
Applications
of Euclidean
constructions to
computer graphics

Norma Fuller and
Przemyslaw Prusinkiewicz

Department of Computer Science,
University of Regina,
Regina, Saskatchewan, S4S 0A2 Canada

This paper presents an interactive graphics
system called L.E.G.O. The purpose of
L.E.G.O. is to model two- and three-di­
mensional objects using Euclidean geome­
try constructions. L.E.G.O. has a layered
structure which makes it convenient to
use, both for the experienced programmer
and the novice. The programs may be
written in a compiled language (C), written
interactively in an interpreted language
(LISP) or developed using a graphical in­
terface in a multiple-window environment.
Applications of L.E.G.O. include com­
puter-assisted instruction of geometry and
computer graphics, geometric modeling,
and kinematic analysis. The use of impera­
tive constructions and the powerful inter­
face based on the idea of graphical pro­
gramming are the most distinctive features
of the system.

Key words: Constraint-based graphics sys­
tems - Geometric constructions - Graphi­
cal programming - Iconic interfaces -
Computer-assisted instruction

The Visual Computer (1989) 5: 53-67
© Springer-Verlag 1989

1 Introduction

Computer-assisted instruction of geometry has
been largely influenced by the LOGO project
(Abelson and diSessa 1980; Papert 1980). However,
its central concept, turtle geometry, makes LOGO
of little use in teaching classical Euclidean ideas.
Consequently, with educational applications in
mind, we have created a computer graphics system
called L.E.G.O., based on the Euclidean notions
and operations. The educational aspects of
L.E.G.O., a survey of applications and the visual
interface are described in previous papers by Fuller
et al. (1985), and Fuller and Prusinkiewicz (1986,
1988). In this paper we focus on the layered struc­
tural design of the L.E.G.O. system. Because of this
design, L.E.G.O. meets the needs of both the expe­
rienced programmer and the novice.
The L.E.G.O. graphics system was created using
the layered approach (Fig. 1). The bottom layer in
the current implementation is the IRIS Graphics
Library (User's Guide for IRIS 1986). Geometric
objects in Level Oare expressed in Cartesian coor­
dinates, for example, circ (500.0, 400.0, 100.0). Lev­
el 1, called C-LEGO, is a library of C functions
which allow the user to specify objects in terms
of Euclidean geometry, for example, line (A, B).
Programs using C-LEGO functions must be com­
piled. Level 2 or LISP-LEGO is a LISP interface
for C-LEGO. Programs can be built interactively
statement by statement. Functions can be defined
interactively and used at the same session without
compiling. The user of this layer is not required
to define objects prior to their use. Finally, the
visual interface in Level 3 allows for building LISP­
LEGO programs using graphical operations based
on the direct manipulation approach.
The paper is organized as follows. Section 2 intro­
duces the concept of construction-based modeling.
In Sect. 3 constraint-based systems known from the
literature are surveyed and contrasted with
L.E.G.O. The essential aspects of L.E.G.O. are de­
scribed in the next three sections, devoted to C-

Level 3: Visual interface

Level 2: LISP-LEGO

Level 1: C-LEGO

Level 0: Graphics library

Fig. 1. The layered structure of the L.E.G.O. graphics system

53

Fig. 2. An object

Fig. 3. Some interpretations of the object from Fig. 2

3a

.
.
.
.
•·· ...

I I

b C

<·l'i)

(0,0) D.(1,0)

LEGO, LISP-LEGO and the graphics interface re­
spectively. Selected applications of L.E.G.O. are
outlined in Sect. 7. Finally, in Sect. 8 we summarize
the obtained results.
C-LEGO is written in C. LISP-LEGO and the vi­
sual interface are written in Franz LISP (Foderaro
1979; Wilensky 1984). Both interface styles can be
used concurrently. The version of L.E.G.O. de­
scribed in this paper runs on an IRIS 3130 work­
station. The mex window management system
(User's Guide for IRIS 1986) provides the rudi­
ments for man-machine interaction.

2 Construction-based modeling

Modeling using geometric constructions is distinc­
tively different from other modeling techniques.
This difference can be best presented by referring
to an example. Thus, consider the object shown
in Fig. 2. Some methods for describing it are illus­
trated in Fig. 3, and can be expressed as follows:
(a) Fig. 2 is a set of pixels.
(b) Fig. 2 is a plot of three lines, with the Cartesian

coordinates of the endpoints equal to (0, 0),

(1, 0) and(½,�)-

(c) Fig. 2 is the trace of a turtle moving forward
a unit distance, turning left by 120°, moving
forward a unit distance, turning left by 120°,
and moving forward a unit distance again.

(d) Fig. 2 is an equilateral triangle.

54

d e

6
C2

120°

(e) Fig. 2 is the result of the following construc-
tion:

Given line AB, draw circles C 1 and C2 with
radius AB and centers A and B, respective­
ly.
Intersect circles C 1 and C2. Denote a point
of intersection by X.

Draw lines AX and BX.

Descriptions of type (a) and (b) are widely used
in computer graphics. In case (a) a picture is
thought of as a bitmap, i.e., a set of pixels defined
in a system of coordinates. In case (b) the graphics
primitives are not limited to pixels; they include
lines and, possibly, also other simple figures, such
as circles, ellipses and filled polygons. These primi­
tives are defined with respect to a system of coordi­
nates. A description of type (c), made popular by
LOGO (Abelson and diSessa 1980; Papert 1980)
differs from type (b) in that polar coordinates (rela­
tive to the current position of the turtle) are used
instead of Cartesian coordinates. All three cases,
however, reflect the analytic approach to geometry.
Geometric figures are denied existence independent
of a system of coordinates. They are conceptualized
as plots of analytic relations.
Descriptions (d) and (e) belong to a totally different
family. They describe Fig. 2 directly in geometric
terms. In case (d) the figure is specified using a
set of declarative constraints, or geometric relations

between elements of the picture. These constraints
impose equal length on all sides of the triangle.
In case (e), the figure is described using a sequence
of imperative constraints or Euclidean geometry

constructions (with a straightedge and a compass).
This is the type of object description used in
L.E.G.O. (Throughout this paper, the term "ob­
ject" is used to denote both two-dimensional fig­
ures and three-dimensional objects.)
The idea of applying geometric constructions to
object modeling is a relatively new one in computer
graphics. This is rather surprising, given the funda­
mental role of constructions in Euclidean geome­
try. One system, other than L.E.G.O., which does
use geometric constructions is a two-dimensional
illustrator Gargoyle (Bier and Stone 1986). In con­
trast to L.E.G.O., however, the Gargoyle construc­
tions are forgotten as soon as they are used, rather
than becoming a part of the data structure. Conse­
quently, the behavior of L.E.G.O. and Gargoyle
is essentially different. Recently, a graphics system
closer in spirit to L.E.G.O. has been proposed
(Noma et al. 1988). Other constraint-based systems
reported in the literature use declarative con­
straints.

3 Construction-based modeling
and constraint-based systems

This section places L.E.G.O. in the context of pre­
vious work in the area of constraint-based graphics
systems. Attention is focused on the techniques for
constraint solving and the design of man-machine
graphical interfaces.

3.1 Constraint solving techniques

Constraint-based graphics systems described in the
literature (Borning 1981; Borning and Duis berg
1986; Knuth 1979; Nelsen 1985; Prusinkiewicz and
Streibel 1986; Sutherland 1963; Van Wyk 1982)
accept object definitions expressed in terms of geo­
metric relations between object elements. These
definitions are subsequently transformed into ana­
lytical descriptions of graphical primitives to be
displayed or plotted. Many fundamental relations
lead to nonlinear equations. For example, relations
"lines L 1 and L 2 are congruent" or "lines L 1 and
L 2 are perpendicular to each other" are repre­
sented by quadratic equations.
Various techniques for solving systems of nonlinear
equations have been used to satisfy sets of con­
straints. The most straightforward approach relies
on general-purpose numerical methods. For exam-

ple, Sketchpad (Sutherland 1963) used the relaxa­
tion method, and Juno (Nelsen 1985) used the
Newton-Raphson method. Unfortunately, these
methods are adequate only when applied to rela­
tively small sets of constraints (a few tens of equa­
tions). For larger sets it is difficult to find initial
conditions which let the system of equations con­
verge to the desired solution. In addition, numeri­
cal methods tend to be too slow for interactive
applications.
The difficulties related to the use of general-pur­
pose numerical methods can be overcome using
two approaches. One technique, implemented in
METAFONT (Knuth 1979) and IDEAL (Van
Wyk 1982) restricts admissible constraints to those
which can be expressed by linear equations. For
example, specifying a distance between two arbi­
trary points is not allowed, since it leads to a qua­
dratic equation. On the other hand, a vertical or
horizontal displacement is expressed by a linear
equation and therefore can be specified.
Another technique relies on dividing the set of con­
straints into smaller subsets, which can be solved
in succession. The constraint solver may attempt
to perform this partitioning automatically, using
heuristic algorithms (Borning 1981). This leads to
a purely declarative type of object description,
since the user lists constraints without indicating
how to solve them. Alternatively, the user may be
required to explicitly partition the set of con­
straints, by describing the object as a hierarchy
of components (Nelsen 1985; Prusinkiewicz and
Streibel 1986; Sutherland 1963). By this means, he
indicates the order in which the constraints should
be solved. This introduces an imperative element
to the object definition.
Construction-based object descriptions used in
L.E.G.O. are purely imperative. They specify geo­
metric objects by algorithms expressed in geomet­
ric terms. These algorithms never require solving
more than two quadratic equations simultaneous­
ly. The solutions can always be found analytically
without ever resorting to numerical methods.

3.2 Graphical interfaces

The objects modeled in constraint-based systems
can be described textually, in an appropriate pro­
gramming language (Knuth 1979; Prusinkiewicz
and Streibel 1986; Van Wyk 1982) or visually, us­
ing a graphical interface. In the case of declarative

55

constraints, the interface is straightforward. The
type of constraint is determined by selecting an
icon or menu item, and the arguments are picked
directly on the graphics screen. This type of inter­
face originates from Sketchpad (Sutherland 1963).
Unfortunately, it cannot be easily extended to geo­
metric constructions, for they require a mechanism
for defining complete algorithms. A systematic ap­
proach to designing a graphical interface for this
purpose can be based on the idea of graphical pro­
gramming, i.e., creating programs by manipulating
graphical objects on the screen.
Two approaches to graphical programming can be
distinguished (Glinert and Tanimoto 1984). In the
explicit programming case, the user manipulates
a graphical representation of the program, for ex­
ample, a flowchart or a Nassi-Shneiderman dia­
gram (Pong and Ng 1983). In the case of implicit
programming, images on the screen represent an
example of the solution of the given problem. The
program is created, to some extent, as a "side ef­
fect" of constructing the object on the screen. Im­
plicit graphical programming is the cornerstone of
the graphical interface of L.E.G.O. It was also fun­
damental to the design of the graphical interface
in Juno (Nelsen 1985).

4 The C-LEGO graphics library

This section describes Level 1 of the L.E.G.O.
graphics system. Basic objects of Euclidean geome­
try (points, lines, circles, planes and spheres) are
represented as predefined structures on which geo­
metric operations can be performed. From the
user's perspective, these structures are defined as
follows:

struct primitive {
char kind; /* point, line, etc.*/
union {

56

struct point {
float x;
float y;
float z;

} point;
struct line {

struct point start;
struct point end;

} line;
struct plane {

struct coefficients {

} ;

float a;
float b;
float c;
float d;

} plane;
struct circle {

struct point center;
float radius;
struct plane circleplane;

} circle;
struct sphere {

struct point center;
float radius;

} sphere;
} type;

};
typedef struct primitive POINT;
typedef struct primitive LINE;
typedef struct primitive CIRCLE;
typedef struct primitive PLANE;
typedef struct primitive SPHERE;
typedef struct primitive PRIMITIVE;

The complete definition of the PRIMITIVE struc­
ture also contains information used internally for
intersection calculations, for example, direction
cosines of a line.
The following modeling functions are essential for
developing two-dimensional constructions:

POINT point2 (x, y)
float x, y;

Returns a POINT structure given the coordi­
nates x and y.

LINE line (point 1, point2)
POINT point 1, point2;

Returns a LINE structure given previously de­
fined point 1 and point 2.

CIRCLE circle2 (point, radius)
POINT point;
float radius;

Returns a CIRCLE structure given a previously
defined point and a radius.

PRIMITIVE intersection (primitive 1, primitive 2,
code)

PRIMITIVE primitive 1, primitive2;
int code;

Returns a PRIMITIVE structure for the inter­
section between previously defined primitive 1
and primitive2. The code indicates which point

should be returned in the case where there are
two points of intersection between the primitives.

The C-LEGO library also contains functions re­
turning a numerical value, for example:

float distance (point 1, point 2)
POINT point 1, point2;

. .
Returns the distance between prev10usly defmed
point 1 and point 2.

float length (line)
LINE line;

Returns the length of previously defined line.

The modeling functions do not display the primi­
tives. The following functions can be used to pro­
duce the graphical output:

display (primitive)
PRIMITIVE primitive;

Displays any previously defined primitive.

display_filled (circle)
CIRCLE circle;

Displays a filled circle.

display_label (primitive, string)
PRIMITIVE primitive;
char string [J ;

Displays a string of characters at a place appro­
priate for the defined primitive.

In practice, the C-LEGO functions ar� often int�r­
leaved with direct calls to the underlymg graphics
library (Level O of L.E.G.O.), for example, to
change the current color or line width.
In order to illustrate key features of C-LEGO, let
us consider some simple programs. The first pro­
gram creates line L defined by point� A and B,
and bisects L with a line P perpendicular to L

(Fig. 4).

Program 1.
main ()
{
/* Definition of variables*/
POINT A, B, Xl, X2;
LINE L, P;
CIRCLE Cl, C2;
float r;

/* Modeling of object*/
A=point2 (400.0, 370.0);
B=point2 (600.0, 470.0);
L=line (A, B);

r = length (L);
C 1 = circle2 (A, r);
C2=circle2 (B, r);
Xi =intersection (C 1, C2, FIRST);
X2=intersection (Cl, C2, SECOND);
P=line (Xl, X2);

/* Display of object*/
. .. /* initialize machine's graphics system*/
. . . /* clear background*/
color (BLUE); display_filled (C 1);
display_filled (C2);
color (WHITE); display (C 1); display (C2);
color (RED); display (L);
color (YELLOW); display (P);
color (GREEN); display (A); display (B);
display (X 1); display (X2);

/* Display of labels*/
color (WHITE);
displaylabel (Cl, "Cl"); displaylabel (C2, "C2");
displaylabel (A, "A");
displaylabel (B, "B"); displaylabel (L, "L");
displaylabel (P, "P");
displaylabel (Xl, "Xl"); displaylabel (X2, "X2");

... /* terminate machine's graphics system*/
}

The idea of reducing new problems to the problems
previously solved is essential to the Euclidean ap­
proach to geometry. For example, once the �on­
struction for bisecting a line had been descnbed
in Proposition 10, Book 1 of Euclid's Elements,
(Todhunter 1933), Euclid referred to it in Proposi­
tion 12, Book 1, by a simple statement "bisect FG
at H" without further explanations. In program­
ming languages a similar reduction is made possi­
ble by the mechanism of function definition. For
example, function bisect can be defined as follows:

LINE bisect (A, B)
POINT A, B;
{

}

POINT Xl, X2;
LINE L, P;
CIRCLE C 1, C2;
float r;

. .. j* lines 11 thru 17 from Program 1 * /
return (P);

57

4 6

5 7

This function can then be used, for example, to
construct the circumcircle of a given triangle ABC

(Fig. 5).

Program 2.

main ()

{
... j* definition of variables*/
... /* assign coordinates to A, B, C * /

L 1 = bisect (A, C);
L 2 = bisect (B, C);
X =intersection (L 1, L2, ANY);
D=circle2 (X, distance (X, A));

... /* display the primitives desired*/

}

The mechanism of recursion is also useful while
defining geometric objects. For example, consider
a user-defined function midtriangle (A, B, C, DPtr,
EPtr, FPtr). Given the vertices of a triangle ABC,

midtriangle returns the midpoints of the edges: D,

E, F; and draws the triangle DEF. Using midtrian-

58

Fig. 4. Bisecting a line in
C-LEGO

Fig. 5. Construction of the
circumcircle of a triangle

Fig. 6. The Sierpinski gasket

Fig. 7. Construction of a
regular tetrahedron

gle, the Sierpinski gasket (Mandelbrot 1982)
(Fig. 6) can be defined as follows:

Program 3.

gasket (A, B, C)
POINT A, B, C;

{

}

POINT D, E, F;
midtriangle (A, B, C, &D, &E, &F);
if (distance (A, B) > 40.0) {

}

gasket (A, D, F);
gasket (B, E, D);
gasket (C, F, E);

C-LEGO primitives are all handled internally as
three-dimensional. The functions point2 and cir­
cle 2 are special cases of the three-dimensional point
and circle and create the objects in the z = 0 plane.
The expanded set of C-LEGO functions for three­
dimensional constructions includes:

POINT point (x, y, z)
float x, y, z;

Returns a POINT structure given coordinates
x, y and z.

PLANE plane (point 1, point 2, point3)
POINT point 1, point2, point3;

Returns a PLANE structure given three pre­
viously defined non-collinear points: point 1,
point 2 and point 3.

CIRCLE circle (center, radius, plane)
POINT center;
PLANE plane;
float radius;

Returns a CIRCLE structure given a previously
defined plane, center point and radius.

SPHERE sphere (center, radius)
POINT center;
float radius;

Returns a SPHERE structure given a previously
defined center and radius.

An example of a three-dimensional construction
is given by Program 4. It creates a regular tetrahe­
dron, given an equilateral triangle ABC (Fig. 7).

Program 4.

main ()

{

}

... /* definition of variables*/

... /* assign coordinates to A, B, C * /
r=distance (A, B);
S 1 = sphere (A, r);
S2=sphere (B, r);
S3=sphere (C, r);
C 1 =intersection (S 1, S 2, ANY);
C 2 =intersection (S 2, S 3, ANY);
D=intersection (Cl, C2, FIRST);
Ll =line (D, A);
L2=line (D, B);
L 3 = line (D, C);
... /* display desired primitives*/

5 The LISP-LEGO language

Level 2 of the L.E.G.O. graphics system is a LISP
textual interface to C-LEGO. LISP-LEGO offers
a user the convenience of the interpreted language

Franz LISP (Foderaro 1979; Wilensky 1984). Two
distinctive features of LISP-LEGO are:

Functions can be built interactively and used
in the same session without compiling.
Geometric primitives need not be defined prior
to their use.

The philosophy of LISP-LEGO is to provide the
user with immediate visual feedback. Consequent­
ly, in contrast to C-LEGO, the display of geometric
primitives is incorporated into the modeling func­
tions. LISP-LEGO is an extension to LISP rather
than a library of LISP functions since it maintains
its own symbol table which contains information
about the graphical primitives.
Modeling functions of LISP-LEGO are similar to
those of C-LEGO except that they use the syntax
of LISP, for example:

(point x y [z] new _name)

(line point 1 point2 new_name)

(circle center radius [plane] new_name)

(plane point 1 point 2 point 3 new _name)

(sphere center radius new_name)

(intersection primitive 1 primitive 2 new_name 1
[new_name2])

The radius used to define the circle and sphere
in LISP-LEGO is a LINE structure rather than
a numerical value as in C-LEGO. This is motivated
by the needs of the visual interface in which the
arguments are picked using the mouse (Sect. 6).
As an example of geometric construction specifica­
tion in LISP-LEGO, consider the following pro­
gram:

Program 5.

(color WHITE)
(point 400 370 A)
(point 600 470 B)
(color GREEN)
(line A B L)
(color RED)
(circle A L C 1)
(color YELLOW)
(circle B L C2)
(intersection C 1 C2 X 1 X2)
(color BLUE)
(line X 1 X2 P)

The resulting figure is shown in the "working area"
window in Fig. 8.
Within the LISP-LEGO symbol table, two- and

59

- - ·\ �,, .. , .. 1------------------------- - - - --- - ------­
., ,� , l, ; '- '
• ·•-·1pt·•·,· •. "'-.. ,.-t I.I. , . i.i:..,�.�-

8

9

10

111,_,.,, ..
,._......,.n,
......... ,_.,
, ___ ,

l ... oo,t,Ml-•ll
I �=i.:.�.ill ,JI

��i:.:'�
1• i.• , ,
111-i.-,....,
lCu,tl.•.Zd••I ""''

11,-1- 1•1
ltCo-t•-•-.-4 wll
11.11,_ .. , ,

'-'--•-•1
11 h•I•-"- .. d •11 •·tll

11

12

three-dimensional objects are represented in the
same way. In order to place two-dimensional prim­
itives (specifically, circles and points given by only
two coordinates) in three dimensional space, the
notion of current plane is introduced. By default
it is the z = 0 plane. The current plane can be
changed using the currenLplane function. The ar -
guments to this function are three non-collinear
points, or two parallel or intersecting lines. The
current plane can be also forced to align with any
previously specified plane.

60

Fig. 8. Example of the screen in graphical programming mode

Fig. 9. Menu and icon states while creating a circle

Fig. 10. Examples of icons used in the graphics interface

Fig. 11. Examples of icons used in the graphics interface

Fig. 12. Representation of a plane clipped by a box. The image
belongs to a series of educational slides developed using
L.E.G.O. to illustrate viewing in three dimensions

In total, LISP-LEGO has approximately 100 pre­
defined functions (Fuller 1985), which can be
grouped into nine classes.

1. Object definition functions are used to create
graphics objects: points, lines, circles, planes and
spheres. Functions point, line, sphere, intersec­
tion, etc. belong to this category. The object defi­
nition functions are the fundamental tools for
modeling geometric objects.

2. Query functions provide information about
graphical primitives. Two subclasses can be dis­
tinguished:

Functions which return a numerical value (e.g.
coordinate of a point, distance between
points, length of a line). They are used pri­
marily in conditional statements.
Functions which return a graphic primitive
(e.g. endpoint of a line, center of a sphere,
plane containing a circle). They are useful
when arguments other than points are
passed to functions.

3. Drawing functions are used to display text and
simple figures such as arcs of circles and filled
polygons. These figures are not considered as
primitives and, consequently, cannot be passed
as arguments to the function intersection.

4. Presentation definition functions are used to con­
trol the appearance of graphical objects on the
screen. Examples of controlled features are listed
below:

Visibility of primitives. Auxiliary construc­
tion lines may be removed from the final
picture.
Display of primitive names. In some applica­
tions, such as the presentation of geometric
constructions for educational use, primitives
should be labeled. In other cases, such as
the modeling of realistic scenes, display of
names should be suppressed.
Color, width and style of lines.
Color, size and type of fonts.

5. Function definition functions allow the user to
define a construction as a function with geomet­
ric primitives as input and output.

6. Viewing functions are used to define parameters
of the projection, rotate objects in space, etc.

7. Interaction supporting functions make it possible
to remove or modify previously defined primi­
tives. These functions are particularly useful
when developing constructions interactively,
since each statement entered to the system is
immediately executed and it cannot be subse­
quently altered by editing.

8. System functions are used for file manipulation
(such as function loading), to configure the sys­
tem for a particular type of graphics output de­
vice (such as a plotter), etc.

9. Debugging functions provide information about
primitives stored in the symbol table, actual
viewing parameters, etc.

LISP-LEGO functions in classes 1, 2 and 3 have
corresponding functions in C-LEGO. Most of the
functions in classes 4 and 6 have related functions
in Level 0.

6 Visual programming

6.1 General principles

The visual interface is built on top of the textual
interface. This means that it is used to build a tex­
tual LISP-LEGO program statement by statement.
However, it supersedes typing by more intuitive
operations. This is achieved using several graphics
input techniques. Thus, function names are selected
from a menu. Coordinates are located using the
mouse. Graphical objects (passed as arguments to
functions) are identified by picking using the mouse
rather than by referring to them by name. (Usually
the user need not even know object names.) The
appearance of objects (color, line width, point size)
and the viewing parameters are controlled by man­
ipulating the appropriate icons. In order to make
the visual interface complete (i.e. superseding all

functions of the textural interface) a method for
defining functions and condition statements in the
graphics mode is also available. Using graphical
operations we build a LISP-LEGO statement, then
execute and append it to the program.

6.2 Implementation

The screen is partitioned into windows (Fig. 8). The
actual construction is created in a window called
the working area. The second window displays the
icon associated with the current geometric opera­
tion. The third graphics window contains icons
which change the presentation of objects such as
the color, line width, etc. Three textual windows
contain system and error messages, the textual form
of the LISP-LEGO statement being built and the
listing of the program.
In order to build a LISP-LEGO statement, the user
first selects a function name from a pop-up menu.
The icon associated with this choice will appear
in the operation window and a skeleton of the
statement will appear in the statement window.

61

The fields of the statement are filled by selecting
primitives in the working area, by locating a posi­
tion in the working area, by selecting parts of the
icon in the operation window or by selecting parts
of the icons in the presentation window. The state­
ment window is updated as each field is filled. Once
a complete statement has been built, it can be exe­
cuted by selecting the enter item from the pop-up
menu. If the statement is successfully executed it
is appended to the program built and displayed
in the program window. Some statements are au­
tomatically executed and added to the program
by selecting an item in the presentation window
(e.g. changing the current drawing color). The can­
cel item aborts the definition of the statement.
Let us consider the building of a LISP-LEGO
statement which draws a circle. It is assumed that
the point which will become the center of the circle
and a line equal to its radius are already on the
screen. For this example, let us assume that their
names are A and B respectively. The user starts
the construction by selecting the word circle in a
pop-up menu (Fig. 9a). "(circle nil nil nil nil)" ap­
pears in the statement window. This indicates that
there are four arguments to the circle function. The
circle icon is drawn in the operation window and
its central point changes color from red to yellow
(Fig. 9 b). This informs the user that the system ex­
pects him to pick (by pointing with the cursor)
the point to become the circle center. After this
has been done, " (circle A nil nil nil)" appears in
the statement window and the colors of the icon
change to indicate that a center has now been es­
tablished and that a line defining the circle radius
should be picked next (Fig. 9c). The primitive B
is selected and "(circle AB nil nil)" in the statement
window indicates that the radius will be the length
of line B. At this point the icon no longer prompts
the user for there is now sufficient information in
order to draw a circle.
The third argument to the circle function is the
plane on which it lies. If this is not given, by default
it is the currenLplane. The fourth argument is the
name that will be assigned to the circle. If the user
does not specify the name, it will be automatically
assigned by the system. In order for the user to
enter the name of the plane, he clicks into the
square shown in the icon. The square will change
color to yellow indicating that the plane can now
be selected (Fig. 9d). Similarly the name of the cir­
cle can be entered by selecting the "N" in the circle
icon and typing the name (Fig. 9 e).

62

The use can alter the default sequence of actions
by clicking into an appropriate element of the icon.
For example, by clicking into the line depicting
the circle radius the user brings the icon to the
state shown in Fig. 9c. This allows for defining the
radius before choosing the center of the circle, or
for redefining the radius in the case of a mistake.
In principle, icons represent functions of LISP­
LEGO. However, this is not a one-to-one corre­
spondence and calls to different LISP-LEGO func­
tions may result from manipulating the same icon.
In the terminology of Lodding (1983), most icons
are representational. They depict an instance of the
general class of objects they refer to. Thus, the icon
show in Fig. 10a is used to create a line given its
endpoints, and the icon shown in Fig. 10b is used
to select line width. The representational icons be­
come slightly less intuitive when they refer to large
classes of objects. The icon shown in Fig. 10c pres­
ents the points of intersection between two circles,
but it can also be applied to intersect other primi­
tives, such as a sphere and a plane. The icons used
to specify actions such as moving a point (Fig. 10d)
or removing a primitive (Fig. lOe) are abstract.
Their design emphasizes an action to be performed
rather than a concrete graphical object.
Three of the icons are less intuitive and require
further explanations. The icon shown in Fig. 11 a
is used to define conditional statements. The only
test available in the graphical programming mode
compares the lengths of two lines. The user picks
these lines and specifies, in succession, the alterna­
tive constructions to be performed depending on
the result of the comparison. After the definition
of the conditional statement is completed, the con­
struction displayed on the screen corresponds to
the actual relation between the compared lines.
The above method for defining conditional state­
ments may seem slightly strange. What is the point
of comparing lines which are already on the screen
and the result of the comparison is known in ad­
vance? The answer to this question is that the re­
sult of the comparison may change. Specifically,
this may happen if the starting points of the con­
struction are moved on the screen, or if the condi­
tional statement is defined within a function which
can be called with different arguments.
In order to define functions, a section of the pro­
gram must be selected as a function body. One
way of doing this in the graphical programming
mode is to rerun the program and click into ele­
ments n and u in the function-definition icon

__________________________ liYist1al­
("on1puter

(Fig. 11 b) when the relevant portion of the con­
struction starts and terminates. Items in a pop-up
menu make it possible to step through the program
(forwards and backwards), thus facilitating this
task. Alternatively, the user can enter the numbers
of the first and the last lines of the program section
to become the function body. Referring to the pro­
gram in the textual form, while inconsistent with
the graphical programming approach, is conve­
nient for users familiar with LISP-LEGO. Newly
created functions can be added to the menu of user­
defined functions. They can be used as the prede­
fined functions with the exception that they are
all represented by the same generic icon
(Fig. 11c).
The name of the function being defined is entered
from the keyboard. The list of its input primitives
is specified by selecting the top arrow in the func­
tion-definition icon (Fig. 11 b) and picking the de­
sired primitives in the working area of the screen.
The list of primitives to be returned is formed in
an analogous way, after selecting the bottom arrow
in the icon. The left arrow can be optionally used
to declare numerical parameters.
Two problems that arose in using the graphical
interface to develop three-dimensional construc­
tions were the location of three-dimensional points
and the picking of planes. Firstly, at the present,
three-dimensional points may be specified in two
ways. The coordinates of the point may be typed
by choosing the type option in the menu or the
point may be located on the currenLplane. The
location selected by the cursor defines a line of
points that are projected onto the screen at that
location. The point of intersection between that
line and the currenLplane will be the three-dimen­
sional point. Secondly, some way was needed to
clip planes since if they were represented in their
entirety they would generally cover the entire
working area. They are intersected with the sides
of a box and the resulting lines of intersection can
be picked to select the plane (Fig. 12).
A user may prefer the graphical interface for some
operations, and the textual interface (as described
in Sect. 5) for others. Consequently, while building
a LISP-LEGO program, both interface types can
be used concurrently in a multiple-window envi­
ronment provided by mex (User's Guide for IRIS
1986). Mixing graphical and textual operations
within a single statement is possible.
LISP-LEGO programs can also be considered as
text files and edited outside the L.E.G.O. system.

This mode of operation is particularly useful when
making substantial changes to an existing pro­
gram. For the purpose of file editing, it is conve­
nient to run a text editor concurrently with
L.E.G.O., in a separate window. The modified pro­
gram can be then quickly loaded into the L.E.G.O.
system and rerun.

7 Applications of L.E.G.O.

This section presents selected applications of
L.E.G.O.

7.1 Computer-assisted instruction
of Euclidean geometry

The fundamental concept of L.E.G.O., mimicry of
constructions with straightedge and compass,
makes the system suitable for teaching Euclidean
geometry (Fuller et al. 1985). The educational ap­
plications of L.E.G.O. fall roughly in two categor­
ies: "the computer is a blackboard" and "the com­
puter is a virtual laboratory". In the first case,
L.E.G.O. is used by the instructor to prepare illus­
trations of geometric objects and constructions.
Such illustrations are more precise and visually
more attractive than those drafted on a traditional
blackboard. Pictures created using L.E.G.O. can
be captured using a camera and presented as slides,
distributed to students in the form of plots or
prints, or shown directly on the computer screen.
Stepping through a LISP-LEGO program makes
it possible to present a construction in progress.
For example, Fig. 13 illustrates von Staudt's con­
struction of a regular pentagon (Behnke et al.
1983).
Use of L.E.G.O. as a virtual laboratory assumes
interaction between the system and the students.
Specifically, they can look at the L.E.G.O. objects
from different angles and change data for construc­
tions. Object manipulation reveals the general
properties of the objects and constructions, and
helps formulate them in the form of hypotheses.
For example, moving vertices of a quadrangle
(Fig. 14) brings to the student's attention that the
figure created by connecting the midpoints of the
edges of an arbitrary quadrangle is always a paral-

63

13 15

16
Fig. 13. Von Staudt's construction of a
regular pentagon

Fig. 14. Manipulating an object reveals
its general properties

Fig. 15. An ellipse and a hyperbole
defined as loci

Fig. 16. The Appollonian gasket

Fig. 17. Construction of a dodecahedron

Fig. 18. A sphere inscribed in a
dodecahedron

Fig. 19. A stellated octahedron

Fig. 20. Construction of a shadow 17

lelogram (Varignon's theorem - see Coxeter and
Greitzer 1967).
The notion of a geometric locus is fundamental
in geometry, yet many loci are difficult to visualize
using traditional methods. An approximation of
a locus which is neither a straight line nor a circle
involves a repetitive construction of its subsequent
points which is tedious if a "real" straightedge and
compass are used. On the other hand repetitive
constructions can be easily programmed in
L.E.G.O. Figure 15 shows an ellipse and a hyper­
bole which were constructed using the following
definitions:

64

20

An ellipse is a locus of points A such that the
sum of the distances of A from two fixed points,
called foci, is constant.
An hyperbole is a locus of points A such that
the difference of the distances of A from two
fixed foci is constant.

Another concept involving repetitive constructions
is the recursive definition of geometric objects. A
simple example of a recursive construction in
L.E.G.O. was presented in Fig. 6. Figure 16 shows
a more complex example - the Appollonian gasket
(Mandelbrot 1982). This figure is obtained by re­
cursively constructing the circle tangent to three

-----------------------------------,·:� "l.su�d-_ -
., ,�on1putcr

given circles using the method described by Cox­
eter and Greitzer (1967).
L.E.G.O. is particularly useful when illustrating
three-dimensional objects and constructions. Fig­
ure 17 shows a dodecahedron and illustrates its
construction. (a, b) Let r and R denote an edge
and a diagonal of the regular pentagon ABCDE.

Intersect three spheres with centers at points A,

B, C and radii R, r and R, respectively, and call
the point of intersection F. (c) Given three vertices
A, B, F construct pentagon ABFGH. (d) Continue
constructing pentagons given three vertices until
the entire dodecahedron is formed (e). If the von
Staudt's construction for a pentagon is defined as
a function, pentagon ABCDE in this example can
be constructed using a single function call. Fig­
ure 18 shows a sphere inscribed in a dodecahe­
dron.

Figure 19 shows a mathematical model of a
stellated octahedron. It is constructed by choosing
four vertices of a cube to be the vertices of a regular
tetrahedron. This can be done in two ways and
the resulting two tetrahedra together form the
model.
L.E.G.O. is also a convenient vehicle for illustrating
concepts related to projections. Since the projec­
tion of a point onto a plane is defined by the inter­
section of the projector with the projection plane,
it can be easily constructed in L.E.G.O. Figure 12
illustrates two-point perspective projection (Foley
and Van Dam 1982). Figure 20 applies a similar
approach to construct a shadow.

7.2 Geometric modeling

Repetitive (recursive or iterative) geometric con­
structions can be used to model curved surfaces.
Figure 21 illustrates the L.E.G.O. construction of

ii
a

.
. -. I I

-1 b

.i
.

..

21 22

a polygon mesh of a vase. The vertices of the vase
lie at the intersections of four vertical planes with
a sequence of horizontal circles.

7.3 Modeling of mechanisms
and kinematic analysis

Mechanisms consist of movable elements (links)
connected together in kinematic pairs which put
constraints on the motion of the links. The essential
problem of kinematic analysis is to determine the
relationship between the input and the output mo­
tion of a mechanism. This relationship can be very
complex and difficult to grasp. Consequently,
working models of mechanisms are often necessary
to gain a full understanding of the motion (Hain
1967). Alternatively, mechanisms can be repre­
sented as computer models. The possibility of mo­
deling mechanisms using constraint-based graphics
systems was recognized by Sutherland and de­
scribed as the most interesting application of
Sketchpad (Sutherland 1963). Various types of
mechanisms can also be modeled using L.E.G.O.
They can be interactively manipulated by the user,
or put in motion by a "virtual motor", i.e., a func­
tion which moves the input links without user in­
tervention. As an example of a two-dimensional
mechanism consider James Watt's linkage (Cundy
and Rollet 1961) (Fig. 22a). If it is put in motion
by rotating the left link, the midpoint of the middle
link traces a Bernoulli's lemniscate. A "stroboscop­
ic picture" of the linkage reveals that the velocity
of the midpoint of the middle (red) link varies while
the left (blue) link rotates at a constant speed
(Fig. 23). Another mechanism, called Peaucelier's
linkage, is shown in Figs. 22 b and 24. It is interest­
ing from the historical perspective, as it is the first
exact solution to the straight-line motion problem.
(This problem consists of converting a circular mo-

Fig. 21. Construction of the polygon
mesh of a vase

Fig. 22. Examples of linkages: (a) James
Watt's linkage, (b) Peaucelier's linkage

65

23

24

25

Fig. 23. A stroboscopic view of James Watt's linkage

Fig. 24. A stroboscopic view of Peaucelier's linkage

Fig. 25. A stroboscopic view of two Hooke's joints

tion at the input into a linear motion at the output
of the linkage (Cundy and Rollet 1961).)
As an example of a three-dimensional mechanism
consider Hooke's joint (Cundy and Rollet 1961).
It is used to connect two co-planar, non-parallel
shafts. Each shaft has a semicircular forked end
which is connected by pin-joints to a central cross
member. When two Hooke's joints are connected

66

by means of an intermediate shaft then the driven
shaft can be made to revolve at the same speed
as the driver at all instants provided that the forks
at the ends of the intermediate shaft are co-planar
and the other forks are equally inclined to the inter­
mediate shaft. Figure 25 shows the stoboscopic
view of such a mechanism.

8 Cone I usions

L.E.G.O. is a modeling system based on geometric
constructions. Objects are described in terms of Eu­
clidean geometry. The system has a layered struc­
ture. C-LEGO is convenient to use for an experi­
enced programmer, while the graphical interface
makes the system useful for a novice. The graphical
interface can be used concurrently with the textual
interface (LISP-LEGO), and the user is allowed to
change the type of interface even when specifying
a single statement.
Construction-based modeling is ideally suited for
some applications, such as the teaching of Euclide­
an geometry and the analysis of mechanisms. The
construction-based approach can also be used in
less obvious applications, such as the modeling of
curved surfaces.
Since the beginning of 1985, various versions of
L.E.G.O. have been available to computer graphics
students at the University of Regina. They found
the system very attractive, easy to use, and appli­
cable to many practical problems. Although these
opinions were not formally surveyed, they reinforce
our conclusion that geometric constructions and
implicit graphical programming provide a viable
basis for an interactive computer graphics system.

Acknowledgement. This research was supported in part by grant
No. A0324 and a scholarship from the Natural Sciences and
Engineering Research Council of Canada.

References

Abelson H, diSessa A (1980) Turtle geometry: the computer
as a medium for exploring mathematics. MIT Press, Cam­
bridge

Behnke H, Bachmann F, Fladt K, Kunle H (eds) (1983) Funda­
mentals of Mathematics, vol. 2. Geometry. MIT Press, Cam­
bridge

Bier A, Stone M (1986) Snap-dragging. Comput Graph
20(4):233-240

Borning A (1981) The programming language aspects of Thing­
lab, a constraint-oriented simulation laboratory. ACM
Trans Program Lang Syst 3(4):353-387

---------------'"''"®] ,r'i l"ISUJI ·. --

Borning A, Duisberg R (1986) Constraint-based tools for build­
ing user interfaces. ACM Trans Graph 5(4):345-374

Coxeter HSM, Greitzer SL (1967) Geometry revisited. Random
House, New York

Cundy HM, Rollet AP (1961) Mathematical models. Oxford
Univ Press, London

Foderaro J (1979) The Franz LISP manual. Univ California,
Berkeley

Foley JD, Van Dam A (1982) Fundamentals of interactive com­
puter graphics. Addison-Wesley, Reading

Fuller N (1985) User's Guide to L.E.G.O. - Version 1.0. Tech
Rep CS-85-19, Dep Comput Sci, Univ Regina

Fuller N, Prusinkiewicz P (1986) L.E.G.O. - An interactive
graphics system for teaching geometry and computer graph­
ics. Proc CIPS Edmonton '86, pp 75-84

Fuller N, Prusinkiewicz P (1988) Geometric modeling with Eu­
clidean constructions. In: Magnenat-Thalmann N, Thal­
mann D (eds) New trends in computer graphics. Proc CG
International '88, Springer, Berlin Heidelberg New York,
pp 379-392

Fuller N, Prusinkiewicz P, Rambally G (1985) L.E.G.O. - An
interactive computer graphics system for teaching geometry.
Proc 4th World Conf Comput Educat, pp 359-364

Glinert EP, Tanimoto SL (1984) Pict: An interactive graphical
programming environment. Computer 17(11):7-25

Hain K (1967) Applied kinematics. McGraw-Hill, New York
Knuth DE (1979) TEX and METAFONT. Digital Press and

American Mathematical Society, Bedford
Lodding KN (1983) Iconic interfacing. IEEE Comput Graph

Appl 3(2):11-20
Mandelbrot BB (1982) The fractal geometry of nature. WH

Freeman, San Francisco
Nelsen G (1985) Juno, a constraint-based graphics system. Com­

put Graph 19(33):235-243
Noma T, Kunii TL, Kin N, Enomoto H, Aso E, Yamamoto

T (1988) Drawing input through geometrical constructions:
specification and applications. In: Magnenat-Thalmann N,
Thalmann D (eds) New Trends in Computer Graphics. Proc
CG International '88, Springer, Berlin Heidelberg New
York, pp 403-415

Papert S (1980) Mindstroms: children, computers, and powerful
ideas. Basic Books, New York

Pong MC, Ng N (1983) PIGS - A system for programming
with interactive graphical support. Software Pract Exper
13(9): 847-855

Prusinkiewicz P, Streibel D (1986) Constraint-based modeling
of three-dimensional shapes. Proc Graph Interface '86 -
Vision Interface '86, pp 158-163

,. ,401npute14

Sutherland IE (1963) Sketchpad: a man-machine graphical com­
munication system. In: 1963 Spring Joint Comput Conf.
Reprinted in: Freeman i-I (ed) Interactive Computer Graph­
ics. IEEE Comput Soc 1980, pp 1-19

Todhunter I (ed) (1933) Elements of Euclid. JM Dent & Sons,
London

User's Guide for IRIS Graphics Programming (Version 3.0)
(1986) Silicon Graphics, Mountain View, California

Van Wyk CJ (1982) A high-level language for specifying pic­
tures. ACM Trans Graph 1(2): 163-182

Wilensky R (1984) LISP craft. WW Norton, New York

NORMA FULLER is a Ph.D.
candidate at the University of
Regina. She received her B.
Math from the University of
Waterloo.

PRZEMYSLA W PRUSINKIE­
WICZ is an associate professor
of Computer Science at the
University of Regina, Canada.
His research interests include
computer graphics, interactive
techniques, and computer mus­
ic. Prusinkiewicz received his
MS in 1974 and Ph.D. in 1978,
both in computer science, from
the Technical University of
Warsaw.

67

