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Abstract: This paper introduces cell systems as a new framework for the simulation of
pattern and shape formation in two-dimensional cellular structures. Cell systems describe
development in terms of lineage rules, with the orientations of division walls specified
relative to a directional morphogenetic field. The shapes of cells result from mechanical
cell interactions due to osmotic pressure and wall tension. Cell systems offer a highly
intuitive method for describing the development of cellular structures, and capture their
natural variability in a straightforward way. The concept is illustrated using abstract
patterns and a developmental model of a fern gametophyte.
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1 Introduction

An important issue in developmental biology is the exploration of morphogenesis, or
mechanisms responsible for the development of complex forms found in living organisms.
Cellular structures in plants are determined by the underlying cell division patterns, that
is, the spatial and temporal distributions of cell divisions. Their analysis reveals the
recursive nature of many cell lineages [15].

Mayp L-systems were proposed by Lindenmayer and Rozenberg [14] as a formal de-
scription of developmental sequences of cell patterns. They operate on graphs with cycles,
called maps [19], with regions representing cells, and edges representing cell walls. The
topology of a generated structure is determined by production rules operating on the walls.
The cells may grow, pushing their neighbors until an equilibrium state is reached [5, 8, 18].
This allows for the investigation of the relationship between the cell division pattern and
the overall shape of the structure [4]. Unfortunately, since observations usually capture
the behavior of cells rather than walls, they must be translated to wall productions using
a laborious, nonintuitive procedure.

In order to describe the development of fern gametophytes in a more straightforward
way, de Boer and de Does introduced the notion of cell division systems [4]. They employ
two types of rewriting rules,

A—>g and A—rBIIC,



to represent the division of cell A into daughter cells B and C. The horizontal and vertical
bars indicate the approximate orientation of the division wall, which can be parallel
(periclinal) or perpendicular (anticlinal) to the closest section of the apical front of the
thallus. Cell division systems specify patterns at a sufficient level of detail for growth
analysis, but abstract from the precise positions of division walls needed to simulate
development.

This paper introduces cell systems as a new framework for the simulation of pattern
and shape formation in two-dimensional structures. They can be viewed as an extension
and a formalization of cell division systems, allowing for a precise specification of the
orientation of division walls. This is accomplished by referring to a vector field, regarded as
a morphogenetic field that provides directional information to the cells. Vector fields may
be specified independently of the structure or be controlled locally by the structure itself.
Examples include light direction, gravity, and concentration gradient of a morphogen.
As in map L-systems, the geometry of the generated structures is determined by the
mechanical interaction of cells due to cell pressure and wall tension.

This paper focuses on the general concept of context-free cell systems, while leaving the
detailed characterization and mathematical analysis for future study. Section 2 provides
the definition of cell systems, introduces a notation for rule specification, and presents
simple examples that explain their operation. As some cell systems are equivalent to
known map L-systems, the natural question of the relationship between both formalisms
is addressed in Section 3. Section 4 presents the construction of a cell system for the
development of the fern gametophyte Microsorium linguaeforme. Finally, Section 5 eval-
uates the inherent properties of cell systems from a biological perspective, and proposes
future extensions. '

2 Context-free cell systems

This section formalizes the notion of cell systems as rewriting systems operating on cellular
structures.

Definition 2.1. A cellular structure is a finite set of cells, each characterized by its shape
and state. The cells are bounded, simple, non-overlapping polygons that tile a surface,
thus forming a polygon mesh [7, page 473].

The discussion is limited to two-dimensional cellular layers, in which cells are charac-
terized by their outlines, as seen under a microscope. The shapes of cells result from the
action of mechanical forces: internal cell pressure and tension of cell walls. In multicellu-
lar structures, neighboring cells exercise pressure on both sides of the shared walls, thus
pushing each other until a global equilibrium is reached. Details of this model are given
below.

Definition 2.2. The pressure-tension model of physical cell structure consists of the
following postulates:

o the modeled structure is represented as a single layer of cells,

o the layer is represented as a two-dimensional network of masses, corresponding to
cell vertices, connected by springs that correspond to cell walls,
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Figure 1: The operation of the pressure-tension model. Description in text.

e the springs are always straight and obey Hooke’s law, F' = —k(z — zo),

o each cell exerts pressure on its bounding walls directly proportional to the wall
length and inversely proportional to the cell area,

e the pressure on a wall is divided evenly between its vertices,

the motion of the masses is damped, and

e no other forces (for example, due to friction or gravity) are considered.

The shape of a structure defined using the pressure-tension model can be found by
integrating the equations of motion of the masses (8, 18].

Example 2.1. Figure 1 illustrates the operation of the pressure-tension model. The
shape (b) results from the initial shape (a), provided that all rest lengths z, and all
spring constants k are equal. Identical springs are also assumed in structure (c), while (d)
has internal walls two times stronger than the external walls, k; = 2k.. The latter case
can be conceptualized as a juxtaposition of separate cells (), with pairs of adjacent walls
fused into single walls. This interpretation explains the regular shape of cells in (d).

Cell division is the engine of the development of cellular structures. The positions of
the division walls are specified using the assumption that the development takes place in
a vector field.

Definition 2.3. A vector field Z over a surface X is an assignment of a vector Z to each
point of X.

Sample vector fields are shown in Figure 2. In the case of a uniform field (a), the
reference vectors Z point in the same direction for all points in the field. Case (b) is
similar, except that the vectors Z change direction between the developmental steps. In
case (c), the reference vectors indicate the direction towards the closest point on the
boundary of the structure, thus the field lines are mutually orthogonal to the family of
curves equidistant from the border. In case (d), the reference vectors are specified during
the process of cell division as normal to the division wall for each of the daughter cells.
This vector field is frequently used throughout this paper and is referred to as the polarity
vector field.

A multitude of other fields can be found easily, hence their classification is needed. The
fields that do not change over time are referred to as stationary (a). The complementary
class of non-stationary fields contains those that do not depend on the embedded structure
(b), those that depend on global properties of the structure (c) and those that depend on
its local properties (d). Any non-stationary field can be considered formally as a function



Figure 2: Sample vector fields embedding a cellular structure

of time. However, such a definition may obscure possible explicit dependencies between

the model and the field (c and d).

Definition 2.4. A context-free cell system H over a vector field Z consists of:

o a finite alphabet of cell states (types) X,
o a starting cellular structure w with cell labels from X, and

e a finite set of cell productions (developmental rules)

Pe(ExZ)U(ExExRx(0,1)xX),

where R denotes the set of real numbers. It follows that productions may have two forms.
A production (A,B) € P, written A — B, changes the cell label from A to B. A
production (4, B,a,r,C) € P, written A — B 1 (a,r)C, splits cell 4 into two cells
labeled B and C'. The orientation of the division wall is specified by the angle o between
the direction of the reference vector Z , measured at the center of gravity of A immediately
before the division, and the normal vector to the wall. Cell B lies on the side of the wall
opposite to the direction of the normal, while C lies on the side pointed to by the normal.
The areas of cells B and C are fractions 7 and 1 — r of the area of the mother cell A

(Figure 3). In the frequently occurring case where the areas of cells B and C are the same
(r = 0.5), the notation A — B 1(a,r)C is shortened to A — B T(a)C .

Definition 2.5. A cell system H operates in a sequence of derivation steps, noted y; =—>
Mit1, during which the predecessor structure u; yields the successor structure u;,, for the
subsequent values of the index 7. Each derivation step consists of three phases:

e A structure y;, is obtained from y; by applying productions from P simultaneously
to all cells in p;. The vector field at the time immediately preceding production
application is noted Z;.
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Figure 3: Specification of the division wall with respect to the vector field

a b c d e

E’I A BB B | B | -2 A

A A

Figure 4: The development of a simple two-dimensional pattern. The original shape (a) undergoes a
succession of divisions (b, d}, followed by the application of the pressure-tension model (c, €).

o A structure p;y; is obtained from p!,; by applying the pressure-tension model to
determine the steady-state geometry of p;y;. The rest length and the spring con-
stant of the walls, as well as the coefficient relating cell pressure to area, are global
parameters of the model.

o The vector field is recomputed (in the non-stationary case), yielding the new field
Z;41, to be used in the subsequent derivation step.

The sequence of structures starting with gy = w is called the developmental sequence
generated by H.

The above definitions are interpreted as follows. The state of a cell comprehends all
features, other than shape, that characterize it at a given moment. At fixed intervals,
cells divide or change state without a division. The fate of each cell is determined by the
applicable production. If a cell undergoes a division, the production specifies the position
of the division wall in addition to the states of the daughter cells. The orientation of
the division wall is given by the angle a between the reference vector Z and the wall
normal. By default, the division wall splits the mother cell into two cells of equal area.
Unequal cell division is specified in terms of the relative areas of the daughter cells.
After production application, the structure undergoes a period of growth. The resulting
geometry is determined by the mechanical interaction between cells. At the end of a
derivation step the vector field is updated, providing new reference directions for the
subsequent cell divisions. The updating algorithm depends on the modeled structure and
is not included in the definition of cell systems.

Example 2.2. Figure 4 shows a simple structure that develops in a uniform stationary
field Z, with the vector Z pointing up at all points in the field. The alphabet ¥ of the



cell system consists of two symbols, A and B. The initial structure w is a square cell
labeled A. The development is governed by two productions that divide cells alterna.tely
by vertical and horizontal walls:

BT (90)B

P1: A
B 1(0) A

—
P2 -
The pressure-tension model operates under the following assumptions:

e the relation between cell area and pressure on the walls is the same for all walls,
pressure = C/area, where C is a constant,

o the rest length of all walls is equal to 0, and

e the spring constants k; and k. for the internal and external walls satisfy the equation
k; = 2k..

Example 2.3. Figure 5 shows the development of a pattern first studied by Korn and
Spalding as an idealized model for cell divisions in the epidermis of onion [10]. According
to a subsequent formalization [5, 14], this pattern can be constructed as follows. The
initial structure is a single hexagonal cell. During the first derivation step the division
wall splits two opposite walls at 1/3 and 2/3 of their length (a). Simple trigonometry
shows that the normal to the division wall is at an angle o &~ —80.89° with respect to the
reference vector Z. In subsequent steps, the cells divide in a similar manner, except that
the reference direction is defined locally as being perpendicular to the previous division
wall (thus, the polarity vector field is used). It is convenient to assume that, from the
topological point of view, cell divisions take place on the surface of a torus, thus all walls
are shared by two cells (b). Consequently, at each stage of development, the structure
consists entirely of hexagons, which are made regular by the application of the pressure-
tension model (c).

According to the above description, the Korn-Spalding pattern can be captured by a
cell system with a single production,

p: A — A1(-80.89)A.

Initially, the field Z consists of diagonal vectors Z (Figure 5a). Subsequently, the reference
vectors are specified for pairs of sister cells as normal to the division wall (polarity vector
field - Figure 2d).

For the purpose of comparison, Figure 6 shows two patterns obtained by the same cell
system operating in the plane rather than on a torus. The border cells usually have less
than six walls. This affects divisions of the internal cells, and breaks the regularity of the
original pattern.

Example 2.4. Figure 7 shows a slightly more complex pattern composed of cells with
five, six, and seven walls [2]. The corresponding cell system is given below.

w: 5

pr: 5 — 671(—95.50.67)5
p2: 6 — 771(—109.0,0.78)5
p3: 7 — 771(—93.50.67)6



Figure 5: Construction of the Korn-Spalding pattern. (a) Geometry of wall insertion. (b) Neighborhood
relations between walls on the surface of a torus. Arrows indicate pairs of walls ‘fused’ together. (c) The
developmental sequence.



Figure 6: Derivatives of the Korn-Spalding pattern generated in the plane. (a) The spring constants for
the interior and exterior walls are not equal, k; = 2k.. (b) The spring constants for all walls are equal.

Figure 7: A pattern consisting of cells with five, six, and seven walls. (a) Postulated positions of division
walls. (b) The developmental sequence.



- D

Figure 8: The interlacing of topology and geometry in cell system operation. The angle a determines
structure topology after the division wall has been inserted (a,b). The new topology determines geometry
at equilibrium (c,d).

The orientation and positions of the division walls were estimated using Figure 7a. Asin
the case of the Korn-Spalding pattern, the reference direction is the polarity vector field,
and the development takes place on a torus.

The structures presented in the above examples can be also generated using map
L-systems. It is therefore interesting to compare these two formalisms.

Both map L-systems and cell systems are parallel rewriting systems. Cell systems can
be viewed as an extension of string L-systems [12] to polygon meshes, while map L-systems
extend string L-systems to maps. The fundamental difference is that a map is a purely
topological notion, while a mesh combines topological and geometric aspects (Figure 8).
Positions of the inserted walls are specified in geometric terms, yet they determine the
topology of the mesh after each step of rule application. The new topology determines,
in turn, the geometry of the cellular structure, reached at equilibrium.

The definition of the vector field is a key component of cell system specification and
has a paramount impact on its properties. The next section shows that, for the polarity
vector field, the generative powers of cell systems and map L-systems are closely related.
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Figure 9: Cell division with regularization.

3 A comparison of cell systems to map L-systems

Strictly speaking, map L-systems and cell systems cannot be compared, since they operate
on two different types of objects: maps, which are defined in topological terms, and cellular
structures, defined in geometric terms. Nevertheless, it is possible to abstract from the
geometry of cells, and view each cellular structure as a representation of a map. Then
the classes of maps generated by map L-systems and cell systems can be compared. The
following discussion employs binary propagating context-free map L-systems with markers
(mBPMOL-systems) [17] as the representative type of map L-systems.

A production in a map L-system can subdivide an existing wall by the insertion of
vertices, without attaching a new wall to them. Consequently, a map L-system can
introduce vertices of order two into the generated map. In contrast, a cell system creates
vertices as attachment points for new division walls, and can only generate vertices of
order three or higher. In view of this discrepancy, maps that differ only by the number
and the placement of order-two vertices are considered equivalent.

In order to abstract from cell geometry, it is assumed that, prior to division, each
cell is transformed into a regular polygon irrespective of other cells (Figure 9). In this
process, the previous division wall preserves its position with respect to the vector field.
Once a new division wall is inserted, the cell is transformed back to its original shape.
This inverse transformation preserves proportions at which two previously existing walls
are split by the attachment points of the new division wall. As a result, all cells with the
same label are divided in the same way, regardless of shape, as long as they have the same
orientation with respect to the vector field Z.

Theorem. Consider a map L-system G that generates a sequence of maps wg, My, Mo, ...,
and assume that all regions have a number of walls bounded by a constant N. It is then
possible to construct a context-free cell system H that generates a sequence of equivalent
cellular structures wy, Sy, So, . . ..

Proof. The construction of cell system H is straightforward: v

1. Consider the map sequence wg, M1, Ms,. ... Find the set of distinct circular words
w; that describe possible sequences of wall labels characterizing regions of these
maps. Since the number of productions in the map L-system G is finite, and the
number of walls per cell is bounded by a constant, all circular words will appear in
the finite sequence of maps wg, My, ..., M, for some n.



Figure 10: Construction of a cell system from the map L-system for the Lewis pattern. (a) Finding the
circular words and mapping them to cell labels. (b) Determining the angle between the reference vector
and division wall normal for each cell.

2. For each circular word w;, find the set of marked words w;;, where the marker in-

dicates the position of the previous division wall. Clearly, the same circular word
may result from the partition of various regions, which is why it may admit dif-
ferent markings. If a word occurs only in the initial map wg, choose its marking
arbitrarily. Since all possible circular words appear in maps wg, Ms,..., M,, the
complete set of their successors, and therefore marked words, can be identified in
maps wg, My, ..., M,41.

. Assign a unique cell label to each marked circular word, and determine the cell pro-
duction associated with each word using maps wg, My, ..., M,+1. Use the polarity
vector field Z and assume that the cells are regularized prior to division.

. Transform the initial map wg to the initial cellular structure wy by matching a
previously identified marked circular word to each region of wg, and assigning the
corresponding label to it. The initial structure wy and the cell productions found
in Step 3 constitute the cell system H equivalent to the map L-system G. O

Example 3.1. The following map L-system, specified using notation from [18, pages 146~
148], generates the sequence of patterns proposed by Lewis [11] and described formally
by Lindenmayer and Rozenberg [14]:

w: 123154
pi: —f - 5
pp: 2 — 3[+2]1
ps: 3 — 5[—4]6
ps: 4 — 1[+4]5
pPs: 5 — 6[—2]3
Pe : E — Z
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Two circular words are generated by this map L-system (Figure 10a): 123154 and

—— e ——

654623.
The production rules for the circular words with underscores indicating the inserted di-
vision wall are:

123154 — 123154 654623

654623 — 123154 654623

The marked circular words can be mapped to cell labels as follows:

— e ——

123154 + A
123154 — a
654623 — b
654623 — B

The cell system equivalent to the given map L-system has initial structure A and four
productions with predecessors A,a, B, and b. The positions of the division walls are
found assuming that the structure develops on a torus, thus all cells are regular hexagons
(Figure 10b). As stipulated by the proof of the theorem, these positions are expressed
with respect to the polarity field vectors.

w: A

p1: A — DbT(90)4
pri 2 = A71(30)b
ps: B = BT(-90)a
pa: b — al(—30)B

The sequence of cellular structures generated by this cell system is shown in Figure 11.

The inverse problem, regarding the existence of an mBPMOL-system equivalent to a
given cell system, remains open. As shown in [3], if the cell system generates a sequence
of structures with a bounded number of cell walls, it is possible to find an equivalent
double-wall map L-system [15, 16]. It can be converted to a map L-system with markers
only if the number of configurations of labels on both sides of the walls is finite (the
double-wall system has parity [3, 15]). At this point it is not clear whether bounded cell
systems equivalent to double-wall systems without parity exist.

4 A model of a fern gametophyte

This section presents a cell system that simulates the development of a fern gametophyte
Microsorium linguaeforme. Its developmental sequence had been previously studied and
simulated using map L-systems [2, 4, 18]. The modeling process consisted of the following
steps: ‘

1. microscopic observations of the development of sample gametophytes,
2. the expression of observations using a cell division system,

3. translation of the cell division system to a map L-system, and



Figure 11: The Lew:s pattern

4. simulation of the development using this map L-system.

The translation of a cell division system to a map L-system is a laborious process which
may introduce rigid assumptions regarding offsets in cell tetrads [15], and yields a nonin-
tuitive description of the modeled structure. We show that a cell system provides a model
which captures the observed phenomena in a straightforward way.

A gametophyte of Microsorium linguaeforme forms a plant body called a thallus that is
not differentiated into stem, leaf and root. The development of a thallus can be described
conveniently in terms of the activity of the apical cell and the development of segments.
The apical cell is the originator of the gametophyte structure. It divides repetitively,
giving rise each time to a new apical cell and a primary (initial) segment cell. The
division walls are oriented alternately to the left and to the right, yielding two columns
of segments separated by a zig-zag dividing line (Figure 12): The recursive nature of the
apical activity is captured by the following cell division system.

AL — Q1| Ar Ap— AL | @

The primary segment cells @, subdivide further, yielding multicellular segments. Micro-
scopic observations reveal that most segments follow the same developmental sequence,
shown diagrammatically in Figure 13. The cell @, is first divided by a periclinal wall into
two cells, @2 and Q3. Subsequently, the cell @3 is divided by another periclinal wall into
two terminal cells T' that do not undergo further divisions. At the same time, the cell @,
lying on the thallus border is divided by an anticlinal wall into two cells of type Q,. Each
of these cells divides in the same way as the primary cell. Consequently, the recursive
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Figure 12: Apical production of segments. The labels Az and Ap denote apical cells producing right
segment Sk and left segment Sp, respectively. Dashed lines indicate the newly created division wall. The
superscripts represent segment age. The internal structure of segments is not shown.
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Figure 13: Developmental sequence of a Microsorium segment

nature of segment development can be captured by the following cell division system:

T

Ql‘*% Q:— Q1| Qs—’f
The two oldest segments, situated at the thallus base, form a modified pattern with less
extensive cell divisions. The developmental sequence of the right basal segment is shown

in Figure 14. The corresponding cell division system is given below:

Bl—)—f B2—)BllT

The left basal segment follows a symmetric pattern:
Cl — — Cz - T | Cl

All of the above productions form a cell division system that captures the recursive pattern
of cell divisions in the gametophyte, but lacks precise geometric information needed for
simulation. In order to formulate a corresponding cell system, we define a vector field
closely related to the organism description in terms of periclinal and anticlinal walls. For
any pair of sister cells, the reference vector Z is normal to the division wall. In contrast
to the polarity vector field of Figure 2d, the vector Z has the same orientation in both
sister cells. The resulting cell system is given below.
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Figure 14: Developmental sequence of the right basal segment

P1: AL — Ap1(—45.0,0.3)Q ps: By — BaT(—90.0)T
D2 AR — QlT(45.0,0.7)AL p7: B2 - B1T(90.0)T
p3: Qi — Q27(-98.0)Q3 ps: Co — Cy

pa: Q2 — Q1 7(90.0)Q po: Ci — CopT(-90.0)T
ps: Q3 — TT(0.0)T po: Ca — T71(90.0)Cy

The cell system closely follows the cell division system with the exception of production
ps, which delays the development of the left basal segment by one step with respect to the
right basal segment. The values of angles and relative areas are obtained by comparing
simulations to the microscopic observations, and adjusting parameters accordingly. The
developmental sequence generated using this cell system is shown in Figure 15. Different
gray levels indicate the apical cell, the alternating segments close to the apex, and the
pair of basal segments. The model shows good correspondence with the shape of the real
organism and with the model expressed using a map L-system [18, page 161]. Although
all segments originating from the apical cell develop according to the same cell production
rules, they exhibit slightly different division patterns (segment-to-segment variability), due
to different cell shapes.

The angles at which the division walls are inserted into the mother cells have a pro-
nounced effect on the generated structure. For example, Figure 16 illustrates the result of
setting the angles in productions p; and p3 to —90°, and p, to 90°. The variability of struc-
tures generated using cell systems with different parameters in productions coincides with
observations of real gametophyte structures. The ease of capturing specimen-to-specimen
variation is an asset of cell systems. In contrast, a small change in the developmental
sequence simulated using a map L-system may require substantial modifications of many
productions.

5 Discussion

This paper presents a new method for the modeling of cell division and expansion in
single-layered cellular structures. Cell divisions are described by productions capturing
cell lineage. The orientations of the division walls are specified relative to a vector field
(morphogenetic field), as opposed to a topological description of the attachment sites.
Consequently, cell systems provide a more intuitive description of cell division patterns
than map L-systems. The geometry of cells, determined by a model that takes into
account internal cell pressure and wall tension, influences the topology of the generated
structures. This accounts for a variability in cell division patterns, consistent with that
observed in nature.



Figure 15: Simulated development of Microsorium linguaeforme. (a) The initial structure. Arrows
indicate the initial reference vectors. (b) The developmental sequence.



Figure 16: A variant of Microsorium linguaeforme thallus

Cell systems operate under the assumption that positions of division walls are con-
trolled from inside the cells. In contrast, map L-systems employ a control mechanism that
resides in cell walls. Which mechanism is more justified from a biological point of view is
an open problem. Cytological observations of developing tissues reveal that microtubule
structures called phragmosomes, which radiate from the cell nucleus, coincide with the
position and orientation of the division walls [1, 6]. This supports the assumption that the
position of the division wall is controlled from inside the cell. Moreover, the polarity vec-
tor field corresponds to the notion of cytoplasmic inheritance [9], in which the orientation
of the phragmosome of a mother cell determines that of the daughter cells. On the other
hand, observations do not exclude the possibility that cell walls specify autonomously the
attachment sites for the new division walls [9, 13].

The influence of cell shape on microtubule organization, and hence on the position
of the division wall, is also supported by observations [6]. This influence may account
for topological irregularities exhibited by many cell patterns found in nature. In addi-
tion to the variability due to different positions of cells in a structure (Figure 15), cell
systems can also capture topological variations resulting from different timings of cell
divisions (Figure 17).

Many problems related to cell systems are open for further research. For example,
globally defined parameters incorporated in the pressure-tension model impose identical
physical properties on all cells. Cell systems with the properties specified locally for
individual cells could lead to more faithful models of some structures.

Furthermore, the exchange of information between cells may play as important a role
in the development of cellular structures as the lineage mechanism considered in this
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Figure 17: The relationship between the order of cell divisions and the topology of the resulting structure.
(a) Left and right cells divide simultaneously. (b) Left cell divides first. (c¢) Right cell divides first.

paper. A convenient framework for the investigation of patterns that result from the
interactions between cells in developing cell layers may be offered by cell systems with
context-sensitive productions.
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