
Chapter 5

Models of plant organs

Many concepts presented in the previous chapters were illustrated using
realistic images, but the modeling techniques for leaves and petals have
not been described yet. Three approaches are discussed below.

5.1 Predefined surfaces

The standard computer graphics method for defining arbitrary surfaces Bicubic patches
makes use of bicubic patches [9, 10, 40]. A patch is defined by three
polynomials of third degree with respect to parameters s and t. The
following equation defines the x coordinate of a point on the patch:
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Analogous equations define y(s, t) and z(s, t). All coefficients are de-
termined by interactively designing the desired shape on the screen
of a graphics workstation. Complex surfaces are composed of several
patches.

The surfaces are incorporated into a plant model in a manner sim- Turtle
interpretationilar to subfigures (Section 1.4.2). The L-system alphabet is extended

to include symbols representing different surfaces. When the turtle
encounters such a symbol preceded by a tilde (∼), the corresponding
surface is drawn.

The exact position and orientation of surface S representing an ap-
pendage is determined using a contact point PS, the heading vector �HS

and the up vector �V S as a reference (Figure 5.1). The surface is trans-
lated in such a way that its contact point matches the current position
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Figure 5.1: Specification of an appendage

of the turtle, and is rotated to align its heading and up vectors with the
corresponding vectors of the turtle. If a surface represents an internal
part of the structure such as an internode, a distinction between the
entry and exit contact points is made.

The majority of organs presented in this book have been modeledExamples
this way. The petals of sunflowers, zinnias, water-lilies and roses shown
in Chapter 4 provide good examples. Figure 5.2 illustrates an additional
improvement in the appearance of organs, made possible by the appli-
cation of textures to the surfaces of leaves, flowers and vine branches.

5.2 Developmental surface models

Predefined surfaces do not “grow.” String symbols can be applied to
control such features as the overall color and size of a surface, but
the underlying shape remains the same. In order to simulate plant
development fully, it is necessary to provide a mechanism for changing
the shape as well as the size of surfaces in time. One approach is to
trace surface boundaries using the turtle and fill the resulting polygons.Contour

tracing A sample L-system is given below:

ω : L
p1 : L → {−FX + X − FX − | − FX + X + FX}
p2 : X → FX

Production p1 defines leaf L as a closed planar polygon. The braces
{ and } indicate that this polygon should be filled. Production p2

increases the lengths of its edges linearly. The model of a fern shownFern
in Figure 5.3 incorporates leaves generated using this method, with
the angle increment equal to 20◦. Note the phase effect due to the
“growth” of polygons in time. A similar approach was taken to generate
the leaves, flowers and fruits of Capsella bursa-pastoris (Figure 3.5 on
page 74).
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Figure 5.2: Maraldi figure by Greene [54]

Figure 5.3: The fern
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Figure 5.4: Surface specification using a tree structure as a framework

In practice, the tracing of polygon boundaries produces acceptable ef-Framework
approach fects only in the case of small, flat surfaces. In other cases it is more

convenient to use a tree structure as a framework. Polygon vertices are
specified by a sequence of turtle positions marked by the dot symbol
(.). An example is given in Figure 5.4a. The letter G has been used
instead of F to indicate that the segments enclosed between the braces
should not be interpreted as the edges of the constructed polygon. The
numbers correspond to the order of vertex specification by the turtle.

Figure 5.5 shows the development of a cordate leaf modeled usingCordate leaf
this approach. The axiom contains symbols A and B, which initiate the
left-hand and right-hand sides of the blade. Each of the productions p1

and p2 creates a sequence of axes starting at the leaf base and gradually
diverging from the midrib. Production p3 increases the lengths of the
axes. The axes close to the midrib are the longest since they were
created first. Thus, the shape of this leaf is yet another manifestation
of the phase effect. The leaf blade is defined as a union of triangles
rather than a single polygon. Such triangulation is advantageous if
the blade bends, for example due to tropism (Chapter 2). Figure 5.4b
provides an additional illustration of the model by magnifying the left
side of the leaf after four derivation steps.
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ω : [A][B]
p1 : A → [+A{.].C.}
p2 : B → [-B{.].C.}
p3 : C → GC

Figure 5.5: Developmental sequence of a cordate leaf generated using an
L-system

The described method makes it possible to define a variety of leaves. Simple leaves
Their shapes depend strongly on the growth rates of segments. For
example, a family of simple leaves and the corresponding parametric
L-system are shown in Figure 5.6.

According to production p1, in each derivation step apex A(t) ex-
tends the main leaf axis by segment G(LA,RA) and creates a pair of
lateral apices B(t). New lateral segments are added by production p2.
Parameter t, assigned to apices B by production p1, plays the role of
“growth potential” of the branches. It is decremented in each derivation
step by a constant PD, and stops production of new lateral segments
upon reaching 0. Segment elongation is captured by production p3.

For the purpose of analysis, it is convenient to divide a leaf blade
into two areas. In the basal area, the number of lateral segments is
determined by the initial value of growth potential t and constant PD.
Since the initial value of t assigned to apices B increases towards the
leaf apex, the consecutive branches contain more and more segments.
On the other hand, branches in the apical area exist for too short a
time to reach their limit length. Thus, while traversing the leaf from
the base towards the apex, the actual number of segments in a branch
first increases, then decreases. As a result of these opposite tendencies,
the leaf reaches its maximum width near the central part of the blade.
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n=20, δ=60◦

#define LA 5 /* initial length - main segment */
#define RA 1 /* growth rate - main segment */
#define LB 1 /* initial length - lateral segment */
#define RB 1 /* growth rate - lateral segment */
#define PD 1 /* growth potential decrement */

ω : {.A(0)}
p1 : A(t) : * → G(LA,RA)[-B(t).][A(t+1)][+B(t).]
p2 : B(t) : t>0 → G(LB,RB)B(t-PD)
p3 : G(s,r) : * → G(s*r,r)

Figure 5.6: A family of simple leaves generated using a parametric L-system

Figure LA RA LB RB PD

a 5 1.0 1.0 1.00 0.00
b 5 1.0 1.0 1.00 1.00
c 5 1.0 0.6 1.06 0.25
d 5 1.2 10.0 1.00 0.50
e 5 1.2 4.0 1.10 0.25
f 5 1.1 1.0 1.20 1.00

Table 5.1: Values of constants used to generate simple leaves
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Figure 5.7: A rose in a vase

Table 5.1 lists the values of constants corresponding to particular shapes. Shape control
For a given derivation length, the exact position of the branch with the
largest number of segments is determined by PD. If PD is equal to 0,
all lateral branches have an unlimited growth potential, and the basal
part of the leaf does not exist (Figure 5.6a). If PD equals 1, the basal
and apical parts contain equal numbers of lateral branches (Figures 5.6
b and f). Finer details of the leaf shape are determined by the growth
rates. If the main axis segments and the lateral segments have the same
growth rates (RA = RB), the edges of the apical part of the leaf are
straight (Figures 5.6 a and b). If RA is less than RB, the segments
along the main axis elongate at a slower rate than the lateral segments,
resulting in a concave shape of the apical part (Figures 5.6 c and f). In
the opposite case, with RA greater than RB, the apical part is convex
(Figures 5.6 d and e). The curvature of the basal edges can be analyzed
in a similar way.
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n=25, δ=60◦

#define LA 5 /* initial length - main segment */
#define RA 1.15 /* growth rate - main segment */
#define LB 1.3 /* initial length - lateral segment */
#define RB 1.25 /* growth rate - lateral segment */
#define LC 3 /* initial length - marginal notch */
#define RC 1.19 /* growth rate - marginal notch */

ω : [{A(0,0).}][{A(0,1).}]
p1 : A(t,d) : d=0 → .G(LA,RA).[+B(t)G(LC,RC,t).}]

[+B(t){.]A(t+1,d)
p2 : A(t,d) : d=1 → .G(LA,RA).[-B(t)G(LC,RC,t).}]

[-B(t){.]A(t+1,d)
p3 : B(t) : t>0 → G(LB,RB)B(t-1)
p4 : G(s,r) : * → G(s*r,r)
p5 : G(s,r,t) : t>1 → G(s*r,r,t-1)

Figure 5.8: A rose leaf

Figure 5.7 shows a long-stemmed rose with the leaves modeled accord-Rose leaf
ing to Figure 5.8. The L-system combines the concepts explored in
Figures 5.5 and 5.6. The axiom contains modules A(0, 0) and A(0, 1),
which initiate the left-hand and right-hand side of the leaf. The de-
velopment of the left side will be examined in detail. According to
production p1, in each derivation step apex A(t, 0) extends the midrib
by internodes G(LA,RA) and creates two colinear apices B(t) pointing
to the left. Further extension of the lateral axes is specified by produc-
tion p3. The leaf blade is constructed as a sequence of trapezoids, with
two vertices lying on the midrib and the other two vertices placed at
the endpoints of a pair of lateral axes formed in consecutive derivation
steps. The module G(LC,RC, t) introduces an offset responsible for
the formation of notches at the leaf margin. Production p4 describes
the elongation of internodes responsible for overall leaf shape, while
production p5 controls the size of the notches. The development of the
right side of the blade proceeds in a similar manner, with production p2
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Figure 5.9: Surface specification using stacked polygons

recreating the midrib and creating lateral apices pointing to the right.
The bending of the midrib to the right is a result of tropism.

In the examples discussed so far, the turtle specifies the vertices of Nested
polygonsone polygon, then moves on to the next. Further flexibility in surface

definition can be achieved by interleaving vertex specifications for dif-
ferent polygons. The turtle interpretation of the braces is redefined in
the following way. A string containing nested braces is evaluated us-
ing two data structures, an array of vertices representing the current
polygon and a polygon stack. At the beginning of string interpretation,
both structures are empty. The symbols {, } and . are then interpreted
as follows:

{ Start a new polygon by pushing the current polygon on
the polygon stack and creating an empty current polygon.

. Append the new vertex to the current polygon.

} Draw the current polygon using the specified vertices,
then pop a polygon from the stack and make it the current
polygon.

An example of string interpretation involving nested braces is given in
Figure 5.9.

The above technique was applied to construct the flowers of the Lily-of-the-
valleylily-of-the-valley shown in Figure 3.4 (page 72), and magnified in Fig-

ure 5.10. A flower is represented by a polygon mesh consisting of five
sequences of trapezoids spread between pairs of curved lines that em-
anate radially from the flower base. A single sequence is generated by
the following L-system:

ω : [X(36)A]/(72)[X(36)B]
p1 : A : ∗ → [&GA{.].
p2 : B : ∗ → B&.G.}
p3 : X(a) : ∗ → X(a + 4.5)
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Figure 5.10: Structure of a lily-of-the-valley flower

Productions p1 and p2 create two adjacent framework lines and mark
polygon vertices consistently with Figure 5.9. Production p3 controls
the angle at which the framework lines leave the stalk at the flower
base.

5.3 Models of compound leaves

So far, the discussion of organ models has focused on the definition
of surfaces. However, in the case of highly self-similar structures, the
individual surfaces become inconspicuous, and the expression of the
geometric relationships between younger and older parts of the struc-
ture becomes the key issue. For example, Figure 5.11 shows compoundSymmetric

branching leaves often found in the family Umbelliferae. According to produc-
tion p2, the apex A(0) creates two segments F (1) and a pair of lateral
apices A(D) in each derivation step. Production p1 delays the develop-
ment of the daughter branches by D steps with respect to the mother
branch. This pattern is repeated recursively in branches of higher or-
der. Production p3 gradually elongates the internodes, and in this way
establishes proportions between parts of a leaf. The values of the con-

Figure D R Derivation length

a 0 2.00 10
b 1 1.50 16
c 2 1.36 21
d 4 1.23 30
e 7 1.17 45

Table 5.2: Values of constants used to generate compound leaves
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#define D 1 /* apical delay */
#define R 1.5 /* internode elongation rate */

ω : A(0)
p1 : A(d) : d > 0 → A(d-1)
p2 : A(d) : d = 0 → F(1)[+A(D)][-A(D)]F(1)A(0)
p3 : F(a) : * → F(a*R)

Figure 5.11: Compound leaves
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#define D 1 /* apical delay */
#define R 1.36 /* internode elongation rate */

ω : A(0)
p1 : A(d) : d>0 → A(d-1)
p2 : A(d) : d=0 → F(1)[+A(D)]F(1)B(0)
p3 : B(d) : d>0 → B(d-1)
p4 : B(d) : d=0 → F(1)[-B(D)]F(1)A(0)
p5 : F(a) : * → F(a*R)

Figure 5.12: Compound leaves with alternating branching patterns

Figure D R Derivation length

a 1 1.36 20
b 4 1.18 34
c 7 1.13 46

Table 5.3: Values of the constants used to generate compound leaves with
alternating branches
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stants used to generate the structures shown in Figure 5.11 are listed
in Table 5.2. The model is sensitive to growth rate values — a change
of 0.01 visibly alters proportions. Leaves of the wild carrot, shown in
Figure 3.23 (page 96), correspond closely to case Figure 5.11b.

Another type of compound leaf, with alternating branches, is ex- Alternating
branchingamined in Figure 5.12. The values of the constants used in the L-

system are specified in Table 5.3. Further examples can be found in
the next chapter, devoted to the animation of developmental processes,
and Chapter 8, which ties developmental models with fractals.




