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Since Descartes, coordinates have been the standard
mathematical construct for describing and manipulating ge-
ometric objects. In addition, indices are commonly used to
label elements of discrete geometric structures, such as poly-
gon meshes. Since the coordinates and indices are numbers,
they can be manipulated algebraically. This sets the frame-
work for the handling of geometric objects in algebraic terms
that is the essence of analytic geometry. In some model-
ing applications, however, the use of coordinates leads to
complications that are not inherent in the modeling problems
themselves. For example, DeRose pointed to both confusion
and errors stemming from different geometric interpretations
of the same transformation matrix [3, 4].

We will focus on dynamic geometric objects, which can
be seen to develop over time. Examples include fractals, sub-
division curves and surfaces, and models of growing biolog-
ical structures. Coordinates and indices do not identify el-
ements of these objects in a convenient, time-invariant way.
For instance, the coordinates of a cell in a growing biolog-
ical tissue may change over time, even though it materially
is the same cell. Furthermore, if the cells are indexed, the
indices may have to be updated following cell division in or-
der to preserve consecutive numbering of the adjacent cells.
Similarly, in the case of subdivision curves and surfaces, the
existing points may change position over time, while the in-
sertion of new points may require all points to be reindexed.

We can address these difficulties using formalisms that
hide coordinates and indices from the modeler’s perspective.
Such formalism are expressed in local terms, which means
that:

arguments of geometric operations are selected based
on the state of the elements of the structure and their
neighbors,

these neighbors are identified using suitably defined
topological relations, and

all operations are expressed in a coordinate-free man-
ner.

Cellular automata [11] provide an example of a formalism
that meets these criteria. In each step of a cellular automa-
ton operation, every cell is assigned a new state according

to its previous state and the states of its neighbors. These
neighbors can be referred to as the left, right, up, and down
neighbors, which does not require the use of coordinates or
indices.

L-systems [8] with the turtle interpretation [9] provide
another example of algorithm specification in local terms.
Unlike cellular automata, which may represent surfaces, L-
systems are limited to linear and branching structures. On
the other hand, the L-system rules allow for the insertion
and deletion of cells, and thus support objects with a chang-
ing topology (dynamical systems with a dynamic struc-
ture [7]). This is the foundation of the L-system applications
to the generation of fractals and simulation of plant develop-
ment [10].

I will show that other geometric constructs, based on
the affine geometry operations [4], Euclidean geometry con-
structions [6], and physically-based modeling, rather than
turtle geometry, can also be used to interpret L-systems.
These alternative interpretations have useful practical appli-
cations. For example, L-systems with the affine geometry
interpretation provide a compact and intuitive representation
of subdivision algorithms for curves.

Specifically, let be a sequence of control
points, which defines a closed subdivision curve. Denote by

the L-system module [10] representing point , and let
the string of modules

denote the axiom of a family of L-systems operating on cir-
cular words. Assume that the standard notation for L-system
productions [10] has been extended with the affine geometry
operations [4] on module parameters. The following sample
productions implement Chaikin [2], B-spline [1] and Dyn-
Gregory-Levin [5] subdivision schemes:
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The essence of L-systems can be extended to polygon
meshes. This requires a representation of mesh topologies
with suitably defined operations for accessing neighboring
elements. Several such representations exist and, similar to
the linear and branching structures generated by L-systems,
they can be associated with different geometric interpreta-
tions. The affine interpretation is well suited for the gen-
eration of subdivision surfaces, whereas the interpretations
based on Euclidean geometry and physically-based model-
ing are useful in the simulation of growing biological struc-
tures. The resulting geometric rewriting systems preserve
the index- and coordinate-free character of L-systems, thus
making it possible to express further classes of modeling al-
gorithms in a simple manner.
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