
Chapter 6

Animation of plant
development

The sequences of images used in Chapters 3 and 5 to illustrate the de- Motivation
velopment of inflorescences and compound leaves suggest the possibil-
ity of using computer animation to visualize plant development. From
a practical perspective, computer animation offers several advantages
over traditional time-lapse photography.

• Photography is sensitive to imperfections in the underlying ex-
periment. A disease or even a temporary wilting of a plant may
spoil months of filming.

• In nature, developmental processes are often masked by other
phenomena. For example, the growth of leaves can be difficult
to capture because of large changes in leaf positions during the
day. Similarly, positions of tree branches may be affected by
wind. Computer animation makes it possible to abstract from
these distracting effects.

• Animation can be used when time-lapse photography is imprac-
tical because of the long development time of plants (e.g. years
in the case of trees).

• In time-lapse photography, the initial position of the camera and
the light conditions must be established a priori, without know-
ing the final shape of the plant. In computer animation all de-
velopmental stages of the modeled plant are known in advance,
allowing for optimal selection of the model view.

• Animation can be applied to visualize developmental mechanisms
that cannot be observed directly in real plants, such as the prop-
agation of hormones and nutrients.
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• Animation offers an unprecedented means for visualizing the de-
velopment of extinct plants on the basis of paleobotanical data.

The original formalism of L-systems provides a model of develop-Discrete
character of
L-systems

ment that is discrete both in time and space. Discretization in time
implies that the model states are known only at specific time inter-
vals. Discretization in space means that the range of model states is
limited to a finite number. Parametric L-systems remove the latter ef-
fect by assigning continuous attributes to model components. However,
the model states are still known only in discrete time intervals. This
presents a problem in animation, where a smooth progression of the
developing forms is desirable.

This last statement requires further clarification. The very nature
of animation is to produce the impression of continuous motion by dis-
playing a sequence of still frames, captured at fixed time intervals. Why
is a continuous model of plant development needed if it will be used to
generate a fixed sequence of images in the final account? Wouldn’t it
be enough to retain the standard definition of L-systems and assume
time slices fine enough to produce the desired progression of forms?
This approach, while feasible and useful, has three major drawbacks.

• A model can be constructed assuming longer or shorter time in-
tervals, but once the choice has been made, the time step is a part
of the model and cannot be changed easily. From the viewpoint
of computer animation it is preferable to control the time step by
a single parameter, decoupled from the underlying L-system.

• The continuity criteria responsible for the smooth progression of
shapes during animation can be specified more easily in the con-
tinuous time domain.

• It would be conceptually elegant to separate model development,
defined in continuous time, from model observation, taking place
in discrete intervals.

A developmental process is viewed as consisting of periods of contin-
uous module expansion delimited by instantaneous module divisions.
Special conditions are imposed to preserve the shape and growth rates
of the organism during these qualitative changes. An analogy can be
drawn to the theory of morphogenesis advanced by Thom [142], who
viewed shape formation as a piecewise continuous process with singu-
larities called catastrophes.

Formally, development taking place in continuous time is captured
using the formalism of timed DOL-systems. The key difference between
these L-systems and the types of L-systems considered so far lies in
the definition of the derivation function. In “ordinary” L-systems, the
derivation length is expressed as the number of derivation steps. In
timed DOL-systems, the derivation length is associated with the total
elapsed time since the beginning of the observation.
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6.1 Timed DOL-systems

Let V be an alphabet and R the set of positive real numbers (including
0). The pair (a, τ) ∈ V × R is referred to as the timed letter a, and
the number τ is called the age of a. A sequence of timed letters, x =
(a1, τ1) . . . (an, τn) ∈ (V × R)∗, is called a timed word over alphabet V .

A timed DOL-system (tDOL-system) is a triplet G = 〈V, ω, P 〉, Definition
where

• V is the alphabet of the L-system,

• ω ∈ (V ×R)+ is a nonempty timed word over V , called the initial
word, and

• P ⊂ (V × R) × (V × R)∗ is a finite set of productions.

Instead of writing ((a, β), (b1, α1) . . . (bn, αn)) ∈ P , the notation
(a, β) → (b1, α1) . . . (bn, αn) is used. The parameter β is referred to
as the terminal age of the letter a, and each parameter αi is the initial
age assigned to the letter bi by production P . The following assump-
tions are made:

C1. For each letter a ∈ V there exists exactly one value β ∈ R such
that (a, β) is the predecessor of a production in P .

C2. If (a, β) is a production predecessor and (a, α) is a timed let-
ter that occurs in the successor of some production in P , then
β > α.

According to these conditions, each letter has a uniquely defined
terminal age. Furthermore, an initial age assigned to a letter by a
production must be smaller than its terminal age, i.e., its lifetime (β −
α) must be positive.

Let (a, β) → (b1, α1) . . . (bn, αn) be a production in P . A function Derivation
D : ((V ×R)+ ×R) → (V ×R)∗ is called a derivation function if it has
the following properties:

A1. D(((a1, τ1) . . . (an, τn)), t) = D((a1, τ1), t) . . .D((an, τn), t)

A2. D((a, τ), t) = (a, τ + t), if τ + t ≤ β

A3. D((a, τ), t) = D((b1, α1) . . . (bn, αn), t − (β − τ)), if τ + t > β

A derivation in a timed DOL-system is defined in terms of two types
of time variables. Global time t is common to the entire word under
consideration, while local age values τi are specific to each letter ai.
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Axiom A1 identifies t as the variable that synchronizes the entire de-
velopment, and specifies that the lineages of all letters can be considered
independently from each other (thus, no interaction between letters is
assumed). With the progress of time t, each letter “grows older” until
its terminal age is reached (axiom A2). At this moment subdivision
occurs and new letters are produced with initial age values specified by
the corresponding production (axiom A3). Condition C1 guarantees
that the subdivision time is defined unambiguously, hence the devel-
opment proceeds in a deterministic fashion. Condition C2 guarantees
that, for any value of time t, the recursive references specified by axiom
A3 will eventually end.

The above concepts are examined by formulating a timed DOL-Anabaena
system that simulates the development of a vegetative part of the An-
abaena catenula filament. Given the discrete model expressed by equa-
tion (1.1) on page 5, the corresponding tDOL-system is as follows:

ω : (ar, 0)
p1 : (ar, 1) → (al, 0)(br, 0)
p2 : (al, 1) → (bl, 0)(ar, 0)
p3 : (br, 1) → (ar, 0)
p4 : (bl, 1) → (al, 0)

(6.1)

In accordance with the discrete model, it is assumed that all cells have
the same lifetime, equal to one time unit. The derivation tree is shown
in Figure 6.1. The nodes of the tree indicate production applications
specified by axiom A3, and the triangular “arcs” represent the continu-
ous aging processes described by axiom A2. The vertical scale indicates
global time. For example, at time t = 2.75 the filament consists of three
cells, bl, ar and ar, whose current age is equal to 0.75.

According to the definition of time intervals corresponding to axioms
A2 and A3, a production is applied after the age τ + t exceeds the
terminal age. Consequently, at division time the “old” cells still exist.
For example, at time t = 2.0 the filament consists of two cells, al and
br, both of age τ = 1.

The above L-system can be simplified by considering cells of type b
as young forms of the cells of type a. This is suggested by Figure 6.1
where cells b simply precede cells a in time. The simplified L-system
has two productions:

p1 : (ar, 2) → (al, 1)(ar, 0)
p2 : (al, 2) → (al, 0)(ar, 1)

(6.2)

The corresponding derivation tree starting from cell (ar, 1) is shown in
Figure 6.2. Note the similarity to the tree from the previous example.

Whether a natural developmental process or its mathematical modelModel
observation is considered, the choice of observation times and the act of observation

should not affect the process itself. In other terms, each derived word
should depend only on the total elapsed time t, and not on the partition
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Figure 6.1: Derivation tree representing the continuous development of An-
abaena catenula described by the L-system is equation (6.1). Sections of the
triangles represent cell ages.

Figure 6.2: Derivation tree representing the continuous development of An-
abaena catenula corresponding to the rules specified in equation (6.2)
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of t into intervals. The following theorem shows that timed DOL-
systems satisfy this postulate.
Theorem. Let G = 〈V, ω, P 〉 be a tDOL-system, and x ∈ (V ×R)+ be
a timed word over V . For any values of ta, tb ≥ 0, the following holds:

D(D(x, ta), tb) = D(x, ta + tb)

Proof. Let us first consider the special case where the word x consists
of a single timed letter, (a0, τ0), and all productions in the set P take
single letters into single letters. According to condition C1, there exists
a unique sequence of productions from P such that:

(ai, βi) → (ai+1, αi+1), i = 0, 1, 2, . . .

Let (ak, τk) be the result of the derivation of duration ta that starts
from (a0, τ0). According to axioms A2 and A3, and assuming that
ta > β0 − τ0, this derivation can be represented in the form

D ((a0, τ0), ta)

= D((a1, α1), ta − (β0 − τ0))

= D((a2, α2), ta − (β0 − τ0) − (β1 − α1))

= · · ·
= D((ak, αk), ta − (β0 − τ0) − (β1 − α1) − . . . − (βk−1 − αk−1))

= (ak, τk),

where

τk = αk + [ta − (β0 − τ0) −
k−1∑

i=1

(βi − αi)].

Since the sequence of recursive calls can be terminated only by an ap-
plication of axiom A2, the index k and the age τk satisfy the inequality

αk < τk ≤ βk.

Due to condition C2, such an index k always exists and is unique.
Let us now consider a derivation of duration tb > βk − τk that

starts from (ak, τk). Following the same reasoning, the result can be
represented as (am, τm), where

τm = αm + [tb − (βk − τk) −
m−1∑

i=k+1

(βi − αi)]

and
αm < τm ≤ βm.

By substituting the value of τk into the formula for τm, we obtain after
simple transformations

τm = αm + [(ta + tb) − (β0 − τ0) −
m−1∑

i=1

(βi − αi)].
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Thus, the timed letter (am, τm) also results from the derivation of du-
ration ta + tb starting with (a0, τ0):

(am, τm) = D(D((a0, τ0), ta), tb) = D((a0, τ0)x, ta + tb).

So far, we have considered only the case

ta > β0 − τ0, tb > βk − τk.

Two other cases, namely,

0 ≤ ta ≤ β0 − τ0, tb > βk − τk

and
ta > β0 − τ0, 0 ≤ tb ≤ βk − τk

can be considered in a similar way. The remaining case,

0 ≤ ta ≤ β0 − τ0, 0 ≤ tb ≤ βk − τk,

is a straightforward consequence of condition C2. This completes the
proof of the special case. In general, a derivation that starts from a
word (a1, τ1) . . . (an, τn) can be considered as n separate derivations,
each starting from a single letter. This observation applies not only to
the initial word specified at time t = 0, but also to any intermediate
word generated during the derivation. Consequently, any path in the
derivation tree can be considered as a sequence of mappings that takes
single letters into single letters. Application of the previous reasoning
separately to every path concludes the proof. �

6.2 Selection of growth functions

Timed L-systems capture qualitative changes in model topology corre-
sponding to cell (or, in general, module) divisions, and return the age
of each module as a function of the global time t. In order to complete
model definition, it is also necessary to specify the shape of each module
as a function of its age. Potentially, such growth functions can be es-
timated experimentally by observing real organisms [72, 73]. However,
if detailed data is not available, growth functions can be selected from
an appropriate class by choosing parameters so that the animation is
smooth. This approach can be viewed as more than an ad hoc tech-
nique for constructing acceptable animated sequences. In fact, Thom
presents it as a general methodology for studying morphogenesis [142,
page 4]:

The essence of the method to be described here consists
in supposing a priori the existence of a differential model
underlying the process to be studied and, without knowing
explicitly what the model is, deducing from the single as-
sumption of its existence conclusions relating to the nature
of the singularities of the process.
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A technique for computing parameters of growth functions in the
case of nonbranching filaments and simple branching structures is given
below.

6.2.1 Development of nonbranching filaments

In a simple case of geometric interpretation of timed L-systems, symbols
represent cells that elongate during their lifetime and divide upon reach-
ing terminal age. Model geometry does not change suddenly, which
means that

• the length of each cell is a continuous function of time, and

• the length of a cell before subdivision is equal to the sum of the
lengths of the daughter cells.

The above continuity requirements are formalized in the context of aContinuity
requirements tDOL-system G = 〈V, ω, P 〉 as follows:

R1. Let [αmin, β] describe the life span of a timed letter a ∈ V . The
age αmin is the minimum of the initial age values assigned to a
by the axiom ω or by some production in P . The terminal age
β is determined by the predecessor of the production acting on
symbol a. The growth function g(a, τ), which specifies the length
of cell a as a function of age τ , must be a continuous function of
parameter τ in the domain [αmin, β].

R2. For each production (a, β) → (b1, α1) . . . (bn, αn) in P the follow-
ing equality holds:

g(a, β) =
n∑

i=1

g(bi, αi) (6.3)

In practice, requirement R1 is used to select the class of growth func-
tions under consideration, and the equations resulting from requirement
R2 are used to determine the parameters in function definitions.

For example, in the case of the timed L-system specified in equa-Linear growth
tion (6.2), requirement R2 takes the form

g(ar, 2) = g(al, 1) + g(ar, 0)
g(al, 2) = g(al, 0) + g(ar, 1). (6.4)

Let us assume that the growth functions are linear functions of time:

g(al, τ) = Alτ + Bl

g(ar, τ) = Arτ + Br
(6.5)



6.2. Selection of growth functions 141

Figure 6.3: Diagrammatic representation of the development of Anabaena
catenula, with (a) linear and (b) exponential growth of cells

By substituting equations (6.5) into (6.4), we obtain

2Ar + Br = (1Al + Bl) + (0Ar + Br) or 2Ar = Al + Bl

2Al + Bl = (0Al + Bl) + (1Ar + Br) or 2Al = Ar + Br.

The desired continuity of development is provided by all solutions of
this system. They can be expressed in terms of coefficient c, which
relates the growth rate of cells al to that of cells ar:

Al = cAr

Bl = Ar(2 − c)
Br = Ar(2c − 1)

Figure 6.3a illustrates the developmental process considered for c =
1. The diagram is obtained by plotting the cells in the filament as
horizontal line segments on the screen. Colors indicate cell type and
age. The observation time t ranges from 1 (at the top) to 7 (at the
bottom), with increment ∆t = 0.009.

The slopes of the side edges of the diagram represent growth rates
of the entire structure. Notice that they remain constant in the peri-
ods between cell divisions, then change. This effect is disconcerting in
animation, since the rate of organism growth suddenly increases with
each cell division. In order to prevent this, it is necessary to extend re-
quirements R1 and R2 to a higher order of continuity N . Specifically,
equation (6.3) takes the form

g(k)(a, β) =
n∑

i=1

g(k)(bi, αi) for k = 0, 1, . . . , N, (6.6)
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where g(k)(a, τ) is the kth derivative of the growth function g(a, τ) with
respect to age τ .

In the case of Anabaena, an attempt to achieve first-order continu-
ity assuming linear growth functions yields an uninteresting solution,
g(al, τ) = g(ar, τ) ≡ 0. Thus, more complex growth functions must beExponential

growth considered, such as an exponential function that can be used to approx-
imate the initial phase of sigmoidal growth. Assume that the growth
function has the form

g(al, τ) = g(ar, τ) = AeBτ . (6.7)

The objective is to find values of parameters A and B that satisfy
equation (6.6) for k = 0, 1. By substituting equation (6.7) into (6.6),
we obtain

ABke2B = ABkeB + ABk, (6.8)

which implies that zero-order continuity yields continuity of infinite
order in this case. Solution of equation (6.8) for any value of k yields

B = ln
1 +

√
5

2
≈ 0.4812. (6.9)

Parameter A is a scaling factor and can be chosen arbitrarily. The
corresponding diagrammatic representation of development is shown in
Figure 6.3b. The side edges of the diagram, representing the growth
rates of the whole structure, are smooth exponential curves.

6.2.2 Development of branching structures

The notions of tDOL-system and growth function extend in a straight-
forward way to L-systems with brackets. For example, the following
tDOL-system describes the recursive structure of the compound leaves
analyzed in Section 5.3.

ω : (a, 0)
p1 : (a, 1) → (s, 0)[(b, 0)][(b, 0)](a, 0)
p2 : (b, β) → (a, 0)

According to production p1, apex a produces an internode s, two lateral
apices b and a younger apex a. Production p2 transforms the lateral
apices b into a after a delay β. The daughter branches recursively repeat
the development of the mother branch.

Let us assume that the leaf development is first-order continuous,
yielding the following equations for k = 0, 1:

g(k)(a, 1) = g(k)(s, 0) + g(k)(a, 0) (6.10)

g(k)(b, 0) = 0 (6.11)

g(k)(b, β) = g(k)(a, 0) (6.12)
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Equation (6.10) provides continuity along an existing axis upon the
formation of a new internode s. Equation (6.11) specifies that a newly
formed lateral apex b has zero length and zero growth rate. Equa-
tion (6.12) guarantees smooth transformation of apices b into apices a.

Let us further assume that apices a and internodes s expand expo-
nentially,

g(a, τ) = Aae
Baτ (6.13)

g(s, τ) = Ase
Bsτ , (6.14)

for τ ∈ [0, 1]. The expansion of the lateral apices cannot be described
by an exponential function, since it would not satisfy equations (6.11).
Consequently, a polynomial growth function g(b, τ) is chosen. Equa-
tions (6.11) and (6.12) fix the function’s endpoints and the tangents at
the endpoints. Thus, in general, g(b, τ) must be a polynomial of degree
three or more, such as

g(b, τ) = Abτ
3 + Bbτ

2 + Cbτ + Db. (6.15)

The system of equations (6.10) through (6.12) is solved using the initial
size Aa and the growth rate coefficient Ba as independent variables.
By substituting (6.13) and (6.14) into equations (6.10) for k = 0, 1, we
obtain

As = Aa(e
Ba − 1)

Bs = Ba.

Equations (6.11) and (6.15) yield

Cb = Db = 0.

Finally, substitution of (6.13) and (6.15) into (6.12) results in

Ab =
Aa

β3
(βBa − 2)

Bb =
Aa

β2
(3 − βBa).

Figure 6.4 shows a sequence of images produced by this model using
values β = Aa = 1 and Ba = 0.48. The branching angles are equal to
45◦. The observation time t ranges from 6.9 to 7.7, with an increment
of 0.2. Note the gradual formation of lateral segments.

In the examples considered above, modules are represented as
straight lines, with growth functions controlling line lengths. Other
parameters, such as the branching angle, the diameter of segments and
the size of predefined surfaces, can be controlled in an analogous way.
Generally, any developmental model captured by an OL-system with
turtle interpretation can be converted into a tDOL-system and ani-
mated.
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Figure 6.4: Developmental sequence of a branching structure modeled using
a tDOL-system


