
PART OF A SPECIAL ISSUE ON FUNCTIONAL–STRUCTURAL PLANT MODELLING

Towards aspect-oriented functional–structural plant modelling

Mikolaj Cieslak1,2,†, Alla N. Seleznyova2, Przemyslaw Prusinkiewicz3 and Jim Hanan4,*
1The University of Queensland, School of Mathematics and Physics, Qld 4072, Australia, 2The New Zealand Institute for Plant &
Food Research Limited, Palmerston North 4442, New Zealand, 3Department of Computer Science, University of Calgary, AB

T2N 1N4, Canada and 4The University of Queensland, Centre for Biological Information Technology, Qld 4072, Australia
* For correspondence. E-mail j.hanan@uq.edu.au

†Present address: INRA, Virtual Plants INRIA Team, UMR AGAP, TA A-108/02, 34398 Montpellier Cedex 5, France.

Received: 3 January 2011 Returned for revision: 4 February 2011 Accepted: 7 March 2011

† Background and Aims Functional–structural plant models (FSPMs) are used to integrate knowledge and test
hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant
amount of effort is being put into providing a sound methodology for building them. Standard techniques,
such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function
that criss-cross between different components of plant structure, which makes it difficult to reuse and share their
implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to over-
come this difficulty.
† Methods The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach
to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of
L-system modules (rather than a single module), with each module representing an aspect of the element’s func-
tion. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by
local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible
through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-
module.
† Key Results The new approach was used to integrate previously modelled aspects of carbon dynamics, apical
dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified inde-
pendently and their implementation was based on source code provided by the original authors without major
changes.
† Conclusions This new aspect-oriented approach to plant modelling is well suited for studying complex phenom-
ena in plant science, because it can be used to integrate separate models of individual aspects of plant develop-
ment and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In a
future work, this approach could be further extended into an aspect-oriented programming language for FSPMs.

Key words: L-system, aspect-oriented programming, Actinidia deliciosa (kiwifruit), functional–structural plant
model, plant architecture, carbon dynamics, biomechanics, hormone transport.

INTRODUCTION

Functional–structural plant models (FSPMs) have attracted sig-
nificant interest and the expertise of researchers in botanical,
mathematical and computational sciences. The motivations for
developing these models range from increasing our fundamental
understanding of plant behaviour to developing decision support
systems that will aid in optimizing horticultural, agricultural and
forestry production (Vos et al., 2010). The diverse applications
of FSPMs create a growing need to share and reuse not only com-
plete models, but also model components and software tools (cf.
Pradal et al., 2008). In this context, an important open problem is
to develop methods for integrating previously modelled aspects
of plant function into a single model (Prusinkiewicz, 2009).
Unlike the decomposition of a model into components
(modules) such as internodes, buds, leaves, flowers, fruits and
root structures, aspects represent decomposition into functions
such as long-distance signalling and growth regulation by hor-
mones, photosynthesis, transport and allocation of water,

nutrients and sugars, and the response of plants to gravity.
Here we describe an L-system-based technique for constructing
FSPMs from models of individual aspects that can easily be
shared, reused and recombined. This ability to model and
combine individual aspects is essential to the further progress
of FSPMs.

From a programming perspective, the key difficulty in decom-
posing plant models into both components (modules) and func-
tions (aspects of model operation) is that they represent
criss-crossing concerns: different modules may exhibit the
same function, and different functions may be shared by the
same module. For example, the progress of time (ageing) is an
aspect that affects most structural modules, while these
modules are also likely to be endowed with other functions. A
straightforward implementation of the ageing process would
require a duplication of the corresponding code in all modules.
Here we introduce a technique for constructing FSPMs that
removes this duplication by encapsulating, making reusable
and integrating the code that expresses each concern. Our

The Author 2011. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.

For Permissions, please email: journals.permissions@oup.com

Annals of Botany Page 1 of 17

doi:10.1093/aob/mcr121, available online at www.aob.oxfordjournals.org

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

mailto:j.hanan@uq.edu.au
mailto:j.hanan@uq.edu.au
mailto:j.hanan@uq.edu.au
mailto:j.hanan@uq.edu.au
http://aob.oxfordjournals.org/

approach is inspired by the aspect-oriented programming para-
digm introduced by Kiczales et al. (1997), but our technique is
specific to FSPMs expressed using L-systems.

In principle, a general-purpose programming language, such
as C++, can be used to model plant structure and function,
but the implementation details tend to hide the essence of
the models and make them inaccessible and incomprehensible
for non-expert programmers (Prusinkiewicz, 1998). In particu-
lar, general-purpose programming languages do not inherently
capture the topological connections between components of a
developing plant’s branching structure, and thus individual
models must incorporate the code for representing and manip-
ulating these connections (Prusinkiewicz, 2009). As an
alternative, L-systems (Lindenmayer, 1968, 1971) have been
used as the basis for a special-purpose language for modelling
plants (Prusinkiewicz et al., 2000a). They are well suited to
describing growing linear or branching structures, and are
the most widely used plant-modelling formalism (Fourcaud
et al., 2008; Vos et al., 2010). In particular, parametric
L-systems (Prusinkiewicz and Lindenmayer, 1990; Hanan,
1992) can capture the complexity of plant architecture and
physiological processes within a single model by providing a
means of describing activities of individual plant elements.
This is achieved through a set of rules that are applied to all
instances of a particular element, irrespective of the number
of its occurrences within the structure, in each of a series of
time steps. Many existing L-system models integrate the devel-
opment of a plant structure with some aspects of its function,
such as long-distance signalling and apical dominance
(Prusinkiewicz et al., 2009), metabolic regulatory pathways
and genetic processes (Buck-Sorlin et al., 2005), acquisition,
transport and allocation of carbon (Allen et al., 2005; Lopez
et al., 2008; Cieslak et al., 2011) or dry matter (Fournier
and Andrieu, 1999), nitrogen distribution (Bertheloot et al.,
2008), metabolic processes regulating growth (Perttunen and
Sievänen, 2005), bending of branches due to external forces
(Jirasek et al., 2000; Taylor-Hell, 2005; Costes et al., 2008),
auto-regulation of nodulation (Han et al., 2010), and responses
to pathogens or insects (Hanan et al., 2002). How can these
previously modelled aspects be combined into a single, inte-
grative L-system model?

There are several L-systems-based programming languages
that could be used to illustrate our technique. Here we focus
on the L+C language (Karwowski and Prusinkiewicz, 2003;
Prusinkiewicz et al., 2007b) because of its advanced features
and existing collection of L-system models, but the technique
is applicable to other L-system-based languages as well, for
example L (Perttunen and Sievänen, 2005) or XL
(Hemmerling et al., 2008). After an overview of the relevant
features of L+C, we present a programming technique that
allows for the easy integration of previously modelled
aspects. We illustrate it with a model of a kiwifruit shoot
that integrates previously modelled aspects of the shoot’s
architectural development, carbon allocation, growth regu-
lation by auxin, and biomechanics.

The L+C language

Karwowski and Prusinkiewicz (2003) presented all of the
key features of the L+C modelling language, which were

updated by Prusinkiewicz et al. (2007b). Among other
things, L+C allows for typed module parameters (primitive
and compound data types), function calls, productions with
multiple successors (e.g. through the use of conditional state-
ments in the productions) and, most significantly, fast infor-
mation transfer. These features make it more flexible than its
predecessor, the cpfg language.

In an L-system, plant components are represented by
modules, which together form a string representing the plant.
In L+C, a module is declared using the keyword ‘module’ fol-
lowed by the name of the module (e.g. a letter) (Karwowski
and Prusinkiewicz, 2003) and may have several parameters,
with the parameter types specified within the parentheses
immediately following the declaration of a module. For
example,

struct data { float x, y; };
module Z(data, int);

where data is a compound data type consisting of two
floating-point variables (real numbers), and the module Z
has two parameters: one is of type data and the other is
int (integer).

The initial L-system string is declared after the keyword
axiom. For each derivation step in a simulation, rewriting rules
specify how a predecessor module is replaced by any number of
successor modules. For a given time step t, several derivation
steps may be performed. The total number of derivation steps is
specified using the command derivation length: N;,
where N is an integer greater than zero. Although, according to
the original definition of L-systems, all the modules are rewritten
in parallel, in practice, the string is rewritten one module at a time
in either left-to-right or right-to-left order.

A rewriting rule is specified by a predecessor, representing the
component to be replaced in the string, followed by a colon, and
delimited by curly braces, with any number of produce state-
ments denoting the possible successors to replace that predeces-
sor. Also, several rewriting rules may be arranged into subsets
using the keyword group, and one of these subsets may be
invoked using the predefined function UseGroup(n), where
n is the group number. In that case, only the rewriting rules
within group n are applied to the string, for instance:

StartEach:{UseGroup(1);}
EndEach:{}
// module declaration, as above
derivation length: 10;
data dataInit={1.0, 2.0};
axiom: Z(dataInit,4);
group 1:
Z(a,b): {

. . . update a.x, a.y, and b
if (b.0)
produce Z(a,b);

else
produce;

}

where StartEach/EndEach are predefined control state-
ments that are executed at the beginning/end of each derivation
step. The flexibility of L+C is that the rewriting rules may

Cieslak et al. — Towards aspect-oriented plant modellingPage 2 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

contain any valid C++ constructs, such as conditional state-
ments and function calls. Furthermore, the rewriting rules
may be context-sensitive, where the module and its neighbour-
ing modules are matched to the predecessor of the rule. For
example, the following rule

Z(aL,bL),Z(a,b).Z(aR,bR):

is applied only when there is a left and right neighbour that
match the modules to the left and right of the , and .
symbols denoting left- and right-context, respectively.
Either context may be left out if not required. Some
modules may be ignored or considered in the context by spe-
cifying a list of modules at the start of the L-system using
the keyword Ignore or Consider, respectively. These
types of context-sensitive rules, combined with all the
modules’ parameters, are useful for modelling information
transfer between neighbouring modules in a developing
structure. The only drawback is that it takes N – 1 derivation
steps to propagate information from one end to another in an
N-element string (Prusinkiewicz et al., 2007b). To accelerate
the flow of information in one direction through the string,
L+C includes a construct for fast information transfer,
where a module can refer to the state of one of its newly
produced neighbours in the current derivation step. This is
only possible because the string is, in practice, rewritten
sequentially (instead of in parallel) during a derivation
step, and therefore to use fast information transfer, the direc-
tion of the derivation must be set. For instance, assuming
acropetal flow up the plant, in the rule

Z(aL,bL) ,, Z(a,b):

the symbols ,, indicate that the rule considers values of the
parameters in the new left context module Z(aL,bL),
which have already been updated in the current derivation
step, instead of being from the previous derivation step as is
the case in regular context-sensitive rules. A similar rule can
be written for basipetal flow as in

Z(a,b) .. Z(aR,bR):

where the parameters of the new right context Z(aR,bR),
indicated by the symbols .. , have already been updated in
this step. In L+C, the direction of flow is set using the prede-
fined function Forward() for left-to-right derivation (acro-
petal), and Backward() for right-to-left derivation
(basipetal). This advancement in L+C provides a significant
speed-up for simulating propagation of hormones, resources
and mechanical forces through a plant; however, it is difficult
to integrate more than one such aspect of plant function into a
single model (Prusinkiewicz et al., 2007b). The difficulty is in
building well-structured models, with each aspect
implemented and tested independently, and, then, easily com-
bining them into one model. Now, let us examine the proposed
programming technique that makes this possible in L+C.

METHODS: A MULTI-MODULE APPROACH

In the L-system-based language L+C, there are two common
ways to represent components of the developing plant structure

using modules. The first is the most standard way, where a sep-
arate module is used for each component: Internode(),
Leaf(), Fruit(), etc. This approach has the disadvantage
that aspects shared among all modules must be specified separ-
ately for each module, even if the implementation is exactly the
same. For example, the code for increasing the age of an organ
must be repeated in several rules as follows:

Internode(age): {produceInternode(age+DT); }
Leaf(age): { produce Leaf(age+DT); }
. . . etc.

where age is the chronological age of the organ and DT is a
user-defined time step. However, another approach can be
used, where a single module represents all the different types
of components, with one of its parameters defining the type,
e.g. an X(i) module with parameter i giving the type: inter-
node, leaf, etc. The advantage of this approach is that compu-
tations common to all modules can be specified with only one
rule. For example, increasing the age of an organ can be
accomplished in one rule as follows:

X(i,age): { produce X(i,age+DT); }

where age and DT are defined as before. Although this
example is trivial, some computations carried out by pro-
ductions can be much more complex, such as advanced
numerical integration techniques. The disadvantage of this
approach is that component-specific rule processing must be
done manually using a conditional statement within a rewriting
rule. For example, the above rule would change to

X(i,age): {
switch(i) {
case(internode):
. . . perform internode specific tasks

case(leaf)
. . . perform leaf specific tasks

case(. . . etc.
}
produce X(i,age+DT);

}

where the types of components can be defined using an enumer-
ation in C++. This approach is, potentially, very tedious depend-
ing on the number of component types. It can lead to cryptic code,
and seems to be contrary to the natural operation of the L-system
formalism, where different modules are used to represent differ-
ent components and the L-system simulator performs the rule
matching automatically. Clearly, the advantages and disadvan-
tages of these two approaches are the exact opposites of one
another, i.e. no generic rules but automatic component-based
rule matching or generic rules but manual component-based
rule matching. Therefore, an L+C programming technique was
developed to take advantage of both approaches.

To integrate different aspects of plant function in a single
model, the proposed technique is to use pseudo-L-systems or
pL-systems (Prusinkiewicz, 1986) combined with sets of pro-
ductions (groups in L+C) that only consider modules specific
to an aspect. In a pL-system, the number of modules in the
strict predecessor of a rewriting rule may vary, as opposed to
standard L-systems where only one module is allowed. This

Cieslak et al. — Towards aspect-oriented plant modelling Page 3 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

flexibility makes it possible to define components of a devel-
oping plant structure as a collection of modules, together
forming one multi-module. Different modules in such a collec-
tion may represent different aspects of the same component of
a plant, and rewriting rules can then be defined to apply only to
those modules, i.e. an L+C group is defined for each aspect.
Rewriting rules for these multi-modules can be used to facili-
tate communication between aspects, so that, for instance, the
physical properties of an organ can be updated based on its
associated aspects. In aspect-oriented programming terms,
this is called weaving and represents the mechanism for coor-
dinating aspects in our approach, so that models of individual
aspects can be composed into one. For example,

#define GROW 1
#define ADVANCE_AGE 2
#define DT 0.1
int whichGroup=GROW;
StartEach: { UseGroup(whichGroup); }
EndEach: {
if (whichGroup == GROW)
whichGroup=ADVANCE_AGE;

else whichgroup=GROW;
}
module Internode(float);
module Leaf(float);
module X(float);
derivation length: 20;
axiom: Internode(0) X(0.1) Leaf(0) X(0.1);
group GROW:
Internode(length) X(age): {
produce Internode(1 / (1+exp(-age+5)))
X(age);

}
Leaf(area) X(age): {
produce Leaf(1 / (1+exp(-age+5))
X(age);

}
group ADVANCE_AGE:
X(age): { produce X(age+DT); }

where Internode() X() and Leaf() X() are multi-
modules representing an internode and a leaf, respectively.
In group ADVANCE_AGE, the task of increasing the age of
each organ (regardless of type) is performed by a rule using
the module X(). In group GROW, the length of an internode
and the area of a leaf are updated using a simple logistic func-
tion based on age. In this case, the Internode() and
Leaf() modules can be considered as the defining module
of a multi-module, because they are used to distinguish one
collection of modules from another.

The rewriting rules in the example given above are context
free, but in the general case of context-sensitive productions,
an additional construct is needed to consider only the
context modules that are relevant to the aspect under consider-
ation. For example, examine the rule

X(age,s) .. X(ageR,sR): {
produce X(age+DT,sR);

}

in which an extended X() module is used to propagate signal s
from right to left. In principle, the predecessor of this rule would
not be matched if the X() modules in the rewritten string were
separated by other modules, such as Internode() and
Leaf(). L+C makes it possible to disregard these intervening
modules using the Ignore: Internode() Leaf(); or
Consider: X(); statements, which ensure that only X()
modules will be considered as context. According to the orig-
inal definition of L+C, the list of ignored or considered
modules is global within the entire L-system model. To allow
for a more flexible context specification, we extended L+C
and lpfg with constructs for defining a separate list of
modules to be considered or ignored within each group. These
group-limited lists are expressed in the same way as the
global list, using the keywords Consider: or Ignore: fol-
lowed by a list of modules, but are written after the group
statements rather than outside of the production set and have
precedence over the global list of modules.

This approach, using a collection of modules to represent
components of the plant, has both advantages over the two cur-
rently available approaches in L+C: generic rewriting rules for
particular aspects and automatic component-based rule match-
ing. Figure 1 shows a schematic of how multi-modules relate
to the current approach used in L+C. As the examples given
in this section are very simple, let us now consider modelling
a kiwifruit shoot that integrates several non-trivial aspects.

RESULTS: APPLICATION TO INTEGRATING
SEVERAL ASPECTS IN A SINGLE KIWIFRUIT

SHOOT MODEL

To demonstrate the new approach, we present a kiwifruit shoot
model that integrates architectural development with carbon
dynamics, apical dominance and biomechanics, using the
multi-module approach. The model is based on existing
models of individual aspects, so the aim here is to show how
these existing models can be integrated into one without
major changes. The comprehensive kiwifruit shoot model is
available on the L-studio/VLAB website: www.
algorithmicbotany.org.

Architectural aspect

A kiwifruit shoot develops from a mature first-order axillary
bud on a parent cane, i.e. the current season’s shoot originates
from an axillary meristem from the previous season (Foster
et al., 2007). The axillary bud on this cane initiates a
number of preformed metamers before winter dormancy. In
spring, after budbreak, there are two possible fates for the
shoot: (1) terminate growth before most of these preformed
metamers expand, or (2) continue growth until the end of
the season, with all preformed metamers expanding and the
shoot apical meristem initiating new metamers. The rate of
metamer appearance corresponds to the time interval
between successive appearance of leaves (phyllochron),
which is modulated by temperature and other factors.

For the kiwifruit vine, Cieslak et al. (2011) modelled shoot
development as a stochastic process, where the physical states
of a shoot apex were represented by states in a discrete-time
Markov chain. The process was then simulated using the

Cieslak et al. — Towards aspect-oriented plant modellingPage 4 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

www.algorithmicbotany.org
www.algorithmicbotany.org
www.algorithmicbotany.org
www.algorithmicbotany.org
http://aob.oxfordjournals.org/

L-system-based modelling platform L-studio (Prusinkiewicz
et al., 2000b; Prusinkiewicz, 2004), where modules in the
L-system represented various components of the shoot. In
L+C, these modules are defined as

module Apex (int node, float vigour);
module AxBud (int node, int order);
module Internode (int node, float length,
float radius);

module Leaf (int node, float area);
module Fruit (int node, float volume);

All these modules have in common a parameter for the node
number along the shoot, but each module also has a parameter
describing an attribute of a shoot organ. These attributes
characterize the vigour of an apex, order of an axillary bud
(1 ¼ parent cane, 2 ¼ axillary shoot), length and radius of an
internode, area of a leaf, and volume of a fruit. The develop-
ment of a kiwifruit shoot begins with an axillary bud specified
in the axiom

axiom: AxBud(1,1)

with the node number set to 1, and the parent cane assumed to
have order 1. Rewriting rules for the production of organs are
specified in an L+C group, DEVELOP:

group DEVELOP:
Apex(node,vigour): {
if (. . . produce new metamer)
produce Internode(node,0,0)

SB() Leaf(node,0) EB()
SB() AxBud(node,2) EB()
Apex(node+1,vigour);

else if (. . . shoot tip aborts)
produce Apex(node,0);

else
produce Apex(node,vigour);

}

AxBud(node,order): {
if (order == 1) // if parent cane
produce . . . preformed metamers
Apex(1, SetVigour (node));

else if (order == 2) { // if axillary shoot
if (. . . reproductive bud)
produce Fruit(node,0);

else if (. . . dormant bud)
produce AxBud(node,order);

else // an axillary shoot starts to grow
produce Apex(1,SetVigour(node));

}
}
Internode(node,length,radius): {
. . . update length and radius
produce Internode(node,length,radius);

}
Leaf(node,area): {
. . . update area
produce Leaf(node,area);

}
Fruit(node,volume): {
. . . update volume
produce Fruit(volume);

}

According to the first rule, an apex may produce a new
metamer, abort or remain dormant, depending on certain con-
ditions (e.g. its age). A metamer consists of an internode, a leaf
and an axillary bud. This bud will produce a number of pre-
formed metamers ending with a terminal apex, with the
vigour of the apex set by a user-defined function based on
the axillary bud’s node number. An axillary bud on an axillary
shoot is reproductive and may produce a fruit if its node
number is between 6 and 12; otherwise, it will remain
dormant until apical dominance is lost, in which case it will
start to grow. The growth of internodes, leaves and fruit

A B

Module

Relation
within module

Variable
Relation

between modules

String of modules
String of multi-modules

Multi-module

One
aspect

Another
aspect

Information
exchange

FI G. 1. A schematic representation of the multi-module approach. In an L-system, a structure consists of a string of modules, with each one representing a
component of the structure. A module’s variables are related through equations within the module itself and between neighbouring modules through context
(A, redrawn from Prusinkiewicz, 2009: fig. 4). In the multi-module approach, using pL-systems and sets of productions, a structure is represented by a string
of multi-modules, which consist of a collection of modules (B, shown with two modules per multi-module). As the multi-modules are the same across the
whole string, the variables from within the individual modules are related to each other as before in the regular L-system, but this is only possible because
the L+C language was extended to include separate lists of modules to consider/ignore for each L+C group. Thus, two (or more aspects) of the developing

structure are represented independently by the approach, and, in addition, aspect weaving can occur through modules within a multi-module.

Cieslak et al. — Towards aspect-oriented plant modelling Page 5 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

could be defined empirically, but, instead, let us incorporate an
aspect that models the growth of an organ based on carbon
availability.

Carbon dynamics aspect

Prusinkiewicz et al. (2007a) presented an algorithm for
simulating the acquisition, transport and partitioning of
carbon within a plant based on an analogy between pressure-
driven flow and current flow in an electric circuit, originally
developed for a FSPM of a peach tree (Allen et al., 2005).
The L-system implementation of this carbon transport-
resistance allocation model (C-TRAM) is compact and
shows the benefit of L-system-based models: the automatic
updating of the system of equations (representing flow of
carbon in the plant) as the structure develops. The essence of
C-TRAM is to compute the concentration and flow rates of
all the sinks and sources within the plant based on the resist-
ances between them. This allows the estimation of the
carbon content of a single sink or source over time, given an
initial value. For example, C-TRAM can be used to solve
the following equation for a sink:

ds

dt
= f (c, . . .)Gmax(. . .) (1)

where ds/dt is the flow of carbon into the sink, c is the concen-
tration outside the sink in the transport pathway and s is the
carbon content of the sink. The function f(c, . . .) captures the
sink’s response to resource limitation, and Gmax(. . .) is the
sink’s maximum potential growth rate. These two functions
are set by the user and were described for kiwifruit by
Cieslak et al. (2011).

In the L+C implementation of C-TRAM, the concentrations
and flow rates are computed in three phases, corresponding to
three L+C groups. In the first phase, the system of equations
representing the entire branching structure is reduced to a
single equation that characterizes carbon concentration at its
base. In the second phase, carbon concentrations in the remain-
ing metamers are calculated in succession, given the values
found for the neighbouring metamers. Finally, in the third
phase, the distribution of concentrations is used to update the
values of carbon flow. The first phase was described as
folding and the second as unfolding by Prusinkiewicz et al.
(2007a), because, metaphorically speaking, the network of
sink/source elements is folded into one element, then unfolded
back into the original network. A straightforward application
of this computation scheme is only possible when f(c, . . .) is
a linear function of c; otherwise, if f(c, . . .) is non-linear,
another step must be implemented to solve the equations
using linear approximations (the Newton–Raphson method).
In that case, there are four phases, namely linearization,
folding, unfolding and update flow, which are iterated, until
the cumulative error in the carbon flow from all sources to
all sinks falls below a user-defined threshold. See
Prusinkiewicz et al. (2007a) for a detailed description of this
process.

In the shoot model presented here, the definition of a
module describing a sink or source is given by the following
L+C code:

struct SinkSourceData {
// carbon concentration outside
// the sink/source
float c;
// flow of carbon into the sink or
//out of the source
float dsdt;
// the carbon content of the sink/source
float s;
// resistance to flow past the sink/source
float r;

// . . . other variables needed for computation
}
module S(SinkSourceData);

This definition differs from that given by Prusinkiewicz et al.
(2007a), because the names of the members of the data struc-
ture are not given in terms of electric circuits (e.g. float c;
for carbon concentration instead of float v; for voltage
potential in the circuit), and the physical and physiological
characteristics of a metamer are not included in its definition.
Ultimately, this module will be used to represent a part of an
organ’s physiology, such as a growth sink or a maintenance
respiration sink.

A skeleton of the L-system rules for folding and unfolding is
given next to provide an idea of how C-TRAM works. The
point is to show that these rules can be incorporated into the
shoot model almost without changes from their original speci-
fication (Prusinkiewicz et al., 2007a). After linearizing the
equations (e.g. those of the form given in eqn 1), the algorithm
scans the L-system string from right to left and applies the
L-system rules to fold the branching structure. These rules
are contained within the FOLDING group:

group FOLDING:
S(sd) .. SB() S(sdr2) EB() S(sdr1): {

. . . simplify equations describing a branching point with
three elements, storing the result in sd, where sdr2 is
a branching element enclosed by the SB (start
branch) and EB (end branch) modules

produce S(sd);
}
S(sd) .. SB() S(sdr) EB(): {

. . . simplify equations describing a branching point with
two elements, storing the result in sd, where sdr is a
branching element

produce S(sd);
}
S(sd) .. S(sdr): {

. . . simplify equations describing two non-branching
elements storing the result in sd

produce S(sd);
}
S(sd): {

. . . start folding process (no need to simplify equation)
produce S(sd);

}
The first two rules handle branching points with three or two
elements, respectively. The third rule handles consecutive
elements that do not include a branching point. These three

Cieslak et al. — Towards aspect-oriented plant modellingPage 6 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

rules simplify equations describing several sink/source
elements using theorems for calculating equivalent circuits in
a linear electric circuit (Prusinkiewicz et al., 2007a). The
last rule applies only to the most distal element of each axis
and it is not necessary to simplify the equations.

After the folding step, C-TRAM calculates the carbon con-
centrations of each sink/source element by unfolding the
branching structure from left to right. The corresponding
rules form the UNFOLDING group:

group UNFOLDING:
S(sdl) ,, S(sd): {

. . . compute carbon concentration of current element,
sd, given sink/source element to the left, sdl

produce S(sd);
}
S(sd): {

. . . start unfolding process
produce S(sd);

}

The first rule handles consecutive elements in the string, while
the second rule is applied only to the very first element in the
string. A branching rule is not necessary, as left context in an
L-system is matched irrespective of the possible branching
points in the structure. The carbon concentration of each
sink/source element is computed given the carbon concen-
tration from its left neighbour using theorems for calculating
equivalent circuits in a linear electric circuit, similar to the
folding process (Prusinkiewicz et al., 2007a).

Finally, the carbon flow equations are updated given the
newly computed carbon concentrations (Prusinkiewicz et al.,
2007a):

group UPDATEFLOW:
S(sd):{
. . . update carbon flow for this sink/source element, sd
. . . calculate difference between previous and current

flows
. . . accumulate this difference in a global variable

error
produce S(sd);

}

where the globally defined error variable is initialized to zero
before the folding process starts, and represents the sum of the
absolute values of differences between the previous and
current flows from all elements. If the error is not sufficiently
small, the carbon concentrations and flows of the sink/source
elements are re-estimated in another iteration of the algorithm
using the newly updated values, thus improving the estimate.

Now, the challenge is to integrate C-TRAM with the kiwi-
fruit shoot model without making any significant changes to
the algorithm. In particular, we do not want to change the
SinkSourceData structure, so that the rules for folding
and unfolding do not have to change.

Integration of architecture and carbon dynamics

The original L-system implementation of the carbon
transport-resistance algorithm proposed by Allen et al.

(2005) uses one module to represent a metamer. There are
two shortcomings to this approach: (1) the data structure repre-
senting the metamer contains all possible members describing
features of different organ types, even if the organ is not
present, and (2) the representation of a metamer with more
than one sink or source element is not possible, unless the
data structure is changed and the rules for folding and unfold-
ing are changed to account for this. This second drawback is
especially difficult to address if any of the elements are rep-
resented by non-linear equations, as a suitable numerical
method would be required to solve them. That is, it would
require the application of the Newton–Raphson method on
the elements within the metamer itself before application of
the same method to all the metamers.

Here, we use the multi-module approach to create a kiwi-
fruit shoot model with two aspects: one that handles the
growth and development of organs, and another that handles
the carbon allocation between sinks and sources.
Specifically, the module Internode(), representing an
internode, and the module S(), representing a sink/source,
are combined to form a multi-module Internode() S().
One benefit is that any number of S() modules can be com-
bined with an Internode() module to form a multi-module
representing several aspects of the organ’s physiology (e.g.
physical properties and growth sink).

To integrate C-TRAM with the kiwifruit shoot model,
pL-systems are used to combine S() modules with those
already described in the paper (Internode(), Leaf(),
etc.). In the axiom, the axillary bud on a parent cane is com-
bined with a sink element:

axiom: AxBud(1,1) S(sdInit);

where sdInit is as an initial value for the
SinkSourceData structure. Next, the S() modules must
be integrated with the development of the shoot structure,
because if an apex produces a new metamer, the appropriate
sinks/sources must also be produced, and the growth of
organs must be based on carbon availability. The L+C
group, DEVELOP, changes to

group DEVELOP:
Apex(node,vigour) S(sd): {
if (. . . produce new metamer) {

. . . initialize sink/source data

. . . for an internode, set sdI1, sdI2, and sdI3

. . . for a leaf, set sdL1, sdL2, and sdL3
produce Internode(node,0,0)
S(sdI1) S(sdI2) S(sdI3)
SB() Leaf(node,0) S(sdL1) S(sdL2)
S(sdL3) EB()

S(sdInit)
SB() AxBud(node,2) S(sdInit) EB()
Apex(node+1,vigour) S(sd);

}
else
produce Apex(node,vigour) S(sd);

}
AxBud(node,order) S(sd): {
. . . same rules as in previous specification of this rule,

Cieslak et al. — Towards aspect-oriented plant modelling Page 7 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

except for the addition of S() modules following Fruit()
and Apex()

produce AxBud(node,order) S(sd);
}
Internode(node,length,radius)
S(sd1) S(sd2) S(sd3): {
. . . update internode sink size, sd1, and resistance, sd1.r
. . . update internode maintenance, sd2
. . . update internode reserves, sd3
. . . update internode length and radius based on sink size,

sd1
produce Internode(node,length,radius)
S(sd1) S(sd2) S(sd3);

}
Leaf(node,area) S(sd1) S(sd2) S(sd3): {
. . . update leaf sink size, sd1
. . . update leaf maintenance sink, sd2
. . . update carbon acquired through photosynthesis, sd3
. . . update leaf area based on sink size, sd1
produce Leaf(node,area)
S(sd1) S(sd2) S(sd3);

}
Fruit(node,volume) S(sd1) S(sd2): {
. . . update fruit sink size, sd1
. . . update fruit maintenance sink, sd2
. . . update fruit volume base on sink size, sd1
produce Fruit(node,volume)
S(sd1) S(sd2);

}

The major change here is that all the rules in this L+C group no
longer use a strict predecessor, and the number of S() modules
depends on the number of sinks/sources associated with an
organ. To simplify the description, the apex and axillary bud
do not accumulate carbon, so the only changes to the rules invol-
ving those organs are the addition of sink/source elements. For
example, if the Apex() module produces a new metamer
within a derivation step, the appropriate sink/source elements
must also be produced. The internode is coupled with two
sinks, one for growth and another for maintenance respiration,
and one sink-source element for synthesis and hydrolysis of
carbon reserves. The leaf is coupled with a sink for growth and
another for maintenance respiration and a source of carbon
from photosynthesis. Resistance to carbon flow between the
various sinks and sources of a single metamer is set to zero,
but resistance to flow throughout the whole shoot structure is
set by the internodes. This is done by setting the r member of
the SinkSourceData structure in the first sink of an inter-
node, according to its length and radius. The last three rules are
used to update the amount of carbon accumulated in the sinks
and the amount remaining in the sources. This is done by apply-
ing the forward Euler method to numerically integrate the carbon
flow into a sink or out of a source. For a sink/source element with
the associated data structure sd, the integration is written as

sd.s=sd.s+sd.dsdt * DT;

where DT is the time step size. Its value is set by the user as a
compromise between the accuracy and speed of computation.
Finally, to handle multiple branching points for the folding/
unfolding steps of C-TRAM, an inert sink is placed in between

branches, e.g. SB() . . . EB() S(sdInit) SB() . . . EB(),
as this is the simplest way to handle the branching point.

The next step in integrating C-TRAM is to include the
folding and unfolding phases of the algorithm. By specifying
the L+C command

consider: S;

at the beginning of the FOLDING and UNFOLDING groups,
only S() modules will be matched in context-sensitive
rules. In that way these two groups, which have already been
described, do not change at all, as L+C will ignore all
modules except S() in rule matching. More importantly,
solving the non-linear equations for carbon flow requires
only a single application of the Newton–Raphson method
for all sinks/sources in the model.

The final step of integration is to linearize the equations
representing flow of carbon into a sink or out of a source.
This is done in a new group, LINEARISE, which updates
the equations for carbon flow depending on sink/source type.
It is necessary to have a separate linearize phase, so that infor-
mation exchange can occur between sinks/sources at the local
level within one plant component (e.g. a maintenance sink can
query a primary growth sink for its size). Prusinkiewicz et al.
(2007a) give the technique for linearizing these equations.

To complete the integration of C-TRAM into the kiwifruit
shoot model, the UPDATEFLOW group can be added without
any changes. Figure 2 shows the flow of computational
phases for the whole model presented in this section. There
are five phases implemented in L+C groups: the DEVELOP
group handles production of new metamers and growth of
organs based on carbon availability, the LINEARISE group
begins the application of the Newton–Raphson method by lin-
earizing the carbon flow equations for sinks and sources, and
the FOLD, UNFOLD and UPDATEFLOW groups solve the

UPDATEFLOW

UNFOLD

FOLD

LINEARIZE

DEVELOP

error < threshold
No

Yes

FI G. 2. The flow of computational phases for the kiwifruit shoot model, com-
bining development of the shoot with C-TRAM. Each phase is implemented as
an L+C group, with one phase applied during an L-system derivation step.
Rule matching in each phase is done by scanning the string from left to

right, except in the folding phase, where scanning is from right to left.

Cieslak et al. — Towards aspect-oriented plant modellingPage 8 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

system of equations representing the carbon concentration and
flow throughout the structure. After application of the
UPDATEFLOW group, the accumulated error of the lineariza-
tion is checked, and if it is within a specified threshold, the
development of the shoot continues; otherwise, the Newton–
Raphson method is applied again.

Figure 3 shows a visualization of the model with two
aspects. The L-system rules in the DEVELOP group apply to
the modules defined for the growth and development aspect
(visualized in Fig. 3A) and the rules for C-TRAM apply to
the modules defined for the carbon allocation aspect (visual-
ized in Fig. 3B). Now, let us investigate the capabilities of
this approach even further by extending the shoot model
with another aspect.

Adding a signalling mechanism

To show how the kiwifruit shoot model can be extended
with a new aspect, let us consider the process of apical dom-
inance in the shoot, specifically the inhibition of lateral bud
activation by the shoot apex, and the outgrowth of axillary
buds upon removal of the apex (Cline, 1991). Different
hypotheses have been proposed to account for the effect of
apical dominance on the control of branching [addressed by
Dun et al. (2009) from a modelling prospective]. One of
these hypotheses, the auxin transport hypothesis, proposes
that active basipetal transport of the plant hormone auxin
down the main stem controls outgrowth of buds through com-
petition between apices for auxin transport in the main stem
(Bennett et al., 2006).

Based on this hypothesis, Prusinkiewicz et al. (2009) devel-
oped a computational model to explain apical dominance
using an auxin transport switch. In their model bud activation
is regulated by auxin flux; if the auxin efflux from a lateral bud
surpasses a fixed threshold, the bud becomes active. This relies
on the positive feedback between auxin flux and PIN protein
polarization of active auxin transport, and assumes that the
interplay between them can be integrated from the cellular
level to the metamer level (Sachs, 1991). Prusinkiewicz
et al. (2009) presented auxin flux from metamer i to

metamer j as the following equation:

Fi�j = Tai[PINi�j] − Ta j[PIN j�i] + D(ai − a j) (2)

where ai is auxin concentration, PINi�j is the concentration of
PIN proteins actively transporting auxin from metamer i to j, T
is a polar transport coefficient and D is a diffusion coefficient.
The change in PINi�j concentration depends on the flux Fi�j,
where auxin flux drives PIN allocation to the face of metamer i
neighbouring metamer j. It was given as

d[PINi�j]
dt

= ri�j

Fn
i�j

Kn +Fn
i�j

+ r0 − m[PINi�j] Fi�j ≥ 0

r0 − m[PINi�j] Fi�j < 0

⎧⎪⎨
⎪⎩

(3)

where ri�j is the maximum PIN allocation rate dependent on
auxin flux, r0 is the base PIN allocation rate independent of
auxin flux, m is PIN turnover rate, and K and n are coefficients
in the Hill function used to capture PIN allocation
(Prusinkiewicz et al., 2009). The change in auxin concen-
tration within metamer i is given by

dai

dt
=

∑
j

F j�i + s(H − ai) − vai (4)

where s is the auxin production rate, H is the target auxin con-
centration and n is the auxin turnover rate. This equation is
slightly different from the one presented by Prusinkiewicz
et al. (2009), because the metamer volume and area of the
face adjoining two metamers are not explicitly included in
the equation. In this version, both of these values are just
assumed to be equal to one. Lastly, the model assumes
auxin production occurs only within terminal and lateral
apices (otherwise, s ¼ 0).

As this apical dominance model will be integrated into the
kiwifruit shoot model, it is easier to model the flow of auxin
from apices through internodes instead of through metamers,
as metamers are not explicitly included in the kiwifruit shoot

A B C Growth sink

Maintenance sink

Apex/bud sink

Leaf source

Reserves sink/source

Inert sink

FI G. 3. Visualization of the kiwifruit shoot model with two aspects: (A) architectural and (B) carbon dynamics. A close-up of the sinks/sources of the first six
metamers is shown in the inset. Elements belonging to an internode are coloured blue, to a leaf are green, to a fruit are brown, to a flower are white, to an apex or

axillary bud are yellow, and to an inert element are magenta. The different types of sinks/sources are represented by the symbols shown in (C).

Cieslak et al. — Towards aspect-oriented plant modelling Page 9 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

model. First, two modules that handle auxin transport are
defined as follows:

struct AuxinData {
float a; // auxin concentration

};
struct WallData {
// auxin flux out of an apex/internode
float flux;
// PIN concentration on wall i to j
float PINi;
// PIN concentration on wall j to i
float PINj;

};
module A(AuxinData ad);
module W(WallData wd);

where ad is a variable of the AuxinData structure and wd is
a variable of the WallData structure. Both of these modules
are associated with the apex and internode components, and
operate as a pair. The W modules, which separate two A
modules, are used to calculate auxin flux due to diffusion
and basipetal polar transport down a shoot, as defined in the
following L+C group:

group AUXINFLUXES:
consider: A;
A(adL),W(wd).A(adR): {

. . . compute diffusion and polar transport through this wall

. . . update auxin flux and PIN concentration
produce W(wd);

}

The flux computed by the W modules is then used to update
the auxin concentration in the A modules as follows:
group AUXINTRANSPORT:
consider: W;
W(wdL),A(ad).SB() EB()
SB() W(wdLAT) EB() W(wdR): {

. . . update auxin concentration according to flux
produce A(ad);

}
W(wdL),A(ad).SB() EB()
SB() W(wdLAT) EB(): {

. . . same as above but without the right neighbour
produce A(ad);

}
W(wdL),A(ad).W(wdR): {

. . . same as above but without the lateral neighbour
produce A(ad);

}
W(wdL),A(ad): {

. . . same as above but with only the left neighbour
produce A(ad);

}
A(ad).W(wdR): {

. . . same as above but with only the right neighbour
produce A(ad);

}

In all of these rules, a module’s left neighbour corresponds to
the first adjoining component (internode, apex or axillary bud)
in the basipetal direction and its right neighbour corresponds to
the first adjoining component in the acropetal direction along
the shoot. There are five possibilities that must be handled
by the rules in this group: the first rule applies to the
modules that have left, right and lateral neighbours; the
second rule applies to modules with left and lateral neighbours
(e.g. when the shoot is pruned, this matches the first internode
immediately below the cut); the third rule applies to modules
with no lateral neighbours; the fourth rule applies to terminal
or lateral modules (where the shoot apices are located); and the
fifth rule only applies to the first module in the string. Within
each rule, the auxin concentration of each component is
updated by numerically solving eqn (4) using the forward
Euler method with a time step of 0.1. Note, in the first two
rules, an extra set of branch modules (SB() EB()) enclosing
a leaf is included to ensure a match at the branching point.

This model of auxin flow from apices through internodes,
implemented in the L+C group AUXINFLOW, can be inte-
grated into the kiwifruit shoot model by placing A() and
W() modules after each Apex(), AxBud() and
Internode() module. First, the axiom is updated to

axiom: AxBud(1,1) S(sdInit)
A(adInit) W(wdInit);

where the variables adInit and wdInit initialize the auxin
data. Then, the control flow of computational phases (shown
in Fig. 2) is changed to include the new AUXINFLOW and
AUXINTRANSPORT groups (see Fig. 4). This implementation
assumes that the time step for the carbon dynamics and auxin
flow aspects are the same (i.e.DT ¼ 0.1), but this is only for con-
venience. In order to have different time steps, an additional
L+C group could be implemented that performs the forward
Euler step for each aspect. Using a common time step,
however, only requires updating the DEVELOP group by
placing A() and W() modules within the predecessors of the
rules involving the three related modules, as follows:

group DEVELOP:
Apex(node,vigour) S(sd) A(ad) W(wd): {

. . . same calculations as in previous declaration
but, in addition, update production of auxin, ad.a

if (. . . produce new metamer) {
. . . initialize auxin data for lateral, adInit and wdInit
produce Internode(node,0,0)
S(sdI1) S(sdI2) S(sdI3)
A(ad) W(wd)
SB() Leaf(node,0) S(sdL1) S(sdL2)
S(sdL3) EB()

S(sdInit)
SB() AxBud(node,2) S(sdInit)
A(adInit) W(wdInit) EB()

Apex(node+1,vigour) S(sd)
A(ad) W(wd);

}
else
produce Apex(node,vigour) S(sd)
A(ad) W(wd);

Cieslak et al. — Towards aspect-oriented plant modellingPage 10 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

}
AxBud(node,order) S(sd) A(ad) W(wd): {

. . . same as before, except for the following change:
if (wd.flux.EFFLUX_THRESHOLD)
produce Apex(node,1) S(sd) A(ad) W(wd);

else
produce AxBud(node,order)
S(sd) A(ad) W(wd);

}
Internode(node,length,radius)
S(sd1) S(sd2) S(sd3) A(ad) W(wd): {

. . . update carbon dynamics as before
produce Internode(node,length,radius)

S(sd1) S(sd2) S(sd3) A(ad) W(wd);
}
. . . the remaining rules do not change

When an apex produces a new metamer, an A() and W()
module is placed following the Internode() module and
the variable containing the auxin data is copied from the
apex (so the auxin and PIN concentrations remain the same).
A new A() and W() module is placed following the axillary
bud with the auxin data initialized using the variable adInit
and wdInit, respectively. The most substantial change is

within the rule for axillary bud development, where if the
auxin efflux is greater than some predefined threshold, the
bud is activated and will start to produce new metamers.

Figure 5 shows a visualization of the kiwifruit shoot model
and the apical dominance model. To show how decapitation of
the shoot activates a lateral, several steps of the simulation are
shown over time. The model parameters for auxin flow were
set exactly as in the simulation of decapitation experiments
by Prusinkiewicz et al. (2009: fig. 2G, H), but the threshold
for bud activation was set to 6.7 instead of 2. The reason for
the difference in values was to ensure that only one lateral
grew after pruning the shoot, as has been observed for kiwi-
fruit shoots (Minchin et al., 2010).

Adding biomechanics for shoot bending

Considering a model of shoot mechanics proposed by
Fournier et al. (1994), who treated woody stems as elastic
rods subject to primary and secondary growth, Jirasek et al.
(2000) developed an L-system implementation of a biomecha-
nical plant model that simulates bending and twisting of
branches. A more efficient L+C implementation using
fast information transfer was subsequently devised by
Taylor-Hell (2005). Prusinkiewicz et al. (2007b) distilled the
essence of this model in an L+C example operating in two
dimensions. We use this implementation to show how easily
a previously devised biomechanics aspect can be incorporated
into a comprehensive shoot model using the proposed multi-
module approach. We also show how information is exchanged
between aspects: in particular, how the length and mass of the
shoot (determined by carbon dynamics) are passed to the bio-
mechanics aspect, affecting the shape of the shoot. The model
can be extended to three dimensions (Costes et al., 2008), by
replacing mathematical details of the biomechanical aspect
while preserving the structure of the integrated model.

Prusinkiewicz et al. (2007b) modelled a shoot (branch axis)
as a sequence of rigid internodes connected at elastic nodes.
Each internode is represented by a vector �ri = si

�Hi, where i
is the internode number along the shoot, si is the internode
length and �Hi is a unit vector giving the internode’s orien-
tation. The mass of each internode is concentrated at its
distal node. Each node is subject to a torque caused by
gravity acting on the shoot. The shape of the shoot in static
equilibrium is calculated using a relaxation method (Press
et al., 1992) that consists of iterative application of two
steps: (1) given �ri calculate the torque, �ti, at node i due to
gravity acting on the nodes distal to it, j . i, and (2) given
�ti calculate the new orientation �Hi and update �ri. These two
steps are repeated until the accumulated changes in the orien-
tations of all internodes are small, at which point it is assumed
that an equilibrium state has been found.

The torque, �ti, is calculated using the following equation
(Prusinkiewicz et al., 2007b):

�ti = �ti+1 + �ri+1 ×
∑N

j=i+1

�Fj (5)

where N is the total number of nodes in the shoot, and
�Fj = mj�g is the force of gravity acting on node j with mass

UPDATEFLOW

UNFOLD

FOLD

LINEARIZE

AUXINTRANSPORT

DEVELOP

error < threshold
No

Yes

AUXINFLUXES

FI G. 4. The flow of computational phases for the kiwifruit shoot model,
updated to include control of branching by apical dominance. In addition to
updating the amount of accumulated carbon per sink, the DEVELOP phase is
used to compute the production of auxin in apices and to check for lateral
bud activation. The AUXINFLUXES phase computes auxin diffusion and
active basipetal transport through the shoot, and PIN concentration. The
AUXINTRANSPORT phase computes auxin concentration based on flux.

Cieslak et al. — Towards aspect-oriented plant modelling Page 11 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

mj, given gravitational acceleration �g. This equation can be
extended to calculate torques in the case of a branching
shoot by adding torques from the lateral branches. For
example, in the case of one branch at node i, the combined
torque �ti

c is equal to

�t c
i = �ti + �t b

i (6)

where �ti and �ti
b represent the accumulated torques exerted on

node i by the main shoot and the lateral branch, respectively.
Each of these component torques is calculated according to
eqn (5).

The orientation �Hi+1 of internode �ri+1 is found by calculating
its rotation with respect to internode �ri, caused by the torque
acting on node i + 1. In principle, the angle of rotation caused
by torque �ti+1

c is equal to ai+1 = t c
i+1/ki+1, where ti+1

c is the
magnitude of torque �ti+1

c , and ki+1 is a rotational spring constant
associated with node i + 1. However, as changes in the orien-
tations of internodes also change the torques, the equilibrium
configuration of the branch is found iteratively, using a relax-
ation method. To this end, in each iteration step the orientation
�Hi+1 is adjusted using the equations:

�R = �Hi+1 + k(�H previous
i+1 − �Hi+1)

�H
adjusted
i+1 = �R/ �R

∥∥ ∥∥ (7)

where �Hi+1
previous is the orientation of internode �ri+1 found in the

previous iteration step, the temporary variable �R represents the

adjusted orientation before normalization, �Hi+1
adjusted is the nor-

malized adjusted orientation resulting from the current

relaxation step, and parameter k controls the speed of conver-
gence to the solution. The relaxation proceeds until the differ-
ences between previous and calculated orientations,

�H
previous
i+1 − �Hi+1

∥∥∥
∥∥∥, summed over all nodes i, becomes suffi-

ciently small, at which point an equilibrium is assumed to

have been found. Finally, positions �Pi of all nodes are found

using the recursive formula �Pi+1 = �Pi + si
�Hi.

This biomechanical model can be integrated into the kiwi-
fruit shoot model in the same way as the carbon dynamics
model was integrated. First, a data structure and module are
defined that represent an internode from a biomechanical
perspective:

struct BiomechanicsData {
float s; // length of internode
float mass; // mass of the node
float ke; // elasticity at a node
float torque; // combined torque at the node
V3f P; // position at the node
V3f H; // orientation of the internode
// . . . othervariablesneededforcomputation
};

module B(BiomechanicsData);

where V3f is a user-defined data type representing a three-
dimensional vector. We assume the most basal node is at
point (0,0,0) and all the other nodes are relative to their sup-
porting node. Now, B() modules are placed following the
Internode() modules, and the members defined in the
BiomechanicsData structure can be updated by a

A DB C E F

FI G. 5. Visualization of the kiwifruit shoot model integrated with an apical dominance aspect. The image sequence on the left shows the development of the
shoot, and the one on the right shows auxin flow from apices through internodes (both components are visualized as squares). The schematic representation of
auxin flow is based on the one used by Prusinkiewicz et al. (2009), where the edge length of the magenta square gives auxin concentration in the component, the
width of the yellow rectangle gives PIN concentration in the adjoining component face, and the width of the green rectangle gives the auxin flux out of a com-
ponent. There are three time points shown: (A, D) the shoot before decapitation, (B, E) the shoot immediately after decapitation, and (C, F) the development and
growth of a lateral. The inset (dashed-red rectangle) shows the state of the lateral bud just before activation, when its auxin efflux starts increasing. Decapitation of
the shoot was performed by interactively selecting (on the screen) the location of the cut. There are three lateral buds missing at nodes 4, 5 and 6 because fruit has
already appeared at those positions. Finally, the black square at the bottom of the auxin flow visualization (D–F) represents the major auxin sink, which has a high

auxin turnover rate.

Cieslak et al. — Towards aspect-oriented plant modellingPage 12 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

pL-system rule, as was done for the sinks/sources in the carbon
dynamics aspect. The orientations of the internodes are com-
puted by calculating torques in one L+C group and rotations
in another, using eqns (5)–(7).

Jirasek et al. (2000) noticed that the forces and torques
involved in shoot bending can be considered as signals that
propagate basipetally down the shoot. Using this idea,
Taylor-Hell (2005) and Prusinkiewicz et al. (2007b)
implemented an L+C group that accumulates the masses
and torques along a shoot using fast information transfer.
The L+C group may be implemented in the following way,
where the L-system string is derived backwards from right to
left:

group PROPAGATELEFT:
consider: B;
B(bm) .. SB() EB()
SB() B(bmLAT) EB() B(bmR): {
. . . sum mass from lateral and right neighbours
. . . accumulate torque due to gravity from lateral and

right neighbours
produce B(bm);

}
B(bm) .. SB() EB() SB() B(bmLAT) EB(): {

. . . sum mass from lateral neighbour

. . . accumulate torque due to gravity from lateral
neighbour

produce B(bm);
}
B(bm) .. B(bmR): {

. . . sum mass from right neighbour

. . . accumulate torque due to gravity from right neighbour
produce B(bm);

}
B(bm): {

. . . set torque to zero
produce B(bm);

}

The first rule applies to an internode with another one above it
and a lateral branch at its node, i.e. a B() module with a right
and lateral neighbour. Note, the extra pair of SB() EB()
modules are necessary for the rule to be matched, as these
enclose a Leaf() module and cannot be ignored in lpfg.
The second rule applies to an internode with a lateral branch
at its node but no internode above it, and the third rule is
the opposite, with an internode above but no lateral branch.
The last rule applies to the apical internode on a shoot; it initi-
alizes the process of torque accumulation along the shoot.

Based on the torques computed in the PROPAGATELEFT
group, the orientation of the nodes can be updated using fast
information transfer as follows:

group PROPAGATERIGHT:
consider: B;
B(bmL) ,, B(bm): {
. . . calculate rotation required for equilibrium corre-

sponding to the accumulated torque, bm.torque
. . . calculate the difference between the current

rotation and the newly calculated one

. . . apply relaxation method: adjust current rotation,
bm.H, by a fraction of this difference

(step towards equilibrium)
. . . update position, bm.P, given the left neighbour’s

position, bmL.P
produce B(bm);

}
B(bm): {

. . . set the position as (0,0,0)
produce B(bm);

}

The first rule updates the orientation of an internode based
on the combined torque acting on its node, and the position
of the node. The second rule sets the position of the most
basal node, without a left neighbour, using a base position
specified at the start of the simulation. The magnitudes of
the difference between an internode’s orientation and the
orientation required to achieve equilibrium is accumulated
into a global error variable, which is used to measure the
adequacy of the solution.

The PROPAGATELEFT and PROPAGATERIGHT groups
can be placed directly into the kiwifruit shoot model
implementation, but the DEVELOP group must be updated
with the addition of B() modules after the Internode()
modules as follows:

group DEVELOP:
Apex(node,vigour) S(sd) A(ad) W(wd): {

. . . same calculations as in previous declaration
if (. . . produce new metamer) {
. . . initialize biomechanics data for internode, bmInit
produce Internode(node,0,0)

S(sdI1) S(sdI2) S(sdI3)
A(ad) W(wd) B(bmInit)

. . . the rest is unchanged
}
Internode(node,length,radius)
S(sd1) S(sd2) S(sd3) A(ad) W(wd) B(bm): {

. . . update carbon dynamics, sd1, sd2, and sd3

. . . update internode length and radius based on sink
size, sd1

. . . copy length to bm.s and set mass in bm.mass

. . . set elasticity in bm.ke
produce Internode(node,length,radius)

S(sd1) S(sd2) S(sd3)
A(ad) W(wd) B(bm);

}
. . . the remaining rules do not change

The only change for the rule involving the Apex() module is
the placement of a B() module following an Internode()
module upon production of a new metamer. The rule for the
Internode() module must now include the B() module
in the predecessor, allowing the length and mass of the inter-
node to be passed from the carbon dynamics aspect to the bio-
mechanical aspect. This is an example of how the
multi-module approach provides a means of information
exchange between different aspects.

Cieslak et al. — Towards aspect-oriented plant modelling Page 13 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

With the updated DEVELOP group, the integration of a bio-
mechanical aspect into the kiwifruit shoot model is now com-
plete. Figure 6 shows the updated flow of computational
phases in the kiwifruit shoot model. The L+C groups involved
in computation of the shoot biomechanics are run immediately
after the carbon dynamics, but are still performed within the
same number of time steps, as the length and mass of each
internode are set in the DEVELOP group.

Figure 7 shows a visualization of the kiwifruit shoot and of
its biomechanical representation. The initial orientation of the
parent branch section that the shoot is growing from is set
slightly downwards, so that the shoot will bend under the
force of gravity. The acceleration due to gravity was
9.81 m s22 and the parameter controlling the speed of conver-
gence to the solution was k ¼ 0.5 (set as a compromise
between the speed and accuracy of the solution). The elasticity
of an internode was dependent on its age.

CONCLUSIONS

We have introduced an L-system-based modelling technique
for integrating several aspects of plant function into well-
structured, comprehensive FSPMs. The proposed technique
is founded on the notion of multi-modules, which represent
plant components using sequences of L-system symbols
rather than single symbols. Each symbol within a multi-
module corresponds to an aspect of the component’s operation.
L-system programming with multi-modules is supported by
the following constructs:

(1) Pseudo-L-systems (Prusinkiewicz, 1986): the extension of
L-systems that allows for the rewriting of multiple
symbols by a single production.

(2) Groups, or the division of the production set into subsets,
with a control mechanism deciding which subset is appli-
cable in each simulation step (Dassow, 1986; Yokomori,
1986; Prusinkiewicz et al., 2007b).

(3) Local consider/ignore statements, which make it possible
to specify modules recognized for the purpose of context
searching individually for each group.

Using these constructs, the user can specify which symbols
will be affected in each simulation step, and thus select
which functional aspects and/or architectural components
will be of concern in this step. By dynamically changing the
set of affected symbols from one step to another, criss-crossed
concerns can be addressed in a modular manner.

The usefulness of the proposed technique was demonstrated
by integrating previously modelled aspects of carbon
dynamics (Allen et al., 2005; Prusinkiewicz et al., 2007a),
apical dominance (Prusinkiewicz et al., 2009) and biomecha-
nics (Taylor-Hell, 2005; Prusinkiewicz et al., 2007b) into a
model of a developing kiwifruit shoot (see Fig. 8). These
aspects were specified independently, and their implemen-
tation was based on the source code provided by the original
authors. In the case of carbon dynamics, multi-modules
allowed for the extension of components including a single
sink or source to components with several sinks and sources
without changing the underlying carbon allocation code. Our
example thus shows that multi-modules provide a simple, prac-
tical technique for encapsulating aspects of plant function,
composing them effectively into a comprehensive model,
and, possibly, reusing them in other models.

Although, for the example presented here, integration of
the aspects was performed manually, the multi-module
approach could lead to an aspect-oriented programming
language for building FSPMs, but would require the support
of appropriate constructs. In particular, for the integration of

Yes

Yes

PROPAGATERIGHT

PROPAGATELEFT

UPDATEFLOW

UNFOLD

FOLD

LINEARIZE

AUXINTRANSPORT

DEVELOP

error < threshold

error < threshold

No

No

AUXINFLUXES

FI G. 6. The flow of computational phases for the kiwifruit shoot model,
updated to include biomechanics for shoot bending. In addition to its other
tasks, the DEVELOP group is now used to update the length and mass of
each internode for the biomechanical aspect. The PROPAGATELEFT group
accumulates (basipetally down the shoot) torques due to gravity acting on
the nodes attached to the internodes. The PROPAGATERIGHT group adjusts
the orientation of each internode towards an equilibrium state, which is calcu-
lated according to the torques and physical properties of the shoot. To this end,
these two phases are repeated until an acceptable solution is found, i.e. until
the accumulated change in the orientation of the internodes, within one time

step, is small.

Cieslak et al. — Towards aspect-oriented plant modellingPage 14 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

each aspect, it would require the automatic addition of the
aspect’s modules to the multi-modules and update of the
flow of computational phases to include the groups imple-
menting the aspect’s production rules. This task may seem
difficult in the case of aspects with a common time step,
but it has already been addressed in other aspect-oriented
languages, such as AspectC++ (Spinczyk et al., 2005).
Furthermore, even though the examples presented in this
paper handled multiple branching points in a simple way,
explicitly checking for them in the production rules, more
sophisticated constructs from L+C could be used to handle
the general case.

Another potential advantage of the multi-module approach
is the specification of numerical methods using special compu-
tational modules, where one of the modules in a multi-module
could be used for computation. This would allow for more effi-
cient solving of systems of equations specified for developing
structures, as there is no need to reformulate the equations and
resubmit them to a standard solver each time they change, i.e.
the solver would work on the topological space defined by the
L-system (Prusinkiewicz, 2009). In addition, the implemen-
tation of the numerical method itself would be independent
of the process, described by the system of equations, it was
solving. For example, a numerical method for solving

A CB D

FI G. 7. Visualization of the kiwifruit shoot model integrated with a biomechanical aspect. It shows the kiwifruit shoot without (A, C) and with (B, D) bending
due to gravity. On the right is the visualization of the biomechanical aspect, with an internode visualized as a yellow line attached to a node (black circle) at its
distal end. The length of the line corresponds to the length of the internode and the size of the circle is proportional to the internode’s mass (concentrated within

the node). The orientation of the leaves due to tropism is simulated using lpfg’s built-in functionality (Karwowski and Lane, 2007).

FI G. 8. Visualization of the kiwifruit shoot model integrated with four aspects of plant structure and function. From the top left, the first image shows a visu-
alization of the kiwifruit shoot, the second image shows the sinks/sources, the third shows auxin flow from apices through the internodes, and the last one shows

the biomechanics.

Cieslak et al. — Towards aspect-oriented plant modelling Page 15 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

systems of non-linear equations in growing structures for two
different processes, such as carbon dynamics and biomecha-
nics, could be implemented using the same set of L-system
productions. This has an advantage over the current approach
in that the numerical method used to solve the non-linear
equations for carbon dynamics and biomechanics would be
formulated only once, instead of once for each aspect. This
idea could be further applied to modelling signal propagation
in plants, where a single production set could specify the
flow of diverse signals that have a similar transport mechan-
ism. To conclude, these types of applications of the multi-
module approach illustrate its ability to handle the challenging
problem of properly integrating several aspects of plant func-
tion into one model, and, importantly, the capability of the
L-system formalism to do this.

ACKNOWLEDGMENTS

We thank Brendan Lane for discussions on the biomechanics
aspect of the model, and Helge Dzierzon and the anonymous
referees for useful appraisal of the manuscript. We gratefully
acknowledge the support of this research provided by the
Kiwifruit Royalty Investment Project, New Zealand Institute
for Plant & Food Research Limited (M.C. and A.N.S.) and
the Natural Sciences and Engineering Research Council of
Canada (P.P.).

LITERATURE CITED

Allen MT, Prusinkiewicz P, DeJong TM. 2005. Using L-systems for model-
ing source-sink interactions, architecture and physiology of growing trees:
the L-PEACH model. New Phytologist 166: 869–880.

Bennett B, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. 2006.
The Arabidopsis MAX pathway controls shoot branching by regulating
auxin transport. Current Biology 16: 553–563.

Bertheloot J, Andrieu B, Fournier C, Martre P. 2008. A process-based
model to simulate nitrogen distribution in wheat (Triticum aestivum)
during grain-filling. Functional Plant Biology 35: 781–796.

Buck-Sorlin GH, Kniemeyer O, Kurth W. 2005. Barley morphology, gen-
etics and hormonal regulation of internode elongation modelled by a rela-
tional growth grammar. New Phytologist 166: 859–867.

Cieslak M, Seleznyova AN, Hanan J. 2011. A functional–structural kiwifruit
vine model integrating architecture, carbon dynamics, and effects of the
environment. Annals of Botany 107: 747–764.

Cline MG. 1991. Apical dominance. Botanical Review 57: 318–358.
Costes E, Smith C, Renton M, Guédon Y, Prusinkiewicz P, Godin C. 2008.

MAppleT: simulation of apple tree development using mixed stochastic
and biomechanical models. Functional Plant Biology 35: 936–950.

Dassow J. 1986. On compound Lindenmayer systems. In: Rozenberg G,
Salomaa A. eds. The book of L. Berlin: Springer-Verlag, 77–85.

Dun EA, Hanan J, Beveridge CA. 2009. Computational modeling and mol-
ecular physiology experiments reveal new insights into shoot branching in
pea. Plant Cell 21: 3459–3472.

Foster TM, Seleznyova AN, Barnett AM. 2007. Independent control of orga-
nogenesis and shoot tip abortion are key factors to developmental plas-
ticity in kiwifruit (Actinidia). Annals of Botany 100: 471–481.

Fourcaud T, Zhang X, Stokes A, Lambers H, Körner C. 2008. Plant growth
modelling and applications: the increasing importance of plant architec-
ture in growth models. Annals of Botany 101: 1053–1063.

Fournier C, Andrieu B. 1999. ADEL-maize: an L-system based model for the
integration of growth processes from the organ to the canopy. Application
to regulation of morphogenesis by light availability. Agronomie 19:
313–327.

Fournier M, Bailleres H, Chanson B. 1994. Tree biomechanics: growth,
cumulative prestresses, and reorientations. Biomimetics 2: 229–251.

Han L, Hanan J, Gresshoff PM. 2010. Computational complementation: a
modelling approach to study signalling mechanisms during legume auto-
regulation of nodulation. PLoS Computational Biology 6: e1000685.
doi:10.1371/journal.pcbi.1000685.

Hanan J. 1992. Parametric L-systems and their application to the modelling
visualization of plants. PhD thesis, University of Regina, Regina.

Hanan J, Prusinkiewicz P, Zalucki M, Skirvin D. 2002. Simulation of insect
movement with respect to plant architecture and morphogenesis.
Computers and Electronics in Agriculture 35: 255–269.

Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin GH.
2008. The rule-based language XL and the modelling environment
GroIMP illustrated with simulated tree competition. Functional Plant
Biology 35: 739–750.

Jirasek C, Prusinkiewicz P, Moulia B. 2000. Integrating biomechanics into
developmental plant models expressed using L-systems. In: Spatz HC,
Speck T. eds. Plant biomechanics 2000. Stuttgart: Georg Thieme
Verlag, 615–624.

Karwowski R, Lane B. 2007. LPFG user’s manual. Calgary: University of
Calgary,

Karwowski R, Prusinkiewicz P. 2003. Design and implementation of the
L+C modeling language. Electronic Notes in Theoretical Computer
Science 86.

Kiczales G, Lamping J, Mendhekar A, et al. 1997. Aspect-oriented pro-
gramming. In: Aksit M, Matsuoka S. eds. ECOOP. Heidelberg:
Springer, 220–242.

Lindenmayer A. 1968. Mathematical models for cellular interaction in devel-
opment, parts I and II. Journal of Theoretical Biology 18: 280–315.

Lindenmayer A. 1971. Developmental systems without cellular interactions,
their languages and grammars. Journal of Theoretical Biology 30:
455–484.

Lopez G, Favreau R, Smith C, Costes E, Prusinkiewicz P, DeJong T. 2008.
Integrating simulation of architectural development and source-sink be-
havior of peach trees by incorporating Markov chains and physiological
organ function submodels into L-PEACH. Functional Plant Biology 35:
761–771.

Minchin PEH, Snelgar WP, Blattmann P, Hall AJ. 2010. Competition
between fruit and vegetative growth in Hayward kiwifruit. New Zealand
Journal of Crop and Horticultural Science 38: 101–112.

Perttunen J, Sievänen R. 2005. Incorporating Lindenmayer systems for archi-
tectural development in a functional–structural tree model. Ecological
Modelling 181: 479–491.

Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C. 2008.
OpenAlea: a visual programming and component-based software platform
for plant modelling. Functional Plant Biology 35: 751–760.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 1992. Numerical
recipes in C: the art of scientific computing. Cambridge: Cambridge
University Press.

Prusinkiewicz P. 1986. Graphical applications of L-systems. In: Wein M,
Kidd EM. eds. Proceedings of Graphics Interface ’86/Vision Interface
’86. Toronto, Canada: Canadian Information Processing Society,
247–253.

Prusinkiewicz P. 1998. Modeling of spatial structure and development of
plants. Scientia Horticulturae 74: 113–149.

Prusinkiewicz P. 2004. Art and science for life: designing and growing virtual
plants with L-systems. Acta Horticulturae 630: 15–28.

Prusinkiewicz P. 2009. Developmental computing. In: Calude CS, Costa
JFGd, Dershowitz N, Freire E, Rozenberg G. eds. Unconvential
Computation. 8th International Conference, UC 2009. Berlin: Springer,
16–23.

Prusinkiewicz P, Lindenmayer A. 1990. The algorithmic beauty of plants.
New York: Springer.

Prusinkiewicz P, Hanan J, Měch R. 2000a. L-system-based plant modelling
language. In: Nagl M, Schuerr A, Muench M. eds. Applications of graph
transformations with industrial relevance. Proceedings of the inter-
national workshop {AGTIVE}’99, Kerkrade, Netherlands, September
1999. Lecture Notes in Computer Science. Berlin: Springer, 395–410.

Prusinkiewicz P, Karwowski R, Měch R, Hanan J. 2000b. L-studio/cpfg: a
software system for modeling plants. In: Nagl M, Schurr A, Munch M.
eds. Applications of graph transformations with industrial relevance.
Berlin: Springer-Verlag, 457–464.

Prusinkiewicz P, Allen M, Escobar-Gutierrez A, DeJong T. 2007a.
Numerical methods for transport-resistance source-sink allocation
models. In: Vos J, Marcelis L, De Visser P, Struik P, Evers J. eds.

Cieslak et al. — Towards aspect-oriented plant modellingPage 16 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://dx.doi.org/10.1371/journal.pcbi.1000685
http://aob.oxfordjournals.org/

Functional–structural plant modelling in crop production. Dordrecht:
Springer, 123–137.

Prusinkiewicz P, Karwowski R, Lane B. 2007b. The L+C plant-modelling
language. In: Vos J, Marcelis L, De Visser P, Struik P, Evers J. eds.
Functional–structural plant modelling in crop production. Dordrecht:
Springer, 27–42.

Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V,
Leyser O. 2009. Control of bud activation by an auxin transport switch.
Proceedings of the National Academy of Sciences 106: 17431–17436.

Sachs T. 1991. Pattern formation in plant tissues. Cambridge: Cambridge
University Press.

Spinczyk O, Lohmann D, Urban M. 2005. AspectC++: an AOP extension
for C++. Software Developer’s Journal 5: 68–76.

Taylor-Hell J. 2005. Biomechanics in botanical trees. MSc thesis, University
of Calgary.

Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB.
2010. Functional–structural plant modelling: a new versatile tool in
crop science. Journal of Experimental Botany 61: 2101–2115.

Yokomori T. 1986. Graph-controlled systems – an extension of 0L systems.
In: Rozenberg G, Salomaa A. eds. The book of L. Berlin:
Springer-Verlag, 461–471.

Cieslak et al. — Towards aspect-oriented plant modelling Page 17 of 17

 at T
he U

nivesity of C
algary on July 7, 2011

aob.oxfordjournals.org
D

ow
nloaded from

http://aob.oxfordjournals.org/

