
Chapter 8

Fractal properties of plants

What is a fractal? In his 1982 book, Mandelbrot defines it as a set with Fractals vs.
finite curvesHausdorff-Besicovitch dimension DH strictly exceeding the topological

dimension DT [95, page 15]. In this sense, none of the figures presented
in this book are fractals, since they all consist of a finite number of
primitives (lines or polygons), and DH = DT . However, the situation
changes dramatically if the term “fractal” is used in a broader sense [95,
page 39]:

Strictly speaking, the triangle, the Star of David, and the
finite Koch teragons are of dimension 1. However, both
intuitively and from the pragmatic point of view of the sim-
plicity and naturalness of the corrective terms required, it is
reasonable to consider an advanced Koch teragon as being
closer to a curve of dimension log 4/log 3 than to a curve
of dimension 1.

Thus, a finite curve can be considered an approximate rendering
of an infinite fractal as long as the interesting properties of both are
closely related. In the case of plant models, this distinctive feature is
self-similarity.

The use of approximate figures to illustrate abstract concepts has a Fractals vs.
plantslong tradition in geometry. After all, even the primitives of Euclidean

geometry — a point and a line — cannot be drawn exactly. An in-
teresting question, however, concerns the relationship between fractals
and real biological structures. The latter consist of a finite number of
cells, thus are not fractals in the strict sense of the word. To consider
real plants as approximations of “perfect” fractal structures would be
acceptable only if we assumed Plato’s view of the supremacy of ideas
over their mundane realization. A viable approach is the opposite one,
to consider fractals as abstract descriptions of the real structures. At
first sight, this concept may seem strange. What can be gained by Complexity of

fractalsreducing an irregular contour of a compound leaf to an even more ir-
regular fractal? Would it not be simpler to characterize the leaf using
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a smooth curve? The key to the answer lies in the meaning of the term
“simple.” A smooth curve may seem intuitively simpler than a fractal,
but as a matter of fact, the reverse is often true [95, page 41]. Accord-
ing to Kolmogorov [80], the complexity of an object can be measured
by the length of the shortest algorithm that generates it. In this sense,
many fractals are particularly simple objects.

The above discussion of the relationship between fractals and plantsPrevious
viewpoints did not emerge in a vacuum. Mandelbrot [95] gives examples of the re-

cursive branching structures of trees and flowers, analyzes their
Hausdorff-Besicovitch dimension and writes inconclusively “trees may
be called fractals in part.” Smith [136] recognizes similarities between
algorithms yielding Koch curves and branching plant-like structures,
but does not qualify plant models as fractals. These structures are pro-
duced in a finite number of steps and consist of a finite number of line
segments, while the “notion of fractal is defined only in the limit.” Op-
penheimer [105] uses the term “fractal” more freely, exchanging it with
self-similarity, and comments: “The geometric notion of self-similarity
became a paradigm for structure in the natural world. Nowhere is this
principle more evident than in the world of botany.” The approach pre-
sented in this chapter, which considers fractals as simplified abstract
representations of real plant structures, seems to reconcile these previ-
ous opinions.

But why are we concerned with this problem at all? Does the no-Fractals in
botany tion of fractals provide any real assistance in the analysis and modeling

of real botanical structures? On the conceptual level, the distinctive
feature of the fractal approach to plant analysis is the emphasis on
self-similarity. It offers a key to the understanding of complex-looking,
compound structures, and suggests the recursive developmental mech-
anisms through which these structures could have been created. The
reference to similarities in living structures plays a role analogous to the
reference to symmetry in physics, where a strong link between conser-
vation laws and the invariance under various symmetry operations can
be observed. Weyl [159, page 145] advocates the search for symmetry
as a cognitive tool:

Whenever you have to deal with a structure-endowed entity
Σ, try to determine its group of automorphisms, the group
of those element-wise transformations which leave all struc-
tural relations undisturbed. You can expect to gain a deep
insight into the constitution of Σ in this way.

The relationship between symmetry and self-similarity is discussed
in Section 8.1. Technically, the recognition of self-similar features of
plant structures makes it possible to render them using algorithms de-
veloped for fractals as discussed in Section 8.2.
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Figure 8.1: The Sierpiński gasket is closed with respect to transformations
T1, T2 and T3 (a), but it is not closed with respect to the set including the
inverse transformations (b).

8.1 Symmetry and self-similarity

The notion of symmetry is generally defined as the invariance of a con-
figuration of elements under a group of automorphic transformations.
Commonly considered transformations are congruences, which can be
obtained by composing rotations, reflections and translations. Could
we extend this list of transformations to similarities, and consider self-
similarity as a special case of symmetry involving scaling operations?

On the surface, this seems possible. For example, Weyl [159, page 68]
suggests: “In dealing with potentially infinite patterns like band orna-
ments or with infinite groups, the operation under which a pattern is
invariant is not of necessity a congruence but could be a similarity.”
The spiral shapes of the shells Turritella duplicata and Nautilus are
given as examples. However, all similarities involved have the same
fixed point. The situation changes dramatically when similarities with
different fixed points are considered. For example, the Sierpiński gasket
is mapped onto itself by a set of three contractions T1, T2 and T3 (Fig-
ure 8.1a). Each contraction takes the entire figure into one of its three
main components. Thus, if A is an arbitrary point of the gasket, and
T = Ti1Ti2 . . . Tin is an arbitrary composition of transformations T1, T2

and T3, the image T (A) will belong to the set A. On the other hand,
if the inverses of transformations T1, T2 and T3 can also be included
in the composition, one obtains points that do not belong to the set A
nor its infinite extension (Figure 8.1b). This indicates that the set of
transformations that maps A into itself forms a semigroup generated
by T1, T2 and T3, but does not form a group. Thus, self-similarity is a
weaker property than symmetry, yet it still provides a valuable insight
into the relationships between the elements of a structure.
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Figure 8.2: The fern leaf from Barnsley’s model [7]

8.2 Plant models and iterated function sys-

tems

Barnsley [7, pages 101–104] presents a model of a fern leaf (Figure 8.2),
generated using an iterated function system, or IFS. This raises a ques-
tion regarding the relationship between developmental plant models
expressed using L-systems and plant-like structures captured by IFSes.
This section briefly describes IFSes and introduces a method for con-
structing those which approximate structures generated by a certain
type of parametric L-system. The restrictions of this method are ana-
lyzed, shedding light on the role of IFSes in the modeling of biological
structures.

By definition [74], a planar iterated function system is a finite setIFS definition
of contractive affine mappings T = {T1, T2, . . . , Tn} which map the
plane R×R into itself. The set defined by T is the smallest nonempty
set A, closed in the topological sense, such that the image y of any
point x ∈ A under any of the mappings Ti ∈ T also belongs to A.
It can be shown that such a set always exists and is unique [74] (see
also [118] for an elementary presentation of the proof). Thus, starting
from an arbitrary point x ∈ A, one can approximate A as a set of
images of x under compositions of the transformations from T . On
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Figure 8.3: A comparison of three attracting methods for the rendering of
a set defined by an IFS: (a) deterministic method using a balanced tree of
depth n = 9 with the total number of points N1 = 349, 525, (b) deterministic
method using a non-balanced tree with N2 = 198, 541 points, (c) stochastic
method with N3 = N2 points

the other hand, if the starting point x does not belong to A, the con-
secutive images of x gradually approach A, since all mappings Ti are
contractions. For this reason, the set A is called the attractor of the
IFS T . The methods for rendering it are based on finding the images Rendering

methodsTik(Tik−1
(. . . (Ti1(x)) . . .)) = xTi1 . . . Tik−1

Tik , and are termed attracting
methods. According to the deterministic approach [123], a tree of trans-
formations is constructed, with each node representing a point in A.
Various strategies, such as breadth-first or depth-first, can be devised to
traverse this tree and produce different intermediate results [60]. If the
transformations in T do not have the same scaling factors (Lipschitz
constants), the use of a balanced tree yields a non-uniform distribu-
tion of points in A. This effect can be eliminated by constructing a
non-balanced tree, using a proper criterion for stopping the extension
of a branch [60]. An alternative approach for approximating the set A
is termed the chaos game [7] (see also [107, Chapter 5]). In this case,
only one sequence of transformations is constructed, corresponding to
a single path in the potentially infinite tree of transformations. The
transformation applied in each derivation step is selected at random.
In order to achieve a uniform distribution of points in the attractor,
the probability of choosing transformation Ti ∈ T is set according to
its Lipschitz constant. Figure 8.3 illustrates the difference between the
stochastic and deterministic methods of rendering the attractor. The
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underlying IFS consists of four transformations, given below using ho-
mogeneous coordinates [40]:

T1 =


 0.00 0.00 0.00

0.00 0.16 0.00
0.00 0.00 1.00




T2 =


 0.20 0.23 0.00
−0.26 0.22 0.00

0.00 1.60 1.00




T3 =


 −0.15 0.26 0.00

0.28 0.24 0.00
0.00 0.44 1.00




T4 =


 0.85 −0.04 0.00

0.04 0.85 0.00
0.00 1.60 1.00




Other methods for the rendering of the set A, defined by an inter-
ated function system T , include the repelling or escape-time method
and the distance method [60, 118]. Both methods assign values to
points outside of A. The first method determines how fast a point is
repelled from A to infinity by the set of inverse transformations T−1

i ,
where Ti ∈ T . An example of the application of this method, with
escape time values represented as a height field, is shown in Figure 8.4.
The second method computes the Euclidean distance of a point from
the attractor A.

The problem of constructing an IFS that will approximate a branch-IFS
construction ing structure modeled using an L-system can now be considered. This

discussion focuses specifically on structures that develop in a biologi-
cally justifiable way, by subapical branching (Section 3.2). The com-
pound leaf shown in Figure 5.11a on page 129 will be used as a working
example. In this case, the apical delay D is equal to zero, and the
L-system can be represented in the simplified form:

ω : A
p1 : A : ∗ → F (1)[+A][−A]F (1)A
p2 : F (a) : ∗ → F (a ∗ R)

(8.1)

Figure 8.4: Fern dune �
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Figure 8.5: Initial sequences of structures generated by the L-systems spec-
ified in equations (8.1) and (8.2)

This L-system operates by creating segments of constant size, then
increasing their length by constant factor R in each derivation step
(Figure 8.5a). As discussed in Section 1.10.3, a structure with the
same proportions can be obtained by successively appending segments
of decreasing length (Figure 8.5b):

ω : A(1)
p1 : A(s) : ∗ → F (s)[+A(s/R)][−A(s/R)]F (s)A(s/R) (8.2)

Let An(s) denote the structure generated by module A(s) in n ≥ 1
derivation steps. According to production p1, the following equality
holds:

An(s) = F (s)[+An−1(s/R)][−An−1(s/R)]F (s)An−1(s/R) (8.3)
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Figure 8.6: Illustration of equation (8.4), with µ1 = F (1) − (45) and µ2 =
[−(45)F (0.5)]F (0.5)

It is important to clearly distinguish between a parametric word µ (a Properties of
turtle
interpretation

string of modules) and its turtle interpretation J (µ) (a set of points in
the plane). The symbol M(µ) will be used to denote the transformation
induced by µ. This transformation moves the turtle from its initial
position and orientation to those resulting from the interpretation of
word µ. According to the definition of turtle interpretation (Chapter 1),
if a word µ is decomposed into subwords µ1 and µ2 such that µ2 does
not contain unbalanced right brackets, then

J (µ) = J (µ1µ2) = J (µ1) ∪ J (µ2)M(µ1). (8.4)

See Figure 8.6 for an illustration. By applying equation (8.4) to (8.3),
we obtain

J (An(s)) = J (F (s)) ∪
J (An−1(s/R))M(F (s)+) ∪
J (An−1(s/R))M(F (s)−) ∪ (8.5)

J (F (s))M(F (s)) ∪
J (An−1(s/R))M(F (s)F (s)),

which is true for any n ≥ 1. Now let A(s) be the limit of the sequence Passage to
infinityof sets J (An(s)) from equation 8.6,

A(s) = lim
n→∞J (An(s)).

At the limit we obtain:

A(s) = J (F (2s)) ∪ A(s/R)(T ′1 ∪ T ′2 ∪ T ′3), (8.6)
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where T ′1 = T (F (s)+), T ′2 = T (F (s)−), and T ′3 = T (F (2s)). Let
S(s/R) be the operation of scaling by s/R, then

A(s/R) = A(s)S(s/R).

By noting Ti = T ′iS(s/R) for i = 1, 2, 3, equation (8.6) can be trans-
formed to

A(s) = J (F (2s)) ∪ A(s)(T1 ∪ T2 ∪ T3). (8.7)

The solution of this equation with respect to A(s) is

A(s) = J (F (2s))(T1 ∪ T2 ∪ T3)
∗, (8.8)

where (T1 ∪ T2 ∪ T3)
∗ stands for the iteration of the union of transfor-

mations T1, T2 and T3. Equation (8.8) suggests the following method
for constructing the set (A(s)):

• create segment J (F (2s))

• create images of J (F (2s)) using transformations T1, T2, T3 and
their compositions

Equation (8.7) and the method of constructing the set A(s) based
on equation (8.8) are closely related to the definition of iterated function
systems stated at the beginning of this chapter. However, instead of
starting from an arbitrary point x ∈ A(s), the iteration begins with
the set J (F (2s)). Although this is simply a straight line segment, a
question arises as to how its generation can be incorporated into an
IFS. Two approaches can be distinguished.

The first approach is related to the notions of hierarchical iteratedControlled IFS
function systems discussed by Reuter [123] and recurrent IFSes intro-
duced recently by Barnsley [8]. The line segment J (F (2s)) is gener-
ated using an IFS, for example consisting of two scaling transformations
Q1 and Q2 which map it onto its upper and lower half (Figure 8.7a).
Subsequently, transformations T1, T2 and T3 are applied to create other
points of the set A(s). The order of transformation application is im-
portant. Transformations Q1 and Q2 are used solely for the purpose
of initial segment creation. They must not be applied after T1, T2 or
T3, since in this case they would affect the branching structure under
consideration. The admissible sequences of transformations can be de-
fined using a directed control graph (Figure 8.7b), and correspond to
the infinite set of paths starting at node a.1 The term controlled it-
erated function system (CIFS) denotes an IFS with restrictions on the
transformation sequences imposed by a control graph. Thus, noting
the angle increment associated with symbols + and − by δ, the fractal

1Formally, the sequence of admissible transformations is the regular language
accepted by the finite (Rabin-Scott) automaton represented by the graph in Fig-
ure 8.7b.
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Figure 8.7: Construction of the set A(S): (a) definition of an IFS {Q1, Q2}
that generates the initial line segment, (b) the control graph specifying the
admissible sequences of transformation application

approximation of the leaf in Figure 5.11a is given by the CIFS with the Resulting CIFS
control graph in Figure 8.7b and the transformations specified below:

Q1 =


 0.5 0 0

0 0.5 0
0 0 1


 Q2 =


 0.5 0 0

0 0.5 0
0 s 1




T1 =


 1/R cos δ 1/R sin δ 0

−1/R sin δ 1/R cos δ 0
0 s 1




T2 =


 1/R cos δ −1/R sin δ 0

1/R sin δ 1/R cos δ 0
0 s 1




T3 =


 1/R 0 0

0 1/R 0
0 2s 1




The second approach to the generation of the line segment J (F (2s)) Noninvertible
transforma-
tions

is consistent with the method applied by Barnsley to specify the fern
leaf in Figure 8.2. The idea is to map the entire branching structure
A(s) onto the line J (F (2s)). This can be achieved using a noninvertible
transformation Q which collapses all branches into a vertical line. The
scaling factor along the y axis is the ratio of the desired segment length
2s, and the limit height of the entire structure A(s),

h =
2s

1 − 1/R
.
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Figure 8.8: Two renderings of the compound leaf from Figure 5.11a, gener-
ated using iterated function systems

This last value is calculated as the limit of the geometric series with the
first term equal to 2s and the ratio equal to 1/R. Thus, the compound
leaf of Figure 5.11a is defined by an IFS consisting of transformation

Q =


 0 0 0

0 1 − 1/R 0
0 0 1




and transformations T1, T2 and T3 specified as in the case of the con-
trolled IFS.

Two fractal-based renderings of the set A(s) are shown in Fig-Rendering
examples ure 8.8. Figure 8.8a was obtained using the controlled IFS and a deter-

ministic algorithm to traverse the tree of admissible transformations.
Figure 8.8b was obtained using the “ordinary” IFS and the random
selection of transformations. Figure 8.9 shows another fractal-based
rendering of the same structure. The spheres have radii equal to the
distance from the sphere center to the leaf, within a specified ε.

Figure 8.9: Carrot leaf �
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L-system with elongating internodes

‖
L-system transformation

⇓
L-system with decreasing apices

‖
L-system analysis

⇓
Recurrent equation in the domain of strings

‖
Graphical interpretation

⇓
Recurrent equation in the domain of sets

‖
Passage to limit

⇓
An equation expressing the limit set as a union of
the limit object and reduced copies of itself

‖
Equation solution

⇓
An equation expressing the limit object as the im-
age of an initial object under an iteration of a
union of transformations

‖
Elimination of the initial object

⇓
A (controlled) IFS

Figure 8.10: Steps in the construction of an IFS given an L-system capturing
a developmental model
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It is instructive to retrace the logical construction that started with Conclusions
an L-system, and ended with an iterated function system which can
generate fractal approximations of the same object (Figure 8.10). An
analysis of the operations performed in the subsequent steps of this
construction reveals its limitations, and clarifies the relationship be-
tween strictly self-similar structures and real plants. The critical step
is the transformation of the L-system with elongating internodes to the
L-system with decreasing apices. It can be performed as indicated in
the example if the plant maintains constant branching angles as well as
fixed proportions between the mother and daughter segments, indepen-
dent of branch order. This, in turn, can be achieved if all segments in
the modeled plant elongate exponentially over time. These are strong
assumptions, and may be satisfied to different degrees in real plants.
Strict self-similarity is an abstraction that captures the essential prop-
erties of many plant structures and represents a useful point of reference
when describing them in detail.





Epilogue

This quiet place, reminiscient of Claude Monet’s 1899 painting Water-
lilies pool — Harmony in green, does not really exist. The scene was
modeled using L-systems that captured the development of trees and
water plants, and illuminated by simulated sunlight. It is difficult not
to appreciate how far the theory of L-systems and the entire field of
computer graphics have developed since their beginnings in the 1960’s,
making such images possible. Yet the results contained in this book are
not conclusive and constitute only an introduction to the research on
plant modeling for biological and graphics purposes. The algorithmic
beauty of plants is open to further exploration.

� Figure E.1: Water-lilies




