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Abstract

Turing proposed a mathematical model based on chemical reactions and diffusion

of substances throughout the xy-plane, called reaction-diffusion, to study the emer-

gence of patterns from a homogeneous medium [65]. Hammel and Prusinkiewicz used

L-systems and reaction-diffusion in a one-dimensional medium to model the forma-

tion of sea shell patterns, and in an expanding one-dimensional medium to model

heterocyst spacing in the cyanobacterium Anabaena catenula [25]. They considered

the formation of these two patterns as a continuous deterministic process neglecting

the noise which is inherent to such a process.

The approach taken in this work is to stochastically model reaction-diffusion in

a spatial, and possibly expanding, linear structure using L-systems. The stochastic

simulation method for chemical reaction kinetics which was developed by Gillespie

[20] is used to study this model. On the basis of theoretical considerations, the L-

system modelling language L+C [31] is extended to include a stochastic rewriting

strategy based on Gillespie’s algorithm.
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Chapter 1

Introduction

Extensive research has been done on the mechanisms involved in the formation of

biological patterns, such as mammalian coat patterns or butterfly wing patterns

[48, chapters 2,3]. Much of the research has been focused on finding mathematical

models to describe the formation of such patterns, and many of the proposed models

have been based on a reaction-diffusion type mechanism. This is a mechanism first

proposed by Turing in 1952 [65] to explain morphogenesis, which is the emergence

of a complex form or pattern during an organism’s development. In its basic form,

reaction-diffusion involves two substances that interact with one another according

to some chemical reactions (e.g., autocatalization of a substance) and that diffuse

throughout a medium. A mathematical model of this mechanism was given by Turing

as a set of differential equations, which describe the reaction kinetics and diffusion of

the substances over time. Meinhardt further extended and investigated this type of

model, and using it reproduced and explained a number of patterns found in nature

[39]. To produce these patterns, he used numerical methods to solve the differential

equations that represent reaction-diffusion.

The focus of the research presented in this thesis is on another computational

approach for modelling pattern formation using reaction-diffusion. Two models of

pattern formation are examined in this thesis: the pigmentation patterns on sea

shells and the spacing of heterocysts (specialized cells) in the bacterium Anabaena

catenula. A continuous differential equation model for both of these patterns has

1



2

been used by Fowler, Meinhardt, and Prusinkiewicz for the former [14], and by

Hammel and Prusinkiewicz for the latter [25]. The problem with this approach is

that it does not account for stochastic effects present in the formation of such pat-

terns, and without considering these effects it is hard to justify the ability of the

model to produce the desired pattern with respect to noise (i.e. the robustness of the

model [70]). One possible solution is to model the reaction-diffusion mechanism as a

(continuous time) discrete-event stochastic process, where the number of molecules of

each substance is a random variable that changes according to the mechanism. The

model can then be studied using one of several approaches: a stochastic simulation

approach (Markov process), a τ -leaping approach (Poisson process), or a Langevin

type stochastic differential equation approach (Gaussian process) [67]. Figure 1.1

shows these modelling possibilities in a discrete to continuous relation from left to

right. The research presented in this thesis examines the reaction-diffusion mecha-

nism in a growing structure using stochastic simulation (as a Markov process).

Markov
process

Poisson
process

Gaussian
process

Continuous
deterministic
process

Chemical
master
equation

(Gillespie's method)

τ-leaping Langevin-
stochastic
differential
equations

Ordinary
differential
equations

Discrete-stochastic

Molecular
dynamics

Figure 1.1: The chemical reaction kinetic modelling spectrum: on top the mathe-
matical model, and on bottom the mathematical tool used to study the model.
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The first study of the reaction-diffusion mechanism using a stochastic simula-

tion method was done by Stundzia and Lumsden [63]. They presented a generalized

version of a stochastic simulation algorithm used for studying models of chemical

reactions. Elf, Doncic and Ehrengerb later improved the computation time of the

generalized stochastic simulation algorithm by using a specialized data structure

called a minimum heap [10]. Both works, however, focused on implementation de-

tails rather than on pattern formation, and therefore did not consider the reaction-

diffusion mechanism in a growing structure or applications of their techniques to

pattern formation.

There is computer software available to model the reaction-diffusion mechanism

using any one of the three approaches: deterministic differential equations, stochas-

tic differential equations, and the stochastic simulation approach. Some of this soft-

ware requires almost no knowledge of computer programming, such as XPPAUT

[11], and some requires at least high-level programming knowledge, such as Oc-

tave (http://www.octave.org). There is also software that offers a graphical user

interface for inputting the reactions involved in the mechanism, such as Cellware

[9] or SmartCell [1]. None of these, however, are nicely fitted towards models of

spatial structures, and in particular growing structures, where the number of equa-

tions/reactions changes over time (e.g., through the process of cell division). To

model growing organisms, more advanced software is needed. The simulation soft-

ware, lpfg, is designed to handle developmental models of growing organisms that

form linear or branching filaments through the use of the L-system formalism [31, 32].

It simulates models that are written in the L+C modelling language [31], which ex-

tends the C++ programming language with constructs inherent in L-systems [32].
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An alternate L-system based simulator cpfg [26, 55] does exist, but it does not have

the flexibility of the L+C modelling language. Two other alternatives to L-system

based simulators, which are designed to handle developmental models of complex

topological structures, are the modelling languages MGS [16] and VV [62]. Al-

though it is possible to use one of these languages instead of an L-system based one,

they would be excessive for modelling sea shell patterns or Anabaena. The final out-

come of this research is a stochastic simulation approach using L-systems for models

of pattern formation in sea shells and Anabaena.

1.1 Contributions of Research

A review of mathematical models for reaction kinetics and the methods which may be

used to solve them is the first contribution of this research. The models considered

are of two types: deterministic models that do not account for noise which may

affect the pattern formation process, or stochastic models that do. The methods for

solving the deterministic models are described briefly, while full attention is given to

the stochastic models. There is also a discussion of approximation methods for the

stochastic simulations.

The incorporation of a stochastic simulation method into L-system formalism

and the related extension to the L+C modelling language is another contribution of

this research. In principle, L+C uses a parallel rewriting strategy for deriving a new

L-system string, so having a sequential stochastic rewriting strategy is a fundamental

change to the L+C language. The idea to incorporate a stochastic simulation method

into the L+C modelling language is due to Przemyslaw Prusinkiewicz. The design
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of the language constructs that formalize the stochastic simulation method in the

L+C language is due to Przemyslaw Prusinkiewicz and Mikolaj Cieslak. The first

implementation was done by Radoslaw Karwowski, and subsequent work was done

by Mikolaj Cieslak.

Another contribution of this research is the application of a stochastic simula-

tion method to reaction-diffusion in the context of L-systems. A description of a

stochastic approach to the activator-substrate equations, a type of reaction-diffusion

equation, that can be used to generate pigmentation patterns on sea shells, is given.

Also, two different stochastic models for the bacterium Anabaena are given: one is

based on the original thresholding model by Lindenmayer, and the other is based on

a more recent reaction-diffusion model by Hammel and Prusinkiewicz.

1.2 Organization of Thesis

In Chapter 2, we review the background knowledge which is necessary to stochas-

tically simulate reaction-diffusion using L-systems. The review includes: chemical

reaction kinetics (the basis for reaction-diffusion), a visualization technique that may

be used for chemical systems, and the L-system formalism along with the modelling

language L+C, which is based on that formalism. In Chapter 3, we review two

methods for studying chemical kinetics. In the first method, ordinary differential

equations are used to represent changes in concentrations of a chemical species, and

in the other method, a master equation is used to represent discrete changes in the

number of molecules of a chemical species.

Since the master equation is difficult to solve analytically or numerically, we
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review a stochastic simulation method for chemical reactions in Chapter 4. Then in

Chapter 5, Lotka’s chemical system and a chemical system based on quasi-steady

state enzyme kinetics are simulated using the stochastic approach. Also in Chapter

5, the extension of a sequential stochastic rewriting strategy to the L+C modelling

language and the related simulator lpfg is introduced. Using the combination of

the stochastic rewriting strategy and L-systems, we implement stochastic models

of reaction-diffusion in Chapter 6. Reaction-diffusion models in a growing linear

structure are also presented there.

Finally, the thesis concludes in Chapter 7 with an evaluation of the CPU time that

is required to generate the patterns presented in this thesis, and with a discussion of

possible further research directions.



Chapter 2

Background

2.1 Introduction

The background knowledge which is necessary to understand the work presented in

this thesis is discussed in three parts: first, a deterministic and stochastic approach

to modelling chemical reaction kinetics, second, a visualization technique for chem-

ical systems, and last, the L-system formalism with a brief description of the L+C

modelling language. The relevance of this background knowledge to the rest of the

thesis is also discussed in this chapter.

2.2 Kinetics of Chemical Reactions

Modelling the kinetics of chemical reactions is important to discuss because most

reaction-diffusion models are based on a set of chemical reactions. Thus, by reviewing

mathematical models of chemical reactions, the task of modelling reaction-diffusion

will be made much easier.

A chemical reaction of the following form [18, page 14],

naA + nbB
k−→ ncC + ndD, (2.1)

is read as: na molecules of species A react with nb molecules of species B to produce

nc molecules of species C and nd molecules of species D. The species A and B are

called the reactants, and the species C and D are called the products. The numbers

7
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of molecules of each species, na, nb, nc and nd, are small non-negative integers called

stoichiometric coefficients. The value k above the reaction arrow is the reaction

constant, which “is a way of specifying the amount of time the reaction takes [to

complete]” [18, page 14]. More precisely, this constant specifies the probability that

(at a fixed temperature) a collision between the reactant molecules will occur with

sufficient energy to complete the reaction and give the products. As an example let

us consider decay, which is a part of the reaction-diffusion model and involves only

one simple reaction. The following chemical reaction describes the decay process:

A
µ−→ ∗. (2.2)

This is just a degenerated case of reaction (2.1), because all but one of the sto-

ichiometric coefficients are equal to zero. Several mathematical models have been

developed for modelling such a process (an overview is given by Gibson and Mjolsness

[18, page 20]). For our purposes, however, only two types of models are examined: a

continuous model at the level of concentrations of the chemical species, and a discrete

model at the level of the number of molecules.

2.2.1 Deterministic ODE Approach for Modelling Chemical Kinetics

To model a chemical reaction using the deterministic ordinary differential equation

(ODE) approach, three assumptions are made [18, page 31]: (1) the system is well

mixed so that the rate of collisions between molecules is greater than the rate of

reactions, (2) the number of molecules is large enough so that discrete changes can

be approximated by continuous changes in concentration, and (3) the fluctuations in

concentration about the mean are small (i.e. the variance is low). These assumptions
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allow us to express the chemical reactions using a set of ODEs, whose variables are

the concentrations of the species in the system. As an example, consider the chemical

reaction for decay (2.2). In the deterministic ODE approach this reaction is written

as follows,

da(t)

dt
= −µa(t), (2.3)

where lowercase letters denote the concentration, a(t), of the species A at time t.

The ODE (2.3) expresses the decay of the species A over time with reaction rate

µa(t), i.e., the concentration a decreases with rate µa(t). The reaction rate is found

according to the law of mass action (first formulated by Guldberg and Waage in

1864 [6]), and says that the rate of reaction is directly proportional to the product of

the concentration of the reactants (or in the case of decay, reactant). In other words,

the reaction rate is a product of the reactants multiplied by the reaction constant.

Now let us examine the deterministic ODE approach in the general case.

Recall the general form of a chemical reaction (2.1). If this type of reaction is to

be modelled using ODEs, the change in concentration of each species over time must

be found. Using the law of mass action, with the concentration of each reactant raised

to the power of its stoichiometric coefficient [18, page 26], the change in concentration

of each species is found. Hence for reaction (2.1) the following ODEs are obtained,

da(t)

dt
=

db(t)

dt
= −k(a(t)na)(b(t)nb) (2.4)

dc(t)

dt
=

dd(t)

dt
= k(a(t)na)(b(t)nb). (2.5)

The change in concentration of species A and B is multiplied by negative one because

their concentration is decreasing. If there was more than one reaction, the change
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in concentration of each species would be the sum of the contribution from each

reaction. Let us, now, consider the problem that occurs when the assumptions of

this approach cannot be satisfied.

2.2.2 The Limitations of the Deterministic ODE Method for Modelling

Chemical Kinetics

The assumptions we make when modelling a chemical system using deterministic

ODEs are not satisfied when only a small amount of molecules exist in the system.

This is due to the noise inherent to such a system (i.e. high system fluctuations) and

the non-continuous changes in the concentration of chemical substances. Also, Rényi

[61] showed the law of mass action to be only approximately valid for small systems,

because the variance of the number of molecules in the system is assumed to be

negligible (see Bharucha-Reid [7, page 362]). An example of a biochemical system

for which these assumptions are not satisfied is gene transcription, where there is

only a single DNA molecule with a small number of binding sites for a particular

gene. As a result, the chemical reaction which describes RNA polymerase binding to

these sites occurs with a widely distributed reaction time [43, 37]. There is, however,

another important implication of noise in a chemical system, which is that two

identical systems with the same initial conditions may exhibit different behaviours.

This phenomenon is due to the multiple stable states and bifurcations that are often a

part of small chemical systems, due to stochastic effects that may drive the system to

different behaviours [43]. This has been shown experimentally and computationally

by McAdams and Arkin for phage λ-infected E. coli [2]. The importance of this

phenomenon in the context of biological modelling has been discussed by Kerszberg
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[33], and Federoff and Fontana [13]. Furthermore, experiments have been done on

measuring the noise in several gene networks using green fluorescent protein (see

Paulsson’s summary of these studies [49]). Modelling chemical systems with noise

is important enough for us to examine a stochastic approach to modelling these

systems.

2.2.3 The Stochastic Approach to Chemical Kinetics

One limitation of the deterministic ODE approach is the assumption that there is a

large number of molecules in the system, so that discrete changes in the number of

molecules can be approximated by continuous changes in the concentration of those

molecules. There are, however, systems in which we cannot make this assumption

because the noise that is inherent to such systems plays a significant role in the

system’s behaviour. Therefore, a stochastic method of modelling chemical systems

that deals with the exact number of molecules in the system and discrete changes in

the system’s state must be considered.

Stochastic Formulation

Let us start by recalling what is known about a system of chemical reactions. The

volume V with N chemical species Si (i = 1, . . . , N), and an initial state X (0) =

{X(0)
1 , X

(0)
2 , . . . , X

(0)
N } specifying the number of molecules of each species Si are given.

Also, M chemical reactions Rµ, for which there exist M reaction constants kµ (recall

the definition from Section 2.2) with µ = 1, . . . ,M , are given. We cannot directly

use the same reaction constants in the stochastic formulation of a chemical system

because the stochastic approach deals with the probability of a reaction occurring



12

in the volume V , and not with the rate of a reaction. For this reason, the stochastic

reaction constants, cµ for reaction Rµ, are given [21, page 2342]. These constants

characterize “reaction probabilities per unit time” [21, page 2342], which are defined

as

cµdt = the average probability with which a specific combination

of molecules involved in reaction Rµ will react in the time

interval (t, t + dt). (2.6)

On its own, the product cµdt does not give the probability of a reaction occurring

in the volume V , because it is independent of the number of molecules involved in

the reaction Rµ. Before defining a probability that is dependent on the number of

molecules, let us examine the meaning of cµdt more closely by calculating its value

for the following bimolecular reaction,

Rµ : S1 + S2 → 2S3. (2.7)

The steps in calculating cµdt for this bimolecular reaction are shown in Figure 2.1,

and are similar to Gillespie’s calculation [20, page 407][21, page 2341].
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r1 r2

v
21

S1

v
21

v
21dt

dV = π(r1+r2)2v21dt

(a)

(b)

(c)

S2

S1 S2

v
21dt

S1 S2

v
21

Figure 2.1: Calculating the collision volume for a bimolecular reaction: (a) Definition
of molecule S1 with radius r1, molecule S2 with radius r2 and the velocity v21 of
molecule S2 relative to S1. (b) The change in position of S2 in dt. (c) The collision
volume.

First, assume that molecule S1 has radius r1, molecule S2 has radius r2, and the

velocity of molecule S2 relative to molecule S1 is v2 − v1 = v21 (see Figure 2.1a). A

collision of the two molecules will occur when the distance between their centres is

less than or equal to r1 +r2. The collision volume of molecule S2 relative to molecule

S1 can be swept out by moving molecule S2 in the direction of v21 in the next small

time interval dt (see Figure 2.1b). We call this new volume the collision volume of

molecule S2, and calculate it as dVcollision = π(r1 + r2)
2v21dt (see Figure 2.1c). If

molecule S1 is in the collision volume of molecule S2, then the two molecules will
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collide within the time interval (t, t + dt).

To obtain the probability with which a specific S1 molecule and S2 molecule

will collide, we must make the assumption that all of the molecules are distributed

randomly and uniformly in the volume, V [21, page 2343]. Notice that this is the first

assumption made in the deterministic ODE approach. Thanks to this assumption,

the probability that a specific S1 molecule will be in the collision volume of a specific

S2 molecule is dVcollision/V . By averaging the velocity of all S1-S2 pairs of molecules

in V , the average probability that a specific S1-S2 pair of molecules will collide in

the time interval (t, t + dt) [21, page 2342] is obtained:

dVcollision/V = π(r1 + r2)
2v21dt/V. (2.8)

Assuming that when a pair of S1-S2 molecules collide a reaction between them occurs,

Equation (2.8) gives the value of cµdt [22, page 412] for the bimolecular reaction

we are considering, and the reason why the term average probability is used in the

definition of cµdt should now be clear. Let us now find the probability of the reaction

Rµ occurring in the volume V .

The Propensity Function

Since cµdt is defined as the average probability of a specific combination of molecules

reacting in the time interval (t, t + dt), what is the probability of the reaction Rµ

occurring in this time interval? Notice that if cµdt is multiplied by all possible

combinations of reactant molecules involved in reaction Rµ, the overall probability

for reaction Rµ occurring in V in the time interval (t, t+dt) is obtained. Let us define

the function hµ(X) as the number of distinct combinations of reactant molecules

involved in reaction Rµ, where X = (X
(t)
1 , X

(t)
2 , ..., X

(t)
N ) is a vector with components
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set to the number of molecules of each species at time t [20, page 412]. Thus, the

overall probability of a reaction Rµ occurring in V in the time interval (t, t + dt) is

given by,

aµ(X)dt = cµhµ(X)dt. (2.9)

Gillespie coined the function, aµ(X), the propensity function, which gives the likeli-

hood that reaction Rµ takes place in V in the time interval (t, t+dt). As an example,

reconsider the bimolecular reaction (2.7), hµ(X) is equal to the number of distinct

combinations of reactant molecules involved in this reaction (i.e. hµ(X) = X
(t)
1 X

(t)
2 ),

and therefore the propensity function is given by: aµ(X) = cµX
(t)
1 X

(t)
2 . Using the

propensity function, let us now consider the connection between the reaction constant

kµ and the stochastic reaction constant cµ.

2.2.4 The kµ-cµ Connection

It is important to examine the connection between the reaction rate constant kµ,

and the stochastic reaction constant cµ, because there will be times when we want

to create a stochastic model from a deterministic ODE one and vice versa. For this

reason, and considering the following statement made by Gillespie [21, page 2343],

“...from a practical point of view, cµ and kµ will differ at most by only

two simple constant factors. From a theoretical point of view, however,

the difference between cµ and kµ is much more complicated...”,

let us only examine the mathematical relationship between the two constants. We

start by calculating kµ for the bimolecular reaction (2.7).
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By definition of aµdt, the bimolecular reaction occurs in V in the time interval

(t, t + dt) with probability X1X2cµdt. The average probability or rate at which the

reaction occurs in V over a large time period, say (0, T ), is 〈(X1X2)cµ〉 = 〈X1X2〉cµ,

where 〈X1X2〉 means the average number of S1, S2 molecules in V over (0, T ). Now

for a bimolecular reaction, kµ is calculated as the average rate of the reaction per unit

volume, 〈X1X2〉cµ/V , divided by the average concentrations of the two molecular

species, S1 and S2 [20, page 410]. Therefore, kµ is given by,

kµ =
〈X1X2〉cµ/V

〈X1/V 〉〈X2/V 〉 . (2.10)

If we let xi = Xi/V be the molecular concentrations of species Si, this equation can

be rewritten as,

kµ =
〈x1x2〉cµV

〈x1〉〈x2〉
. (2.11)

Since the deterministic ODE approach is used under the assumption that the variance

of the two species’ concentrations is zero, the average of the products is equal to the

product of the averages, 〈x1x2〉 = 〈x1〉〈x2〉. This simplifies Equation (2.11) to

kµ = cµV. (2.12)

The relationship, Equation (2.12), between the two constants does not come as

a surprise because kµ is used in the deterministic ODE approach which deals with

molecular concentrations (molecules per unit volume), and cµ is used in the stochastic

approach which deals with molecular quantities (total number of molecules in V ).

For reaction types other then the bimolecular type, the relationship between the two

constants depends on the number of distinct combinations of reactant molecules,
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and only differs by a power of V and a constant factor. Table 2.1 lists the value of

hµ(X) for several reaction types [20, page 405, 413] and the relationship between the

constants kµ and cµ for these reactions.

Reaction Rµ Combinations hµ(X) kµ’s relationship to cµ

∗ → products 1 cµ

S1 → products X1 cµ

S1 + S2 → products X1X2 cµV
2S1 → products X1(X1 − 1)/2 cµV/2

S1 + S2 + S3 → products X1X2X3 cµV
2

S1 + 2S2 → products X1X2(X2 − 1)/2 cµV
2/2

3S1 → products X1(X1 − 1)(X1 − 2)/6 cµV
2/6

Table 2.1: The number of distinct molecular combinations of reactants for several
reaction types and the relationship between kµ and cµ.

2.3 Petri nets

In 1962, Carl Petri proposed a mathematical modelling tool for describing many

types of computer systems (e.g., discrete distributed systems) [46]. The tool he

proposed is called a Petri-net graph, and has found many applications in modelling.

It is defined as a directed bipartite graph consisting of two types of nodes: places

and transitions. The nodes in the graph are connected by weighted arcs, with the

only condition being that arcs connect places to transitions or transitions to places

(and nothing else). A nonnegative integer, called a marking, is assigned to each

place in the graph. In the visualization of a Petri net, places are drawn as circles,

transitions as bars, arcs as arrows connecting the circles and bars, and markings are

drawn as tokens. Several interpretations of place, transition, and marking can be

made depending on the modelling application.
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Consider the Petri-net visualization for the chemical reaction (2.1) shown in Fig-

ure 2.2. In a Petri-net visualization of a chemical system such as this one, places are

interpreted as molecular species, transitions are interpreted as chemical reactions,

and markings are interpreted as the number of molecules of each species. Specifi-

cally in this example, circles represent the molecular species A, B, C, and D, and the

symbols inside represent the number of molecules of each species (here, symbols have

been used instead of tokens). The chemical reaction, naA + nbB −→ ncC + ndD, is

represented by a transition bar, where the arrows from a circle to the bar represent

the reactants, and the arrows from the bar to a circle represent the products. The

number of reactants (na and nb) and products (nc and nd) are represented by the

symbols above the appropriate arrows.

#A

#B

#C

#D

na

nb nc

nd

Figure 2.2: Stochastic Petri net for a simple chemical reaction, where #A, #B, #C
and #D are the number of molecules of species A, B, C, and D, respectively.

The Petri-net is a good visualization technique to use because it provides a clear

and unambiguous description of the model, and allows us to focus on the model’s

meaning rather than its implementation. Petri nets also make it possible “to describe

more complex models as a composition of simpler ones” [57, page 17], which will

greatly simplify the description of the chemical reactions involved in the reaction-
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diffusion mechanism.

2.4 Review of L-systems and the L+C Language

L-systems were introduced by Aristid Lindenmayer in 1968 as a ruled-based formal-

ism for modelling growing structures that form linear or branching filaments [34].

Among his examples was a model of the development of Anabaena, which nicely

illustrates the power of the formalism [56]. The development of such a structure,

from an initial structure (called the axiom), is described by rewriting rules (or pro-

ductions) that are applied in parallel steps to the modules (or components) of the

structure. Each rewriting rule specifies how a predecessor module is replaced by

any number of successor modules. For example, a rewriting rule for cell division

where cell A is replaced by two daughter cells B and C is given by A −→ BC. The

application of a rewriting rule to a module can be either context free or context-

sensitive depending on the rule’s purpose. In the context-free case, a module is only

matched to the predecessor of the rewriting rule, but in the context-sensitive case, a

module and its neighbouring modules are matched to the predecessor of the rule. A

context-sensitive rewriting rule is written as,

left neighbour < predecessor > right neighbour −→ successor . (2.13)

In a parametric L-system, each module is associated with a number of parame-

ters that store additional information (e.g., a module with one parameter can be

expressed as A(x), where the parameter x may represent the size of a cell). Context-

sensitive rules combined with parametric L-systems are useful for simulating infor-

mation transfer between neighbouring modules in a developing structure. Thus, the
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parameters of a successor module may depend on the predecessor’s parameters and

on the neighbouring modules’ parameters. The combination of these concepts has

led to many extensions of L-systems for calculating new parameter values (mostly

in cpfg [26] and its modelling language [55]), but the most flexible extension is the

L+C modelling language.

The L+C modelling language is an extension to the C++ programming language

with constructs inherent in L-systems [31]. The advantage of this language over

its predecessors is its increased expressiveness, which among other things allows for

typed module parameters (primitive and compound data types) and productions with

multiple successors (e.g., through the use of conditional statements in the produc-

tions) [32]. This makes the language well suited to modelling the reaction-diffusion

mechanism using either a deterministic or stochastic approach. As a first look at the

L+C language, let us consider a model of a growing filament with polarity dependent

asymmetric cell division based on the age of walls that separate cells, which is similar

to a model given by Karwowski and Prusinkiewicz [32, page 2]. The L+C code for

this model is given by,

1 module Cell (float);

2 module Wall (float);

3

4 axiom: Wall(AGE0) Cell(SIZE0) Wall(AGE0);

5

6 Wall(age_left) < Cell (size) > Wall(age_right):

7 {

8 if (size >= MAX_SIZE)

9 {

10 if (age_left >= age_right)

11 produce Cell(SIZE0) Wall(0) Cell(size-SIZE0);

12 else

13 produce Cell(size-SIZE0) Wall(0) Cell(SIZE0);
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14 }

15 else

16 produce Cell(size*GROWTH_RATE);

17 }

18

19 Wall(age):

20 {

21 produce Wall(age+1);

22 }

This example illustrates the basic notion of L-system programming using L+C

rather well. In L+C, modules are declared using the keyword module, with the pa-

rameter types specified for each parameter in the parentheses immediately following

the declaration of a module. Two modules, with one floating point parameter each,

are declared in this example: Cell has a parameter for the cell’s size, and Wall has

a parameter for the wall’s age. The initial structure is declared after the keyword

axiom, and in this case is a single cell between two walls, with each module’s pa-

rameter initialized using a constant: AGE0 for the walls and SIZE0 for the cell. A

rewriting rule, delimited by curly braces, is given by a predecessor followed by a colon

(instead of a right-handed arrow) with any number of produce statements denot-

ing the possible successors of that predecessor. The flexibility of L+C is that these

rules may contain any valid C++ constructs, such as conditional statements. The

first rewriting rule in this example, for the Cell module, is context-sensitive. The

purpose of this rule is to grow each cell in the structure until it is necessary for this

cell to divide, which happens when its size reaches the maximum value, MAX SIZE.

The cell division is asymmetrical (if SIZE0 is not equal to half of MAX SIZE), and

the two daughter cells are given two different sizes that depend on the age of the left

and right wall. The second rewriting rule, for the Wall module, is context-free. Its
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purpose is to advance the age of each wall in the structure. There are more features

of the L+C modelling language that are not given in this example. For instance,

several rewriting rules may be arranged into subsets using the keyword group, and

one of these subsets may be invoked using the predefined function UseGroup(n),

where n is the group number. There are also predefined functions that are executed

at the beginning/end of the simulation, Start/End, and at the beginning/end of

each derivation step, StartEach/EndEach.

Figure 2.3 is a visualization of the cellular structure that develops when the

rewriting rules given in the example above are applied to an initial structure roughly

300 times. It was produced using the simulation program lpfg [54], which makes it

possible to execute models written using the L+C language and to visualize them.

The visualization shows cells as red coloured rounded rectangles, and the walls as

green and brown-coloured vertical bars for young and old walls, respectively.

Figure 2.3: A visualization of asymmetrical cell division, with cells visualized as
rounded rectangles and the walls separating them as vertical bars.

Before using the L+C modelling language and lpfg simulator to simulate models

of reaction-diffusion based pattern formation, let us review the deterministic and

stochastic approaches that can be used.



Chapter 3

Studying the Kinetics of Chemical Reactions

3.1 Introduction

This chapter discuss some methods for studying the kinetics of chemical reactions.

For both the deterministic and stochastic approaches, an analytical and numerical

solution is considered. The chapter’s main purpose is to motivate the use of the

stochastic simulation approach for modelling reaction-diffusion.

3.2 Solution to Deterministic ODEs for Chemical Reactions

Let us first consider the solution to the deterministic ODE for decay. The solution

is a function that describes the concentration of the species A at time t. To find this

function the (very basic) ODE for the decay process must be integrated. Start by

separating the variables in ODE (2.3) to get the following equation,

da(t)

a(t)
= −µdt. (3.1)

This equation is integrated over the time interval 0 to t as follows (let dt = ds):

∫ t

0

da(s)

a(s)
=

∫ t

0

−µds

ln a(s)


t

0
= −µs


t

0

ln
a(t)

a(0)
= −µt

a(t) = a(0)e−µt, (3.2)

23
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where a(0) is the initial concentration of species A at time t = 0. Since a(t) is the

concentration of A at time t, the concentration of the species A decreases exponen-

tially according to Equation (3.2). This is the solution to the deterministic ODE

for decay. Now let us examine the solution to a deterministic ODE for any chemical

reaction.

Finding an analytic solution to the coupled ODEs given in Equations (2.4) and

(2.5) for the chemical reaction naA + nbB −→ ncC + ndD is not as easy as in the

case of the decay reaction. A numerical solution to these coupled ODEs must be

found instead of an analytical solution. In this example, a numerical method, such

as the forward Euler method, which gives an update formula for the concentration of

each species over time is used. The ODEs (2.4) and (2.5) have the following update

formulae,

a(t + ∆t) = a(t) + (−ka(t)nab(t)nb)∆t

b(t + ∆t) = b(t) + (−ka(t)nab(t)nb)∆t

c(t + ∆t) = c(t) + (ka(t)nab(t)nb)∆t

d(t + ∆t) = d(t) + (ka(t)nab(t)nb)∆t, (3.3)

where f(t) denotes the concentration of species f ∈ {a, b, c, d} at time t. Using

these formulae, the concentration of each species is updated with a fixed time step

(i.e. of regular time intervals ∆t). This numerical method is not the best choice of

integrators because the time step must be very small in order to ensure an accurate

solution. There are several other integrators which are more accurate than the

forward Euler method but will not be required for our purposes (see Ermentrout’s

book for a summary of all these methods [11, page 256]). Almost any chemical
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system modelled by deterministic ODEs can be solved using these methods. For

chemical systems that cannot be modelled using deterministic ODEs, the stochastic

approach must be used.

3.3 Solution to the Stochastic Process for Chemical Reac-

tions

Before finding a solution to the stochastic process for chemical reactions in the general

case, let us examine the solution to the stochastic process for the decay reaction.

The intention is to show how difficult it is to find the solution even for such a simple

reaction.

3.3.1 Solution to the Decay Process

Let us consider the solution to the stochastic process for the decay reaction found

by Bartholomay [5]. In his approach, Bartholomay defines A(t) to be a (discrete)

random variable that represents the number of molecules of a species A at time t (i.e.,

a stochastic process), and he assumes that in an infinitesimal time ∆t the random

variable will change according to the following transition probabilities,

Prob{A(t) → A(t) − 1} = µA(t)∆t − o(∆t) (3.4)

Prob{A(t) → A(t)} = 1 − µA(t)∆t (3.5)

Prob{A(t) → A(t) − j} = o(∆t), (3.6)

where µ is the decay rate constant, j > 1, and o(∆t)/∆t tends to zero as ∆t → 0

[38, page 7]. Equation (3.4) is the probability of one molecule decaying in the time
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interval (t, t + ∆t). Equation (3.5) is the probability of no molecules decaying in the

time interval (t, t+ ∆t). Equation (3.6) is the probability of more than one molecule

decaying in the time interval (t, t+∆t). Using the notation Prob{A(t) = a} = Pa(t),

the probability for the number of molecules of species A at time t + ∆t is given by

Pa(t + ∆t) = µ(a + 1)∆tPa+1(t) + (1 − µa∆t)Pa(t) − o(∆t). (3.7)

The first term is the probability of the system’s transition to state a in t + ∆t

multiplied by the probability that the system is in state a + 1 at time t (i.e. the

previous state). The second term is the probability of the system’s state not changing

in t+∆t multiplied by the probability the system is already in state a. The last term

is the probability of more than one molecule decaying in the time interval (t, t+ ∆t).

To solve this probability equation, we need to consider the time evolution of

Pa(t), which is given by

lim
∆t→0

Pa(t + ∆t) − Pa(t)

∆t
= lim

∆t→0

µ(a + 1)∆tPa+1(t) − µa∆tPa(t) − o(∆t)

∆t
dPa(t)

dt
= µ(a + 1)Pa+1(t) − µaPa(t), (3.8)

where lim∆t→0 o(∆t)/∆t = 0 by definition. Solving Equation (3.8) gives us insight

into the behaviour of the decay process, e.g., through the expected value and variance

of the random variable A(t). The expected value of this random variable is defined

as

E{A(t)} =
∞∑

a=0

Pa(t)a, (3.9)

and the variance is defined as

V ar{A(t)} = E{(A(t) − E{A(t)})2}. (3.10)
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To solve Equation (3.8) for Pa(t), Bartholomay uses a probability-generating func-

tion for A(t) [38, page 7]. This function is useful in finding the probability distri-

butions and other properties (e.g., expected value and variance) of integer-valued

random variables [69, page 123]. It is defined by

F (s, t) = E{sa}

= P0(t) + P1(t)s + P2(t)s
2 + . . .

=
∞∑

a=0

Pa(t)sa, (3.11)

where |s| < 1. Finding the value of this probability-generating function is difficult

since Pa(t) is not known. Therefore, we rewrite Equation (3.11) as the following

partial differential equation (PDE),

∂F (s, t)

∂t
=

∞∑

a=0

∂Pa(t)

∂t
sa.

If ∂Pa(t)/∂t is substituted from Equation (3.8), the following is obtained,

∂F (s, t)

∂t
=

∞∑

a=0

[µ(a + 1)Pa+1(t) − µaPa(t)]sa

= µ

[
∞∑

a=0

(a + 1)Pa+1(t)s
a −

∞∑

a=0

aPa(t)sa

]

= µ

[
∞∑

a=1

aPa(t)sa−1 −
∞∑

a=0

aPa(t)sa−1s

]

= µ(1 − s)
∞∑

a=0

aPa(t)sa−1, (3.12)

where the last factorization is possible because the first term of the summation is

zero when a = 0. Since

∂F (s, t)

∂s
=

∞∑

a=0

Pa(t)asa−1,
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Equation (3.12) can be rewritten as:

∂F (s, t)

∂t
= µ(1 − s)

∂F (s, t)

∂s
. (3.13)

To solve for F (s, t), first we make the substitution 1 − s = ez [15, page 239], such

that F (s, t) = G(z, t). Then Equation (3.13) becomes,

∂G(z, t)

∂t
+ µ

∂G(z, t)

∂z
= 0, (3.14)

since

∂F (s, t)

∂t
=

∂G(z, t)

∂t
,

and

∂F (s, t)

∂s
=

∂G(z, t)

∂z
· ∂z

∂s

=
∂G(z, t)

∂z
· −1

ez
.

Equation (3.14) is called the first-order wave equation and it is easy to verify that

its solution is an arbitrary function of (z − µt) (by the method of characteristics)

[50, page 25]. The solution has the following form:

G(z, t) = H(z − µt). (3.15)

This function must satisfy the initial condition that at time t = 0 there are A(0) = A0

molecules in the system. That is, it must satisfy the following initial condition:

F (s, 0) =
∞∑

a=0

Pa(0)sa

= sA0 , (3.16)
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since the probability that there are A0 molecules in the system at time t = 0 is

only equal to one when a = A0 and is zero otherwise. Solving G(z, t) at this initial

condition yields

F (s, 0) = G(z, 0) = (1 − ez)A0 ,

since s = 1 − ez. This equation can be evaluated for G(z, t) at (z − µt) to give,

G(z, t) = (1 − ez−µt)A0 ,

and substituting z = ln(1 − s) into this equation gives

F (s, t) = (1 − eln(1−s)−µt)A0

= (1 − (1 − s)e−µt)A0 . (3.17)

The function, F (s, t), can now be expanded using the binomial theorem to give,

F (s, t) = [(1 − e−µt) + se−µt]A0

=

A0∑

a=0

(
A0

a

)
sae−µta[1 − e−µt]A0−a. (3.18)

Equation (3.11) can now be solved, which gives the following value of Pa(t) [21, page

2347],

∞∑

a=0

Pa(t)sa =

A0∑

a=0

(
A0

a

)
sae−µta[1 − e−µt]A0−a

Pa(t) =
A0!

a!(A0 − a)!
e−µta[1 − e−µt]A0−a, a = 0, 1, . . . , A0. (3.19)

Not surprisingly, this is the form of the binomial probability function with parame-

ters (n = A0, p = e−µt), where n is the sample size and p is the probability of a

successful event (in terms of the binomial probability distribution). The expectation
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and variance are known for this function, and therefore these values for A(t) are

given by [38, page 7],

E{A(t)} = A0e
−µt (3.20)

V ar{A(t)} = A0e
−µt(1 − e−µt). (3.21)

As an example, Figure 3.1 shows the expectation and variance for the decay process

with A0 = 100 and µ = 0.5.
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Figure 3.1: Expectation and variance for the decay process with A0 = 100 and
µ = 0.5.

The solution to the stochastic process for decay can now be compared with the

solution to the deterministic ODE for decay. The expected value (Equation (3.20))

Bartholomay found in his stochastic approach to the decay process is the deter-

ministic ODE solution (Equation (3.2)), which shows that the two approaches are

“consistent in the mean” [38, page 8]. The stochastic approach, however, also de-

scribes the variance (Equation (3.21)) of the number of molecules over time. This
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gives us a better idea of the system’s behaviour than just the expected value by

itself, because it indicates the variability of the number of molecules over time. For

example, in the decay process there is an initially increasing variance, but once there

are only half the number of initial molecules left, the variance starts decreasing (see

Figure 3.1). Thus the stochastic approach is indeed a more comprehensive approach

to modelling biological systems than the deterministic ODE approach. For this rea-

son, we wish to consider the stochastic formulation for any system and not just the

simple decay process.

3.3.2 Solving the Chemical Master Equation

The fundamental method for stochastically modelling the state of a chemical system

over time is to define a master equation for finding molecular populations at time

t + ∆t given the molecular populations at time t = 0. The key element of this

equation is the grand probability function [20, page 411], which is defined as

P (X, t) = probability that the chemical system will be in state

X = (X
(t)
1 , X

(t)
2 , ..., X

(t)
N ) at time t given that the system is

in state X = (X
(0)
1 , X

(0)
2 , ..., X

(0)
N ) at time t = 0. (3.22)

The time evolution of this function gives a complete characterization of the evolution

of the system state, because it gives the probability of being in state X at time t.

It can be derived by summing the number of different ways the system arrives at

state X in time t+∆t. Hence, if there are M reactions that will change the system’s

state, then there are M ways in which the system arrives in a new state, but since

there is also the possibility of no reactions occurring, there are M + 1 ways in which
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the system’s state can change at time t + ∆t. Since the propensity function gives

the likelihood of a reaction occurring in (t, t + ∆t), the time evolution of the grand

probability function is given by,

P (X, t + ∆t) = P (X, t)

[
1 −

M∑

µ=1

aµ(X)∆t

]

+
M∑

µ=1

[P (X − vµ, t)aµ(X − vµ)∆t], (3.23)

where vµ is the change in the number of molecules produced by reaction Rµ. For

example, for the chemical reaction (2.1), v1 is given by

v1 = {−na,−nb, nc, nd}. (3.24)

The first term in Equation (3.23) can easily be explained by noting that, if the system

was in the state X at time t, the only possible way the system can be in state X

at time t + ∆t is if no reaction occurs in the time interval (t, t + ∆t). Assuming

that dt is small enough so that the probability of two or more reactions occurring

over the time interval is negligible, the probability of this event is one minus the

probability of a reaction occurring. The second term adds up, for each reaction

Rµ, the probability of being in state X − vµ at time t multiplied by the probability

of reaction Rµ occurring in the time interval (t, t + ∆t). We can then finish our

derivation of the time evolution of the grand probability function by writing it in the



33

following form,

lim
∆t→0

P (X, t + ∆t) − P (X, t)

∆t
= lim

∆t→0

−P (X, t)
M∑

µ=1

aµ(X)∆t

∆t

+ lim
∆t→0

M∑
µ=1

[P (X − vµ, t)aµ(X − vµ)∆t]

∆t

∂P (X, t)

∂t
=

M∑

µ=1

[P (X − vµ, t)aµ(X − vµ) − P (X, t)aµ(X)]. (3.25)

This is the chemical master equation, which gives us the probability of the system

being in state X at time t. We would like to solve this equation for any chemical

system.

Bartholomay’s stochastic solution to the decay process, where he gave the expec-

tation and variance of the number of molecules in the system at time t, cannot be

generalized to solve the chemical master equation. The reason is that, in the decay

process, the number of ways in which the system’s state can change in time t+ ∆t is

only two (a molecule either decays or it does nothing). We end up with a binomial

probability function which exactly describes the behaviour of the decay process. In

the chemical master equation, since there are M + 1 ways for the system’s state

to change at time t + ∆t, it is difficult to find a probability function that provides

the correct distribution [20, page 412]. McQuarrie [38, chapter 3] and Gardiner [15,

chapter 7] provide some solutions to other elementary reactions besides the decay

process, but even for simple reactions, Gardiner uses approximating methods to find

a solution [15, page 268].

In some cases, it may be possible to numerically solve the chemical master equa-

tion, but usually the numerical solution is computationally intractable. Consider the
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tree in Figure 3.2, which at its root has the probability of being in the initial state

X at time t = 0, and at each child node has the probability of transition to a new

state (a parent node has M + 1 child nodes). Thus, for K time steps of size ∆t the

number of probabilities that must be computed is given by:

K∑

i=0

(M + 1)i =
(M + 1)K+1 − 1

M
. (3.26)

It is only possible to compute and store this many probabilities for very small values

of M and K, and therefore, instead of numerically solving the chemical master

equation, we must try another approach.

P(X,0)

P(X,∆t)
P(X+v1,∆t)
P(X+v2,∆t)
P(X+v3,∆t)

P(X+vM,∆t)

.

.

.

.

.

.

.

.

.

.

.

.

P(X,2∆t)
P(X+v1,2∆t)
P(X+v2,2∆t)
P(X+v3,2∆t)

P(X+vM,2∆t)

P(X,2∆t)
P(X+v1,2∆t)
P(X+v2,2∆t)
P(X+v3,2∆t)

P(X+vM,2∆t)

Figure 3.2: Tree representation of numerical solution to chemical master equation.



Chapter 4

Stochastic Simulation Approach to Kinetics of

Chemical Reactions

4.1 Gillespie’s Method

In 1976, Daniel Gillespie developed a method for exactly simulating the state of a

chemical system over time under the assumption that the chemical system is well

mixed [20, 21]. The distinction between Gillespie’s method and the chemical master

equation is that the former is a numerical simulation of the Markov process that

the chemical master equation describes (since the probabilities for the state of the

system at time t+dt only depend on the system’s state at time t and not on previous

states, the process is Markov [17, page 3]). In other words, Gillespie’s method is only

one path through the tree shown in Figure 3.2. Thus, the method provides the state

X of a chemical system over time t instead of the probability of being in state X

at time t. To simulate the state of the chemical system over time, given the initial

state X(0), Gillespie developed the following algorithm:

1. Initialize the simulation time to zero, t = 0.

2. Specify the initial numbers of molecules of N species, X (0).

3. Specify M stochastic reaction constants c1, c2, c3, . . . , cM .

4. Calculate h1(X)c1, h2(X)c2, h3(X)c3, . . . , hM(X)cM the propensities for M re-

35
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actions.

5. While molecular populations are all > 0 or time t has not reached some maxi-

mum value do:

(a) Monte-Carlo step: generate the inter-reaction time τ and the reaction Rµ

that takes place next.

(b) Advance t by τ , and change the state X according to the reaction Rµ.

(c) Recalculate, hν(X)cν , the propensities for all reactions Rν that involve

chemical species in Rµ.

The Monte-Carlo step is the heart of Gillespie’s method and once it is examined,

the relationship between Gillespie’s method and the chemical master equation will

be more clear.

The time of the next reaction and the reaction that takes place next are generated

according to the joint probability density function, p(τ, µ|X, t), which is defined by

[20, page 412],

p(τ, µ|X, t)dτ = probability that the next reaction in the chemical system will

occur in the time interval (t + τ, t + τ + dτ) and will be the

reaction Rµ, given the system is in state X at time t. (4.1)

To generate one random pair (τ, µ) according to the probability density function

p(τ, µ|X, t), an expression for it must first be derived (see [20, page 413] and [22,

page 423]). The starting point in finding this expression is to calculate the probability

p(τ, µ|X, t)dτ . It can be calculated by subdividing the time interval (t, t + τ) into
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subintervals of equal length, where each subinterval has length ε = τ/k such that

k > 1 (see Figure 4.1), and finding the probability of no reaction occurring in that

time interval. Then, finding the probability of a reaction occurring in the time

interval (t + τ, t + τ + dτ).

ε

t (t + τ) (t + τ + dτ)

dτ

time axis

ε = τ/k

probability of no reaction occuring probability of one Rµ 
reaction occuring

εεε ε

Figure 4.1: Finding the value of p(τ, µ)dτ by subdividing the time interval (t, t + τ)
into k = 6 subintervals

The probability of no reaction occurring in a specific k subinterval is [1−
M∑

ν=1

aν(X)ε+

o(ε)], and the probability of one Rµ reaction occurring in the last interval, given that

none occurred in (t, t + τ), is [aµ(X)dτ + o(dτ)], where o() is the probability of more

than one reaction occurring in the time interval (t, t + τ + dτ). By the multiplication

law of probabilities [69, page 50], for the entire time interval (t, t+ τ +dτ) we obtain:

p(τ, µ|X, t)dτ = [1 − a0ε + o(ε)]k[aµ(X)dτ + o(dτ)], where a0 =
M∑

ν=1

aν(X). (4.2)

If this equation is divided by dτ on both sides and is taken to the limit dτ → 0, the

following expression for the probability density function, p(τ, µ|X, t), is obtained:

lim
dτ→0

p(τ, µ|X, t)dτ

dτ
= lim

dτ→0

[1 − a0ε + o(ε)]k[aµ(X)dτ + o(dτ)]

dτ

p(τ, µ|X, t) = [1 − a0ε + o(ε)]k[aµ(X)]. (4.3)
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This expression can be simplified by writing the first term on the right-hand-side as,

[1 − a0ε + o(ε)]k =

[
1 − a0kε + o(ε)k

k

]k

=

[
1 − a0τ + o(ε)τ/ε

k

]k

since τ = kε.

Taking the limit with k → ∞, we obtain:

lim
k→∞

[
1 − a0τ + o(ε)τ/ε

k

]k

= e−a0τ . (4.4)

By substituting this value into Equation (4.3), the final form of the joint probability

density function is obtained:

p(τ, µ|X, t) = aµ(X)e−a0τ . (4.5)

Given this equation, there are two ways to generate the inter-reaction time, τ , and

the reaction, Rµ, that takes place at time t + τ : the direct method and the first

reaction method. The key difference between these methods is that in the direct

method a value for τ and µ is generated according to p(τ, µ|X, t), but in the first

reaction method, a putative time τν (ν = 1, . . . ,M) is generated for each reaction,

with the smallest putative time giving τ and µ.

4.1.1 The Monte-Carlo Step: Direct Method

The direct method of generating τ and Rµ involves rewriting the joint probability

density function, p(τ, µ|X, t), as the product of a single variable probability density

function and a conditional probability. Then, independently generating τ from the

single variable probability function, and Rµ from the conditional probability. We

obtain the following equation [20, page 418],

p(τ, µ|X, t) = p1(τ |X, t) · P2(µ|τ,X, t). (4.6)
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The probability density function, p1(τ |X, t), is defined by p1(τ |X, t)dτ , which is the

probability that a reaction will occur in the time interval (t + τ, t + τ + dτ). The

conditional probability, P2(µ|τ,X, t), is defined by the probability that the next

reaction will be Rµ, if the time of that reaction is t + τ .

An expression for p1(τ |X, t) can be obtained by summing, over all reactions, the

probability of a particular reaction occurring in (t + τ, t + τ + dτ). It is given by the

equation

p1(τ |X, t) =
M∑

µ=1

p(τ, µ|X, t) =
M∑

µ=1

aµ(X)e−a0τ = a0e
−a0τ , (4.7)

which describes an exponential distribution with mean 1/a0. The expression for

P2(µ|τ,X, t) can now be easily derived from Equation (4.6), and is given by,

P2(µ|τ,X, t) = p(τ, µ|X, t)/p1(τ |X, t)

= aµ(X)/a0. (4.8)

To complete the Monte-Carlo step in Gillespie’s algorithm, a random τ and a random

µ are generated according to p1(τ |X, t) and P2(µ|τ,X, t), respectively, by using the

inversion method. This is a method that can be used to generate a random variable

according to some cumulative distribution function, F , from a uniform distribution

(provided that the function F−1 exists). The cumulative distribution function of

p1(τ |X, t) is given by (let dτ = dx):

F1(τ) =

∫ τ

0

a0e
−a0xdx = 1 − e−a0τ , (4.9)

and the cumulative distribution function of P2(µ|τ,X, t) is given by:

F2(µ) =

µ∑

ν=1

aν(X)/a0. (4.10)
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Clearly, the inverse for both of these distribution functions do exist (see [20, page

431]), so if two independent uniform random numbers r1 and r2 in the interval [0, 1)

are generated, then the following equations are used to generate τ and µ,

τ = (1/a0) ln(1/r1), and (4.11)

µ = the integer that satisfies

µ−1∑

ν=1

aν(X) < r2a0 ≤
µ∑

ν=1

aν(X). (4.12)

The direct method gives a fast and efficient way to perform the Monte-Carlo step in

Gillespie’s algorithm, but before using it to simulate Lotka’s chemical system, let us

examine an alternate method.

4.1.2 The Monte-Carlo Step: First Reaction Method

The relevance of this alternative to the direct method for generating the time and

type of the next reaction will become more clear when a speed-up technique for the

first reaction method is discussed, but for now let us consider it as just an alternative.

In the first reaction method, a putative inter-reaction time, τν is generated for each

reaction Rν , where ν = 1, . . . ,M . The reaction with the smallest putative time is the

one that occurs first, and therefore it is chosen as the next reaction. The probability

that reaction Rν will occur in the time interval (t + τ, t + τ + dτ) is given by [20,

page 419]:

Pν(τ |X, t)dτ = aν(X)e−aν(X)τdτ for ν = (1, 2, . . . ,M). (4.13)

The expression for this probability can be derived similarly to the one which was

derived for p(τ, µ|X, t)dτ , where aν(X)dτ is the probability reaction Rµ will occur

in the time interval (t + τ, t + τ + dτ), and e−aν(X)τ is the probability that reaction
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Rµ will not occur before that time interval. The cumulative distribution function

for Pν(τ) is an exponential distribution with mean 1/aν(X). Again by the inversion

method, a random τν is generated using the following equation,

τν = (1/aν(X)) ln(1/rν) for ν = (1, 2, . . . ,M), (4.14)

where each rν is an independently generated uniform random number. To complete

the Monte-Carlo step, the smallest τν is chosen as the inter-reaction time and Rν as

the reaction that takes place next. That is the following values for τ and µ are used,

τ = smallest τν for ν = (1, 2, . . . ,M), and (4.15)

µ = the same ν which τν was smallest for. (4.16)

This method is not as fast or efficient as the direct method because M random

numbers must be generated per simulation step instead of just 2, so in further dis-

cussions of Gillespie’s algorithm we only consider the direct method for performing

the Monte-Carlo step.

4.2 Stochastic Simulation of the Decay Process

By running Gillespie’s algorithm on a chemical system formulated stochastically (as

in Section 2.2.3), one possible outcome of the system’s behaviour over time 0 to time

t is obtained. That is one realization of the stochastic process involving the random

variable X over time t is obtained. Since it is not possible to directly calculate the

expectation and variance of the process over time from this one realization, these

values must be estimated by running several independent trials of the process under
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the same initial conditions [20, page 416]. First, define the state of the chemical

system as the following,

Xj(t) = the state of the system at time t for run j, (4.17)

where j = 1, 2, . . . , J , and J is the total number of simulation runs. The expectation

and variance of the system’s state at time t are then estimated as [69, page 326],

Ê{X(t)} =
1

J

J∑

j=1

Xj(t) (4.18)

V̂ ar{X(t)} =
1

J − 1




J∑

j=1

(Xj(t))
2 − 1

J

(
J∑

j=1

Xj(t)

)2

 . (4.19)

The estimated expected value, Ê{X(t)}, can then be compared to the solution ob-

tained from the deterministic ODE model or if the actual expected value and variance

are available from the chemical master equation, the values can be compared. Let us

use Gillespie’s algorithm to simulate the decay process and compare the estimated

expected value and variance.

In the case of the decay process, the estimated expected value and variance may

be compared to the calculated values from the chemical master equation. This is not

always possible because of the difficulty in solving the chemical master equation. In

Section 3.3.1, the expected value and variance of the decay process were found to be

A0e
−µt and A0e

−µt(1 − e−µt), respectively. Figure 3.1 showed a plot of these values

for the initial number of molecules A0 = 100 and the decay rate µ = 0.5. Gillespie’s

method can be used to generate a realization of the decay process over time under

these conditions. First, consider the visualization of the decay process shown as a

stochastic Petri net, a variant of a Petri net, in Figure 4.2.
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∗

µ

#A

Figure 4.2: Stochastic Petri net for the decay process, with #A representing the
number of molecules of species A and µ the stochastic reaction constant.

There are only two differences between standard Petri nets and stochastic Petri

nets. In a stochastic Petri net, a randomly generated time t is assigned to each

transition event similarly to Gillespie’s first reaction method, where a randomly

generated time is assigned to each reaction. This is in contrast to the asynchronous

application of transitions in standard Petri nets. Also, in a stochastic Petri net

a symbol is drawn above the transition bar that represents the likelihood of that

transition being applied, which is equivalent to the stochastic reaction constant, cµ.

Thus, let us use stochastic Petri nets to visualize a chemical system that is simulated

using Gillespie’s method, similarly to Goss and Pecaud [24].

The decay process described by the stochastic Petri net in Figure 4.2 is visualized

using the standard techniques (see Section 2.3) except for the µ symbol, which is the

constant used in calculating the propensity of a molecule decaying. Also, the * sym-

bol is used instead of a circle to represent a molecule disappearing. The visualization

makes the task of writing a program to simulate the decay process more clear. The

pseudo code that may be used to generate one realization of this process is given by:

1 mu = 0.5 // the decay rate

2 A = 100 // the initial number of molecules

3 t = 0 // the time of the last reaction

4

5 while (A > 0) do
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6 A = A - 1 // decay one molecule

7 t = t - ln(1-ran(1))/mu // update time of last reaction

The first line in the pseudo code sets the stochastic reaction constant µ to 0.5.

In the next two lines, the number of molecules of species A and the time of the last

reaction t are initialized. The last three lines are used to simulate the decay of the

species A according to Gillespie’s method. Since there is only one type of reaction,

using a random number to pick this reaction as the one that takes place next is

excessive. Updating the time of the last reaction, however, still requires a uniform

random number in the interval [0, 1). In the pseudo code, this random number is

obtained by calling the function ran(1).

Using equations (4.18)-(4.19) and running the above program many times, an

estimate of the expected value and variance for the decay process can be obtained.

Figure 4.3a shows five realizations of the process, and Figure 4.3b shows an estimated

expected value and variance of the process over 1,000 runs. A minor detail in making

these estimates is that since t is a continuous variable, the estimated expected value

and variance is computed in small discrete time steps over t. In Figure 4.3b the time

step is 0.01 units.
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(a) five outcomes of stochastically simulating the decay process
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(b) estimated expected value and variance of the decay process
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Figure 4.3: Stochastic simulation of the decay process: (a) five realizations, and (b)
estimated expected value and variance.

The estimated expected value and variance for µ = 0.5 and A0 = 100 are similar

to the actual values found from the chemical master equation (compare Figure 3.1

with Figure 4.3b). To reduce the error in these estimates, more simulation runs

would need to be performed keeping in mind that the convergence rate is 1/
√

J , i.e.,

quadrupling the number of runs J will halve the error. Even though this convergence
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rate implies that to obtain a good estimate of the expected value and variance of

the number of molecules in a chemical system many runs are required, using the

stochastic simulation approach to find these values is still easier than solving the

chemical master equation. Thus, let us now consider some chemical systems for

which the chemical master equation cannot be solved.



Chapter 5

Simulating Chemical Systems using Gillespie’s

Method in L+C

5.1 Lotka’s Chemical System

A good example of a chemical system that can be modelled using the chemical master

equation, but is difficult to solve, consists of three hypothetical chemical reactions

proposed by Lotka in 1920 [36] (the basis for the Lotka-Volterra equations). It also

nicely reveals a shortcoming of the inability of the deterministic ODE approach to

account for random fluctuations that are inherent to a chemical system [21, page

2351]. Before modelling these reactions using the stochastic approach, let us review

the Lotka-Volterra equations.

5.1.1 Lotka-Volterra equations

Lotka [36] and Volterra [68] independently proposed the same model for the oscil-

latory and periodic behaviour of two different systems. Lotka’s model was of three

hypothetical chemical reactions (as was mentioned above), and Volterra’s model was

of several fish catches in the Adriatic Sea [47, page 80]. An experiment done by

Huffaker in 1958 to confirm Volterra’s model [29] showed the oscillatory and peri-

odic behaviour of a system involving two species of mites. One of the species of

mites is called the predator because it consumes the other species of mites called

47
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the prey. The experiment was set up in a way that ensured the predator species

did not consume the entire prey population [30, page 53]. The differential equations

that describe this model are similar to the ones which can be derived from Lotka’s

hypothetical chemical reactions.

Lotka’s chemical system is given by the following reactions [21, page 2350],

X + Y1
k1−→ 2Y1 (5.1)

Y1 + Y2
k2−→ 2Y2 (5.2)

Y2
k3−→ ∗, (5.3)

where X, Y1 and Y2 are the chemical species, and k1, k2 and k3 are the reaction

rates. The first two reactions are autocatalytic because the species Y1 and Y2 are

both products and promoters of the reactions. The third reaction is just the decay

of the species Y2. In terms of ecological models, these reactions may be interpreted

as the prey species reproducing by feeding on some food source X that does not

deplete over time (Equation (5.1)), the predator species Y2 reproducing by feeding

on the prey species Y1 (Equation (5.2)), and the predator species dying by natural

causes (Equation (5.3)). This interpretation, however, is only useful for forming an

impression of the nature of these reactions, and therefore let us return to modelling

the reactions.

The deterministic ODE model of Lotka’s chemical system consists of the following

equations,

dy1(t)

dt
= k1xy1(t) − k2y1(t)y2(t) (5.4)

dy2(t)

dt
= k2y1(t)y2(t) − k3y2(t), (5.5)
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where lower case letters are used to denote concentrations (see Section 2.2.1). Figure

5.1a shows a solution to these deterministic ODEs, which was found by using the

forward Euler method. It is evident from the figure that, with certain parameters, the

concentrations of both species oscillate, and the concentration of Y2 generally follows

the concentration of Y1 (which is to be expected since the number of molecules of Y2

can only increase/decrease when the number of molecules of Y1 increases/decreases).

The phase plot of this solution, shown in Figure 5.1b, suggests that the oscillatory

and periodic behaviour of Lotka’s reactions will continue forever. The inability of the

deterministic ODE approach to account for random fluctuations that are inherent to

Lotka’s chemical system may lead to such an erroneous conclusion. To show more

clearly why this is a drawback of the deterministic ODE approach, let us examine

the case when the chemical system reaches a steady state.
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(a) deterministic ODE solution

(b) phase plot

Figure 5.1: A solution to Lotka’s chemical system: (a) The deterministic ODE
solution with initial conditions y1(0) = 3, y2(0) = 1 and k1x = 1, k2 = 1 and k3 = 1.
(b) The phase plot for the solution in (a).

Lotka’s chemical system reaches a steady state when the deterministic differential

equations (5.5) satisfy the following condition,

dy1(t)

dt
=

dy2(t)

dt
= 0. (5.6)

There are only two cases that satisfy this condition, which can be found by solving
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for the zeros in the equations (5.5). They are given by:

y1(t) = y2(t) = 0, and (5.7)

y1(t) = k3/k2, y2(t) = k1x/k2. (5.8)

The first case is obvious, but the second one shows that if y1(0) = k3/k2 and

y2(0) = k1x/k2 are the initial concentrations used in the deterministic differential

equations (5.5), the solution to these equations will not show an oscillatory and peri-

odic behaviour. Furthermore, the concentrations of the two species will never change

[21, page 2350]. To show that this prediction from the deterministic ODE approach

is incorrect, let us model Lotka’s chemical system using the stochastic approach.

5.1.2 Stochastic Approach to Lotka’s Chemical System

In the stochastic formulation of Lotka’s chemical reactions, there are N = 2 chemical

species represented by the set S = {Y1, Y2} which gives the species’ types. There are

also M = 3 reactions that are described by the following set,

R = {X + Y1 −→ 2Y1,

Y1 + Y2 −→ 2Y2,

Y2 −→ ∗}. (5.9)

The chemical species X is not considered in the set S because its value is assumed

constant. The values of the propensity functions are given by,

a1(Y1, Y2) = c1XY1

a2(Y1, Y2) = c2Y1Y2

a3(Y1, Y2) = c3Y2. (5.10)
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In the case of Lotka’s chemical system, the stochastic reaction constants c1, c2 and

c3 are equivalent to the reaction rate constants k1, k2 and k3 (i.e. we do not divide

by V ) because all three reactions can be interpreted as monomolecular. The reason

is that Y1 appears as a reactant and product in the first reaction, and similarly Y2

appears as a reactant and product in the second reaction.

The stochastic Petri net visualization of Lotka’s chemical system is given in Figure

5.2. There are three transitions with each one representing one of the chemical

reactions. A place for the species, X, is not included in the stochastic Petri net

because we assume it is a constant.

c2

#Y1 #Y2

c1⋅X c3

**

Figure 5.2: Stochastic Petri-net for Lotka’s system, where #Y1 and #Y2 is the num-
ber of molecules of species Y1 and species Y2, respectively.

Using the same initial conditions as for Equations (5.8), the initial number of

Y1, Y2 molecules is given by X
(0)
i = {c3/c2, c1X/c2}, i.e., at time t = 0 there are c3/c2

number of Y1 molecules and c1X/c2 number of Y2 molecules. Let us now address the

question of how the number of Y1 and Y2 molecules change over time.

5.1.3 Lotka-Volterra Chemical Master Equation

It is easy to write the chemical master equation for any chemical system. In Lotka’s

chemical system, there are M + 1 = 3 + 1 ways in which the system’s state can

change from time t to t + dt. Thus, there are four values which give the probability
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of a transition from the current state {Y1, Y2} to a new state, which depends on the

reaction type. These are the values:

P ({Y1, Y2} → {Y1 + 1, Y2}) = c1XY1dt (5.11)

P ({Y1, Y2} → {Y1 − 1, Y2 + 1}) = c2Y1Y2dt (5.12)

P ({Y1, Y2} → {Y1, Y2 − 1}) = c3Y2dt (5.13)

P ({Y1, Y2} → {Y1, Y2}) = 1 − [c1XY1 + c2Y1Y2 + c3Y2]dt. (5.14)

By summing these transition probabilities, the chemical master equation for Lotka’s

system is given by the following equation [15, page 10],

∂P ({Y1, Y2}, t)
∂t

= c1X(Y1 − 1)P ({Y1 − 1, Y2}, t) +

c2(Y1 + 1)(Y2 − 1)P ({Y1 + 1, Y2 − 1}, t) +

c3(Y2 + 1)P ({Y1, Y2 + 1}, t) −

[c1XY1 + c2Y1Y2 + c3Y2]P ({Y1, Y2}, t). (5.15)

This equation gives us the exact behaviour of Lotka’s system over time, and by

solving it (to get a formula for P ({Y1, Y2}, t)) we could compare our results with

the deterministic ODE model’s results. Unfortunately, Equation (5.15) is difficult

to solve analytically or numerically: approximating methods are needed to find an

analytical solution (as Gardiner has done [15, page 268]), and the numerical solution

is computationally intractable (after only ten time steps, about one million probabil-

ities must be computed). Figure 5.3 shows the number of probabilities that must be

computed after only two time steps is 16. Therefore, instead of solving the chemical

master equation for Lotka’s system, let us use the stochastic simulation approach

which was developed by Gillespie [20].
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Figure 5.3: Numerical solution to the Lotka-Volterra chemical master equation,
which shows that 16 probabilities must be computed after two time steps.

5.2 Stochastic Simulation of Lotka’s Chemical System

Recall, in the case under consideration the deterministic ODE model predicts that

the concentrations of the two chemical species in Lotka’s system will not change over

time. To show this prediction is false, a program that stochastically simulates Lotka’s

chemical system over time must be created. The L-system modelling language L+C

is used for this purpose, and lpfg is used to simulate the model (the reason for using

L+C and lpfg was given in Section 1). Program 1 gives the L+C source code for the

stochastic model of Lotka’s chemical system.

Program 1: A stochastic model of Lotka’s chemical system implemented using
Gillespie’s method in lpfg

1 #include <lpfgall.h>

2
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3 const float c1 = 0.001;

4 const float c2 = 0.01;

5 const float c3 = 10.0;

6 const float X = 10000.0;

7

8 float gillespie_time;

9 Start: {gillespie_time = 0.f;}

10

11 module Cell(int,int);

12 derivation length: 0;

13 Axiom: Cell(1000,1000);

14

15 Cell(Y1, Y2):

16 {

17 float propensity[3];

18 float current_sum, propensity_sum, next_reaction;

19 int reaction_index;

20

21 // calculate propensities and then their sum

22 propensity[0] = ((float)(X * Y1)) * c1;

23 propensity[1] = ((float)(Y1 * Y2)) * c2;

24 propensity[2] = ((float)(Y2)) * c3;

25

26 propensity_sum = propensity[0] +

27 propensity[1] +

28 propensity[2];

29

30 // using direct method, pick next reaction and time of reaction

31 if (propensity_sum > 0.f)

32 {

33 next_reaction = ran(1) * propensity_sum;

34

35 reaction_index = 0;

36 current_sum = propensity[reaction_index];

37 while (current_sum < next_reaction && reaction_index < 3)

38 current_sum += propensity[++reaction_index];

39

40 // depending on which reaction was picked,

41 // update number of molecules involved in the reaction

42 if (reaction_index == 0) { ++Y1; }
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43 else if (reaction_index == 1) { --Y1; ++Y2; }

44 else if (reaction_index == 2) { --Y2; }

45

46 // update the global simulation time

47 gillespie_time += -log(1.0-ran(1)) / propensity_sum;

48 }

49 produce Cell(Y1, Y2);

50 }

This implementation of Lotka’s chemical system in lpfg follows Gillespie’s algo-

rithm exactly. First, the stochastic reaction constants are set in lines 3 to 6, the time

variable is set to zero in line 9 and the initial conditions are set in line 13. For each

derivation step of the L-system (or for each simulation step in Gillespie’s algorithm),

the propensities are calculated in lines 22 to 24 and their sum is calculated in line

26. The reaction that takes place next is found in lines 33 to 38, and the number

of molecules of Y1 and Y2 are updated according to that reaction in lines 42 to 44.

Finally, the time of the next reaction is found in line 47. Figure 5.4 is a visualization

of how Gillespie’s algorithm runs on Lotka’s chemical system.

By recording the Y1 and Y2 values at time, gillespie time, for each derivation

step, the state X of Lotka’s system over time t is found. Running this program J

times, provides a means of estimating the expectation and variance of Y1 and Y2,

but this is not done in the program. Before estimating these values, let us examine

a better implementation of Lotka’s chemical system.
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(a) Changes in number of molecules for Lotka's chemical system

(b) Selection of next reaction according to propensities

(c) Selection of the time of next reaction

Figure 5.4: Visualization of Gillespie’s algorithm for Lotka’s chemical system: (a) the
change in the number of molecules visualized as tokens moving through the stochastic
Petri net (propensity of each reaction is given by the number shown in the upper
right corner of a transition box), (b) selection of which reaction takes place next
according to the propensity of each reaction, where the sum of propensities is shown
on the right-hand side of the graph (the arrow points to the next reaction), and (c)
generating the time of the next reaction according to an exponential distribution
(the arrow points to the time of the next reaction).
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If we consider which lines in the above program are actually a part of the Lotka

system’s model, we find that only the propensity calculations and the lines that

change the number of molecules fit this part. It is reasonable then to suggest that

the other generic parts of the program could be handled internally by lpfg. For this

reason, lpfg has been extended to include Gillespie’s algorithm and L+C has been

extended to include the necessary constructs (see Section 1.1 for a list of contribu-

tions).

5.2.1 Gillespie’s Method as a Rewriting Strategy in L-Systems

One reason for extending the L+C modelling language and the lpfg simulator to

include Gillespie’s method is that most of the algorithm can be handled internally

by lpfg. The inclusion of this method makes the task of writing models for chemical

systems less complicated, especially for modelling filamentous cellular structures. A

stochastic rewriting strategy, called stochastic L-systems [56, page 28], has already

been introduced for L-systems in cpfg. It was necessary to introduce this strategy

because all of the visualizations generated from a model are identical otherwise,

which is an undesirable effect for biological modelling (e.g., of plants).

In a stochastic L-system, a production is randomly selected from several matching

productions according to the probability factor assigned to each matching produc-

tion. The probability factor, in cpfg, is an arithmetic expression given behind the

successor in a production following a colon. It is equivalent to the propensity of

a reaction occurring in terms of Gillespie’s algorithm. Consider, for example, the
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stochastic L-system for asymmetrical cell division given below.

Cell(x) → Cell(x ∗ 0.45)Cell(x ∗ 0.55) : 9

Cell(x) → Cell(x ∗ 0.55)Cell(x ∗ 0.45) : 6 (5.16)

The first rule in this example is for cell division of a mother cell into a shorter left

daughter cell and a longer right daughter cell. The second rule is just the reverse

cell division of the first rule. The probability factors have been assigned in such a

way that applies the first rule more often than the second one (60% for rule 1, and

40% for rule 2). Because of the clear connection between probability factors and

propensities, it is tempting to use stochastic L-systems in cpfg for modelling chem-

ical systems. Therefore, using stochastic L-systems with Gillespie’s direct method,

Lotka’s chemical system can be modelled by the following rules:

Cell(Y1, Y2, t) −→ Cell(Y1 + 1, Y2, t − ln(1 − ran(1))/p) : c1XY1

Cell(Y1, Y2, t) −→ Cell(Y1 − 1, Y2 + 1, t − ln(1 − ran(1))/p) : c2Y1Y2

Cell(Y1, Y2, t) −→ Cell(Y1, Y2 − 1, t − ln(1 − ran(1))/p) : c3Y2, (5.17)

where p = c1XY1 + c2Y1Y2 + c3Y2. Each of these rewriting rules represents one of

Lotka’s chemical reactions, and the probability factor given at the end of the rule is

equal to the propensity for that reaction. The third parameter in each module, t, is

the time of the last reaction. It is advanced by the inter-reaction time, τ , which is

given by the equation, τ = −ln(1 − ran(1))/p, where ran(1) is a uniform random

number in the interval [0, 1).

The drawback of implementing Gillespie’s method using stochastic L-systems in

cpfg becomes apparent when there are at least two modules interacting through
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signalling (e.g., by diffusion of molecules between cells). The problem is that the

rewriting rules are applied to each module separately, without taking into consid-

eration the rules that may be applied in neighbouring modules. This is a subtle

difference compared to Gillespie’s method, where only one reaction is chosen from

the set of all possible reactions. In other words, for each derivation step one reaction

is chosen per module in a stochastic L-system while one reaction for all modules is

chosen in Gillespie’s method. Also, applying rewriting rules to each module sepa-

rately introduces the difficulty of synchronizing the time t between different modules.

Thus, let us examine a stochastic rewriting strategy for L-systems which matches

Gillespie’s method.

Extension of the L+C Language with Gillespie’s Method

In L+C, we can use Gillespie’s method to simulate chemical and biological L-system

models by specifying a Gillespie group. In each module of the Gillespie group, the

propensity of a reaction is specified following the key word propensity and the

change in the system’s state is given as a successor following the key word produce.

For each derivation step, lpfg will randomly choose the reaction that takes place next

and the time of the next reaction. It will pick the next reaction according to the

propensities specified in each production of all the modules in a Gillespie group, so

that the reaction with greatest propensity will more likely be picked. Then, lpfg will

generate the time of the next reaction according to the equation τ = −ln(1 − ξ)/p,

where ξ is a uniform random number in the interval [0, 1) and p is the sum of the

propensities of all the modules. As an example of using Gillespie’s method in L+C,

consider the implementation of Lotka’s chemical system given in Program 2.
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Program 2: A stochastic model of Lotka’s chemical system implemented using
Gillespie groups in lpfg

1 #include <lpfgall.h>

2

3 const float c1 = 0.001;

4 const float c2 = 0.01;

5 const float c3 = 10.0;

6 const float X = 10000.0;

7

8 float gillespie_time = 0.0;

9 Start: {UseGroup(1);}

10 EndEach: {gillespie_time = GillespieTime();}

11

12 module Cell(int,int);

13 derivation length: 0;

14 axiom: Cell(1000,1000);

15

16 ggroup 1:

17 Cell(Y1, Y2) :

18 {

19 propensity (X * Y1 * c1) produce Cell(Y1+1,Y2);

20 propensity (Y1 * Y2 * c2) produce Cell(Y1-1,Y2+1);

21 propensity (Y2 * c3) produce Cell(Y1,Y2-1);

22 }

In this example, there is a module Cell with two parameters Y1 and Y2 that

specifies the three reactions in the system and the propensity of each reaction. Each

one of the propensity...produce... statements represents one of the chemical

reactions in the system. There is also a global variable gillespie time that repre-

sents the time at which the last reaction occurred in the system. In each derivation

step, lpfg will execute one of the propensity...produce... statements, which will

update the values of Y1 and Y2, and lpfg will update the last reaction time, which

is stored in the gillespie time variable. Comparing this program to the previous
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one, it should be immediately obvious that having Gillespie groups in lpfg is a huge

benefit. This is true in terms of readability (describing the L-system model to others

is far easier) and implementation of new models (this version of the program is only

half as long as the previous version).

The stochastic rewriting strategy for Gillespie’s method in L+C and the strategy

in stochastic L-systems are similar except for the way in a which a rewriting rule

is chosen. The first one chooses one successor from all modules and the second

one chooses one per module. The benefit of the Gillespie strategy in L+C over the

stochastic strategy in cpfg will become more clear (in the next chapter) when it is

used to simulate a model of diffusion between cells. For now, however, let us return

to simulating Lotka’s chemical system over time t using Gillespie’s method.

5.2.2 Expectation and Variance of Lotka’s Chemical System

Running Program 2 in Section 5.2.1, which is a model of Lotka’s chemical system, will

give one possible outcome of its behaviour over time. The program uses the initial

conditions Y1 = c3/c2 and Y2 = c1X/c2, for which the deterministic ODE model

would predict that there is no change in the concentration of the two species. Figure

5.5 shows the state of Lotka’s system from time t = 0 to t = 10 produced by two runs

of the simulation. It is easy to see that even with the initial conditions Y1 = c3/c2

and Y2 = c1X/c2 the stochastic model predicts that the system’s behaviour will be

oscillatory. This is a good indication that the behaviour of Lotka’s system cannot

be realistically predicted without taking into account the random fluctuations that

are inherent to the system [21, page 2351]. The reason why can be explained by

estimating the expected value and variance of the number of molecules in Lotka’s
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system.
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Figure 5.5: Stochastic simulation of the Lotka’s chemical system: (a) A single run of
the Lotka-Volterra program. (b) A second run of the exact same program but using
a different sequence of random numbers.

Figure 5.6 shows an estimate for the expected value and variance of the number

of molecules in Lotka’s system over time t. The estimate of these values was taken

over 10,000 runs of the program. The variable t was considered in small discrete

time steps and the average state of the system was calculated in each step. In the
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example shown in Figure 5.6 the time step is 0.01 units.
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Figure 5.6: Expectation (a) and variance (b) of the number of molecules in Lotka’s
chemical system, estimated after 10,000 runs of the Lotka-Volterra program.

Figure 5.6a shows that the expected value of the number of Y1, Y2 molecules

estimated by stochastically simulating Lotka’s system with the initial conditions

Y1 = c3/c2 and Y2 = c1X/c2 is close to the deterministic ODE model’s solution.

The number of molecules of Y1 and Y2 on average behave like the deterministic ODE



65

model predicts, and with a larger number of simulation runs that estimate would be

even closer. Figure 5.6b, however, shows that the variance of the number of Y1, Y2

molecules is very large compared to the mean. This suggests that Lotka’s reactions

should not be modelled using deterministic ODEs because the third assumption of

the approach cannot be satisfied (i.e. the fluctuations in concentration about the

mean are not small). To further examine the affect of noise on Lotka’s system, the

phase plot in Figure 5.7 was generated using the stochastic simulation approach.

It shows, that in contrast to the phase plot produced using the deterministic ODE

approach (Figure 5.1), the random fluctuations inherent to the system cause the

number of Y1, Y2 molecules to greatly change over the simulation time. Eventually,

the number of molecules will end up being Y1 = ∞ and Y2 = 0 because if there are

no molecules of species Y2 left, the number of Y1 molecules will increase indefinitely.

This behaviour is not as easily found in the deterministic ODE model because the

phase plot for that type of model suggests that the concentration of Y1 and Y2

never changes. Finding the final state, {Y1 = ∞, Y2 = 0}, of Lotka’s system in the

deterministic ODE approach requires additional mathematical analysis. It may be

found by linearizing the ODEs using partial derivatives (i.e. finding the Jacobian

matrix), and evaluating the partial derivatives at the steady states. In the stochastic

simulation approach, however, we have it straight from the solution.
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Figure 5.7: Phase plot of the number of molecules in Lotka’s chemical system.

5.3 Quasi-steady State Enzyme Kinetics

A common type of process in many biological systems is based on the mechanism of

enzyme catalysed reactions. The first term of the type of reaction-diffusion equations

that will be considered in the next chapter are based on this mechanism. Thus, let

us examine some enzymatic reactions and how the stochastic approach may be used

to study them.

As a first example, consider the following enzymatic reactions studied by Michaelis

and Menten [44],

S + E
k1−→ Z

Z
k2−→ S + E

Z
k3−→ P + E, (5.18)

where E is the enzyme, S is the substrate, Z is an intermediate species, and P is
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the product. The deterministic ODEs for these reactions are:

ds

dt
= −k1se + k2z

de

dt
= −k1se + k2z + k3z

dz

dt
= k1se − k2z − k3z

dp

dt
= k3z, (5.19)

which may be simplified by letting e be the difference of the initial concentration of

the enzyme and the intermediate species (i.e. e = e0 − z) to reduce the number of

equations. That is the simplified deterministic ODEs are:

ds

dt
= −k1s(e0 − z) + k2z

dz

dt
= k1s(e0 − z) − k2z − k3z

dp

dt
= k3z. (5.20)

Michaelis and Menten made the assumption that the concentration of the inter-

mediate species, z, does not change very much over time (i.e. dz/dt ≈ 0, is in a

quasi-steady state), so that

0 = k1s(e0 − z) − k2z − k3z.

From this, we calculate z:

z = k1s(e0)/(k1s + k2 + k3). (5.21)
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Substituting Equation (5.21) into the equation for ds/dt, we obtain

ds

dt
= −k1se0 + (k1s + k2)

k1se0

k1s + k2 + k3

= −k1se0

[
1 − k1s + k2

k1s + k2 + k3

]

= −k1se0

[
k3

k1s + k2 + k3

]

= − k3se0

k2+k3

k1

+ s
. (5.22)

If we let Vmax = k3e0 and Km = (k2 + k3)/k1, then we have reduced the Michaelis-

Menten reactions to the following reaction,

S −→ P, with reaction rate
Vmaxs

Km + s
, (5.23)

where Vmax is called the maximum velocity and Km is called the Michaelis-Menten

rate constant [47]. The assumption made by Michaelis and Menten is a good way of

reducing the complexity of a model and the complexity of computations for studying

the model [59, page 5000]. It can also be made in other reactions involving enzyme

kinetics.

Let us now consider slightly different enzymatic reactions from the Michaelis-

Menten ones. The reactions are given by,

2S + E
k1−→ Z

Z
k2−→ 2S + E

Z
k3−→ 2P + E, (5.24)

which are almost identical to the Michaelis-Menten reactions except for the factor of

two associated with the substrate and product. The deterministic ODEs for these
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reactions are given by,

ds

dt
= −k1s

2(e0 − z) + k2z

dz

dt
= k1s

2(e0 − z) − k2z − k3z

dp

dt
= k3z. (5.25)

If we apply the same steady state assumption as in the Michaelis-Menten reactions,

we obtain:

ds

dt
= −k1s

2e0 + (k1s
2 + k2)

k1s
2e0

k1s2 + k2 + k3

= −k1s
2e0

[
1 − k1s

2 + k2

k1s2 + k2 + k3

]

= −k1s
2e0

[
k3

k1s2 + k2 + k3

]

= − k3s
2e0

k2+k3

k1

+ s2
. (5.26)

Based on this assumption, the three reactions (5.24) reduce to the following reaction,

S −→ P, with reaction rate
Vmaxs

2

Km + s2
. (5.27)

The general form of this reaction is due to Hill [28], where the substrate is raised

to any power ηH , called the Hill coefficient. Now, let us consider the stochastic

approach to quasi-steady state enzyme kinetics.

5.3.1 Stochastic Approach to Enzyme Kinetics

Rao and Arkin derive the quasi-steady state solution for the stochastic formulation

of the Michaelis-Menten reactions by separating the primary species from the inter-

mediate species in the chemical master equation [59, page 5002]. This allows them to
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make the same quasi-steady state assumption in the stochastic case that was made in

the deterministic case. Using this assumption, they give the approximating chemical

master equation for the Michaelis-Menten reactions (5.18) as the following,

dP ({S, P}, t)
dt

= − VmaxS

Km + S
P ({S, P}, t) +

Vmax(S + 1)

Km + (S + 1)
P ({S + 1, P − 1}, t). (5.28)

They derive this equation from the chemical master equation for the Michaelis-

Menten reactions to show that it is valid in the stochastic case [59, page 5005].

In the case of the Hill reaction with a coefficient of two, the corresponding master

equation has the form,

dP ({S, P}, t)
dt

= − VmaxS
2

Km + S2
P ({S, P}, t)

+
Vmax(S + 1)2

Km + (S + 1)2
P ({S + 1, P − 1}, t). (5.29)

It is impractical to solve this equation for the purpose of studying quasi-steady

state enzyme kinetics. Let us instead find the propensity of the reaction and use

Gillespie’s method to stochastically simulate the process. Our first task is to find

the relationship between reaction rates and stochastic reaction constants.

The relationship between the reaction rates, k1, k2, and k3 and the stochastic

reaction constants, c1, c2, and c3 for the Michaelis-Menten reactions (5.18) can be

extracted from Table 2.1 and is given by,

c1 = k1/V
2

c2 = k2

c3 = k3, (5.30)

where V is the volume of the chemical system. For the Hill reaction with a coefficient

of two, the relationship for c1 changes to c1 = 2k1/V
2. In the quasi-steady state, the
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relationship between the constants is one-to-one because the reaction only involves

one reactant. That is we use the same values of Vmax and of Km to find the propen-

sity of a reaction in the stochastic simulation approach as for the reaction rate in the

differential equation approach. Knowing this relationship, we can simulate quasi-

steady state enzyme kinetics using Gillespie’s method. Since the Hill reaction with

a coefficient of two is used in the first term of the reaction-diffusion models consid-

ered in the next chapter, let us examine the stochastic simulation approach for this

reaction.

5.3.2 Stochastic Simulation of the Hill Reaction

The propensity of the quasi-steady state Hill reaction is given by

s2Vmax

Km + s2
=

S2

V 2 Vmax

Km + S2

V 2

=
S2Vmax

KmV 2 + S2
. (5.31)

A minor detail in this calculation is that the value of Vmax = k3e0 must be multiplied

by the system’s volume, V , because we are dealing with the number of initial mole-

cules of the enzyme E and not the initial concentration (i.e. E0 not e0). Figure 5.8

shows the stochastic Petri-net for reaction (5.27). The propensity of one molecule of

the product P being produced from the substrate S is written inside the transition

box (instead of outside) for clarity. The lpfg program that simulates the process that

this stochastic Petri-net describes is given in Program 3.

Vmax⋅(#S)
2

KmV 
2 + (#S)2#S #P

Figure 5.8: Stochastic Petri-net for the Hill reaction with a Hill coefficient of two,
where #S and #P are the number of molecules of species S and P , respectively.
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Program 3: A stochastic model of the Hill reaction implemented in lpfg using
Gillespie groups

1 #include <lpfgall.h>

2

3 const float V = 1000.0; /* the volume of a cell */

4 const float e0 = 1.0; /* initial concentration of E */

5 const float E0 = e0*V; /* initial number of molecules of E */

6 const float k1 = 1.0; /* the reaction rates from */

7 const float k2 = 1.0; /* the continuous model */

8 const float k3 = 1.0;

9

10 Start: {UseGroup(1);}

11 derivation length: 1000;

12

13 /* a cell with parameters:

14 number of substrate & product molecules */

15 module Cell(int, int);

16

17 axiom: Cell(1 * V, 0 * V);

18

19 ggroup 1:

20 Cell(S, P) :

21 {

22 float Vmax = k3 * E0;

23 float Km = (k2 + k3) / k1;

24 propensity (Vmax * S * S / (Km * V * V + S * S))

25 produce Cell(S-1, P+1);

26 }

The number of molecules of the substrate, S, and the product, P , are initialized

in line 17 as a deterministic concentration value multiplied by the cell’s volume, V.

In the Gillespie group, the propensity of one molecule of the product being produced

from the substrate is calculated. Figure 5.9 compares a possible solution to the Hill

reaction for the deterministic ODE approach and the stochastic simulation approach.
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The models of Lotka’s chemical system and quasi-steady state enzyme kinetics,

which have been examined in this chapter, are good examples of chemical systems in

a non-spatial structure. Let us now apply Gillespie’s algorithm to a linear structure

using L-systems, which will better show the power of combining the two concepts.

(a) ODE solution

time
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e
n
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(b) three runs using stochastic simulation
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Figure 5.9: Comparison between the deterministic ODE solution and stochastic sim-
ulation solution for Hill’s reaction.



Chapter 6

Gillespie’s Method in a Linear Structure:

Stochastic Simulation of Reaction-Diffusion

6.1 Introduction

The intention of Alan Turing’s reaction-diffusion model was to explain morphogenesis

[65]; the reason why patterns emerge from a homogeneous medium [52, 53]. His

model included two substances, a and b, reacting and diffusing in an xy-plane, which

he described using the following differential equations:

∂a

∂t
= f(a, b) + Da

(
∂2a

∂x2
+

∂2a

∂y2

)

∂b

∂t
= g(a, b) + Db

(
∂2b

∂x2
+

∂2b

∂y2

)
. (6.1)

Turing named his model reaction-diffusion because the two substances are involved in

reactions described by the functions, f(a, b) and g(a, b), and in diffusion described by

the second term in both equations, where Da and Db are diffusion constants. He and

several other researchers [66, 71, 73] used this type of model to generate patterns seen

in nature. For instance, Meinhardt and Klinger [40, 41, 42] generated pigmentation

patterns in sea shells using variants of the reaction-diffusion model proposed by

Meinhardt and Gierer [19]. This technique of generating sea shell patterns was later

used by Fowler, Meinhardt and Prusinkiewicz as a method for modelling sea shells

suitable for image synthesis [14]. One of the variants is called the activator-substrate

74
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model, and is described by the following equations,

∂a

∂t
= ρs

(
a2

1 + κa2
+ ρ0

)
− µa + Da

∂2a

∂x2

∂s

∂t
= σ − ρs

(
a2

1 + κa2
+ ρ0

)
− νs + Ds

∂2s

∂x2
, (6.2)

where the activator, a, and the substrate, s, react with each other and diffuse (sepa-

rately) along a one-dimensional medium (the x axis) with rates Da and Ds, respec-

tively. The reactions that are a part of this model are the decay of the two substances

captured by the terms, µa and νs, the production of the substrate s captured by

the term, σ, and the production of the activator a, which is related to the depletion

of s, captured by the remaining terms [14, page 382]. The production of a is an

autocatalytic process because it is proportional to a2, but it only occurs in the pres-

ence of s because s is a factor in that production. Similar equations to (6.2) were

also used by Hammel and Prusinkiewicz in an L-system model of the bacteria An-

abaena catenula to capture the “formation of equally spaced organs in a developing

medium” [25]. Although these models have provided us with insight into the forma-

tion of patterns found in nature, they have not captured the noise that is inherent to

the formation of such patterns. The purpose of this chapter is to describe a way of

stochastically simulating reaction-diffusion using Gillespie groups in lpfg and to show

the importance of capturing the noise that is part of this process. An important new

element introduced in the stochastic simulation of reaction-diffusion, as opposed to

the stochastic simulation of Lotka’s chemical system, is the spatial character of the

reaction-diffusion model. The importance of this element will become clear when a

method for stochastically simulating the decay and diffusion process is examined.
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6.2 The Decay-Diffusion Process

Before describing the stochastic simulation approach to the decay-diffusion process,

let us examine the deterministic differential equation approach to this process. Con-

sider the following partial differential equation [25, page 252]

∂a

∂t
= −µa + Da

∂2a

∂x2
, (6.3)

where a is the concentration of some chemical species that decays with rate µ and

diffuses with rate Da along a one-dimensional medium. This equation can be solved

by using a Forward Time Centred Space differencing scheme, which is similar to the

forward Euler differencing scheme except it uses a discretization in both space and

time [51, page 847]. The update formula for the concentration of ai in the space i∆x

at time t + ∆t, given ai at time t, is the following,

ai(t + ∆t) = ai(t) +

(
−µai(t) + Da

ai−1(t) − 2ai(t) + ai+1(t)

(∆x)2

)
∆t, (6.4)

where ai−1 and ai+1 are concentrations taken immediately to the left and right,

respectively, of the current position in the one-dimensional medium. The easiest

way to examine a solution to this equation is to produce a visual representation of it.

Hammel and Prusinkiewicz used L-systems to simulate the decay-diffusion process

and to produce a visual representation of the solution [25].

In a context-sensitive L-system model, the concentrations to the left and right

of the current position in the medium are taken from the parameters of the left and

right neighbouring modules in the string. This is a benefit of using L-systems be-

cause modelling the decay-diffusion process otherwise would require implementing

an indexing scheme to access each subinterval in a discrete x axis, which is inconve-
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nient and leads to less clear expressions when the model is of a growing structure.

With that in mind, Hammel and Prusinkiewicz used the following L-system rule to

solve Equation (6.3),

Cell(al) < Cell(a) > Cell(ar) →

Cell

(
a +

(
−µa + Da

al − 2a + ar

(∆x)2

)
∆t

)
, (6.5)

where the rule computes Equation (6.4) for each module Cell in the L-system’s string

during the derivation step. Using this rule, Hammel and Prusinkiewicz produced a

visual representation of the solution to the decay-diffusion process [25, page 253].

Notice that the L-system rule does not take into account the first and last modules

of the string because only those modules with a left and right neighbour are con-

sidered in the derivation step. The consequence is that there is an infinite supply

of the chemical species diffusing from the first and last modules, which prevents the

concentrations of the species in the other cells from decaying to zero. Now that the

deterministic solution to the decay-diffusion process has been examined, let us find

the stochastic solution.

6.2.1 Stochastic Decay & Diffusion

The stochastic approach to the decay-diffusion process in a one-dimensional medium

requires finding the propensity of a molecule decaying or diffusing. The propensity

for decay is already known (see Section 2.2.3) and Gillespie briefly describes an idea

for calculating the propensity of diffusion between subvolumes in his original paper

on the stochastic simulation algorithm [20, page 430]. To find the propensity of

diffusion, let us first consider the decay-diffusion process using the chemical master
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equation. We start by finding the transition probabilities of how the state of the

process can change from time t to time t + ∆t. These probabilities are given by

P ({Ai−1, Ai, Ai+1} → {Ai−1, Ai − 1, Ai+1}) = µAi∆t (6.6)

P ({Ai−1, Ai, Ai+1} → {Ai−1 + 1, Ai − 1, Ai+1}) =
DaAi

(∆x)2
∆t (6.7)

P ({Ai−1, Ai, Ai+1} → {Ai−1, Ai − 1, Ai+1 + 1}) =
DaAi

(∆x)2
∆t (6.8)

P ({Ai−1, Ai, Ai+1} → {Ai−1, Ai, Ai+1}) = 1 −
[
µAi +

2DaAi

(∆x)2

]
∆t, (6.9)

where Equation (6.6) is the probability of one molecule decaying, Equation (6.7) is

the probability of one molecule diffusing to the left, Equation (6.8) is the probability

of one molecule diffusing to the right, and Equation (6.9) is the probability of the

system’s state not changing. Notice that, the equations deal with the number of

molecules, A, instead of the concentration, a, as it would be the case for the deter-

ministic ODE approach (Equation (6.4)). Now from these transition probabilities,

the chemical master equation for the decay-diffusion process along a one-dimensional

medium is given by

∂P ({Ai−1, Ai, Ai+1}, t)
∂t

= µ(Ai + 1)P ({Ai−1, Ai + 1, Ai−1}, t) +

Da

(Ai − 1)

(∆x)2
P ({Ai−1 + 1, Ai − 1, Ai+1}, t) +

Da

(Ai − 1)

(∆x)2
P ({Ai−1, Ai − 1, Ai+1 + 1}, t) −

[
µAi + Da

2Ai

(∆x)2

]
P ({Ai−1, Ai, Ai+1}, t). (6.10)

The general form of the chemical master equation for diffusion without decay in

higher dimensional medium is given by Gardiner [15, page 307], and he finds the sta-

tionary solution of this equation to be a multivariate Poisson distribution. He does
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not, however, find the solution to the chemical master equation for the reaction-

diffusion process, and instead, investigates the behaviour of the process by approx-

imating the solution using Langevin type stochastic differential equations. Alterna-

tively, the stochastic simulation approach can be used to study the solution to the

chemical master equation for this process, and the assumption that the number of

molecules is large enough so that discrete changes can be approximated by contin-

uous changes in concentration does not have to be made. Let us, therefore, use the

propensities for decay and diffusion found in Equations (6.6)-(6.8) to stochastically

simulate the decay-diffusion process.

6.2.2 Stochastic Simulation of Decay & Diffusion

Figure 6.1 shows a stochastic Petri net for the decay-diffusion process. It is an

example of three cells separated by walls that undergo the decay and diffusion process

along the x axis. The interpretation, according to this modularized stochastic Petri

net, is that each cell has a place for the number of molecules in the cell, and a

transition event for one molecule decaying. Each wall has two transition events:

one for a molecule diffusing from a cell to its right neighbour, and the other for a

molecule diffusing from a cell to its left neighbour. The stochastic reaction constant

for each reaction is drawn along side the transition event for that reaction.
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∗ ∗∗

µ

#Ai-1

cell i−1 cell i cell i+1

Da /(x)2 µ µ

Da /(x)2

Da /(x)2

Da /(x)2

#Ai #Ai+1

wall wall

Figure 6.1: Stochastic Petri-net for decay & diffusion, where #Ai is the number of
molecules of species A in cell i.

The decay and diffusion process that this stochastic Petri-net describes can be

modelled by considering each cell and wall as a module in an L-system string, and

using Gillespie groups in lpfg to handle the decay and diffusion events. The lpfg code

that does this is given in Program 4.

Program 4: A stochastic model of the decay-diffusion process implemented in lpfg
using Gillespie groups

1 #include <lpfgall.h>

2

3 const float MU = 0.01; /* decay constant */

4 const float X = 1.0 /* discretized step of x-axis */

5 const float Da = 1.0/(X*X); /* diffusion constant */

6

7 /* diffusion direction through wall */

8 const int DIR_NONE = 0;

9 const int DIR_LEFT = 1;

10 const int DIR_RIGHT = -1;

11

12 int nextGroup = 1;

13 StartEach:{UseGroup(nextGroup);}

14 EndEach:{if (++nextGroup > 2) nextGroup = 1;}

15
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16 derivation length: 1;

17

18 module Cell(int); /* a cell */

19 module Wall(int); /* a wall between two cells */

20

21 axiom: /* Create cells separated by walls */

22

23 /* find the propensity of diffusion, and decay */

24 ggroup 1:

25 Cell(Al) < Wall(dir) > Cell(Ar):

26 {

27 propensity (Da * Al) produce Wall(DIR_LEFT);

28 propensity (Da * Ar) produce Wall(DIR_RIGHT);

29 }

30 Wall(dirl) < Cell(A) > Wall(dirr):

31 {

32 propensity (A * MU) produce Cell(A-1);

33 }

34

35 /* diffuse a molecule from one cell to another */

36 group 2:

37 Wall(dirl) < Cell(A) > Wall(dirr):{produce Cell (A+dirl-dirr);}

38 Wall(dir): {produce Wall(DIR_NONE);}

This program requires two lpfg groups to function properly: ggroup 1 to per-

form a step in Gillespie’s algorithm and group 2 to perform diffusion of a molecule

between cells. Lines 12 to 14 ensure that, during a simulation run, lpfg alternates

between the two groups. The Gillespie group has two production rules: one rule to

calculate the propensity of diffusion from the left to the right (line 27) and from the

right to the left (line 28), and another rule to calculate the propensity of a mole-

cule decaying (line 31). Since Hammel and Prusinkiewicz did not consider the first

and last modules in their deterministic solution to the decay-diffusion process (see

L-system (6.5)), the rules for decay and diffusion do not apply to the first and last
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modules in the string. This is done by not placing a Wall module at the beginning

and end of the string. The purpose is to prevent all of the molecules from decaying

in the entire cellular structure. Finally, the second group in the program ensures

that in the case of a diffusion event one molecule is subtracted from the appropriate

cell and is added to its neighbour. The appropriate cell is found by checking for the

direction of diffusion through the Wall module, i.e, by checking the value of dirl

and dirr. If the direction of diffusion in dirl is to the left, one molecule is added

to the cell, otherwise one is subtracted. If the direction in dirr is to the right, one

molecule is added to the cell, otherwise one is subtracted.

The benefit of using L-systems and Gillespie groups to model the decay-diffusion

process stochastically should be clear from the simplicity of Program 3. Without

Gillespie groups this program would have to compute the sum of all the propensities

from all the cells, and find the cell where the next reaction takes place. Both of these

steps in Gillespie’s algorithm are done internally by lpfg in Gillespie groups. With

this benefit in mind, we can now compare the deterministic and stochastic solutions

to this process.

6.2.3 Results for the Deterministic & Stochastic Models of Decay &

Diffusion

Visual representations of the deterministic and stochastic solutions to the decay-

diffusion process over time are given in Figure 6.2. In each of the four images, a

cell is visually interpreted as an unit-length line segment where the cell’s colour

depends on the concentration a of the diffusing substance in the cell. To obtain the

concentration of the number of molecules A in the case of the stochastic solution,
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the following equation is used: a = A/V , where V is the volume. In the first three

images there are 32 cells per row and in the fourth image there are 64 cells per row,

where each row shows the state of the cells at ∆t = 0.1 time intervals.

The first image on the left was generated using ODEs while the other three images

were generated stochastically using the lpfg program from Section 6.2.2. In all of the

solutions the cells were initialized as follows: for the first cell, a = 1, for the last cell,

a = 1, and for every other cell, a = 0. In the third solution the cells were initialized

with 10 times as many molecules, which is the reason why the second stochastically

generated image appears less noisy than the first. All of the solutions use the same

values for the decay and diffusion constants: µ = 0.01 and Da = 5.

(a) (b) (c) (d)
time

Figure 6.2: Visual representation of the deterministic and stochastic solutions to the
decay-diffusion process: (a) deterministic solution produced by L-system (6.5), (b)
stochastic solution produced by Program 4 with V = 10, (c) stochastic solution with
V = 100, and (d) stochastic solution with twice as many cells as in (b).

By comparing the patterns generated in Figure 6.2, we can see that the stochastic

solution to the decay-diffusion process (in a one dimensional medium) is similar to the

deterministic solution. The advantage of using Gillespie’s method is that it captures

the inherent noise of the process, which is exemplified by the pattern labelled (b).
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Notice that this noisy pattern is generated under the same parameters and initial

boundary conditions as the solution to the deterministic differential equations, and

only when we increase the number of molecules do we see a pattern that is less noisy.

The disadvantage of using Gillespie’s method is that a large amount of computing

time is required to generate these patterns. While the deterministic pattern was

generated in seconds, it took about 2 minutes to generate the first stochastic pattern,

about 15 minutes to generate the second pattern, and about 4 minutes to generate

the third. An investigation into how the number of cells and the rate of diffusion

affects the simulation time results in a simple direct relationship between them. For

example, the simulation time doubled between the pattern generated in Figure 6.2a

and in Figure 6.2b. In the case of increasing the diffusion rate, the simulation time

increases similarly, e.g, while the stochastic model with 32 cells and a diffusion rate of

5 took 2 minutes, a stochastic model with 32 cells and a diffusion rate of 50 took 18.3

minutes. Although it is important to explore ways of decreasing the computing time

required to generate these patterns, for now let us complete stochastically modelling

the reaction-diffusion equations.

6.3 Sea Shell Patterns

Let us review how sea shell patterns may be generated using the deterministic

ODE approach. The pigmentation patterns generated by Fowler, Meinhardt and

Prusinkiewicz [14] were based on an activator-substrate model, using Equations (6.2),

similarly to Hammel and Prusinkiewicz [25]. The latter, however, used L-systems

to generate these patterns because of the clear advantage of using the formalism for
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modelling linear structures, and because of the simple expansion of their L-system

rule for the decay-diffusion process to the activator-substrate process. Using their

approach, deterministic sea shell patterns can be generated by the following L-system

rule:

Cell(al, sl) < Cell(a, s) > Cell(ar, sr) →

Cell

(
a +

(
ρs

(
a2

1 + κa2
+ ρ0

)
− µa + Da

al − 2a + ar

(∆x)2

)
∆t,

s +

(
σ − ρs

(
a2

1 + κa2
+ ρ0

)
− νs + Ds

sl − 2s + sr

(∆x)2

)
∆t

)
. (6.11)

The meaning of the activator-substrate parameters used in this rule was given in

Section 6.1. These parameters control the type of sea shell pattern that will emerge

by solving the activator-substrate equations. For instance, a striped pattern that

is stable in time and periodic in space can be generated by controlling the decay

and diffusion rates of the substrate [14, page 384]. It is important, therefore, to find

the relationship between the deterministic and stochastic values of these parameters.

We already know how the parameters for decay and diffusion are related, and the

relationship we have for Vmax and Km (from quasi-steady state enzyme kinetics) will

help us with the parameters involved in the autocatalytic process. Let us start by

finding the values of Vmax and Km from the activator-substrate equations (6.2). By

comparing the form of the following expressions,

Vmaxa
2

Km + a2
= ρs

(
a2

1 + κa2

)
, (6.12)

we see they become identical when Vmax = ρs/κ and Km = 1/κ.

According to Section 5.3.2 on the stochastic model of the quasi-steady state Hill

reaction, we find the propensity of the autocatalytic process in the activator-substrate
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equations to be

(
ρV

κ

)(
S

V

)(
A2

V 2

κ
+ A2

)
= ρS

(
A2

V 2 + κA2

)
, (6.13)

where the number of molecules, A and S, are used instead of the concentrations, a

and s. The relationship between all the values in the activator-substrate equations

are summarized in Table 6.1.

parameter deterministic value stochastic value

decay µ, ν µ, ν
diffusion Da, Ds Da, Ds

autocatalytic process ρs
(

a2

1+κa2

)
ρS
(

A2

V 2+κA2

)

substrate production σ σV
activator production ρ0 ρ0V

Table 6.1: The deterministic and stochastic values of the parameters in the activa-
tor-substrate model

By combining the stochastic models of the decay-diffusion process and the auto-

catalytic process, we can build a stochastic activator-substrate model and use it to

produce some sea shell patterns seen in nature.

6.3.1 Stochastic Activator-Substrate

The stochastic Petri net for the activator-substrate process is given in Figure 6.3. It

shows all of the reactions that may occur within a single cell and the diffusion of the

two substances to the left and right neighbours of the cell (recall we are modelling

within a one-dimensional medium). The transitions that represent the autocatalytic

process are drawn as boxes outlined in red, those that represent decay are boxes

outlined in green, and those that represent diffusion are boxes outlined in blue. This
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stochastic Petri net is obviously a combination of the one for the decay-diffusion

process and for the Hill reaction, which suggests that the two lpfg programs can

also be combined. Program 5 gives the lpfg code for stochastically simulating the

activator-substrate process.

#Si

∗

µ(#Ai)

#Ai

Ds⋅(#Si)

(x)2

∗ ∗

ν(#Si) σV

ρ(#Si)(#Ai)
2

V2 + κ(#Ai)
2

+ ρ(#Si)ρ0

Cell iCell i-1 Cell i+1

Da⋅(#Ai)

(x)2

Ds⋅(#Si)

(x)2

Da⋅(#Ai)

(x)2

Wall Wall

Figure 6.3: Stochastic Petri-net for the activator-substrate process.

Program 5: A stochastic model of the activator-substrate process implemented in
lpfg using Gillespie groups

1 #include <lpfgall.h>

2

3 const float VOLUME = 100.0; /* volume of a cell */
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4 const float D_A = 0.004; /* diffusion rate of A */

5 const float D_S = 0.1; /* diffusion rate of S */

6 const float MU = 0.1; /* decay rate of A */

7 const float NU = 0.01; /* decay rate of S */

8 const float SIGMA = 0.012; /* production rate of S */

9 const float RHO = 0.1; /* coefficient of proportionality */

10 const float KAPPA = 1.0; /* activator saturation level */

11 const float RHO_0 = 0.005; /* production rate of A */

12

13 int nextGroup = 1;

14 StartEach:{UseGroup(nextGroup);}

15 EndEach:{if (++nextGroup > 2) nextGroup = 1;}

16

17 derivation length: 1;

18

19 /* a cell with number of activator,substrate molecules */

20 module Cell(int,int);

21 /* a wall with diffusion direction of A,S */

22 module Wall(int,int);

23

24 axiom: /* Create cells separated by walls */

25

26 ggroup 1:

27 /* reactions for the autocatalytic process and decay */

28 Wall(Al,Sl) < Cell(A,S) > Wall(Ar,Sr):

29 {

30 float A_prod = (RHO*S*(A*A)) / (VOLUME*VOLUME+KAPPA*A*A)

31 + RHO*S*RHO_0;

32 propensity (A_prod) produce Cell(A+1, S-1);

33 propensity (SIGMA*VOLUME) produce Cell(A,S+1);

34 propensity (MU*A) produce Cell(A-1,S);

35 propensity (NU*A) produce Cell(A,S-1);

36 }

37 /* likelihood for diffusion of A and S */

38 Cell(Al,Sl) < Wall(A,S) > Cell(Ar,Sr):

39 {

40 propensity (D_A*Al) produce Wall(1,0);

41 propensity (D_A*Ar) produce Wall(-1,0);

42

43 propensity (D_S*Sl) produce Wall(0,1);
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44 propensity (D_S*Sr) produce Wall(0,-1);

45 }

46

47 group 2:

48 /* diffuse a molecule depending on its type, A or S */

49 Wall(Al,Sl) < Cell(A,S) > Wall(Ar,Sr):

50 {produce Cell (A+Al-Ar,S+Sl-Sr);}

51 Wall(dir): {produce Wall(0,0);}

This program is very similar to Program 4 except that there are additional

propensity-produce statements defined in the first rule to handle the reactions in-

volved in the autocatalytic process. The propensities match the ones in the stochastic

Petri net exactly. The only other minor change is that there are two species that

can diffuse instead of just one, and that means the second group in the program

must adjust the number of molecules according to which species diffuses. Now we

can compare the deterministic and stochastic solutions to this process.

6.3.2 Results

Figure 6.4 shows a theoretical sea shell pattern generated using the deterministic

approach (shown in (a)), which is a reproduction of the pattern from the paper

Modelling seashells [14, page 31], and the stochastic approach (shown in (b), (c),

and (d)) which was produced by running Program 5. It is generated in exactly the

same way as the visual representation of the solution to the decay-diffusion process

(see Figure 6.2). The only differences are that the autocatalytic process was included

in this model, and that different colours are used to show the concentration of a in

each cell. In the deterministic solution, the cells are initialized with a = 1 and

s = 1 concentrations. The stochastic solutions are initialized with the same values
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as the concentrations but multiplied by a constant factor, the cell’s volume, to get the

number of molecules in each cell. The volume is V = 1, V = 10, and V = 100 for (b),

(c), and (d) respectively. In all four of the solutions, the parameters were assigned

the following values: ρ = 0.01, ρ0 = 0.001, µ = 0.01, Da = 0.002, σ = 0.015, ν = 0,

Ds = 0.4, κ = 0. The ρ parameter, however, was subject to random fluctuations of

2.5% of its average value in the deterministic approach, which is necessary to start

the pattern formation process. It is important to notice that this is not necessary

in the stochastic simulation approach, and the pattern emerges without any extra

parameter tweaking.

(a) (b) (c) (d)

Figure 6.4: Several striped patterns generated using the deterministic and stochastic
approaches to the activator-substrate model: (a) deterministic solution [14], (b)
stochastic solution with the same initial conditions as the deterministic solution, (c)
same as (b) but 10 times as many initial molecules, and (d) same as (b) but 100
times as many initial molecules.

Figure 6.5 shows that a realistic sea shells pattern, the one found on Amoria un-
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dulata, can also be generated using the stochastic simulation approach. The deter-

ministic solution shown in (a) is a reproduction from the paper Modelling seashells

[14, page 32]. The stochastic solution was produced by running Program 5 with

V = 10 for the pattern in (b), V = 100 for the pattern in (c), and V = 1000 for

the pattern in (d). All four solutions used the following parameter values: ρ = 0.1,

ρ0 = 0.005, µ = 0.1, Da = 0.004, σmin = 0.02, σmax = 0.032, ν = 0, Ds = 0,

κ = 1. The σ parameter was modulated for each cell according to a sine function

in order to generate lines of undulating shape [14, page 31]. That is, for each cell

i, σ = σmin + sin(i)(σmax − σmin)/2. Furthermore, as in the striped pattern, the ρ

parameter was subject to random fluctuations of 2.5% in the deterministic solution,

but not in the stochastic solution.

(a) (b) (c) (d)

Figure 6.5: Sea shell pattern from Amoria undulata generated using the determin-
istic and stochastic approaches to the activator-substrate model: (a) deterministic
solution [14], (b) stochastic solution initialized with about 10 molecules per cell, (c)
about 100 molecules per cell, and (d) about 1000 molecules per cell.
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The results for both the striped pattern and the Amoria undulata pattern show

that the deterministic and stochastic solutions to the activator-substrate process are

in agreement with each other. This is most easily observed in the case when the initial

number of molecules is large (i.e. the volume of a cell, V , is high). In the other cases,

the visualization was noisy and the pattern was not at all or less recognizable. This

is to be expected, since large changes in a small number of molecules have a dramatic

effect on the concentration of activator in the cell. For example, in a chemical system

with V = 10 a change of one molecule will have a greater effect on the concentration

than a similar change in a system with V = 100 (i.e. 10% versus 1%). The same type

of reasoning can be applied to the visualization. If ten colours are used to represent

the concentration of a species in a system with V = 10, the result will appear more

noisy than using ten colours to represent the same concentration in a system with

V = 100.

There is still the disadvantage of the computational cost associated with the sto-

chastic approach. It takes only a few seconds to generate the deterministic solution,

but it takes much longer to generate the stochastic solution for both the striped pat-

tern and Amoria pattern. Specifically, the stochastic solutions with a large volume

take the most time to generate. The striped pattern in Figure 6.4(b) took 6 minutes,

in (c) took 36 minutes and in (d) took 4.2 hours. The Amoria pattern in Figure

6.5(b) took 9 minutes, in (c) took 1.1 hours, and in (d) took 9.2 hours to generate.

These timings compared to the ones for the decay-diffusion process are quite large.

The reason is most likely due to the large number of cells (i.e. 100 compared to 32)

and the additional reactions. Now, let us continue our examination of the stochastic

approach to reaction-diffusion by considering a model of a growing linear structure.
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6.4 Anabaena catenula

In the previous section, we demonstrated that the reaction-diffusion process can be

stochastically simulated using L-systems by generating sea shell patterns using the

activator-substrate equations in a one-dimensional medium. According to Hammel

and Prusinkiewicz, “the integration of reaction-diffusion processes and L-systems

leads to a wider class of models” [25, page 254], which are models of reaction-diffusion

in a growing medium. To demonstrate this, they presented a deterministic differential

equation model of the bacterium, Anabaena catenula.

Anabaena is a cyanobacterium that consists of two types of cells: photosynthetic

vegetative cells and anaerobic nitrogen-fixing heterocysts [27]. The cells are orga-

nized into a spaced pattern with sequences of vegetative cells separating heterocysts.

The rules for growth and division of cells were studied by Mitchison and Wilcox [45].

They found that a vegetative cell either divides into two asymmetrical vegetative

cells or differentiates into a heterocyst, which does not divide. The heterocysts ap-

pear about midway between two older heterocysts [45] and with about ten vegetative

cells in between [27] (giving a spaced pattern). Two mathematical models have been

proposed to capture the mechanisms that are responsible for the formation of this

pattern in Anabaena.

Baker and Herman [3, 4] proposed a threshold model of Anabaena where the

heterocysts produce a nitrogenous compound that diffuses throughout the organ-

ism and is decayed in the vegetative cells. If the compound drops below a certain

threshold in a vegetative cell, the cell differentiates into a heterocyst [25, page 254].

This model was also implemented by Lindenmayer and de Koster using L-systems
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[35, 8] (see also [56, page 43]). The resulting pattern of cells produced using this

model closely resembles the real (spaced-heterocyst) pattern observed in Anabaena.

A problem arises, though, with even slight manipulation of parameter values be-

cause heterocysts may sometimes appear simultaneously and close to each other [25,

page 254]. For this reason, Hammel and Prusinkiewicz improved the model of An-

abaena by introducing proheterocysts (presumptive heterocysts [45, page 110]) into

the model. The proheterocysts compete with one another until one of them becomes

a heterocyst and then suppresses its neighbours from also becoming heterocysts. To

express this competition between proheterocysts, Hammel and Prusinkiewicz used a

reaction-diffusion based model. The resulting pattern of evenly spaced heterocysts

produced by their model also resembles the pattern seen in Anabaena, but is less

sensitive to parameter values than Baker and Herman’s model. Neither model, how-

ever, considers how noise may affect the formation of this pattern. To address this

question, let us examine the stochastic simulation approach to these two models of

Anabaena.

6.4.1 ODE Threshold Model of Anabaena

Lindenmayer and de Koster’s implementation of the Anabaena threshold model uses

deterministic differential equations to describe the production of a nitrogenous com-

pound in heterocysts, and the decay and diffusion of that compound in vegetative

cells. A slightly modified version of their implementation [12] gives the production

of the compound, c, in a heterocyst as,

dc

dt
= rc(cmax − c), (6.14)
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where rc is the rate of production and cmax is the maximum concentration of the

compound. The decay and diffusion of the compound in vegetative cells is given by

the familiar equations,

∂c

∂t
= −µc + Dc

∂2c

∂x2
, (6.15)

where µ is the decay rate, Dc is the diffusion rate, and x is the cell length. The growth

of heterocysts and vegetative cells is also described by a differential equation. If s is

the size of a cell, where we presume size is equivalent to length, and rs is the growth

rate of a cell, the size changes according to the following equation for vegetative cells:

ds

dt
= rss, (6.16)

and the following equation for heterocysts:

ds

dt
= rs(smax − s). (6.17)

Here smax is the maximum size of a cell. A heterocyst will never reach this maxi-

mum size, but when a vegetative cell reaches this maximum threshold it will divide

according to the following rule: if the polarity of the cell is positive (or right), the

right daughter cell will be smaller than the left daughter cell and if the polarity is

negative (or left), the left daughter cell will be smaller than the right one [45]. Figure

6.6 is a visual representation of this rule for four cell divisions, where the polarity

of a cell is represented by a right arrow for positive and a left arrow for negative.

Finally, a vegetative cell differentiates into a heterocyst when the concentration of

the nitrogenous compound falls below a certain threshold (i.e. when c < cmin), and

the cell is short/young enough (i.e. when s < slong).
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Figure 6.6: Anabaena cell division rules (redrawn from [56, page 5]): a right arrow
represents positive polarity and a left arrow represents negative polarity.

A complete L-system for this Anabaena model, consisting of deterministic differ-

ential equations, is given in The Algorithmic Beauty of Plants [56, page 44], but here

is a summary of the L-system’s main parts. There are two types of modules that

represent a vegetative cell or a heterocyst. The module, V eg(c, s, p), represents veg-

etative cells and has three parameters: c is the concentration of the compound in the

cell, s is the size of the cell, and p is the cell’s polarity. The module, Hetero(c, s),

represents a heterocyst for which the parameters have the same meaning as for a

vegetative cell. The L-system is initialized with one vegetative cell that is bounded

by two heterocysts, using the following axiom:

Hetero(c(0), s(0)) V eg(c(0), s(0), RIGHT ) Hetero(c(0), s(0)). (6.18)

Now, let us examine the L-system rules that govern the development of cells in this

model. The rule for diffusion and decay of the nitrogenous compound in a vegetative

cell and growth of the cell is given by,

V eg(cl, sl, pl) < V eg(c, s, p) > V eg(cr, sr, pr) : c > cmin ∧ s > slong →

V eg

(
c +

(
−µc +

Dc(cl − 2c + cr)

sw

)
∆t, s + rss∆t, p

)
, (6.19)
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where w is the size of a wall separating two cells. This rule is applied under the

condition that c > cmin in the cell or that s > slong, otherwise the rule for a vegetative

cell differentiating into a heterocysts is applied. It is given by

V eg(c, s, p) : c ≤ cmin & s ≤ slong → Hetero(c, s). (6.20)

The rule for production of the compound in a heterocyst and growth of the heterocyst

is given by

Hetero(c, s) → Hetero(c + rc(cmax − c)∆t, s + rs(smax − s)∆t). (6.21)

The rule for vegetative cell division is a decomposition rule [55]. This type of rule is

applied recursively to a module in the L-system’s string, and can be used to divide a

module into several modules. For this reason, an ending condition must be specified

in each rule. The rules for cell division are given by

V eg(c, s, p) : s = smax & p = LEFT →

V eg(c, k ∗ s, LEFT )V eg(c, (1 − k) ∗ s,RIGHT ) (6.22)

V eg(c, s, p) : s = smax & p = RIGHT →

V eg(c, k ∗ s,RIGHT )V eg(c, (1 − k) ∗ s, LEFT ), (6.23)

where k < 0.5 is a constant that controls the lengths of the two daughter cells [25,

page 255]. We can now consider corresponding rules using the stochastic simulation

approach.

Stochastic Threshold Model of Anabaena

Of all the processes involved in the deterministic differential equation model of An-

abaena, the only ones we have not encountered are for growth and division of cells.
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To formulate these two processes using the stochastic simulation approach, however,

is not difficult. The growth of a cell can be formulated similarly to decay, but instead

of subtracting a molecule from the system one is added. This formulation of growth

may be stretching Gillespie method a bit much because cell size is not equivalent to

number of molecules. For that reason, we consider the chemical species S not as the

size of the cell but rather a chemical that stimulates growth of the cell, which enables

the use of Gillespie method to stochastically simulate growth. For division of vege-

tative cells there is only one change that is necessary to the deterministic differential

equation formulation, the number of molecules in the mother cell must be divided

between the two daughter cells. This division was not done in the deterministic

Anabaena model because it dealt with concentrations, which do not change when a

cell divides. The ideas of a growing and dividing cellular structure are captured in

Figure 6.7. A cell that is growing according to the reaction, S −→ 2S with rate rs,

will eventually reach a maximum value, Smax, and divide into two daughter cells.

Each of the daughter cells will contain the same chemical reaction as the mother cell

except that the number of molecules of S will be divided among them. In that case,

the definition of a stochastic Petri-net has been extended to include the addition of

new chemical reactions over time (i.e. a growing stochastic Petri-net). Let us now

consider the stochastic formulation of all the reactions in the Anabaena threshold

model.
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Figure 6.7: Example of a growing stochastic Petri-net: the growth is from top to
bottom, where each reaction, S −→ 2S with rate rs, produces two new reactions of
the same type.

In Figure 6.8 a stochastic Petri-net is given for the Anabaena threshold model,

which shows the chemical reactions that may occur in vegetative cells or in hetero-

cysts. The middle cell is a vegetative cell with four possible reactions: (1) decay of

the compound, (2) diffusion from the cell to the left, (3) diffusion from the cell to the

right, and (4) production of the chemical that stimulates growth. In the diffusion

propensity calculation, the number of molecules of the species, S, must be divided

by the volume of the cell because S does not represent the size of the cell. The

species is a stimulate of growth in the cell and is given as the number of molecules.

The vegetative cell is bounded by two heterocysts that have two possible reactions

each. These reactions are for the production of the compound and for the stimula-

tion of growth up to a maximum value (cmax and smax, respectively). The stochastic

Anabaena threshold model is given in lpfg Program 6.
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Figure 6.8: Stochastic Petri-net for the Anabaena threshold model.

Program 6: A stochastic threshold model of Anabaena implemented in lpfg using
Gillespie groups

1 #include <lpfgall.h>

2

3 const float VOLUME = 10.0; /* volume of a cell */

4 const int RIGHT = 1; /* polarity of vegetative cell */

5 const int LEFT = -1;

6 const float K = 0.38196; /* minimum cell length */

7 const float W = 1.0; /* wall length */

8 const float R_S = 0.01; /* growth rate */

9 const float S_MAX = 1.0; /* maximum size of cell */

10 const float S_LONG = 1-K; /* size before differentiation */

11 const float MU = 0.2; /* decay rate of C */

12 const float D_C = 1.0; /* diffusion rate of C */

13 const float R_C = 10.0; /* production of C in a heterocyst */

14 const float C_MIN = 0.05; /* minimum concentration of C */

15 const float C_MAX = 0.64; /* maximum concentration of C */

16

17 int nextGroup = 1;

18 StartEach:{UseGroup(nextGroup);}

19 EndEach:{if (++nextGroup > 3) nextGroup = 1;}

20 derivation length: 1;

21
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22 module Veg (int, int, int); /* vegetative cell */

23 module Hetero (int, int); /* heterocyst */

24 module Wall (int); /* a wall between cells */

25

26 axiom: Hetero(C_MAX*VOLUME, K*VOLUME)

27 Veg(C_MAX*VOLUME, VOLUME, RIGHT)

28 Hetero(C_MAX*VOLUME, K*VOLUME);

29

30 ggroup 1:

31 /* reactions for decay and growth of vegetative cells */

32 Wall(dirl) < Veg(C,S,P) > Wall(dirr) :

33 {

34 propensity (MU*C) produce Veg(C-1,S,P);

35 propensity (R_S*S) produce Veg(C,S+1,P);

36 }

37 /* likelihood for diffusion between vegetative cells */

38 Veg(Cl,Sl,Pl) < Wall(dir) > Veg(Cr,Sr,Pr) :

39 {

40 propensity (D_C*VOLUME/(S*W)*Cl) produce Wall(1);

41 propensity (D_C*VOLUME/(S*W)*Cr) produce Wall(-1);

42 }

43 /* reaction for production of C and growth of heterocyst */

44 Hetero(C,S) :

45 {

46 propensity (R_C*(C_MAX*VOLUME-C)) produce Hetero(C+1,S);

47 propensity (R_S*(S_MAX-K*S)) produce Hetero(C,S+1);

48 }

49

50 group 2:

51 /* perform diffusion of C between vegetative cells */

52 Wall(dirl) < Veg(C,S,P) > Wall(dirr):{produce Veg(C+dirl-dirr);}

53 Wall(dir): {produce Wall(0);}

54

55 group 3:

56 Veg(C,S,P) :

57 {

58 /* check if this cell should differentiate into a heterocyst */

59 if (C <= C_MIN*VOLUME && S <= S_LONG*VOLUME)

60 produce Hetero(C,S);

61 }
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62 decomposition:

63 Veg(C,S,P) :

64 {

65 /* check if this cell should divide */

66 if (K*S >= S_MAX*VOLUME)

67 {

68 /* divide according to cell’s polarity */

69 if (P == RIGHT)

70 produce Veg(C*(1-K), S*(1-K), LEFT)

71 Veg(C-C*(1-K), S-S*(1-K), RIGHT);

72 else if (P == LEFT)

73 produce Veg(C*K, S*K, LEFT)

74 Veg(C-C*K, S-S*K, RIGHT);

75 }

76 }

This lpfg program is very similar to Program 4 for the decay-diffusion process,

and the propensity...produce... statements are an exact implementation of the

reactions described by the stochastic Petri-net in Figure 6.8. The novel part of

this program is the use of Gillespie’s method to model growth of cells, but it turns

out this process is captured by a simple reaction (i.e. S → 2S with rate rs). The

third group where differentiation and division of vegetative cells is performed is

done by using conditional statements. For example, if the number of molecules of

the compound falls below a threshold, C MIN*VOLUME, and the cell size is less than

a differentiation threshold, S LONG*VOLUME, the vegetative cell differentiates into a

heterocyst. The thresholds are multiplied by VOLUME since they are specified in terms

of concentrations. Let us now compare the deterministic and stochastic versions of

this Anabaena model.
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Results for the Anabaena Threshold Model

Figure 6.9 shows a visualization of the Anabaena threshold model for (a) the deter-

ministic differential equation approach, and for (b) and (c) the stochastic simulation

approach with V = 100 and V = 1000, respectively. The entire model is visualized as

a row of cells where each cell is drawn as a rounded rectangle with the concentration

of the compound, c, drawn as a line above the cell. The vegetative cells are coloured

green, the heterocysts are coloured red, and the bars showing the concentration are

coloured grey. Each simulation was started with a vegetative cell bounded by two

heterocysts, and was stopped when the simulation time, t, reached 400 units. The

parameters were assigned the following values: k = 0.38196, rs = 0.01, smax = 1,

µ = 0.2, Dc = 1, rc = 10, cmin = 0.05, cmax = 0.64. The initial conditions were

c(0) = cmax and s(0) = k for all three cells, and the polarity of the vegetative cell

was set to positive (or right).

We can see from the visualization that the deterministic and stochastic ap-

proaches to the Anabaena threshold model are in agreement with each other. The

stochastic simulation approach, however, shows that with a small number of mole-

cules the heterocysts are not as evenly distributed among the vegetative cells as the

deterministic model predicts (compare (a) to (b)). Only when the initial number

of molecules is increased by 1,000 do the heterocysts appear more evenly distrib-

uted (compare (a) to (c)). The difference between the two stochastically generated

patterns in (b) and (c) is most likely due to the model’s use of a threshold for de-

termining cell differentiation. Since a small number of molecules in a cell causes

the noise to be large near the threshold, two vegetative cells may differentiate into

heterocysts even though the cells are close to each other. This problem is not as
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(b)

(a)

(c)

Figure 6.9: Visualization of the Anabaena threshold model: (a) the deterministic
differential equation approach, (b) and (c) the stochastic simulation approach with
V = 100 and V = 1000 respectively.

evident when there are a large number of molecules. To further explore the issue

of inter-heterocyst spacing, a measure of the expected value and variance of the

number of vegetative cells between heterocysts could be made. A similar measure

of inter-heterocyst spacing was used by Yoon and Golden [72], where the frequency

of the number of vegetative cells separating heterocysts was made for a 1,000-cell

filament. This measurement, however, is not possible with the current stochastic

simulation approach because of the large simulation time required to produce such a

long filament. It took about 1.5 minutes to generate the pattern in (b) and about 20
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minutes to generate the pattern in (c), where the number of cells was only around 40.

Let us now consider an Anabaena model proposed by Hammel and Prusinkiewicz to

reduce the sensitivity of the parameter values.

6.4.2 ODE Activator-Inhibitor Model of Anabaena

The deterministic differential equation model of Anabaena proposed by Hammel

and Prusinkiewicz uses a reaction-diffusion process of activator-inhibitor type [39]

to capture competition between proheterocysts, which later form heterocysts. This

reaction-diffusion process is given by the following equations,

∂a

∂t
=

ρ

h

(
a2

1 + κa2
+ a0

)
− µa + Da

∂2a

∂x2

∂h

∂t
= ρ

(
a2

1 + κa2
+ h0

)
− νh + Dh

∂2h

∂x2
, (6.24)

which describe the change in concentration of an activator species, a, and an inhibitor

species, h, over time. The first term in both equations, the autocatalytic process,

appears to be similar to the first term in the activator-substrate equations. This is

misleading, however, because the production of a in the activator-substrate equations

is proportional to s, but in the activator-inhibitor equations the production of a is

inversely proportional to h.

In the implementation of the Anabaena activator-inhibitor model by Hammel

and Prusinkiewicz, each cell solves the activator-inhibitor equations using the forward

Euler method. The major difference between this Anabaena model and the threshold

model is that only one module is used to represent both the vegetative cells and

heterocysts instead of two. Consequently, the difference between heterocysts and

vegetative cells becomes quantitative, rather than qualitative, in nature. This makes
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it possible for nearby proheterocysts to compete with each other, preventing both

of them from becoming heterocysts. For this reason the activator-inhibitor model

is not as sensitive to parameter changes as the previous Anabaena model. Let us

now use the stochastic simulation approach to better examine the activator-inhibitor

model.

In the stochastic simulation approach to the activator-inhibitor process, the

propensities of the reactions involved in the production of activator and inhibitor

can be found similarly as for the activator and substrate production. The first step

is to find the values of Vmax and Km from the activator-inhibitor equations (6.24).

By comparing the form of the expression for the quasi-steady state Hill reaction and

the activator-inhibitor equations, we have Vmax = ρ/κ and Km = 1/κ. There is a

problem, however, with the dependence of activator production on the inverse con-

centration of the inhibitor (i.e. the term ρ/h) because there is no chemical kinetic

basis for this division (the law of mass action does not apply). The fundamental

solution would be to find the chemical reactions that underlie this process and ad-

just the activator-inhibitor model accordingly. A simpler solution is to divide the

propensity for activator production by the concentration of the inhibitor, formally

treating the entire fraction ρ/h as a coefficient. Hence, the propensity of activator

production is given by the expression

(
ρV

κ

)(
1

H/V

)(
A2

V 2

κ
+ A2

+ A0

)
=

ρV 2

H

(
A2

V 2 + κA2
+ A0

)
, (6.25)

where the numbers of molecules, H and A, are divided by the volume, V , to obtain

concentrations. Similarly, the propensity for inhibitor production is given by the
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expression

(
ρV

κ

)(
A2

V 2

κ
+ A2

+ H0

)
= ρV

(
A2

V 2 + κA2
+ H0

)
. (6.26)

Now that the expressions to calculate the propensities for the reactions involved in

the activator-inhibitor process are known, let us build a model of Anabaena based

on this process.

Stochastic Activator-Inhibitor Model of Anabaena

Figure 6.10 gives the stochastic Petri net for one cell (a vegetative cell or a hetero-

cyst) in a linear structure according to the activator-inhibitor model. The stochastic

Petri net is similar to the one given for the Anabaena threshold model except for

the additional reactions involved in the autocatalytic process. The transitions that

represent the autocatalytic process are drawn as boxes outlined in red, those that

represent decay are boxes outlined in green, and those that represent diffusion are

boxes outlined in blue. Diffusion is only shown for the inhibitor because, usually,

in real Anabaena the activator does not diffuse (it is to large a protein). The lpfg

Program 7 models this process.
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Figure 6.10: Stochastic Petri-net for the Anabaena activator-inhibitor model.

Program 7: A stochastic activator-inhibitor model of Anabaena implemented in
lpfg using Gillespie groups

1 #include <lpfgall.h>

2

3 const float V = 100.0; /* volume of a cell */
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4 const int RIGHT = 1; /* polarity of a cell */

5 const int LEFT = -1;

6 const float K = 0.45; /* minimum cell length */

7 const float WS = 0.01; /* wall size */

8 const float R_S = 0.002; /* growth rate */

9 const float S_MAX = 1.0; /* maximum size of cell */

10

11 /* activator-inhibitor constants */

12 const float RHO = 3.0; /* coefficient of proportionality */

13 const float KAPPA = 0.001; /* activator saturation level */

14 const float A0 = 0.01; /* production rate of A */

15 const float H0 = 1.0; /* production rate of H */

16 const float MU = 0.1; /* decay rate of A */

17 const float NU = 0.45; /* decay rate of H */

18 const float D_H = 1.0; /* diffusion rate of H */

19

20 /* concentration of A that triggers heterocyst formation */

21 const float A_MAX = 1.0;

22

23 int nextGroup = 1;

24 StartEach:{UseGroup(nextGroup);}

25 EndEach:{if (++nextGroup > 3) nextGroup = 1;}

26 derivation length: 1;

27

28 /* cell with parameters: activator, inhibitor, size, polarity */

29 module Cell (int, int, int, int);

30 /* wall with parameter: direction of diffusion */

31 module Wall (int);

32

33 axiom: Wall(0) Cell(0.1*V,1.0*V,V*(1-K),RIGHT)

34 Wall(0) Cell(0.1*V,1.0*V,V*K,RIGHT) Wall(0);

35

36 ggroup 1:

37 Wall(Al,Hl) < Cell(A,H,S,P) > Wall(Ar,Hr) :

38 {

39 float hill = A*A/(V*V + KAPPA*A*A);

40 /* check for a division by zero in activator-inhibitor eqns */

41 if (H > 0)

42 prod_A = (RHO*V*V/H) * hill + (RHO*V/H)*(A0*V);

43 else
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44 prod_A = (RHO*V/0.001) * hill + (RHO/0.001)*(A0*V);

45 float prod_H = (RHO*V) * hill + H0*V;

46

47 /* autocatalytic reactions for production of A and H */

48 propensity (prod_A/S) produce Cell(A+1,H,S,P);

49 propensity (prod_H/S) produce Cell(A,H+1,S,P);

50

51 /* the decay of A and H */

52 propensity (MU*A) produce Cell(A-1,H,S,P);

53 propensity (NU*A) produce Cell(A,H-1,S,P);

54

55 /* the growth of a cell, upto a maximum value */

56 if (size < S_MAX*V)

57 propensity (R_S*S) produce Cell(A,H,S+1,P);

58 }

59 /* likelihood for diffusion between cells */

60 Cell(Al,Hl,Sl,Pl) < Wall(dir) > Cell(Ar,Hr,Sr,Pr) :

61 {

62 propensity (D_H*V*Hl/(Sl*WS)) produce Wall(1);

63 propensity (D_H*V*Hr/(Sr*WS)) produce Wall(-1);

64 }

65

66 group 2:

67 /* rules for diffusion of H between cells */

68 Wall(dirl) < Cell(A,H,S,P) > Wall(dirr):

69 {produce Cell(A,H+dirl-dirr,S,P);}

70 Wall(dir): {produce Wall(0);}

71

72 group 3:

73 decomposition:

74 Cell(A,H,S,P) :

75 {

76 /* check if this cell is a heterocyst */

77 if (S < S_MAX*V || A > A_MAX*V)

78 produce Cell(A,H,S,P)

79 else /* this cell should divide */

80 {

81 /* divide according to cell’s polarity */

82 if (P == RIGHT)

83 produce Cell(A*(1-K), H*(1-K), S*(1-K), LEFT)
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84 Wall(0)

85 Cell(A-A*(1-K), H-H*(1-K), S-S*(1-K), RIGHT);

86 else if (P == LEFT)

87 produce Cell(A*K, H*K, S*K, LEFT)

88 Wall(0)

89 Cell(A-A*K, H-H*K, S-S*K, RIGHT);

90 }

91 }

The three groups in this lpfg program for the Anabaena activator-inhibitor model

have a similar purpose to the ones in Program 6 for the Anabaena threshold model.

The first group, ggroup 1, is a Gillespie group that defines the propensities and the

changes in the number of molecules involved in the activator-inhibitor process. The

second group performs diffusion of the inhibitor molecule H between cells when it

is necessary, and the last group performs cell division of vegetative cells (but not of

heterocysts, as they do not divide). If the size of a cell has reached its maximum

value, S MAX, and the number of molecules of the activator species A is less than the

heterocyst triggering value, A MAX*V, the cell divides. In all other cases, the cell does

not change.

Results for the Activator-Inhibitor Model of Anabaena

Figure 6.11 shows the resulting pattern which is obtained when the Anabaena activator-

inhibitor model is simulated using lpfg until the simulation time, t, reaches 4000 units.

The pattern labelled (a) was generated using the deterministic ODE approach (based

on the model by Hammel and Prusinkiewicz [25]) and the patterns labelled (b) and

(c) were generated using the stochastic simulation approach (Program 7). In all

three patterns, vegetative cells are visualized as rounded rectangles and heterocysts

are visualized as circles. The vertical bars above the rounded rectangles represent
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the natural log of the concentration of the activator, and the vertical bars below

represent the natural log of the concentration of the inhibitor. Similarly to the visu-

alization of the Anabaena threshold model, the colour of a vegetative cell is green,

the colour of a heterocyst is red, and the vertical bars are coloured grey.

To generate the patterns shown in Figure 6.11, the initial structure of the L-

system for the Anabaena activator-inhibitor model was set up using two vegetative

cells with walls on both sides of the cells. The cells were of different size to ensure

that only one of them would become a heterocyst. The initial concentration of the

activator was set to 0.1 and of the inhibitor to 1.0. For the stochastic simulation, the

initial number of molecules for each species was set to the concentration multiplied

by the cell’s volume. Finally, the parameters for the activator-inhibitor equations

were set to: ρ = 3, κ = 0.001, a0 = 0.01, h0 = 1, µ = 0.1, ν = 0.45, and Dh = 0.01.

The patterns produced by the deterministic and stochastic models in Figure 6.11

are similar, and once again the stochastic model which has a high number of initial

molecules (V = 100) resembles the deterministic model closely. In the stochastic

model with a lower volume, the heterocysts are fairly evenly spaced apart but one

too many vegetative cells differentiate. This is most likely caused by the lack of

activator in most of the cells (in the visualization, the bars above the vegetative cells

show very little activator concentration), which suggest there is almost no compe-

tition between cells for differentiating into heterocysts. A measure of the expected

value and variance of inter-heterocysts spacing would be useful, but once again the

simulation time is too large. The amount of CPU time required to deterministically

generate the heterocyst pattern was about 12 seconds, and to stochastically generate

the two patterns was about 1 hour for V = 10 and 2 hours for V = 100.
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(b)

(a)

(c)

Figure 6.11: Visualization of the activator-inhibitor model of Anabaena: (a) the
deterministic differential equation approach, (b) the stochastic simulation approach
with V = 10, and (c) the stochastic simulation approach with V = 100.



Chapter 7

Conclusions

The main contribution of this work is the incorporation of Gillespie’s algorithm for

stochastically simulating chemical reactions into the formalism of L-systems. On

the basis of theoretical considerations, the L+C modelling language and the sim-

ulation program lpfg were extended to include a new stochastic rewriting strategy

based on Gillespie’s algorithm. The resulting software provides a convenient means

for simulating stochastic processes in both well-mixed systems and spatial (linear or

branching) structures, and is particularly useful in the case of growing structures.

Examples of spatially-explicit processes considered in this thesis include the forma-

tion of shell pigmentation patterns and heterocyst differentiation in growing filaments

of blue-green bacterium Anabaena. To simulate these processes, we derived stochas-

tic counterparts of the activator-substrate and activator-inhibitor reaction-diffusion

models from the first principles, on the basis of their standard definition in terms

of differential equations. The derivation of the autocatalytic component of these

models was based on the assumption of quasi-steady-state enzyme kinetics.

The motivation for stochastic simulations is that they inherently capture sto-

chastic phenomena (noise) that may occur in the modelled systems. In the thesis,

this point was illustrated by reproducing Gillespie’s comparison of deterministic and

stochastic solutions to Lotka’s chemical system [21]. The deterministic solution (ob-

tained as a numerical solution to a pair of coupled differential equations) incorrectly

predicts that if Lotka’s system is in an equilibrium, it will remain in that state for-
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ever. Also, the deterministic solution predicts that oscillations will be repeated with

a constant period forever. In contrast, the stochastic model shows that the solution

is oscillatory with a varying period. In the case of spatially explicit processes, sto-

chastic simulations reveal the noise present in reaction-diffusion patterns when the

numbers of molecules are small. When these numbers are increased, the patterns

generated using Gillespie’s and deterministic methods converge.

One objective of including Gillespie’s stochastic rewriting strategy into the L+C

modelling language and the related simulator lpfg was to simplify the task of spec-

ifying stochastic models. To illustrate the results, we compared two stochastic im-

plementations of Lotka’s system, one written in plain L+C and another written in

L+C with the Gillespie extension. In the absence of language support for Gillespie’s

algorithm (Program 1), half of the model code was devoted to a generic specification

of Gillespie’s algorithm and had little to do with the Lotka’s system itself. With

Gillespie’s method incorporated into L+C and lpfg, the specification of stochastic

Lotka’s system became much shorter (from 50 lines to 22 lines of code) and more

readable (Program 2).

In general, L+C models using the Gillespie extension appear to be easy to write,

modify, and experiment with. For example, the stochastic model of the activator-

substrate process (Program 5) was obtained by extending a model of decay and

diffusion (Program 4). This extension required the addition of only a few statements,

which characterized the production of the activator and substrate.

A drawback of using stochastic simulations, as opposed to solving differential

equations, is that large computation times are required. This is particularly no-

ticeable in the case of spatially explicit models. Table 7.1 collects the CPU times
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required to generate patterns presented in this thesis.

Pattern Model CPU Time

Figure 6.2, a) deterministic, Cells = 32 2 sec
decay and b) stochastic, V = 10, Cells = 32 89 sec
diffusion c) stochastic, V = 100, Cells = 32 855 sec

d) stochastic, V = 10, Cells = 64 209 sec
Figure 6.4, a) deterministic 2 sec
striped b) stochastic, V = 1 325 sec
sea shell c) stochastic, V = 10 2154 sec

d) stochastic, V = 100 15097 sec
Figure 6.5, a) deterministic 2 sec
Amoria b) stochastic, V = 10 545 sec
sea shell c) stochastic, V = 100 4035 sec

d) stochastic, V = 1000 33374 sec
Figure 6.9, a) deterministic 5 sec
Anabaena b) stochastic, V = 100 92 sec
threshold c) stochastic, V = 1000 1148 sec
model
Figure 6.4, a) deterministic 12 sec
Anabaena b) stochastic, V = 10 4330 sec
activator-inhibitor c) stochastic, V = 100 6707 sec
model

Table 7.1: The amount of CPU time required to generate the reaction-diffusion
patterns presented in this thesis.

In the stochastic simulation of a reaction-diffusion system, the following factors

have a significant impact on the computation time:

1. the total number of molecules,

2. the total number of reactions,

3. the rates of reactions,

4. the total number of cells.
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Any of these factors may cause the sum of the propensities for some or all reactions

to be large. The inter-reaction time τ is then small, leading to a large number of

iterations required to reach a final simulation time T . In the thesis, this effect

was demonstrated using reaction-diffusion as an example. A tenfold increase in the

volume of a cell, and thus in the number of molecules involved, resulted in about

a tenfold increase in the simulation time. Also, a twofold increase of the number

of cells in the case of the decay-diffusion pattern of Figure 6.2, resulted in about a

twofold increase of the simulation time. This investigation into the impact of the

factors which have an effect on computation time shows a direct relationship between

those factors and simulation time.

As stochastic simulations of reaction-diffusion models are often too slow for prac-

tical applications, the question of how to accelerate these simulations arises. An

optimization of Gillespie’s method, proposed by Gibson and Bruck in 2000 [17], is

the next reaction method for performing the Monte Carlo step (i.e. for choosing which

reaction takes place next and the time of that reaction). Gibson and Bruck intro-

duced a dependency graph to recalculate only the propensities that change after the

occurrence of a reaction, and an indexed priority queue to store the inter-reaction

times for each reaction. By reusing the inter-reaction times for reactions that are

not affected by the last reaction, they reduced the amount of random numbers re-

quired per simulation step from M (the number of reactions) to 1. The next reaction

method changes the time complexity of Gillespie’s algorithm from O(M) to O(1),

and would thus be advantageous as an alternative to, or a replacement of, the direct

Gillespie’s algorithm as the stochastic simulation strategy in L+C.

While the next reaction method is as exact as Gillespie’s stochastic simulation
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algorithm, the computation time can be further improved if some loss in the accuracy

of a solution is acceptable. For the case when the exact timings of reactions are

not necessary, Gillespie proposed the τ -leap method [23]. This method advances

simulation time by intervals of duration τ , and generates the number of reactions

that will occur in each interval using a Poisson process. The difficulty in applying τ -

leaping is the selection of the size of the time interval τ , which must be large enough

to advance simulation efficiently, yet small enough to ensure that the propensities

of reactions remain approximately constant in each interval. If this condition is not

met, the accuracy of the solution may be compromised (e.g., oscillations may be

missed in the solution). Several techniques for selecting τ exist, including less stable,

but easier to implement, explicit schemes [23], and more stable implicit schemes [60].

Also, a technique that uses binomial random variables instead of Poisson random

variables has been proposed to improve the efficiency of the τ -leap method [64].

If the acceleration achieved using the τ -leap method is still insufficient, a hybrid

simulation method may provide a solution. In that case, Gillespie’s method may be

used to simulate slow reactions (with small propensities) while the Langevin-type

stochastic differential equations may be used to simulate fast reactions (with large

propensities). The feasibility of such a hybrid approach in the case of non-spatial

models has been investigated by Puchalka and Kierzek [58] (for further review see

[43]). The hybrid approach raises, however, some questions, such as: (1) what criteria

should be used to classify a reaction as slow or fast, (2) how to maintain consistency

between the parameters used in the stochastic and continuous components of a hy-

brid model, and (3) how to handle the situation when the propensity of a reaction

significantly changes in the course of a simulation. In this latter case, is it possible
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and useful to dynamically transfer a reaction between the slow and fast categories?

The extension of stochastic simulation algorithm to spatial structures, and the

software environment presented in this thesis, are adequate for individual simulations

of spatially explicit biochemical processes. With future optimizations and extensions

of the algorithm, it may also become possible to execute long simulation runs, po-

tentially involving hundreds or thousands of individual simulations. The resulting

method and software may then become useful in the studies that require estimating

mean values and variances of variables involved in the simulations. Such studies

occur, for example, in the analysis of robustness of natural processes. One example

would be a detailed exploration of the effect of noise on the robustness of Anabaena

heterocyst spacing.



Glossary

chemical master equation: A first-order differential equation which describes the
time-evolution of the grand probability function [page 33].

cumulative (probability) distribution function: A function, F (x), which gives
the probability that the random variable, X, is less than or equal to x.

expectation: Average value of a random variable, which is weighted by probabili-
ties [page 26].

grand probability function: A function which gives the probability of a chemical
system being in state X = (X1, X2, . . . , XN ) at time t [page 31].

law of mass action: The rate of a reaction is directly proportional to the product
of the concentration of the reactants.

probability density function: A function, f(x), which is such that f(x)dx is the
probability that a random variable, X, lies within (x, x + dx).

propensity: The value assigned to the propensity function aj(X) (not necessarily
between 0 and 1).

propensity function: A function, aj(X), which is such that aj(X)dt is the proba-
bility reaction Rj occurs within the infinitesimal time interval [t, t + dt) [page 14].

random variable: An object X defined by: (a) a discrete or continuous set of
possible values, and (b) a probability distribution over that set.

reaction rate constant, kµ: Coefficient of proportionality in the law of mass action.

stochastic process: A function of two variables: time, t, and a random variable
X, which gives a collection of values of X over t.

stochastic reaction constant, cµ: The value such that cµdt gives the average
probability that a specific combination of molecules will react in (t, t + dt).

variance: The spread or dispersion of the possible values of a random variable
around its expected value [page 27].
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