 0 0.3/0.3 0.6/0.6

Fig. 5.33h 10000 0.3 200 1400 0.67 0 0 0.7/0.7 0.7/0.7

Fig. 5.33i 10000 0.3 100 700 1.0 0 -0.5 1.0/5.0 2.0/10.0

Fig. 5.33j 10000 0.3 100 700 1.0 0 -0.5 1.0/10.0 1.0/10.0

Fig. 5.33k 10000 0.3 200 1400 1.0 0.5 0.5 1.0/1.0 2.0/2.0

Fig. 5.33l 10000 0.3 200 1400 1.0 0 -0.5 1.0/1.0 1.0/1.0

Fig. 5.33m 10000 0.3 200 2800 1.0 0 -0.5 1.0/1.0 1.0/1.0

Fig. 5.33n 10000 0.3 100 1200 1.0 0 0 5.0/5.0 5.0/5.0

TABLE 5.2: Simulation parameters used to generate the bark-like fracture patterns.

125
CHAPTER 6 Conclusions and Future Work

The objective of my research was to provide a firm foundation for simulating growth on

surfaces and the subsequent formation of fracture patterns. The motivation was to develop

a scientific tool for conducting what-if type experiments, which could help us achieve a

better understanding of the processes involved in fracture formation on growing surfaces.

A related motivation was to provide a new procedural texture synthesizer for the purposes

of computer graphics.

In my work, I considered fracture formation on differentially growing, bi-layered

surfaces. The top layer, called the material layer, was assumed to grow slower than the

bottom, background layer. Through the attachment of the material layer to the background

layer, such differential growth resulted in the development of stresses in the material layer,

leading to subsequent fracture formation. I described two different, physically based

approaches for modeling fracture formation. The first approach was based on a mass-

spring model, while the second was based on a finite element method. The modeled

surfaces included drying mud and tree bark.

My mass-spring based model for simulating fracture formation was implemented by

extending the Skjeltorp and Meakin mass-spring model [61], to which I introduced growth

of the background layer. I demonstrated that this approach is prone to artifacts, because

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 126
the fractures exhibit a strong tendency to align themselves with the underlying mesh. This

undesired directionality of fractures was particularly visible when anisotropic growth was

simulated. Furthermore, the relationship of the simulation parameters to real physical

properties of materials is not clear. This prevents a proper discretization of the continuum

and results in patterns being dependent on both the orientation of the mesh and the level of

discretization. Consequently, I abandoned the mass-spring based model in favor of the

more robust finite-element based technique, which represents the continuous properties of

the material layer much more precisely.

The second approach I presented for modeling fracture formation was thus based on solid

mechanics simulated using finite element methods. I incorporated growth into the

framework of finite element methods, and to the best of my knowledge, my attempt to use

finite element methods to model growing structures is the first of its kind. I modeled the

growth of the underlying background by considering global pre-strain. This was

accomplished by changing the boundary conditions of the system to reflect the changing

positions of the nodes attached to the background layer. The trajectories of the attachment

points were specified by their initial position and an appropriate velocity vector field. I

used the mathematics of growth tensors to determine what these trajectories should be, as

well as to verify that the properties of the velocity vector fields corresponded to the

desired types of growth. I considered both isogonic and uniform anisotropic growth of the

background layer on planar, cylindrical and spherical surfaces. Shrinkage, or negative

growth, of the material layer was modeled by adjusting the reference shapes of the wedge

elements, introducing elemental pre-strain. The wedges were allowed to deform their

reference shapes unevenly, representing different rates of shrinkage of the material layer

near the top and bottom.

I described and implemented two different techniques for introducing fractures into a

model. In the first technique, fractures were modeled by removing elements that exceeded

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 127
the threshold stress of the material. This technique was simpler to implement and

produced convincing results when the sizes of elements around fractures were kept small.

Nevertheless, the resulting fractures often exhibited aliasing artifacts, which had negative

impact on the appearance of the results.

The second technique introduced fractures into the model by splitting the elements along

computed fracture planes. This method of modeling fractures is superior to that of element

removal, because no material is actually removed and therefore its mass is preserved. The

opening of a new fracture was determined by comparing the computed nodal stress to the

threshold stress of the material. The direction of propagation of a fracture was established

by computing the principal stresses at the fracture tip, which were in turn used to calculate

the fracture plane. The fracture was geometrically modeled by cutting the elements

adjacent to the fracture tip node along the computed fracture plane, based on the approach

used by O’Brien and Hodgins [45]. The closure of an existing fracture was determined by

comparing the amount of energy released by the fracture to the amount of energy that

would be required to propagate it. This method of crack-closure correctly terminates a

fracture independently of the element sizes. Although this technique for modeling

fractures by element splitting was substantially more involved than the element-removal-

based method, the resulting fractures were alias-free and therefore visually more

appealing.

I developed and implemented a number of efficiency and quality enhancing techniques in

the finite-element-based model of fractures. I introduced an adaptive mesh refinement

around fracture tips, which reduced the total number of elements required and therefore

decreased the space and time requirements of the simulations. I also described and

implemented the construction of a temporary local multi-resolution mesh around the

fracture tips, which was used to calculate stresses at fracture tips with increased accuracy

but without introducing any additional elements permanently into the model. The use of

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 128
the multi-resolution mesh helped in keeping the number of elements low. Further, I

showed how the equilibrium state of the model can be efficiently recalculated after a local

change, such as fracture or local refinement, is introduced into the model. To this end, I

recalculated the solution only in the area(s) affected by the local change and I provided a

general method for automatic determination of such areas. This technique of local

recalculation of the solution was described independently of the notion of fractures, and

could be therefore applied to other problems involving introduction of local changes in the

model. To automatically and efficiently determine the next optimal time step when

applying the growth to the model, I described and implemented an adaptive time step

control. In addition, I suggest a number of techniques for maintaining a good mesh quality

around fracture tips, which is essential for achieving acceptable accuracy of the results.

First, by repositioning the nodes during element splitting, the formation of degenerate

elements was avoided when possible. Second, an angle-based mesh-smoothing algorithm

was used to locally improve the shapes of elements around fracture tips. Finally, an edge

collapsing technique and subsequent Delaunay re-triangulation were applied to remove

remaining degenerate elements.

Future research is still needed in a number of areas. For example, I model the surfaces

using only two layers - the material layer and the background layer. This has the limitation

that the generated fractures are always as deep as the height of the material layer. In

reality, however, the depth of neighboring fractures is not necessarily the same, and the

depth along a single fracture may even vary. In order to extend my model to accommodate

for varying crack depths, multiple material layers should be considered. This could be

achieved, for example, by modeling multiple, stacked material layers, so that fractures

could propagate both through and parallel to the surface.

In my simulations I reduced the number of elements required by avoiding global mesh

refinement. Instead, I used a dynamic approach, refining the mesh only around the fracture

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 129
tips. This design can be still improved upon. As the fracture propagates, the mesh remains

refined along the entire fracture. Unless the fracture curves rapidly, these small elements

are no longer needed. An automatic method for dynamic de-refinement could be devised,

which would replace these small elements by bigger ones, resulting in improved

efficiency of the simulations. Another promising approach to this problem may lie in the

recently published work of Grinspun et. al [21], where the authors introduce an adaptive,

hierarchical refinement method for finite element based simulations. Instead of refining

the actual elements in the areas of interest and need, the authors suggest a different

approach: they keep the elements, but hierarchically refine the base functions inside the

elements. Their method is independent of domain dimension, element type as well as basis

function order. I feel it would be worthwhile to examine whether their approach could be

adopted to modeling fracture formation.

It is known from elastic fracture mechanics that the stresses approach infinity near the

crack tip [1]. If the elements are very small, this leads to elemental and nodal stresses

around the fracture tips being higher than the real stresses would be. In reality, the

threshold stress of a material is never exceeded. The fracture either extends before this

happens, or the material in the neighborhood of the fracture tip (the plasticity zone) is

plastically deformed. In my simulations I determine the condition for fracture opening by

comparing the nodal stress to the threshold stress. If the issue of plasticity is ignored and

the elements are sufficiently small, this results in the fracture propagation even after it has

been terminated. Currently, I avoid this unwanted fracture propagation by artificially

defining a zone around a closed fracture tip, where new fractures are prohibited to initiate.

A physically more sound approach would be to extend the model by considering the

plasticity of the material, such as presented recently by O’Brien et al. [47].

In the current implementation, I only consider a 6-node wedge finite element, with linear

interpolation functions. As a result, the fracture surfaces are approximated by linearly

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 130
interpolated rectangular walls. A swiftly bending fracture therefore requires a large

number of small elements to correctly represent its surface. An alternative approach would

be to consider higher order elements, such as the 18-node wedge element, or an element

whose interpolation functions are hierarchically refined (Grinspun et al. [21]). The main

benefit of higher order elements is that fewer elements are required to correctly represent a

bending fracture. Also, and perhaps more importantly, the stresses in higher order

elements are more correctly approximated. The use of higher order elements would then

lead to a smaller number of elements to correctly approximate the rapidly changing stress

distribution near fracture tips. The disadvantage of using higher order elements is the

added computational costs. It would be worthwhile to investigate whether the higher order

elements would afford more efficient simulations.

The differential growth of surfaces leads to the formation of cracks, which is often

accompanied by a peeling effect. Once a patch of the material surface has been detached

from the surrounding material, its edges may also detach from the underlying background,

and then curl upward. This curling phenomenon can be observed in some types of tree

bark, and occasionally in drying mud. In the current implementation, the fractures are only

allowed to initiate at nodes on top of the material layer, and can only propagate along the

surface. To simulate the curling effect, the existing model should be extended to allow

fractures to be initiated from nodes attached to the background layer, and to propagate

parallel to the surface. Combining this extension with the multi-layer extension suggested

above could further improve both the correctness and the realism of the results.

Abstracting even further, the differential growth of surfaces can also lead to buckling. The

buckling effects resulting from differential growth have been studied by Dimian [9] and

Matthews [34]. In my future work I plan to combine their work with the fracture model

presented here.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 131
As it is difficult to predict which simulation parameters need to be changed in order to

obtain a different pattern, only a small collection of drying mud and tree bark fracture

patterns have been generated so far. However, a framework has been set up for further

exploration of the parameter space, which could determine the effects of various

simulation on the generated pattern. A better understanding of the parameter space would

not only allow for a wider selection of generated patterns, but also enhance our

understanding of nature.

Another area of improvement is the simulation of anisotropic material properties. In the

current implementation, I assume isotropic properties of the materials modeled. Wood,

however, is an anisotropic material. It has different material properties in different

directions, such as Young modulus, Poisson ratio, threshold stress and even fracture

toughness [15]. To simulate the behavior of wood under stress more correctly, anisotropic

properties of materials should be considered.

The goal of my research was to provide a firm basis for simulating fractures on growing

surfaces, which I accomplished in my finite element based model. I provided both

computational and simulation methodologies for modeling growth, and demonstrated its

potential by applying it to generate convincing crack patterns in drying mud and in tree

bark. The work presented here sets the stage for future, more detailed study of bark

formation and even studies of growth and pattern formation in general.

132
References

[1] Anderson T. L. Fracture Mechanics: Fundamentals and Applications. CRC Press,

Boca Raton, second edition, 1995.

[2] Arnold C. A. 1947. An Introduction to Paleobotany. McGraw-Hill Book Co. New

York.

[3] Ball P. The Self-made Tapestry: Pattern Formation in Nature. Oxford University

Press, 1999.

[4] Bastian P., Lang S., Eckstein K. Parallel Adaptive Multigrid Methods in Plane

Linear Elasticity Problems. Numerical Linear Algebra with Applications, Vol 1(1),

1-1, 1996.

[5] Clough R. W. The Finite Element Method in Plane Stress Analysis. Proceedings of

2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, September

1960.

[6] Courant R. Variational Methods for the Solutions of Problems of Equilibrium and

Vibrations. Bull. Am. Math. Soc., vol. 49, pp. 1–23, 1943.

[7] Crampin E. J., Gaffney E. A. and Maini P. K. Reaction and Diffusion on Growing

Domains: Scenarios for Robust Pattern Formation. Bulletin of Mathematical

Biology, 61:1093-1120, 1999.

REFERENCES 133
[8] Desbrun M., Schroder P. and Barr A. Interactive animation of structured

deformable objects. Graphics Interface 1999.

[9] Dimian D. A Physically-Based Model of Folded Surfaces with an Application to

Plant Leaves. MSc Thesis, University of Calgary, 1997.

[10] Ebert D. S. at al. Texturing and modeling: a procedural approach. Academic

Press, inc. 1994.

[11] Erickson R. O. Ann. Rev. Plant Physiol. 27:407, 1976.

[12] Erickson R. O. and Silk W. K. The kinematics of plant growth. Scientific

American, 242(5):134-151, 1980.

[13] Federl P., Prusinkiewicz P. A Texture Model for Cracked Surfaces, with an

Application to Tree Bark. Proceedings of the Seventh Western Computer Graphics

Symposium, 1996.

[14] Federl P. and Prusinkiewicz P. Modelling fracture formation in bi-layered

materials, with applications to tree bark and drying mud. Proceedings of the

Thirteenth Western Computer Graphics Symposium, 2002.

[15] Forest Products Laboratory. Wood handbook -- Wood as an engineering material.

Gen. Tech. Rep. FPL-GTR-113. Madison, WI: U.S. Department of Agriculture,

Forest Service, Forest Products Laboratory, 1999.

[16] Fung Y. C. Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs,

N.J., 1965.

[17] Gobron S. and Chiba N. Crack pattern simulation based on 3D surface cellular

automata. The Visual Computer, 17(5):287–309, 2001.

[18] Greenstadt J. On the Reduction of Continuous Problems to Discrete Form. IBM J.

Res. Dev., Vol. 3, pp. 355–363, 1959.

[19] Gresho P. M. and Sani R. L. Incompressible Flow and the Finite Element Method,

Volume 1, Wiley, April 2000.

[20] Griffith A. A. The phenomena of rupture and flow in solids. Philosophical

Transactions, 221:163–198, 1920.

REFERENCES 134
[21] Grinspun E., Krysl P. and Schroder P. CHARMS: A Simple Framework for

Adaptive Simulation. SIGGRAPH’02, 2002.

[22] Heckbert P. S. Fast Surface Particle Repulsion. New Frontiers in Modeling and

Texturing course, SIGGRAPH’97, 1997.

[23] Hejnowicz Z. and Romberger J. Growth Tensor of Plant Organs. Journal of

theoretical biology, 110:93-114, 1984.

[24] Hirota K., Tanoue Y. and Kaneko T. Generation of crack patterns with a physical

model. The Visual Computer, 14:126-137, 1998.

[25] Hirota K., Tanoue Y. and Kaneko T. Simulation of three dimensional cracks. The

Visual Computer, 16:371-378, 2000.

[26] Hoppe H. Progressive Meshes. Computer Graphics, vol. 30:99-108, 1996.

[27] Huxley J. S., Needham J. and Lerner I. M. Nature, 148:225, 1941.

[28] Inglis C. E. Stresses in a plate due to the presence of cracks and sharp corners.

Transactions of the Institute of Naval Architects, 55:219–241, 1913.

[29] Kajiya J. and Kay T. Rendering Fur with Three Dimensional Textures. SIGGRAPH

'89, 1989.

[30] Keeve E., Girod S., Pfeifle P, Girod B. Anatomy-Based Facial Tissue Modeling

Using the Finite Element Method. Proceedings of Visualization’96, 1996.

[31] Lefebvre S. and Neyret F. Synthesizing bark. Proceedings of the Thirteenth

Eurographics Workshop on Rendering, 2002.

[32] Lewis R. W., Morgan K., Thomas H. R., Seetharamu K. N. The Finite Element

Method in Heat Transfer Analysis. Wiley, April 1996.

[33] Lloyd S. Least Square Quantization in PCM. IEEE Transactions on Information

Theory. 28:129-137, 1982.

[34] Matthews M. J. Physically Based Simulation of Growing Surfaces. MSc Thesis,

University of Calgary, 2002.

[35] Mazarak O., Martins C. and Amanatides J. Animating exploding objects. In

Graphics Interface‘99, June 1999.

REFERENCES 135
[36] McCool M. and Fiume E. Hierarchical poisson disk sampling distributions.

Graphics Interface '92, 94-105, May 1992.

[37] Meinhardt H., Prusinkiewicz P. and Fowler D. The Algorithmic Beauty of Sea

Shells. Springer Verlag, 2nd edition, 1998.

[38] Metaxas D., Terzopoulos D. Dynamic Deformation Of Solid Primitives with

Constraints. SIGGRAPH’92, 1992.

[39] Morse P. M. and Feshback H. Methods of Theoretical Physics. McGraw-Hill, New

York, , Section 9.4, 1953.

[40] Murray J. D. Mathematical Biology. Springer-Verlag, 1989.

[41] Nakielski J. Tensorial Model for Growth and Cell Division in the Shoot Apex.

Pattern Formation in Biology, Vision and Dynamics. Edited by Carbone A.,

Gromov M. and Prusinkiewicz P., World Scientific Publishing, 1999.

[42] Neff M. and Fiume E. A visual model for blast waves and fracture. Graphics

Inteface‘99, June 1999.

[43] Neyret F. Modeling, Animating and Rendering Complex Scenes using Volumetric

Textures. IEEE Transactions on Visualization and Computer Graphics, 4(1):55-70,

1998.

[44] Norton A., Turk G., Bacon B., Gerth J. and Sweeney P. Animation of fracture by

physical modeling. The Visual Computer (1991) 7:210-219. Springer-Verlag 1991.

[45] O’Brien J. F., Hodgins J. K. Graphical Modeling and Animation of Brittle

Fracture. Proceedings of ACM SIGGRAPH ‘99, 1999.

[46] O’Brien J. F. Graphical Modeling and Animation of Fracture. PhD Thesis. Georgia

Institute of Technology, 2000.

[47] O’Brien J. F., Bargteil A. W., Hodgins J. K. Graphical Modeling and Animation of

Ductile Fracture. Proceedings of ACM SIGGRAPH’2002, 2002.

[48] Paquette E. The Simulation of Paint Cracking and Pealing. Proceedings of

Graphics Interface 2002.

[49] Peachey D. R. Solid Texturing of Complex Surfaces. Proceedings of ACM

SIGGRAPH ‘85, vol. 19, no. 3, pages 279-286, 1985.

REFERENCES 136
[50] Perlin K. An Image Synthesizer. Proceedings of ACM SIGGRAPH ‘85, vol. 19,

no. 3, pages 287-296, 1985.

[51] Preparata F. P., Shamos M. I. Computational geometry : an introduction. Springer-

Verlag, 1985. ISBN 0387961313.

[52] Press W. H., Teukolsky S. A., Wetterling W. T., Flannery B. P. Numerical recipes

in C: the art of scientific computing. Second edition. Cambridge University Press.

[53] Prusinkiewicz P. In Search of the Right Abstraction: The Synergy Between Art,

Science, and Information Technology in the Modeling of Natural Phenomena. Art

@ Science. Springer-Verlag/Wien, 1998.

[54] Prusinkiewicz P., Lindenmeyer A. Algorithmic Beauty of Plants. Springer-Verlag

1996.

[55] Richards O. W., Kavanagh A. J. The Analysis of Relative Growth Gradients and

Changing Form of Growing Organisms: Illustrated by the Tobacco Leaf. Amer.

Nat. 77:385-399, 1943.

[56] Richards O. W. and Kavanagh A. J. In: Essays in Growth and Form (E.E. leGros

Clark and P. B. Medawar eds). Oxford: Clarendon Press, 1945.

[57] Richards O. W. and Riley G. A. Journal of Experimental Zoology, 77(159), 1937.

[58] Rivara M. and Inostroza P. Using Longest-side Bisection Techniques for the

Automatic Refinement of Delaunay Triangulations. The 4th International Meshing

Roundtable, Sandia National Laboratories, pp.335-346, October 1995.

[59] Romberger J. A., Hejnowicz Z. and Hill J. F. Plant Structure: Function and

Development. Springer-Verlag,1993.

[60] Silk W.K. and Erickson R.O. Kinematics of plant growth. Journal of Theoretical

Biology, 76:481-501, 1979.

[61] Skjeltorp A. T., Meakin P. Fracture in Microsphere Monolayers Studied by

Experiment and Computer Simulation. Nature, 335:424-426, Sept. 1988.

[62] Smith J., Witkin A. and Baraff D. Fast and Controllable Simulation of the

Shattering of Brittle Objects. Computer graphics forum, 20(2):81-91, Blackwell

Publishing, 2001.

REFERENCES 137
[63] Terzopoulos D. and Fleischer K. Deformable models. The Visual Computer,

4(6):306-331, Dec. 1988.

[64] Terzopoulos D. and Fleischer K. Modeling inelastic deformation: Viscoelasticity,

plasticity, fracture. SIGGRAPH’88, 1988.

[65] Thompson D’A. W. On Growth and Form. Trans. Roy. Soc. Edinburgh, 50:857-

895, 1915.

[66] Thompson D’A. W. Growth and Form. Cambridge, 1917.

[67] Turing A. The chemical basis of morphogenesis. Phil. Trans. R. Soc. London,

1952.

[68] Turk G. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion.

Computer Graphics, 25(4):289-298, 1991.

[69] Witkin A. P. and Heckbert P. A. Using particles to sample and control implicit

surfaces. SIGGRAPH’94, pages 269–277, July 1994.

[70] Witkin A. and Kass M. Reaction-Diffusion Textures. Computer Graphics,

25(4):299-308, 1991.

[71] Wyvill G., McPheeters C. and Wyvill B. Animating soft objects. Visual Computer,

2:235-242, 1986.

[72] Zhou T. and Shimada K. An Angle-Based Approach to Two-Dimensional Mesh

Smoothing. The 9th International Meshing Roundtable, pp.373-84, 2000.

[73] Zienkiewicz O. C. and Cheung Y. K. Finite Elements in the Solution of Field

Problems. Engineer, Vol. 220, pp. 507–510, 1965.

[74] Zienkiewicz O. C. and Taylor R. L. Finite element method: Volume 2 - Solid

Mechanics. Butterworth Heinemann, London, 2000.

[75] Zienkiewicz O. C. and Zhu J. Z. The superconvergent patch recovery and a

posteriori error estimates. Part 1: The recovery technique. International Journal

for Numerical Methods in Engineering, 33:1331-1364, 1992.

138
APPENDIX A Fracture formation in 1D using
mass-spring systems

In an effort to address the self-similarity issue when modeling fracture formation using

mass-spring models, I developed an equivalent model in one dimension. The main

objective of this simplified 1D model was to provide more insight into the processes

taking place. The 1D model I adopted is a simplification of the 2D model already

discussed in Chapter 4. For the reader’s convenience, I will briefly recall this model:

• I am modeling a segment of an elastic surface attached to an expanding

background. If breaking is ignored, the surface segment has a spring-

like behavior, obeying Hooke’s law.

• The connection between the surface and the background is elastic,

approximated by simulating anchor springs interconnecting each seg-

ment of the surface with the background. The physical properties of an

anchor spring are related to the size of the segment to which it is

attached, so that the force necessary to move the entire segment is

directly proportional to that segment’s size.

• The material breaks at a point where a threshold tension of the material

is exceeded.

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 139
Two different approaches of the 1D model were developed: the discrete model, solved

numerically, and the continuous model, solved analytically. The discrete model assumes

the material is composed of a finite number of connected sub-segments, whose behavior

must be simulated at small time intervals. In the continuous model, the surface is assumed

to be a continuous medium, for which I developed a mathematical description. This

mathematical model can predict the behavior of the surface at any time instance, without

any need for a time-based simulation. The next two sections describe these two

implementations in detail.

A.1. Discrete model

The surface segment is discretized into sub-segments of equal sizes, each with spring-like

behavior (see Figure A.1). Every sub-segment is attached to the background by two

anchor springs, located at the sub-segments’ endpoints. There are three sources of force

acting on each sub-segment’s endpoint: the left spring (simulating left sub-segment), the

right spring (simulating right sub-segment) and the anchor spring. When the material

segment is in an equilibrium state, the sum of the forces acting at each endpoint has to be

equal to zero. The equation describing this equilibrium state can be expressed as:

Eq. A.1

where identifies the node, identifies its coordinate in the reference state, denotes

the node’s current coordinate and represents the coordinate of the node’s anchor

point. denotes the stiffness coefficient of the material spring when its rest length is one

unit. The stiffness coefficient of a material spring whose length is , is calculated as .

Similarly, denotes the stiffness coefficient of an anchor spring connecting a material

segment of unit length to the background. The stiffness coefficient of an anchor spring is

KS

h
------– p xi() p xi 1–() h––[]

KS

h
------ p xi() p xi 1+() h+–[]– KAh p xi() a xi()–[]– 0 0 x l0< <=

i xi p xi()

a xi()

KS

h KS/h

KA

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 140
directly proportional to the rest length of the surface segment to which it is attached and is

calculated as . Describing the properties of the surface independently of its size allows

for proper refinement of the subdivision, as shown in Figure A.2.

Assuming uniform distribution of anchor points we can express the positions of anchor

points: , where and represent the left-most and right-most

anchor point locations, respectively. Further, assuming that all sub-segments have constant

rest-lengths, we can write and . Substituting these into Eq. A.1

and dividing both sides of the resulting equation by we obtain:

Eq. A.2

By substituting the known quantities for anchor point locations into Eq. A.2 we can solve

for the unknown positions of nodes . The growth is therefore effectively simulated by

hKA

BACKGROUND

FIGURE A.1: Discrete 1D model.

 position of endpoint

 position of the anchor point attached endpoint

 current length of the material segment

p xi() i

a xi() i

l

a0 a x0()= p x0() a x1() p x1() p x2()

h

an a xn()=

l

a xi()
xi

l0
---- an a0–() a0+= a0 an

xi 1– xi h–= xi 1+ xi h+=

h

KS

h
2

------ 2p xi() p xi h–() p xi h+()––[] KA p xi()
xi

l0
---- an a0–() a0––+ 0=

p xi()

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 141
changing the values of the left-most and right-most anchor points, and respectively.

Similarly, shrinkage can be simulated by reducing the length of the sub-segments . The

sub-segments break when they reach a critical length , i.e. when

. Such break can be simulated by setting the stiffness coefficient of

the broken spring to zero. The results of simulations for different number of sub-segments

are shown in Figure A.2. The generated patterns are similar even though different levels of

discretization were used.

a0 an

h

lbreak

p xi() p xi 1–()– lbreak>

FIGURE A.2: Fracture formation in 1D for four different levels of
subdivision.

8 springs 16 springs

32 springs 64 springs

x
tim

e

Legend: the light gray represents the springs, the black represents the endpoints.

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 142
By allowing some of the material properties to change over time, it is possible to achieve

effects that could not be produced before. For example, by allowing the rest lengths of the

surface sub-segments to grow, it is possible to obtain self-repeating patterns (Figure A.3a).

Figure A.3b also demonstrates another extension to the model - automatic subdivision

refinement. As soon as a sub-segment reaches a certain length, it is replaced by two sub-

segments, automatically adjusting the subdivision. Automatic subdivision refinement

speeds up the simulation process as less sub-segments and connections need to be

modeled at the beginning of the simulation.

x

tim
e

(a) (b)

FIGURE A.3: Recursive patterns.

Fixed subdivision (the pattern does not repeat
infinitely because the number of cracks is
limited by the fixed number of segments).

Automatic subdivision (the pattern can repeat
infinitely).

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 143
A.2. Continuous model

In the continuos model I assume the material is a continuous medium, i.e. composed of an

infinite number of infinitely small sub-segments. In order to convert the discrete model

into a continuous one, we manipulate Eq. A.2 by taking its limit as approaches :

Eq. A.3 ,

which yields an ordinary differential equation of 2nd degree:

Eq. A.4

Solving this ODE (using Mathematica) yields the following general solution:

Eq. A.5

where the constants and depend on the boundary conditions at the endpoints of a

sub-segment. If we perform the following substitution , the equation becomes

more readable:

Eq. A.6

There are two types of boundary conditions at each endpoint: the sub-segment is either

attached to another sub-segment or it ends freely. These boundary conditions generate 4

pairs of values for and . Depending on whether a material segment is connected to

other material segments, the 4 types of boundary conditions are:

h 0

KS

h
2

------ 2p xi() p xi h–() p xi h+()––[] KA p xi()
xi

l0
---- an a0–() a0––+

h 0→
lim 0=

KSp ′ ′ x()– KAp x()
KA an a0–()

l0
-----------------------------x KAa0––+ 0=

p x()
x an ao–()

l0
------------------------ a0 C1

KA

KS

------x

sinh C2
KA

KS

------x

cosh+ + +=

C1 C2

r
KA

KS

------=

p x()
x an ao–()

l0
------------------------ a0 C1 rx()sinh C2 rx()cosh+ + +=

C1 C2

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 144
i. no neighbors,

ii. neighbor on the left, no neighbor on the right,

iii. no neighbor on the left, neighbor on the right,

iv. neighbor on the left, neighbor on the right.

Boundary condition type I: no neighbors

When a material segment has no neighbors the boundary conditions can be described by

the following equations (for the discrete model):

Eq. A.7

Eq. A.8

After applying to Equation A.7 and Equation A.8, we obtain two initial conditions:

Eq. A.9

Eq. A.10

KS

h
------ p 0() p h() h+–[]– KA

h
2
--- p 0() a 0()–[]– 0=

KS

h
------– p l0() p l0 h–() h––[] KA

h
2
--- p l0() a l0()–[]– 0=

h 0→
lim

KS

h
------ p 0() p h() h+–[]– KA

h
2
--- p 0() a 0()–[]–

h 0→
lim 0=

KS
p h() p 0()–

h
---------------------------- 1–

h 0→
lim

KA

2
------ hp 0(){ }

h 0→
lim–

KA

2
------ ha 0(){ }

h 0→
lim– 0=

KS
p h() p 0()–

h
---------------------------- 1–

h 0→
lim 0=

KS p ′ 0() 1–[] 0=

p ′ 0() 1=

KS

h
------– p l0() p l0 h–() h––[] KA

h
2
--- p l0() a l0()–[]–

h 0→
lim 0=

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 145
With these boundary conditions, the constants for Equation A.6 are:

Eq. A.11 and

After substituting Equation A.11 becomes:

 and .

Boundary condition type II: left neighbor

The material segment is connected to its neighbor at a coordinate . The boundary

conditions for our ODE now change to:

The constants for Equation A.6 are:

Eq. A.12 and .

K– S

p l0() p l0 h–()–

h
--------------------------------------- 1–

h 0→
lim

KA

2
------ hp l0(){ }

h 0→
lim–

KA

2
------ ha l0(){ }

h 0→
lim– 0=

KS

p l0 h–() p l0()–

h
--------------------------------------- 1–

h 0→
lim 0=

KS p ′ l0() 1–[] 0=

p ′ l0() 1=

C1

an a0– l0–

rl0
---------------------------–= C2

an a0– l0–() e
rl0 1–()

rl0 erl0 1+()
--=

d an a0– l0–=

C1
d

rl0
------–= C2

d e
rl0 1–()

rl0 erl0 1+()
-----------------------------=

ZL

p 0() ZL, p ′ l0() 1==

C1

d– l0r()sinh rl0a0 l0r()sinh rl0ZL–+

l0r()cosh rl0
---= C2 ZL a0–=

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 146
Boundary condition type III: right neighbor

The the boundary conditions for a material segment with a neighbor on the right side are:

Eq. A.13

The constants for Equation A.6 are:

Eq. A.14 and .

Boundary condition type IV: left and right neighbors

Finally, the boundary conditions for a material segment with two neighbors are:

Eq. A.15

The constants for Equation A.6 are:

Eq. A.16 and .

Equation A.5 represents the heart of the analytical model as it can be used to completely

derive the behavior of the sub-segment. For example, the location of maximum tensile

stress along a surface sub-segment corresponds to the point of maximum strain, i.e. where

 reaches maximum value. Candidates for such points can be found by solving for

 and . Similarly, given the rate of growth of the surface, we can

determine the precise time at which a threshold stress in a material segment is exceeded.

p ′ 0() 1, p l0() ZR==

C1
d

l0r
------–= C2

a0 l0r dl0r l0
2r d l0r()sinh– ZRl0r–+ +

l0r()cosh rl0
--=

p 0() ZL, p l0() ZR==

C1

a0– d– l0– rl0()cosh a0 rl0()cosh ZL– ZR+ +

rl0()sinh
---= C2 ZL a0–=

p ′ x()

p″ x() 0= p iii() x() 0>

APPENDIX A: FRACTURE FORMATION IN 1D USING MASS-SPRING SYSTEMS 147
The results produced by this continuous implementation (Figure A.4) match the results

obtained using the discrete (simulation-based) implementation from the previous section

(Figure A.2). The small differences in the results between these two implementations are

due to the level of discretization - which disappear when the discretization is refined. By

producing closely matching results, the two models confirm each other.

FIGURE A.4: Fracture formation in 1D using the continuos model.

x
tim

e

regular fracture pattern self-similar fracture pattern

	Abstract title - Abstract
	Acknowledgements title - Acknowledgements
	Chapter Title - Chapter 1 Introduction
	Chapter Title - Chapter 2 Review of previous work
	Heading3 - Models of fracture formation assuming large discontinuities
	Heading3 - Models of fracture formation focusing on the emerging crack patterns

	Chapter Title - Chapter 3 Modeling growth
	Heading1 - 3.1. Mathematical description of growth
	Equation - Eq. 3.1 ,
	FigureTitle - Figure 3.1: Transformation of salamander larvae (reproduced from [56]).
	Equation - Eq. 3.2 ,
	Equation - Eq. 3.3 .
	Heading1 - 3.2. The assumed models of bark and mud
	FigureTitle - Figure 3.2: The assumed two-layered models of bark and drying mud.
	Heading1 - 3.3. Implementing growth and shrinkage
	FigureTitle - Figure 3.3: The effects of a growing background on the material layer.
	FigureTitle - Figure 3.4: Shrinkage of the material layer with respect to a static background.
	Heading2 - 3.3.1. Growth of the background layer

	Equation - Eq. 3.4 .
	FigureTitle - Figure 3.5: Anisotropic planar growth: a circle transforms into an ellipse.
	FigureTitle - Figure 3.6: Velocity vector fields corresponding to anisotropic planar growth.
	Equation - Eq. 3.5 ,
	FigureTitle - Figure 3.7: Cylindrical and spherical velocity vector fields.
	FigureTitle - Figure 3.8: Local coordinate system of an infinitesimal patch of a cylindrical surf...
	Heading2 - 3.3.2. Shrinkage of the material layer
	Heading3 - Modeling shrinkage in the mass-spring model

	Equation - Eq. 3.6 ,
	Heading3 - Modeling shrinkage in the finite element model

	FigureTitle - Figure 3.9: An example of uneven shrinkage.
	FigureTitle - Figure 3.10: Construction of the reference shape for the wedge element.

	Chapter Title - Chapter 4 The mass-spring approach
	Heading1 - 4.1. Skjeltorp and Meakin model
	FigureTitle - Figure 4.1: Monolayer of shrinking micro-spheres.
	FigureTitle - Figure 4.2: The mass-spring model.
	FigureTitle - Figure 4.3: Fracture propagation simulated using a mass-spring model.
	Heading1 - 4.2. Modeling growth
	FigureTitle - Figure 4.4: Growing background induces surface expansion and stress.
	FigureTitle - Figure 4.5: Synthesized fracture patterns using isogonic growth.
	FigureTitle - Figure 4.6: Synthesized fracture patterns using anisotropic growth.
	Heading1 - 4.3. Multi-layer model
	FigureTitle - Figure 4.7: Fracture patterns obtained on cylindrical surfaces.
	Heading1 - 4.4. Non-uniform discretization
	FigureTitle - Figure 4.8: Fracture pattern synthesized using a randomized surface subdivision.
	FigureTitle - Figure 4.9: Generated patterns affected by the level of discretization.
	Heading1 - 4.5. Rendering
	FigureTitle - Figure 4.10: Graphical illustration of the post-processing step.
	FigureTitle - Figure 4.11: Different methods for rendering the same result.
	Heading1 - 4.6. Self-similar patterns
	Heading1 - 4.7. Conclusions

	Chapter Title - Chapter 5 The finite element approach
	Heading1 - 5.1. Overview of the fracture algorithm
	AlgorithmTitle - Algorithm 1: The overall simulation algorithm.
	Heading1 - 5.2. Surface discretization
	Heading2 - 5.2.1. Distribution of points on a surface

	FigureTitle - Figure 5.1: Examples of uniform discretizations of a planar surface.
	FigureTitle - Figure 5.2: Triangulation of randomly distributed points on a plane.
	AlgorithmTitle - Algorithm 2: Simple particle repelling algorithm.
	Equation - Eq. 5.1
	AlgorithmTitle - Algorithm 3: Efficient particle repelling algorithm using square grid.
	Heading2 - 5.2.2. Triangulation

	FigureTitle - Figure 5.3: A planar material layer subdivided using wedge elements.
	FigureTitle - Figure 5.4: Delaunay triangulation on cylindrical and spherical surfaces.
	Heading1 - 5.3. The element stiffness matrix
	FigureTitle - Figure 5.5: A wedge element.
	Equation - Eq. 5.2 ,
	Equation - Eq. 5.3 ,
	Equation - Eq. 5.4 where is the force vector at node .
	Equation - Eq. 5.5 ,
	Heading2 - 5.3.1. Isoparametric coordinates

	FigureTitle - Figure 5.6: Isoparametric coordinates of the wedge element.
	Heading2 - 5.3.2. Shape functions

	Equation - Eq. 5.6 .
	Equation - Eq. 5.7 for , and
	Equation - Eq. 5.8 for ,
	Equation - Eq. 5.9 ,
	Equation - Eq. 5.10 ,
	Equation - Eq. 5.11 ,
	Equation - Eq. 5.12 ,
	Equation - Eq. 5.13 and
	Equation - Eq. 5.14 .
	Equation - Eq. 5.15 .
	Equation - Eq. 5.16
	Equation - Eq. 5.17 ,
	Equation - Eq. 5.18 .
	Equation - Eq. 5.19 ,
	Equation - Eq. 5.20 ,
	Equation - Eq. 5.21 .
	Equation - Eq. 5.22
	Equation - Eq. 5.23 .
	Equation - Eq. 5.24 .
	Heading2 - 5.3.3. Derivation of the element stiffness matrix

	Equation - Eq. 5.25 ,
	Equation - Eq. 5.26
	Equation - Eq. 5.27 evaluated at .
	Equation - Eq. 5.28 ,
	Equation - Eq. 5.29
	Equation - Eq. 5.30 and inversely, .
	Heading3 - Material stiffness matrix [D]

	Equation - Eq. 5.31
	Equation - Eq. 5.32 .
	Heading3 - Matrix [B]

	Equation - Eq. 5.33
	Equation - Eq. 5.34 , , ,
	Equation - Eq. 5.35 ,
	Equation - Eq. 5.36 .
	Equation - Eq. 5.37 .
	Equation - Eq. 5.38 .
	Equation - Eq. 5.39 ,
	Equation - Eq. 5.40
	Heading3 - Gaussian integration

	Equation - Eq. 5.41 ,
	Equation - Eq. 5.42 .
	TableTitle - Table 5.1: Gaussian quadrature points for the 6-node wedge.
	Heading3 - Modeling elemental pre-strain

	Equation - Eq. 5.43 ,
	Equation - Eq. 5.44 ,
	Equation - Eq. 5.45 .
	Equation - Eq. 5.46 ,
	Equation - Eq. 5.47 .
	Heading1 - 5.4. The global stiffness matrix
	FigureTitle - Figure 5.7: Global and local node numbering.
	Equation - Eq. 5.48 ,
	Equation - Eq. 5.49 .
	Equation - Eq. 5.50 ,
	AlgorithmTitle - Algorithm 4: Algorithm for calculating global stiffness matrix.
	Heading1 - 5.5. Calculating the equilibrium state
	Equation - Eq. 5.51 ,
	Heading3 - Gaussian elimination
	Heading3 - Gaussian elimination on banded systems

	FigureTitle - Figure 5.8: Graphical representation of matrix bandwidth.
	Heading3 - Gauss elimination on sparse matrices
	Heading3 - Gauss-Seidel iterative method
	Heading3 - Conjugate gradient method

	Heading1 - 5.6. Fracture modeling by removing elements
	Heading2 - 5.6.1. Stress calculation

	Equation - Eq. 5.52 .
	Equation - Eq. 5.53 .
	Heading3 - Selecting locations for stress evaluation
	Heading3 - Principal stresses and principal planes of stress

	FigureTitle - Figure 5.9: Distribution of the maximum principal stress.
	Heading2 - 5.6.2. Selecting the element for removal and adaptive time-step control

	AlgorithmTitle - Algorithm 5: Adaptive time step control.
	Heading2 - 5.6.3. Element removal

	AlgorithmTitle - Algorithm 6: Removing and from and by subtraction.
	AlgorithmTitle - Algorithm 7: Removing and from and by reconstruction.
	FigureTitle - Figure 5.10: Fracture propagation using element removal.
	FigureTitle - Figure 5.11: Fracture patterns for different levels of discretization.
	Heading2 - 5.6.4. Dynamic subdivision

	AlgorithmTitle - Algorithm 8: Dynamic subdivision.
	Heading3 - Subdividing an element by trisection

	FigureTitle - Figure 5.12: Subdividing an element by trisection.
	Heading3 - Subdividing an element into four elements

	FigureTitle - Figure 5.13: Subdividing an element into four elements.
	Heading3 - Subdividing an element by bisection

	FigureTitle - Figure 5.14: Subdivision of an element by bisection.
	FigureTitle - Figure 5.15: Splitting an element with a recursive neighbor subdivision.
	AlgorithmTitle - Algorithm 9: Dynamic subdivision by recursive bisection.
	FigureTitle - Figure 5.16: Results obtained with and without dynamic subdivision.
	Heading1 - 5.7. Fracture modeling by splitting elements
	FigureTitle - Figure 5.17: Example of element splitting at a node.
	Heading2 - 5.7.1. Nodal stress evaluation

	FigureTitle - Figure 5.18: Distribution of nodal stresses around a fracture.
	Heading2 - 5.7.2. Modeling fractures

	FigureTitle - Figure 5.19: Splitting an element by a fracture plane.
	AlgorithmTitle - Algorithm 10: Element cutting.
	Heading2 - 5.7.3. New fractures
	Heading2 - 5.7.4. Fracture propagation and termination

	FigureTitle - Figure 5.20: Tracking fracture tips during fracture propagation.
	AlgorithmTitle - Algorithm 11: Griffith criteria for fracture termination
	FigureTitle - Figure 5.21: Fracture termination.
	Heading2 - 5.7.5. Avoiding degenerate elements

	FigureTitle - Figure 5.22: Avoiding degenerate elements by rotating the fracture plane.
	AlgorithmTitle - Algorithm 12: Element cutting combined with edge collapsing.
	FigureTitle - Figure 5.23: Elimination of deformed elements by edge collapsing.
	Heading2 - 5.7.6. Dynamic subdivision around fracture tips
	Heading2 - 5.7.7. Adaptive mesh refinement

	AlgorithmTitle - Algorithm 13: Adaptive mesh refinement based on Von-Mises stress indicator.
	Heading2 - 5.7.8. Local multi-resolution meshes for nodal stress evaluation

	FigureTitle - Figure 5.24: Graphical illustration of the local multi-resolution mesh method.
	Heading2 - 5.7.9. Improving element shapes around crack tips

	Heading1 - 5.8. Adaptive relaxation
	Heading2 - 5.8.1. Selecting nodes for local relaxation

	FigureTitle - Figure 5.25: Selection of nodes for local relaxation.
	Heading2 - 5.8.2. Local relaxation
	Heading2 - 5.8.3. Adaptive control of the local relaxation radius
	Heading2 - 5.8.4. Local stress recalculation

	FigureTitle - Figure 5.26: Synthesizing “breaking heart”.
	Heading1 - 5.9. Randomizing material properties
	Heading1 - 5.10. Discussion of results
	FigureTitle - Figure 5.27: Fracture patterns generated using anisotropic growth.
	FigureTitle - Figure 5.28: Fractures often form 90 degree angles with respect to each other.
	FigureTitle - Figure 5.29: Varying density and size of cracks.
	FigureTitle - Figure 5.30: Temporal sequence of a simulated fracture formation in drying mud.
	FigureTitle - Figure 5.31: Perturbation of material properties.
	FigureTitle - Figure 5.32: Synthesized fracture patterns on growing sphere.
	FigureTitle - Figure 5.33: Synthesized bark-like patterns.
	FigureTitle - Figure 5.34: Real bark compared to synthesized bark.
	TableTitle - Table 5.2: Simulation parameters used to generate the bark-like fracture patterns.

	Chapter Title - Chapter 6 Conclusions and Future Work
	ReferencesTitle - References
	Bookmark - [1] Anderson T. L. Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca ...
	Bookmark - [2] Arnold C. A. 1947. An Introduction to Paleobotany. McGraw-Hill Book Co. New York.
	Bookmark - [3] Ball P. The Self-made Tapestry: Pattern Formation in Nature. Oxford University Pre...
	Bookmark - [4] Bastian P., Lang S., Eckstein K. Parallel Adaptive Multigrid Methods in Plane Line...
	Bookmark - [5] Clough R. W. The Finite Element Method in Plane Stress Analysis. Proceedings of 2n...
	Bookmark - [6] Courant R. Variational Methods for the Solutions of Problems of Equilibrium and Vi...
	Bookmark - [7] Crampin E. J., Gaffney E. A. and Maini P. K. Reaction and Diffusion on Growing Dom...
	Bookmark - [8] Desbrun M., Schroder P. and Barr A. Interactive animation of structured deformable...
	Bookmark - [9] Dimian D. A Physically-Based Model of Folded Surfaces with an Application to Plant...
	Bookmark - [10] Ebert D. S. at al. Texturing and modeling: a procedural approach. Academic Press,...
	Bookmark - [11] Erickson R. O. Ann. Rev. Plant Physiol. 27:407, 1976.
	Bookmark - [12] Erickson R. O. and Silk W. K. The kinematics of plant growth. Scientific American...
	Bookmark - [13] Federl P., Prusinkiewicz P. A Texture Model for Cracked Surfaces, with an Applica...
	Bookmark - [14] Federl P. and Prusinkiewicz P. Modelling fracture formation in bi-layered materia...
	Bookmark - [15] Forest Products Laboratory. Wood handbook -- Wood as an engineering material. Gen...
	Bookmark - [16] Fung Y. C. Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, N.J.,...
	Bookmark - [17] Gobron S. and Chiba N. Crack pattern simulation based on 3D surface cellular auto...
	Bookmark - [18] Greenstadt J. On the Reduction of Continuous Problems to Discrete Form. IBM J. Re...
	Bookmark - [19] Gresho P. M. and Sani R. L. Incompressible Flow and the Finite Element Method, Vo...
	Bookmark - [20] Griffith A. A. The phenomena of rupture and flow in solids. Philosophical Transac...
	Bookmark - [21] Grinspun E., Krysl P. and Schroder P. CHARMS: A Simple Framework for Adaptive Sim...
	Bookmark - [22] Heckbert P. S. Fast Surface Particle Repulsion. New Frontiers in Modeling and Tex...
	Bookmark - [23] Hejnowicz Z. and Romberger J. Growth Tensor of Plant Organs. Journal of theoretic...
	Bookmark - [24] Hirota K., Tanoue Y. and Kaneko T. Generation of crack patterns with a physical m...
	Bookmark - [25] Hirota K., Tanoue Y. and Kaneko T. Simulation of three dimensional cracks. The Vi...
	Bookmark - [26] Hoppe H. Progressive Meshes. Computer Graphics, vol. 30:99-108, 1996.
	Bookmark - [27] Huxley J. S., Needham J. and Lerner I. M. Nature, 148:225, 1941.
	Bookmark - [28] Inglis C. E. Stresses in a plate due to the presence of cracks and sharp corners....
	Bookmark - [29] Kajiya J. and Kay T. Rendering Fur with Three Dimensional Textures. SIGGRAPH '89,...
	Bookmark - [30] Keeve E., Girod S., Pfeifle P, Girod B. Anatomy-Based Facial Tissue Modeling Usin...
	Bookmark - [31] Lefebvre S. and Neyret F. Synthesizing bark. Proceedings of the Thirteenth Eurogr...
	Bookmark - [32] Lewis R. W., Morgan K., Thomas H. R., Seetharamu K. N. The Finite Element Method ...
	Bookmark - [33] Lloyd S. Least Square Quantization in PCM. IEEE Transactions on Information Theor...
	Bookmark - [34] Matthews M. J. Physically Based Simulation of Growing Surfaces. MSc Thesis, Unive...
	Bookmark - [35] Mazarak O., Martins C. and Amanatides J. Animating exploding objects. In Graphics...
	Bookmark - [36] McCool M. and Fiume E. Hierarchical poisson disk sampling distributions. Graphics...
	Bookmark - [37] Meinhardt H., Prusinkiewicz P. and Fowler D. The Algorithmic Beauty of Sea Shells...
	Bookmark - [38] Metaxas D., Terzopoulos D. Dynamic Deformation Of Solid Primitives with Constrain...
	Bookmark - [39] Morse P. M. and Feshback H. Methods of Theoretical Physics. McGraw-Hill, New York...
	Bookmark - [40] Murray J. D. Mathematical Biology. Springer-Verlag, 1989.
	Bookmark - [41] Nakielski J. Tensorial Model for Growth and Cell Division in the Shoot Apex. Patt...
	Bookmark - [42] Neff M. and Fiume E. A visual model for blast waves and fracture. Graphics Intefa...
	Bookmark - [43] Neyret F. Modeling, Animating and Rendering Complex Scenes using Volumetric Textu...
	Bookmark - [44] Norton A., Turk G., Bacon B., Gerth J. and Sweeney P. Animation of fracture by ph...
	Bookmark - [45] O’Brien J. F., Hodgins J. K. Graphical Modeling and Animation of Brittle Fracture...
	Bookmark - [46] O’Brien J. F. Graphical Modeling and Animation of Fracture. PhD Thesis. Georgia I...
	Bookmark - [47] O’Brien J. F., Bargteil A. W., Hodgins J. K. Graphical Modeling and Animation of ...
	Bookmark - [48] Paquette E. The Simulation of Paint Cracking and Pealing. Proceedings of Graphics...
	Bookmark - [49] Peachey D. R. Solid Texturing of Complex Surfaces. Proceedings of ACM SIGGRAPH ‘8...
	Bookmark - [50] Perlin K. An Image Synthesizer. Proceedings of ACM SIGGRAPH ‘85, vol. 19, no. 3, ...
	Bookmark - [51] Preparata F. P., Shamos M. I. Computational geometry : an introduction. Springer-...
	Bookmark - [52] Press W. H., Teukolsky S. A., Wetterling W. T., Flannery B. P. Numerical recipes ...
	Bookmark - [53] Prusinkiewicz P. In Search of the Right Abstraction: The Synergy Between Art, Sci...
	Bookmark - [54] Prusinkiewicz P., Lindenmeyer A. Algorithmic Beauty of Plants. Springer-Verlag 1996.
	Bookmark - [55] Richards O. W., Kavanagh A. J. The Analysis of Relative Growth Gradients and Chan...
	Bookmark - [56] Richards O. W. and Kavanagh A. J. In: Essays in Growth and Form (E.E. leGros Clar...
	Bookmark - [57] Richards O. W. and Riley G. A. Journal of Experimental Zoology, 77(159), 1937.
	Bookmark - [58] Rivara M. and Inostroza P. Using Longest-side Bisection Techniques for the Automa...
	Bookmark - [59] Romberger J. A., Hejnowicz Z. and Hill J. F. Plant Structure: Function and Develo...
	Bookmark - [60] Silk W.K. and Erickson R.O. Kinematics of plant growth. Journal of Theoretical Bi...
	Bookmark - [61] Skjeltorp A. T., Meakin P. Fracture in Microsphere Monolayers Studied by Experime...
	Bookmark - [62] Smith J., Witkin A. and Baraff D. Fast and Controllable Simulation of the Shatter...
	Bookmark - [63] Terzopoulos D. and Fleischer K. Deformable models. The Visual Computer, 4(6):306-...
	Bookmark - [64] Terzopoulos D. and Fleischer K. Modeling inelastic deformation: Viscoelasticity, ...
	Bookmark - [65] Thompson D’A. W. On Growth and Form. Trans. Roy. Soc. Edinburgh, 50:857- 895, 1915.
	Bookmark - [66] Thompson D’A. W. Growth and Form. Cambridge, 1917.
	Bookmark - [67] Turing A. The chemical basis of morphogenesis. Phil. Trans. R. Soc. London, 1952.
	Bookmark - [68] Turk G. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion. Compu...
	Bookmark - [69] Witkin A. P. and Heckbert P. A. Using particles to sample and control implicit su...
	Bookmark - [70] Witkin A. and Kass M. Reaction-Diffusion Textures. Computer Graphics, 25(4):299-3...
	Bookmark - [71] Wyvill G., McPheeters C. and Wyvill B. Animating soft objects. Visual Computer, 2...
	Bookmark - [72] Zhou T. and Shimada K. An Angle-Based Approach to Two-Dimensional Mesh Smoothing....
	Bookmark - [73] Zienkiewicz O. C. and Cheung Y. K. Finite Elements in the Solution of Field Probl...
	Bookmark - [74] Zienkiewicz O. C. and Taylor R. L. Finite element method: Volume 2 - Solid Mechan...
	Bookmark - [75] Zienkiewicz O. C. and Zhu J. Z. The superconvergent patch recovery and a posterio...
	Appendix Title - Appendix A Fracture formation in 1D using mass-spring systems
	Heading1 - A.1. Discrete model
	Equation - Eq. A.1
	FigureTitle - Figure A.1: Discrete 1D model.
	Equation - Eq. A.2
	FigureTitle - Figure A.2: Fracture formation in 1D for four different levels of subdivision.
	FigureTitle - Figure A.3: Recursive patterns.
	Heading1 - A.2. Continuous model
	Equation - Eq. A.3 ,
	Equation - Eq. A.4
	Equation - Eq. A.5
	Equation - Eq. A.6
	Heading3 - Boundary condition type I: no neighbors

	Equation - Eq. A.7
	Equation - Eq. A.8
	Equation - Eq. A.9
	Equation - Eq. A.10
	Equation - Eq. A.11 and
	Heading3 - Boundary condition type II: left neighbor

	Equation - Eq. A.12 and .
	Heading3 - Boundary condition type III: right neighbor

	Equation - Eq. A.13
	Equation - Eq. A.14 and .
	Heading3 - Boundary condition type IV: left and right neighbors

	Equation - Eq. A.15
	Equation - Eq. A.16 and .
	FigureTitle - Figure A.4: Fracture formation in 1D using the continuos model.

