
Chapter 7

Modeling of cellular layers

String L-systems, the first formalism considered in this book, are suit-
able for the modeling of nonbranching filaments such as Anabaena
catenula. The introduction of brackets extends the class of modeled
structures to axial trees. However, many structures found in botany
have a more complex topology, which can only be described by graphs
with cycles. The developmental surface models presented in Section 5.2
make it possible to specify a limited class of these graphs. This chapter
describes a more general approach and applies it to simulate the devel-
opment of single-layered cellular structures such as those found in fern
gametophytes, animal embryos and plant epidermis. All structures con-
sidered are of microscopic dimensions and relatively undifferentiated,
yet the presented methods may bring us closer to the modeling of more
complex patterns, such as the venation of leaves.

The modeling method consists of two stages. First, the topology
of the cell division patterns are expressed using the formalism of map
L-systems, which allows for the formation of cycles in a structure. At
this stage the neighborhood relations between cells are established, but
the cell shapes remain unspecified. Next, cell geometry is modeled
using a dynamic method that takes into account the osmotic pressure
inside the cells and the tension of cell walls. The development can be
animated by considering periods of continuous cell expansion, delimited
by instantaneous cell divisions.

7.1 Map L-systems

From a mathematical perspective, cellular layers can be represented Maps as
models of cell
layers

using a class of planar graphs with cycles, called maps [148]. Nakamura
et al. [102] characterize them as follows:

• A map is a finite set of regions. Each region is surrounded by
a boundary consisting of a finite, circular sequence of edges that
meet at vertices.
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• Each edge has one or two vertices associated with it. The one-
vertex case occurs when an edge forms a loop. The edges cannot
cross without forming a vertex and there are no vertices without
an associated edge.

• Every edge is a part of the boundary of a region.

• The set of edges is connected. Specifically, there are no islands
within regions.

A map corresponds to a microscopic view of a cellular layer. Regions
represent cells, and edges represent cell walls perpendicular to the plane
of view. The internal components of a cell are not considered.

The process of cell division can be described by map rewriting. ThisMap rewriting
notion is an extension of string rewriting as discussed in Section 1.2.
In general, map-rewriting systems are categorized as sequential or par-
allel, and can be region-controlled or edge-controlled [87]. Since several
cells may divide concurrently, a parallel rewriting system is needed.
The second categorization has to do with the form of rewriting rules,
which may express cell subdivisions in terms of region labels or edge
labels. Both approaches are suitable for biological modeling purposes
[22]. This chapter focuses on the edge-controlled formalism of Binary
Propagating Map OL-system with markers, or mBPMOL-systems. ItmBPMOL-

systems was proposed by Nakamura, Lindenmayer and Aizawa [102] as a refine-
ment of the basic concept of map L-systems introduced by Lindenmayer
and Rozenberg [91]. The name is derived as follows. A map OL-system
is a parallel rewriting system that operates on maps and does not al-
low for interaction between regions. In other words, regions are modi-
fied irrespective of what happens to neighboring regions (a context-free
mechanism). The system is binary because a region can split into at
most two daughter regions. It is propagating in the sense that the edges
cannot be erased, thus regions (cells) cannot fuse or die. The markers
specify the positions of inserted edges that split the regions.

The choice of mBPMOL-systems as a modeling tool has two jus-
tifications. First, they are more powerful than other interactionless
map-rewriting systems described in the literature [19, 22, 23]. In addi-
tion, markers have a biological counterpart in preprophase bands of mi-
crotubules, which coincide with the attachment sites for division walls
formed during mitosis [55]. It should be noted, however, that double
wall systems, introduced by J. and H. B. Lück [93], may be relatively
easier to specify [23].

An mBPMOL-system G consists of a finite alphabet of edge labelsDefinition
Σ, a starting map ω with labels from Σ, and a finite set of edge pro-
ductions P . In general, the edges are directed, which is indicated by a
left or right arrow placed above the edge symbol. In some cases, the
edge direction has no effect on the system operation. Such an edge
is called neutral and no arrow is placed above the symbol denoting it.
Each production is of the form A → α, where the directed or neutral
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Figure 7.1: Examples of edge productions

edge A ∈ Σ is called the predecessor, and the string α, composed of
symbols from Σ and special symbols [, ], +, and −, is called the succes-
sor. The symbols outside square brackets specify the edge subdivision
pattern. Arrows can be placed above edge symbols to indicate whether
the successor edges have directions consistent with, or opposite to, the
predecessor edge. Pairs of matching brackets [ and ] delimit markers,
which specify possible attachment sites for region-dividing walls. The
markers are viewed as short branches that can be connected to form a
complete wall. The strings inside brackets consist of two symbols. The
first symbol is either + or −, indicating whether the marker is placed
to the left or to the right of the predecessor edge. The second symbol
is the marker label, with or without an arrow. The left arrow indicates
that the marker is directed towards the predecessor edge, and the right
arrow indicates that the marker is directed away from that edge. If no
arrow is present, the marker is neutral.

For example, in the production
→
A → →

D
←
C [−←E ]

→
BF , the directed prede- Production

syntaxcessor A splits into four edges D, C, B and F , and produces a marker E
(Figure 7.1a). Successor edges D and B have the same direction as A,
edge C has the opposite direction, and F is neutral. Marker E is placed
to the right of A and is directed towards A. Note that this same pro-
duction could be written as

←
A → F

←
B[+

←
E ]
→
C
←
D (Figure 7.1b). As an example

of a production with a neutral predecessor, consider A→→B[−←B]x[+
←
B]
←
B. In

this case the result of production application does not depend on the
assumed direction of the predecessor edge (Figure 7.1c).

A derivation step in an mBPMOL-system consists of two phases. Derivation

• Each edge in the map is replaced by successor edges and markers
using the corresponding edge production in P .

• Each region is scanned for matching markers.
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ω : ABAB
p1 : A → B[-A][+A]B
p2 : B → A

Figure 7.2: Example of a map L-system. In the first step, a distinction
is made between the edge-rewriting phase and the connection of matching
markers.

Two markers are considered matching if:

• they appear in the same region,

• they have the same label, and

• one marker is directed away from its incident edge while the other
is directed towards the edge, or both markers are neutral.

If a match is found, the markers are joined to create a new edge that
will split the region. The search for matching markers ends with the
first match found, even though other markers entering the same region
may also form a match. From the user’s perspective, the system be-
haves nondeterministically since it chooses the pair of markers to be
connected. The unused markers are discarded.

The operation of mBPMOL-systems is illustrated in the followingExamples
examples. The L-system shown in Figure 7.2 has two productions.
Production p1 creates markers responsible for region division, while
production p2 introduces a delay needed to subdivide the regions alter-
nately by horizontal and vertical edges.

The L-system shown in Figure 7.3 is a modified version of the pre-
vious one. The only difference is the addition of an edge x, which
separates the markers in the successor of production p1. This edge
creates a Z-shaped offset between the inserted edges A. Z-offsets and
symmetric S-offsets (Figure 7.4) can be observed in many biological
structures [22, 92].

Figure 7.5 illustrates the operation of an mBPMOL-system with
directed edges. Productions p1 and p3 create markers. Production p4
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ω : ABAB
p1 : A → B[-A]x[+A]B
p2 : B → A

Figure 7.3: Example of a map L-system

Figure 7.4: Offsets between four regions that result from the division of two
regions sharing a common edge: (a) Z-offset, (b) S-offset

ω :
→
A
→
B
→
C
→
D

p1 :
→
A → →

D[-
→
A]
→
B

p2 :
→
B → →

B

p3 :
→
C → →

B[-
←
A]
→
B

p4 :
→
D → →

C

Figure 7.5: Example of a map L-system with directed edges
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transforms edge D into C, so that in each derivation step there is a pair
of edges A and C to which productions p1 and p3 apply. Production p2

indicates that edges B do not undergo further changes.1 The resulting
structure is that of a clockwise spiral.

7.2 Graphical interpretation of maps

Maps are topological objects without inherent geometric properties. In
order to visualize them, some method for assigning geometric interpre-
tation must be applied. In its description, the biologically-motivated
terms cell and wall will be used instead of their mathematical counter-
parts, region and edge.

Siero, Rozenberg and Lindenmayer [131] proposed a method that,Wall
subdivision in the simplest case, is expressed by the following rules:

• walls are represented by straight lines,

• the starting map is represented by a regular polygon, bounded by
the walls specified in the axiom,

• when a production subdivides a wall, all successor walls are of
equal length, and

• the position of a wall resulting from the union of two matching
markers is based on the position of these markers.

This wall subdivision method was used to draw Figures 7.2, 7.3 and
7.5. However, in a biological context it creates cells with shapes that
are seldom observed in nature.

De Does and Lindenmayer [24] proposed a center of gravity methodCenter of
gravity method that produces more realistic shapes. According to this method each

interior vertex of the map is placed at the center of gravity of its neigh-
bors. Such positioning of vertices has a sound biological justification;
it minimizes hypothetical forces acting along cell walls, thus bringing
the entire structure to a state of minimum energy. However, if all ver-
tices were positioned this way, the entire structure would collapse. To
counteract this effect, the vertices on the map perimeter are displaced
outward a fixed distance. Unfortunately, this lacks biological justifi-
cation and introduces sudden shape changes after cell divisions have
occurred, making it unsuitable for animation purposes.

Assuming a dynamic point of view, the shape of cells and thus theDynamic
method shape of the entire organism results from the action of forces. The

unbalanced forces due to cell divisions cause the gradual modification
of cell shapes until an equilibrium is reached. At this point, new cell
divisions occur, and the search for an equilibrium resumes.

1In further L-systems such identity productions are omitted.
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The dynamic method is based on the following assumptions:

• the modeled organism forms a single cell layer,

• the layer is represented as a two-dimensional network of masses
corresponding to cell vertices, connected by springs that corre-
spond to cell walls,

• the springs are always straight and obey Hooke’s law,

• each cell exerts pressure on its bounding walls directly propor-
tional to the wall length and inversely proportional to the cell
area,

• the pressure on a wall is divided evenly between the wall vertices,

• the motion of masses is damped, and

• no other forces (for example, due to friction or gravity) are con-
sidered.

The position of each vertex, and thus the shape of the layer, is com-
puted as follows. As long as an equilibrium is not reached, unbalanced
forces put masses in motion. The total force �F T acting on a vertex X
is given by the formula

�FT =
∑

w∈W

�Fw + �Fd,

where �Fw are forces contributed by the set W of walls w incident to
X, and �Fd = −b�v is a damping force, expressed as the product of a
damping factor b and vertex velocity �v.

A wall w ∈ W contributes three forces acting on X (Figure 7.6).
The tension �Fs acts along the wall, and its magnitude is determined by
Hooke’s law,

�Fs = −k(l − l0),

where k is the spring constant, l is the current spring length, and l0 is
its rest length. The remaining forces, �P L and �P R, are due to the pressure
exerted by the cells on the left and right sides of the wall. Each force
acts in a direction perpendicular to the wall and is distributed equally
between the incident vertices. The magnitude of these forces equals
p · l, where p is the internal cell pressure and l is the wall length.
The pressure is assumed to be inversely proportional to the cell area:
p ∼ A−1. This assumption is derived from the equation describing
osmotic pressure, p = SRT , as a function of the concentration of the
solute S (n moles per volume V ), the ideal gas constant R, and the
absolute temperature T [129]. Assuming that the cell volume V is



152 Chapter 7. Modeling of cellular layers

Figure 7.6: Forces acting on a cell vertex X

proportional to the area A captured by the two-dimensional model
under consideration (V = Ah), pressure can be expressed as

p =
nRT

Ah
.

Thus p ∼ A−1, provided that the term nRT/h is constant. A convenient
formula for calculating the area A is

A = |
M∑
i=1

(xi − xi+1)(yi + yi+1)/2|,

where (xi, yi) are coordinates of the M vertices of the cell, xM+1 = x1,
and yM+1 = y1.

The force �F T acts on a mass placed at a map vertex. Newton’s
second law of motion applies,

m
d2�x

dt2
= �FT ,

where �x is the vertex position. If the entire structure has N vertices, a
system of 2N differential equations is obtained,

mi
d�vi

dt
= �FTi

(�x1, · · · , �xN , �vi)

d�xi

dt
= �vi,

where i = 1, 2, . . . , N . The task is to find the sequence of positions
�x1, . . . , �xN at given time intervals, assuming that the functions �F Ti

and
the initial values of all variables �x 0

1 , . . . , �x 0
N and �v 0

1 , . . . , �v 0
N are known.

These initial values are determined as follows.
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• Coordinates of the vertices of the starting map are included in
the input data for the simulation.

• Positions of existing vertices are preserved through a derivation
step. New vertices partition the divided walls into segments of
equal length. The initial velocities of all vertices are set to zero.

The system of differential equations with the initial values given
above represents an initial value problem. It can be solved numerically
using the forward (explicit) Euler method [41]. To this end, the dif-
ferential equations are rewritten using finite increments ∆�vi, ∆�xi and
∆t,

∆�v k
i =

1

mi

�FTi

(
�x k

1 , · · · , �x k
N , �v k

i

)
∆t

∆�x k
i = �v k

i ∆t,

where the superscripts k = 0, 1, 2, . . . indicate the progress of time,
t = k∆t. The position and velocity of a point i after time increment
∆t are expressed as follows:

�v k+1
i = �v k

i + ∆�v k
i

�x k+1
i = �x k

i + ∆�v k
x

The iterative computation of the velocities �v k
i and positions �x k

i is car-
ried out for consecutive values of index k until all increments ∆�vi and
∆�xi fall below a threshold value. This indicates that the equilibrium
state has been approximated to the desired accuracy. The next deriva-
tion step is then performed. A system of equations corresponding to
the resulting map is created, and the search for an equilibrium state
resumes. In this way, the developmental process is simulated as periods
of continuous cell expansion, delimited by instantaneous cell divisions.
Continuity of cell shapes during divisions is preserved by the rule that
sets the initial positions of vertices.

For example, Figure 7.7 illustrates the expansion of a structure gen-
erated by the L-system specified in Figure 7.3 in a derivation of length
4. Figure 7.7a shows the structure immediately after the insertion of
division walls, Figures 7.7b and c present intermediate wall positions,
and Figure 7.7d describes the final structure at equilibrium.

7.3 Microsorium linguaeforme

In this section, the described simulation method is applied to visualize
the development of the fern gametophyte Microsorium linguaeforme.
The biological data is based on observations conducted by de Boer [22].
Fern gametophytes represent the sexually reproducing life stage of fern
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a b

c d

Figure 7.7: Expansion of a cellular structure: (a) after division, (b) and (c)
intermediate positions, (d) equilibrium

plants. They show no differentiation into stem, leaf and root, forming
a plant body called a thallus. The development of a thallus can be
described conveniently in terms of the activity of the apical cell giving
rise to segments, and the development of these segments. The modeling
process captures repetitive patterns of cell divisions, so that large cel-
lular structures can be described using a small number of productions.

The apical cell is the originator of the gametophyte structure. ItApical activity
divides repetitively, giving rise each time to a new apical cell and a
primary (initial) segment cell. The segment cells subsequently develop
into multicellular segments. The division wall of an apical cell is at-
tached to the thallus border on one side and to a previously created
division wall on the other side. Thus, the division walls are oriented al-
ternately to the left and to the right, yielding two columns of segments
separated by a zig-zag dividing line (Figure 7.8). The recursive nature
of the apical activity can be expressed by the following formula (called
a cell division system [22]):

AL → SL | AR AR → AL | SR

This notation means that the cell on the left side of the arrow produces
two daughter cells separated by a wall.
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Figure 7.8: Apical production of segments. The labels AR and AL denote
apical cells producing right segment SR and left segment SL, respectively.
Dashed lines indicate the newly created division wall. The superscripts rep-
resent segment age. The internal structure of segments is not shown.

Figure 7.9: Developmental sequence of a Microsorium segment

In describing the structure of a segment, we distinguish between pericli- Division
pattern of
segments

nal and anticlinal walls. Intuitively, periclinal walls are approximately
parallel to the apical front of the thallus, and anticlinal walls are per-
pendicular to this front. A more formal definition follows.

• In a primary segment, the apical front wall and one or more walls
opposing it are periclinal walls. The remaining walls are anticlinal
walls.

• A division wall attached to two periclinal walls is an anticlinal
wall, and vice-versa.

In Microsorium, a wall is never attached to a periclinal wall on one
side and an anticlinal wall on the other side, so the above definition
comprises all possible cases.

Microscopic observations of growing Microsorium gametophytes re-
veal that most segments follow the same developmental sequence, shown
diagrammatically in Figure 7.9. The primary segment cell Q1 is first
divided by a periclinal wall into two cells, Q2 and Q3. Subsequently, the



156 Chapter 7. Modeling of cellular layers

C

C

C

C

Figure 7.10: Developmental sequence of a Microsorium gametophyte
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ω :
→
A
←
Dx
→
b

l1 :
→
a → ←

A [+
←
b ]
→
i

l2 :
→
b → →

e [− →
B ] x [+

→
h ]
→
d

l3 :
→
d → →

f

l4 :
→
f →

→
g [− ←

h ] x [+
→
h ]
→
d

l5 :
→
h → x [− →

f ] x

l6 :
→
i → →

c

l7 :
→
c → →

i [+
←
f ]
→
i

l8 :
→
e → x [+ x] x

l9 :
→
g → x [− x] x [+ x] x

r1 :
→
A → ←

a [− ←
B ]
→
I

r2 :
→
B → →

E [+
→
b ] x [− →

H ]
→
D

r3 :
→
D → →

F

r4 :
→
F → →

G [+
←
H ] x [− →

H ]
→
D

r5 :
→
H → x [+

→
F ] x

r6 :
→
I → →

C

r7 :
→
C → →

I [− ←
F ]
→
I

r8 :
→
E → x [− x] x

r9 :
→
G → x [+ x] x [− x] x

Figure 7.10 (continued): Developmental sequence of Microsorium
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basal cell Q3 is divided by another periclinal wall into two “terminal”
cells T that do not undergo further divisions. At the same time, the cell
Q2 lying on the thallus border is divided by an anticlinal wall into two
cells of type Q1. Each of these cells divides in the same way as the pri-
mary cell. Consequently, the recursive nature of segment development
can be captured by the following cell division system:

Q1 →
Q2

Q3

Q2 → Q1 | Q1 Q3 →
T

T

In the above rules, a horizontal bar denotes a periclinal wall between
cells, and a vertical bar denotes an anticlinal wall.

The development of the Microsorium thallus is a result of concur-Development of
the thallus rent divisions of the apical and segment cells. A single division of the

apical cell corresponds to a single step in segment development. A de-
velopmental sequence that combines the activity of the apex and the
segments is shown in Figure 7.10. This figure also reveals offsets be-
tween neighboring walls. It can be assumed that periclinal division
walls form S-offsets in the segments on the right side of the apex and
Z-offsets in the segments on the left side.

In order to capture the development of Microsorium using the for-Map L-system
malism of map L-systems, it is necessary to identify all combinations
of cells that may lie on both sides of a wall. Careful examination
of these combinations yields the wall labeling scheme shown in Fig-
ure 7.10. Two walls have the same label if and only if they divide in
the same way.2 The uppercase letters apply to right segment walls, and
the corresponding lowercase letters denote symmetric walls in the left
segments. A comparison of pairs of subsequent structures yields the
L-system in the figure.

Apical cell division results from the application of productions r1

and l2 (creation of a right segment) or l1 and r2 (creation of a left
segment). Subsequent cell divisions in right and left segments proceed
symmetrically. The development of a right segment is examined in
detail.

The insertion of wall segment B creates the first cell Q1 of segment
SR

(1) (cf. Figure 7.8). Concurrently, wall D on the opposite side of the
segment is transformed into F (step 1). This transformation introduces
a one-step delay before the application of production r4 which, together
with r2, splits cell Q1 into Q2 and Q3 by the first periclinal wall H (step
2). As the derivation progresses, production r4 inserts subsequent per-
iclinal walls H between pairs of anticlinal walls F (step 4). Production

2It is conceivable to formulate an algorithm that would assign labels consistent
with the above rule automatically. However, the labeling scheme given in Figure 7.10
was obtained “by hand.”
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Figure 7.11: Developmental sequence of a basal Microsorium segment

r3 introduces a delay needed to create walls F , which are inserted be-
tween periclinal walls H and apical walls I using productions r5 and r7.
Production r6 plays a role analogous to r3 — it introduces a one-step
delay into the cycle which creates markers F at the apical front of the
segment. Thus, periclinal walls H and anticlinal walls F are produced
alternately, in subsequent derivation steps. The last two productions,
r8 and r9, create terminal walls x that do not undergo further changes.
The first such wall is inserted between walls labeled G and E during
derivation step 3. The subsequent walls x are inserted every second
step between pairs of walls G; only production r9 is applied in these
cases.

The L-system in Figure 7.10 was formulated under the assumption Basal segments
that all segments develop in the same way. However, in a real organism
the two oldest segments, situated at the thallus base, form a modified
pattern with less extensive cell divisions. The developmental sequence
of a right basal segment is shown in Figure 7.11. The corresponding
cell division system is given below.

Q1 →
Q2

Q3

Q2 → Q1 | T Q3 →
T

T

The development of a Microsorium gametophyte including basal
segments is captured by Figure 7.12. Only productions describing the
development of the right side of the thallus are given. Their prede-
cessors are denoted by uppercase letters. The corresponding lowercase
productions, which complete the L-system definition, can be obtained
by switching the “case” of letters and the orientation of markers. Wall
directions remain unchanged. For example, the right-side production

rx :
→
P →

←
A[−

→
b ]C
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r1 :
→
A → ←

a [− ←
B ]
→
I

r2 :
→
B → →

E [+
→
b ] x [− →

H ]
→
D

r3 :
→
D → [− →

M ]
→
F

r4 :
→
F → →

G [+
←
H ] x [− →

H ]
→
D

r5 :
→
H → x [+

→
F ] x

r6 :
→
I → →

C

r7 :
→
C → →

I [− ←
F ]
→
I

r8 :
→
E → x [− x] x

r9 :
→
G → x [+ x] x [− x] x

r10 :
→
J → →

L

r11 :
→
K → →

N

r12 :
→
L → x [+

←
M ] x

r13 :
→
M → x [+

→
L ] x

r14 :
→
N → →

O

r15 :
→
O → x [+

←
L ]
→
N

Figure 7.12: The initial map and productions for the right side of a Microso-
rium linguaeforme with basal segments

corresponds to the left-side production

lx :
→
p → ←

a [+
→
B]c.

Additional examples can be found by comparing the left and right
columns of the L-system in Figure 7.10.

Assuming the starting map specified by Figure 7.12, a simulated
developmental sequence interpreted using the dynamic method to de-
termine cell shape is given in Figure 7.13. Different colors are used
to indicate the apical cell, the alternating “regular” segments, and the
basal segments. A comparison of the last developmental stage with aModel

validation photograph of a real gametophyte (Figure 7.14) shows good correspon-
dence between the model and reality with respect to structure topology,
the relative sizes and shapes of cells, and the overall shape of the thal-
lus. This result is particularly interesting from a biological perspective,
since it indicates that genetically controlled cell division patterns play
an important role in determining the shape of a structure.
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Figure 7.13: Simulated development of Microsorium linguaeforme

Figure 7.14: Microphotograph of Microsorium linguaeforme at magnification
70x
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Figure 7.15: Developmental sequence of a Dryopteris segment

7.4 Dryopteris thelypteris

Gametophytes of other fern species follow a similar developmental pat-
tern, with the apex producing segments alternately to the left and
right. However, the cell division patterns within segments vary between
species yielding different thalli shapes. For example, Figure 7.15 shows
segment development in Dryopteris thelypteris. The corresponding cell
division system is given below.

Q1 →
Q2

Q3

Q2 →
Q4

Q3

Q3 →
T

T
Q4 → Q1 | Q1

A developmental cycle of length 3, starting at cell Q1, produces
two new cells Q1 separated by an anticlinal wall and a sequence of
four terminal cells T separated by periclinal walls. A developmental
sequence that combines the activity of the apex and the segments is
shown in Figure 7.17. As in the case of the map L-system in Figure 7.12,
only productions for the right side of the thallus are shown.

Apical cell division results from the application of productions r1Map L-system
and l2 (creation of a right segment) or l1 and r2 (creation of a left
segment). The subsequent cell divisions proceed in a symmetric way
in right and left segments. The development of a right segment is
described below.

The insertion of wall segment B creates the first cell Q1 of segment
SR

(1) (cf. Figure 7.8). Concurrently, wall D on the opposite side of
the segment is transformed by production r6 into FG (step 1). This
transformation introduces a one-step delay before the application of
production r7 which, together with r2, splits cell Q1 into Q2 and Q3 by
the first periclinal wall x (step 2). Meanwhile, production r3 replaces
wall C by wall J (step 1), after which r4 replaces J by E (step 2). This
introduces a two-step delay before cell Q3 is subdivided periclinally into
two cells T by production r5 (step 3). In the same step, productions r6

and r9 subdivide cell Q2 into cells Q3 and Q4, separated by periclinal
wall H. Wall O from step 1 is transformed into wall R by productions
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Figure 7.16: Simulated development of Dryopteris thelypteris

r15 (step 2) and r16 (step 3). Walls R and H are replaced by r17 and
r14, resulting in the first anticlinal division of cell Q4 into two cells Q1

by wall I (step 4). At the same time, productions r5 and r6 split cell
Q3 periclinally into two cells T . In the following derivation steps, each
of the newly created cells Q1 undergoes a sequence of changes similar
to that described above. Production r8 introduces a one-step delay
before Q1 is subdivided into Q2 and Q3 using r9 and r10 (analogous
to r2 and r7). Productions r11 and r12 play a role similar to r5 and
r6, while production r13 introduces a delay. Walls labeled x do not
undergo further changes and cells T do not subdivide. A simulated
developmental sequence generated by the L-system in Figure 7.17 using
the dynamic method to determine cell shape is given in Figure 7.16.

A comparison of Microsorium and Dryopteris gametophytes (either Microsorium
vs. Dryopterisreal or modeled) indicates that different division patterns of segment

cells have a large impact on the overall thalli shapes. In Microsorium,
the number of marginal cells, situated at the apical front of a segment, is
doubled every second derivation step. The segments are approximately
triangular, with a wide apical front, which results in the circular thallus
shape. The apical front of Dryopteris segments is comparatively less
developed. The number of marginal cells is doubled only every third
step, and the segments grow faster in length. The resulting thallus
shape is concave.
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Figure 7.17: Developmental sequence of a Dryopteris gametophyte
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ω :
→
A
←
D
←
C
→
b

r1 :
→
A → ←

a [− ←
B ]
→
O

r2 :
→
B → →

E [+
→
b ]
→
C [− x]

→
D

r3 :
→
C → ←

J

r4 :
→
J → →

E

r5 :
→
E → x [− x] x

r6 :
→
D → →

F [− →
H ]
→
G

r7 :
→
F → x [+ x] x [− x]

←
J

r8 :
→
G → →

K

r9 :
→
K → →

E [+
←
H ]
→
C [− x]

→
D

r10 :
→
I → →

L [+ x] x [− x]
→
M

r11 :
→
L → x [+ x] x [− x] x

r12 :
→
M → →

L [+
←
H ] x [− →

H ]
→
N

r13 :
→
N → →

I

r14 :
→
H → x [+

→
I ] x

r15 :
→
O → →

P

r16 :
→
P →

→
Q

r17 :
→
Q → →

O [− ←
I ]
→
O

Figure 7.17 (continued): Developmental sequence of Dryopteris
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In order to quantify the relationship between segment cell division
pattern and thallus shape, de Boer [22] proposed an empirical measure
called periclinal ratio. It is based on the following considerations:

• anticlinal growth takes place mainly along the margin and is ex-
ponential since all marginal cells divide; and

• periclinal growth of a segment is linear, as cells displaced away
from the margin eventually stop dividing.

Since the division pattern is recursive, the average ratio of the numbers
of marginal cells in neighboring segments converges to a constant A.
Similarly, the difference between the numbers of cells along the pericli-
nal boundary of two neighboring segments converges to a constant P .
By computer simulation [22], it was found that if the periclinal ratio
P/A is smaller than 1.25, the apical front is convex as in the case of
Microsorium linguaeforme. In contrast, if P/A is larger than 2.0, the
simulated structure develops a concave apical front, corresponding to a
heart-shaped thallus as in Dryopteris thelypteris. These results relate
local growth to global shape. Periclinal ratios from 1.25 to 2.0 were not
studied in detail.

7.5 Modeling spherical cell layers

Although the scope of this book is limited to plants, it is interesting
to note that the formalism of L-systems can be applied also to simu-
late some developmental processes in animals. For example, during the
cleavage stage of development, an animal embryo consists of a singleAnimal

embryos layer of cells that covers the surface of a spherical cavity. This structure
is known as the blastula [6]. The cells divide synchronously in a regular
pattern up to and including the 64-cell stage (6th cleavage). This devel-
opment can be captured using an mBPMOL-system operating on the
surface of a sphere rather than on a plane. To this end, cell walls are
represented as great circle arcs connecting vertices that are constrained
to the sphere surface.

The extension of the dynamic interpretation method from the plane
to the surface of a sphere requires few changes. Osmotic pressure and
wall tension are calculated as before. Since the resulting force may
displace a vertex away from the surface of the sphere, the actual vertex
position is found by projecting the displaced point back to the sphere.
During the cleavage stage, cells of embryos do not expand, thus the
overall size of the sphere is constant.

For example, deBoer [22] proposed the map L-system in Figure 7.18Patella vulgata
to model the development of a snail embryo, Patella vulgata, according
to data presented by Biggelaar [150]. The starting map and develop-
mental sequence are shown in Figure 7.18, while Figure 7.19 presents
an alternative rendering. Each cell is approximated by a sphere cen-
tered at the point obtained by raising the center of gravity of the cell
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p1 : A → b[−a]x[+a]b
p2 : a → B[+A]x[−A]B
p3 : B → a
p4 : b → A

p5 :
→
C → →

D [+a]
→
E

p6 :
→
D → →

C [−A]x

p7 :
→
E → →

C

p8 : F → ←
E [−a]G[+a]

→
E

p9 : G → J
p10 : H → I
p11 : I → B[−A]x[+A]B
p12 : J → b[+a]x[−a]b

p13 : Z → →
C [−F]H[+F]

←
C

Figure 7.18: Developmental sequence of Patella vulgata (equatorial view)
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vertices to the surface of the underlying spherical cavity. The radius is
the maximum distance from the center of gravity to the cell vertices.
A comparison of the Patella model at the 16-cell stage (bottom left
of Figure 7.19) with an electron microscope image (Figure 7.20) shows
good correspondence between the model and reality.

7.6 Modeling 3D cellular structures

The previous sections presented a method for modeling cellular lay-Cellworks
ers extending in a plane or on the surface of a sphere. However, real
cellular structures are three-dimensional objects. In order to capture
the three-dimensional aspect of cellular layers and model more complex
structures, Lindenmayer [85] proposed an extension of map L-systems
called cellwork L-systems. The notion of a cellwork is characterized as
follows.

• A cellwork is a finite set of cells. Each cell is surrounded by one
or more walls (faces).

• Each wall is surrounded by a boundary consisting of a finite,
circular sequence of edges that meet at vertices.

• Walls cannot intersect without forming an edge, although there
can be walls without edges (in the case of cells shaped as spheres
or tori).

• Every wall is part of the boundary of a cell, and the set of walls
is connected.

• Each edge has one or two vertices associated with it. The edges
cannot cross without forming a vertex, and there are no vertices
without an associated edge.

• Every edge is a part of the boundary of a wall, and the set of
edges is connected.

Note that the terms cell and wall have different meanings in the context
of cellworks than in the context of maps.

The development of three-dimensional structures is captured usingmBPCOL-
system an extension of mBPMOL-systems called marker Binary Propagating

Cellwork OL-systems [42]. An mBPCOL-system G is defined by a finite
alphabet of edge labels Σ, a finite alphabet of wall labels Γ, a starting
cellwork ω, and a finite set of edge productions P . The initial cellwork ω
is specified by a list of walls and their bounding edges. As in the case of
mBPMOL-systems, edges may be directed or neutral. Each production
is of the form A : β → α, where the edge A ∈ Σ is the predecessor, the
string β ∈ {Γ+, ∗} is a list of applicable walls (* denotes all walls), and
the string α is the successor, which is composed of edge labels from Σ,



7.6. Modeling 3D cellular structures 169

Figure 7.19: Simulated development of Patella vulgata

Figure 7.20: An electron microscope image of Patella vulgata
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Figure 7.21: The phases of a derivation step

wall labels from Γ and the symbols [ and ]. The symbols outside square
brackets describe the subdivision pattern for the predecessor. Pairs of
matching brackets [ and ] delimit markers that specify possible attach-
ment sites for new edges and walls. As in the two-dimensional case,
arrows indicate the relative directions of successor edges and markers
with respect to the predecessor edge. The list β contains all walls into
which a marker should be inserted. In addition to the labels for edges
and markers, a production successor specifies the labels of walls that
may be created as a result of a derivation step.

The syntax of a production is best explained using an example. TheProduction
syntax production

→
A : 14 →

→
D
←
C2[

→
E5]

→
B3F

applies to an edge A if it belongs to one or more walls labeled 1 or
4 (Figure 7.21a). The predecessor edge is subdivided into four edges
D, C, B and F . During a derivation step, marker E is introduced
into all walls of type 1 or 4 that share edge A (Figure 7.21b), and
can be connected with a matching marker inserted into the same wall
by another production. As a result, the wall will split into two. The
daughter wall having C as one of its edges will be labeled 2, and the
wall having B as an edge will be labeled 3 (Figure 7.21c). Markers E
can be connected only if both productions assign labels to the daughter
walls in a consistent way. Otherwise, the markers are considered non-
matching and are discarded. If several walls bounding a cell split in
such a way that the sequence of new edges forms a closed contour, a
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Figure 7.22: Example of consistent edge productions

new wall bound by these edges may be created. In order for this to
occur, all markers involved must specify the same label for the new
wall, 5 in this example (Figure 7.21d).

The limitation of the scope of a production to specific walls may
create a consistency problem while rewriting edges. For instance, as-
sume that walls 1 and 2 share edge A and the following productions
are in P :

p1 :
→
A : 1 →

→
C
←
E

p2 :
→
A : 2 → A

→
B

Productions p1 and p2 are inconsistent since they specify two different
partitions of the same edge. It is assumed that the mBPCOL-systems
under consideration are free of such inconsistencies. This does not
preclude the possibility of applying several productions simultaneously
to the same edge. For example, a production pair,

p1 :
→
A : 1 →

→
C2[

→
F 3]

←
E4

p2 :
→
A : 2 →

→
C5[

←
D6]

←
E7,

consistently divides edge A into segments C and E, although the mark-
ers inserted into walls 1 and 2 are different (Figure 7.22).

According to the above discussion, a derivation step in an mBPCOL- Derivation
system consists of three phases.

• Each edge in the cellwork is replaced by successor edges and mark-
ers using one or more productions in P .

• Each wall is scanned for matching markers. If a match inducing
a consistent labeling of daughter cells is found, the wall is subdi-
vided. The selection of matching markers is done by the system.
Unused markers are discarded.

• Each cell is scanned for a circular sequence of new division edges.
If a cycle assigning the same label to the division wall is found, it is
used to bound the wall that will divide the cell into two daughter
cells. If different possibilities exist, the edges are selected by the
system.
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p1 : A : 1 → B1[A2]B1
p2 : A : 2 → B2[C2]B2
p3 : B : * → A

Figure 7.23: Example of a cellwork L-system

A wall may be subdivided more than once as long as new division edges
do not intersect and a consistent labeling of daughter walls is possible.
In contrast, a cell may be divided only once in any derivation step.

For example, Figure 7.23 presents a three-dimensional extension ofExample
the map L-system from Figure 7.2. In the first derivation step, produc-
tion p1 divides walls labeled 1, and production p2 divides walls labeled
2. The inserted edges form a cycle that divides the cell with a new wall
labeled 2. In the subsequent steps this process is repeated, generating
a pattern of alternating division walls. Production p3 introduces the
necessary delay.

The dynamic method for interpreting map L-systems is extended toDynamic
interpretation cellwork L-systems using the following assumptions:

• the structure is represented as a three-dimensional network of
masses corresponding to cell vertices, connected by springs which
correspond to cell edges,

• the springs are always straight and obey Hooke’s law,

• for the purpose of force calculations, walls can be approximated
by flat polygons,

• the cells exert pressure on their bounding walls; the pressure on
a wall is directly proportional to the wall area and inversely pro-
portional to the cell volume,
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• the pressure on a wall is divided evenly between the wall vertices,

• the motion of masses is damped, and

• other forces are not considered.

The total force �F T acting on a vertex X is given by the formula

�FT =
∑
e∈E

�Fe +
∑

w∈W

�Fw + �Fd,

where �Fe are forces contributed by the set of edges E incident to X,
�Fw are forces contributed by the set of walls W incident to X, and
�Fd = −b�v is a damping force. The forces �Fe act along the cell edges and
represent wall tension. The forces �Fw are due to the pressure exerted
by the cells on their bounding walls. The total force of pressure �P
exerted by a cell on a wall w has direction normal to w and is equal
to p · A, where p is the internal cell pressure and A is the wall area.
Calculation of the polygon area proceeds as in the two-dimensional
case. The pressure p is assumed to be inversely proportional to the
cell volume, p ∼ V −1, which corresponds to the equation describing
osmotic pressure (Section 7.2). The volume V of a cell is calculated by
tesselating the cell into tetrahedra. The resulting differential equations
are formed and solved as in the two-dimensional case.

A division pattern that frequently occurs in epidermal cell structures Epidermal cells
is described by the L-system in Figure 7.24, based on a cyclic cellwork
L-system (a slightly different formalism) proposed by Lindenmayer [85].
Productions p1, p2, p6 and p7 are responsible for cell divisions, while the
remaining productions introduce delays such that the division pattern
is staggered.

On the surface, the cellular structures analyzed in this chapter may
appear quite unrelated to the models discussed previously. However,
a closer inspection reveals many analogies. For example, consecutively
created segments of a fern gametophyte exhibit a phase effect corre-
sponding to that observed in inflorescences. Furthermore, parts of an
older gametophyte situated near the apex have the same topology as
the entire thallus at an earlier developmental stage, which associates
the recursive structures generated by map or cellwork L-systems with
self-similar patterns created using string L-systems. As observed by
Oppenheimer [105], self-similarity appears to be one of the general prin-
ciples organizing the world of botany. The next chapter discusses this
topic in more detail.
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p1 : A : 123 → C3[E1]B2[D1]C3
p2 : A : 4 → CB4[F1]C4
p3 : B : ∗ → A
p4 : C : ∗ → B
p5 : E : ∗ → D
p6 : F : 123 → HGH
p7 : F : 4 → H4[F1]G4[F1]H4
p8 : G : ∗ → F
p9 : H : ∗ → G

Figure 7.24: Developmental sequence of epidermal cells: (a) The starting
cellwork; (b), (d) and (f) cellworks immediately after cell divisions; (c), (e)
and (g) the corresponding cellworks at equilibrium


