
Chapter 3

Developmental models of
herbaceous plants

The examples of trees presented in the previous chapter introduce L-
systems as a plant modeling tool. They also illustrate one of the most
striking features of the generative approach to modeling, called data
base amplification [136]. This term refers to the generation of complex-
looking objects from very concise descriptions – in our case, L-systems
comprised of small numbers of productions. Yet in spite of the small
size, the specification of L-systems is not a trivial task.

In the case of highly self-similar structures, the synthesis methods
based on edge rewriting and node rewriting are of assistance, as illus-
trated by the examples considered in Section 1.10.3. However, a more
general approach is needed to model the large variety of developmental
patterns and structures found in nature.

The methodology presented in this chapter is based on the simu- Developmental
modelslation of the development of real plants. Thus, a particular form is

modeled by capturing the essence of the developmental process that
leads to this form. This approach has two distinctive features.

• Emphasis on the space-time relation between plant parts.
In many plants, organs in various stages of development can be
observed at the same time. For example, some flowers may still
be in the bud stage, others may be fully developed, and still
others may have been transformed into fruits. If development
is simulated down to the level of individual organs, such phase
effects are reproduced in a natural way.

• Inherent capability of growth simulation. The mathemati-
cal model can be used to generate biologically correct images of
plants at different ages and to create sequences of images illus-
trating plant development in time.
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The models are constructed under the assumption that organisms
control the important aspects of their own development. According
to Apter [3, page 44], this simplification must be accepted as a nec-
essary evil, as long as the scope of the mathematical model is limited
to an isolated plant. Consequently, this chapter focuses on the mod-
eling and generation of growth sequences of herbaceous or non-woodyHerbaceous

plants plants, since internal control mechanisms play a predominant role in
their development. In contrast, the form of woody plants is determined
to a large extent by the environment, competition among branches and
trees, and accidents [164].

3.1 Levels of model specification

L-systems can be constructed with a variety of objectives in mind, rang-
ing from a general classification of branching structures to detailed mod-
els suitable for image synthesis purposes. Accordingly, the L-systems
presented in this chapter are specified at three levels of detail. The most
abstract level, called partial L-systems, employs the notation of nonde-Partial

L-systems terministic OL-systems to define the realm of possibilities within which
structures of a given type may develop. Partial L-systems capture the
main traits characterizing structural types, and provide a formal basis
for their classification. Control mechanisms that resolve nondetermin-
ism are introduced in the next level, termed L-system schemata.1 TheL-system

schemata topology of individual plants and temporal aspects of their develop-
ment are described at this level. Schemata are of particular interest
from a biological point of view, as they provide an insight into the
mechanisms that control plant development in nature. The geomet-
ric aspects are added in complete L-systems that include informationComplete

L-systems concerning growth rates of internodes, the values of branching angles,
and the appearance of organs. The difference between all three levels is
illustrated using models of a single-flower shoot as a running example.

3.1.1 Partial L-systems

Consider the development of a shoot which, after a period of vegetativeSingle-flower
shoot growth, produces a single flower. The partial L-system is given below.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → K

(3.1)

The lower-case symbol a represents the vegetative apex, while the upper-
case A is the flowering apex, capable of forming reproductive organs.

1In the literature, the term “scheme” is also used to denote the class of L-systems
with the same alphabet and productions, but with different axioms [62, page 54].
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Figure 3.1: Single-flower shoot

A derivation step corresponds to a plastochron, defined as the time
interval between the production of successive internodes by the apex.
At each step apex a has a choice of forming either leaf L, internode I
and new apex a (production p1), or forming the same structures and
transforming itself into a flowering apex A (p2), which subsequently
creates flower K (p3). Once this transformation or developmental switch
has taken place it cannot be reversed, since there is no rule allowing
the transformation of A to a. Examples of strings generated by the
L-system specified in equation (3.1) are given below.

a a a
I[L]A I[L]a I[L]a
I[L]K I[L]I[L]A I[L]I[L]a
I[L]K I[L]I[L]K I[L]I[L]I[L]A

I[L]I[L]K I[L]I[L]I[L]K
I[L]I[L]I[L]K

A diagrammatic representation of a single-flower inflorescence is shown
in Figure 3.1.

3.1.2 Control mechanisms in plants

A partial L-system does not specify the moments in which develop- L-system
schematamental switches occur. The timing of these switches is specified at the

level of L-system schemata, which incorporate mechanisms that con-
trol plant development. In biology, these mechanisms are divided into
two classes depending on the way information is transferred between Lineage vs.

interactionmodules. The term lineage (or cellular descent) refers to the transfer
of information from an ancestor cell or module to its descendants. In
contrast, interaction is the mechanism of information exchange between
neighboring cells (for example, in the form of nutrients or hormones).
Within the formalism of L-systems, lineage mechanisms are represented
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by context-free productions found in OL-systems, while the simulation
of interaction requires the use of context-sensitive 1L-systems and 2L-
systems.2 Several specific mechanisms are listed below. Although they
are described from the modeling perspective, a relation to physiological
processes observed in nature can often be found.

Stochastic mechanism

The simplest method for implementing a developmental switch is to
use a stochastic L-system. In this case the vegetative apex a has a
probability π1 of staying in the vegetative state, and π2 of transforming
itself into a flowering apex A.

ω : a
p1 : a

π1→ I[L]a
p2 : a

π2→ I[L]A

p3 : A
1→ K

The probability distribution (π1, π2) is found experimentally, with π1 +
π2 = 1.

The effect of environment

Many plants change from a vegetative to a flowering state in response
to environmental factors such as temperature or the number of day-
light hours. Such effects can be modeled using one set of productions
(called a table) for some number of derivation steps, then replacing itTable

L-systems by another set:

Table 1 Table 2
ω : a p1 : a → I[L]A
p1 : a → I[L]a p2 : A → K

The concept of table L-systems (TOL-systems) was introduced and
formalized by Rozenberg [62, 127]. Note that the use of tables provides
only a partial solution to the problem of specifying the switching time,
since a control mechanism external to the L-system is needed to select
the appropriate table.

Delay mechanism

The delay mechanism operates under the assumption that the apex
undergoes a series of state changes that postpone the switch until a
particular state is reached.

2The clarity of this dichotomy is somewhat obscured by parametric OL-systems,
which can simulate the operation of context-sensitive L-systems using an infinite
set of parameter values.
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This is captured by the following L-system in the case of a single-flower
shoot.

ω : a0

pi : ai → I[L]ai+1 0 ≤ i ≤ n − 1
pn : an → I[L]A
pn+1 : A → K

According to this model, the apex counts the leaves it produces. While
it may seem strange that a plant would count, it is known that some
plant species produce a fixed number of leaves before they start flow-
ering.

Accumulation of components

A developmental mechanism based on the accumulation of components
is similar to that of delay, but emphasizes the physiological nature of
the counting process. According to this approach, counting is achieved
by a monotonic increase or decrease in the concentration of certain cell
components. This process can be captured by the following parametric
L-system:

ω : a(0)
p1 : a(c) : c < C → I[L]a(c + ∆c)
p2 : a(c) : c ≥ C → I[L]A
p3 : A : ∗ → K

(3.2)

The parameter c indicates current concentration of the controlling com-
ponents in the apex a. In each derivation step, this concentration is
increased by a constant ∆c. The developmental switch occurs when
the concentration reaches the threshold value C.

Development controlled by a signal

In many plants, the switch from a vegetative to a flowering state is
caused by a flower-inducing signal transported from the basal leaves
towards the apex. The time of signal initiation is determined using
one of the previously described methods, for example by counting. A
sample L-system is given below.

ω : D(1)a(1)
p1 : a(i) : i < m → a(i + 1)
p2 : a(i) : i = m → I[L]a(1)
p3 : D(i) : i < d → D(i + 1)
p4 : D(i) : i = d → S(1)
p5 : S(i) : i < u → S(i + 1)
p6 : S(i) : i = u → ε
p7 : S(i) < I : i = u → IS(1)
p8 : S(i) < a(j) : ∗ → I[L]A
p9 : A : ∗ → K
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The apex a produces internodes I and leaves L on the main axis (p2).
The time between the production of two consecutive segments, or the
plastochron of the main axis, is equal to m derivation steps (p1). After
a delay of d steps (p3), a signal S is sent from the plant base towards
the apices (p4). This signal is transported along the main axis with
a delay of u steps per internode I (p5,p7). Production p6 removes the
signal from a node after it has been transported along the structure
(ε stands for the empty string). When the signal reaches the apex, a is
transformed into flowering state A (p8) which yields flower K (p9). Note
that the signal has to propagate faster than one node per plastochron
(u < m), otherwise it would not be able to catch up with the apex. The
above processes are illustrated by the following developmental sequence,
for d = 4, m = 2 and u = 1.

D(1)a(1)
D(2)a(2)
D(3)I[L]a(1)
D(4)I[L]a(2)
S(1)I[L]I[L]a(1)
IS(1)[L]I[L]a(2)
I[L]IS(1)[L]I[L]a(1)
I[L]I[L]IS(1)[L]a(2)
I[L]I[L]I[L]A
I[L]I[L]I[L]K

Although the above model may appear unnecessarily complicated, sig-
nals are indispensable in the simulation of complex flowering sequences
discussed later.

3.1.3 Complete models

The L-systems considered so far are not directly suitable for image syn-
thesis purposes. To this end, they must be completed with geometric
information. The relation between an L-system scheme and a corre-
sponding complete L-system is discussed using the model of crocuses
shown in Figure 3.2 as an example.

The development is controlled using a delay expressed as an accu-Crocus
mulation mechanism (equation (3.2)). In contrast to L-system schemes
in which symbols represent module types, the L-system in Figure 3.2
is specified in terms of turtle symbols. Production p1 describes the cre-
ation of successive internodes F and leaves L by the vegetative apex a.
The leaves branch from the stem at an angle of 30◦ and spiral around
the main axis with a divergence angle equal to 137.5◦ (see Chapter 4).
Productions p2 and p3 describe the developmental switch and the cre-
ation of flower K taking place respectively in steps Ta and Ta+1. Pro-
ductions p4 and p5 capture the development of leaves and flowers until
they reach their final shapes TL and TK steps after creation. For each
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#define Ta 7 /* developmental switch time */
#define TL 9 /* leaf growth limit */
#define TK 5 /* flower growth limit */
#include L(0),L(1),...,L(TL) /* leaf shapes */
#include K(0),K(1),...,K(TK) /* flower shapes */

ω : a(1)
p1 : a(t) : t<Ta → F(1)[&(30)∼L(0)]/(137.5)a(t+1)
p2 : a(t) : t=Ta → F(20)A
p3 : A : * → ∼K(0)
p4 : L(t) : t<TL → L(t+1)
p5 : K(t) : t<TK → K(t+1)
p6 : F(l) : l<2 → F(l+0.2)

Figure 3.2: Crocuses
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branch
main apex main apex
terminates continues

all some all some
lateral lateral lateral lateral
apices apices apices apices

terminate continue terminate continue
terminal sympodial monopodial polypodial

Table 3.1: Basic growth patterns of branching structures

value of parameter t, the corresponding organ shapes L(t) and K(t) are
modeled using bicubic patches incorporated into the plant structure as
described in Section 5.1. Production p6 specifies the gradual elongation
of internodes.

3.2 Branching patterns

The partial L-system in equation (3.1) and the related schemata employSubapical
growth subapical growth mechanisms in which new branches are created exclu-

sively by apices. All herbaceous plants develop this way. The archi-
tecture of a branching structure is to a large extent determined by the
relationships between terminal and continuing apices. While a contin-
uing apex produces branches again and again, a terminal one either
gives rise to an appendage such as a flower or dies. The possible com-
binations are listed in Table 3.1. Of the four terms assigned to these
possibilities, two are commonly used in biology, namely, sympodial and
monopodial, while the other two terms are introduced here to denote
the remaining cases, usually not characterized in the literature.

The above branching patterns can be represented conveniently usingExpression
using
L-systems

partial bracketed L-systems. Let A,B,C denote continuing apices, X
a terminal apex, and I an internode. The terminal and sympodial
patterns are characterized by rules of the form

A → I[B]n[X]mX,

with n = 0, m > 0 in the case of terminal patterns and n > 0, m ≥ 0
in the case of sympodial patterns. The important property is that the
main apex terminates its development in all these cases.

Monopodial and polypodial patterns have rules of the form

A → I[B]n[X]mC,

with n = 0, m > 0 in the case of monopodial patterns and n > 0,
m ≥ 0 in the case of polypodial ones. In these cases, it is important
that the apex remains active.
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The terms defined here apply to branching structures in general,
whether they only produce vegetative organs (branches and leaves) or
reproductive organs as well. In the latter case, the terminal organs
develop from flower buds to flowers to fruits but do not give rise to
vegetative structures (there are exceptions to this statement but they
can be neglected here).

3.3 Models of inflorescences

The following discussion focuses on the modeling of compound flowering
structures or inflorescences. In some cases an entire shoot system can
be considered an inflorescence, in others only some of the branches
bear flowers and are inflorescences. Inflorescence architecture is an
elaboration of branching structures in general.

In the domain of botanical applications of L-systems, the study Classification
of inflorescences has played a particularly visible role [44, 45, 46, 47,
77, 86]. Unfortunately, the terms used for the various inflorescence
types are not uniform in the literature. Besides a purely morphological
terminology, attempts have been made to construct a “typological”
terminology, expressing the “essential” features of flowering structures
[144, 145, 157, 158]. However, these terms are not generally accepted
[12]. A compromise has been proposed by D. and U. Müller-Doblies
[100], which serves as a basis for the classification that guides this
presentation.

3.3.1 Monopodial inflorescences

Simple racemes (open)

Racemes are characteristically monopodial inflorescences; a shoot has
lateral apices with terminal structures and a main apex that continues
to development. A raceme is open if the main apex does not form a
flower. The partial L-system for this widely occurring type of inflores-
cence is:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → I[K]A

(3.3)

This system differs from that modeling a shoot with a single flower
(equation (3.1)) only in production p3. Here it is designed to repeatedly
produce lateral flowers (Figure 3.3), while in the previous system A
produces a single flower.
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a b

Figure 3.3: Open racemes: (a) elongated form, (b) planar form

Figure 3.4: Lily-of-the-valley
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The flowering sequence in open racemes is always acropetal (from Acropetal
sequencebase to top). This can be observed after substituting production p3 in

the L-system in equation (3.3) with productions p
′
3 and p4, which use

indexed symbols Ki to denote subsequent stages of flower development.

p
′
3 : A → I[IK0]A

p4 : Ki → Ki+1, i ≥ 0

The indexed notation Ki → Ki+1 stands for a (potentially infinite)
set of productions K0 → K1, K1 → K2, K2 → K3,.... The developmen-
tal sequence begins as follows:

A
I[IK0]A
I[IK1]I[IK0]A
I[IK2]I[IK1]I[IK0]A
I[IK3]I[IK2]I[IK1]I[IK0]A
· · ·

At each developmental stage the inflorescence contains a sequence Lily-of-the-
valleyof flowers of different ages. The flowers newly created by the apex are

delayed in their development with respect to the older ones situated at
the stem base. Graphically, this effect is illustrated by the model of
a lily-of-the-valley shown in Figure 3.4. The following quotation from
d’Arcy Thompson [143] applies:

A flowering spray of lily-of-the-valley exemplifies a growth-
gradient, after a simple fashion of its own. Along the stalk
the growth-rate falls away; the florets are of descending age,
from flower to bud; their graded differences of age lead to
an exquisite gradation of size and form; the time-interval
between one and another, or the “space-time relation” be-
tween them all, gives a peculiar quality – we may call it
phase-beauty – to the whole.

Another example of “phase beauty” can be seen in the shoot of shep- Capsella
herd’s purse (Capsella bursa-pastoris) shown in Figure 3.5. Productions
p1, p2 and p3 describe the activities of the apex in the vegetative and
flowering states, in accordance with the L-system in equation (3.3). The
developmental switch is implemented using a delay mechanism. Pro-
ductions p4 and p5 capture the linear elongation of internodes in time,
while p6 and p7 describe the gradual increase of the angle at which
the flower stalks branch from the main stem. Productions p8, p9 and
p11 specify the shapes of leaves L, flower petals K and fruits X using
developmental surface models discussed in Section 5.2. Production p10

controls the flowering time. Symbol % in the successor of production
p11 simulates the fall of petals by cutting them off the structure at
the time of fruit formation. The default value of the angle increment
corresponding to the symbol + with no parameter is 18◦.



74 Chapter 3. Developmental models

ω : I(9)a(13)
p1 : a(t) : t>0 → [&(70)L]/(137.5)I(10)a(t-1)
p2 : a(t) : t=0 → [&(70)L]/(137.5)I(10)A
p3 : A : * → [&(18)u(4)FFI(10)I(5)X(5)KKKK]

/(137.5)I(8)A
p4 : I(t) : t>0 → FI(t-1)
p5 : I(t) : t=0 → F
p6 : u(t) : t>0 → &(9)u(t-1)
p7 : u(t) : t=0 → &(9)
p8 : L : * → [{.-FI(7)+FI(7)+FI(7)}]

[{.+FI(7)-FI(7)-FI(7)}]
p9 : K : * → [&{.+FI(2)--FI(2)}]

[&{.-FI(2)++FI(2)}]/(90)
p10 : X(t) : t>0 → X(t-1)
p11 : X(t) : t=0 → ∧(50)[[-GGGG++[GGG[++G{.].].].

++GGGG.--GGG.--G.}]%

Figure 3.5: Development of Capsella bursa-pastoris. Every fourth derivation
step is shown.
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Figure 3.6: Apple twig

Simple raceme (closed)

The inflorescence of an apple tree (Figure 3.6) provides an example of
a closed raceme. In this case, the main apex eventually terminates its
development and produces a terminal flower (Figure 3.7). The corre-
sponding partial L-system is given below.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → I[K]A
p4 : A → K

Developmental switches are associated with two symbols, a and A.
Thus, in order to obtain an L-system scheme it is necessary to specify
how both of these switches will be controlled.

The flowering sequence is usually acropetal but could also be basi-
petal, i.e., progressing downward after the formation of the terminal
flower on the main axis. In the latter case a basipetal signal, as dis-
cussed in Section 1.8, can be applied to induce the transformation of
dormant flower buds into flowers.
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a b

Figure 3.7: Closed racemes: (a) elongated form, (b) planar form

Compound raceme (open dibotryoid)

Racemes can also occur on complex branching structures. The sim-
plest of these inflorescences is one with open racemes on the first order
branches as well as on the main axis (Figure 3.8a). This two-level com-
pound structure (thus dibotryoid) is described by the following partial
L-system.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → I[L][b]A
p4 : A → I[L][b]B
p5 : b → I[L]b
p6 : b → I[L]B
p7 : B → I[K]B

(3.4)

Three developmental transformations are necessary: the first for the
change from leaf to branch creation along the main axis (production p2),
the second for the switch from branching to lateral flower creation on
the main axis (p4), and the third for the transition from leaf to lateral
flower formation along the first-order branches (p6). Each branch is
subtended by a leaf, which is why productions p3 and p4 specify two
appendages L and b. Branches with flowers K need not have subtending
leaves, which is reflected in production p7.

Within each component raceme, the flowering sequence is alwaysSingle-signal
model acropetal, but the timing of switches has a crucial impact on the over-

all flowering sequence and appearance of the plant. For example, let us
assume that the switch from leaf to branch production is controlled by
a delay, while the remaining two switches are caused by an acropetal
flower-inducing signal (representing the hormone florigen). Such a de-
velopment is captured by L-system 3.1 (see below). Initially, the veg-
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a b

Figure 3.8: Dibotryoids: (a) open, (b) closed

#define d 13 /* delay for sending florigen */
#define e 3 /* delay for creating branches */
#define m 2 /* plastochron - main axis */
#define n 3 /* plastochron - lateral axis */
#define u 1 /* signal delay - main axis */
#define v 1 /* signal delay - lateral axis */

ω : S(0)a(1,0)
p1 : a(t,c) : t<m → a(t+1,c)
p2 : a(t,c) : (t=m)&(c<e)→ I(0,u)[L]a(1,c+1)
p3 : a(t,c) : (t=m)&(c=e)→ I(0,u)[L][b(1)]a(1,c)
p4 : b(t) : t<n → b(t+1)
p5 : b(t) : t=n → I(0,v)[L]b(1)
p6 : S(t) : * → S(t+1)
p7 : S(t) < I(i,j) : t=d → I(1,j)
p8 : I(i,j) : (0<i)&(i<j)→ I(i+1,j)
p9 : I(i,j) < I(k,l) : (i=j)&(k=0)→ I(1,l)
p10: I(i,j) < a(k,l) : i>0 → I[L][b(1)]B
p11: I(i,j) < b(k) : i>0 → I[L]B
p12: B : * → I[K]B

L-system 3.1: A model of dibotryoids



78 Chapter 3. Developmental models

etative apex a creates internodes I and leaves L with plastochron m
(productions p1 and p2). After the creation of e leaves a developmen-
tal switch occurs, and apex a starts creating branches with the same
plastochron (p3). The change of state is indicated by the value of the
second parameter in the module a(t, c), which is now equal to e. The
lateral apices b create internodes and leaves with plastochron n (p4 and
p5). After a delay of d steps from the beginning of the simulation (p6),
the flowering signal is introduced to the basal internode (p7), as indi-
cated by a non-zero value of the first parameter in the module I(i, j).
The signal is passed along an axis at the rate of j steps per internode
(p8 and p9), where j = u for the main axis and j = v for the lateral
axes. These rates are assigned to internodes by productions p2, p3 and
p5. When the signal reaches an apex (either a or b), the apex is trans-
formed into flowering state B (p10 and p11). From then on, new flowers
K are produced in each derivation step (p12).

In order to analyze the plant structure and flowering sequence re-Model analysis
sulting from the above development, let Tk denote the time at which
apex b of the k-th lateral axis is transformed into the flowering state,
and lk denote the length of this axis (expressed as the number of in-
ternodes) at the transformation time. It is assumed here that the first e
leaves count as lateral axes, thus k > e. Since it takes km time units to
produce k internodes along the main axis and lkn time units to produce
lk internodes on the lateral axis, we obtain:

Tk = km + lkn

On the other hand, the transformation occurs when the signal reaches
the apex. The signal is sent d time units after the development starts.
It uses ku time units to travel through k zero-order internodes and lkv
time units to travel through lk first-order internodes:

Tk = d + ku + lkv

Solving the above system of equations for lk and Tk (and ignoring for
simplicity some inaccuracy due to the fact that this system does not
guarantee integer solutions), we obtain:

Tk = k
un − vm

n − v
+ d

n

n − v

lk = −k
m − u

n − v
+

d

n − v

In order to analyze the above solutions, let us first notice that the signal
transportation delay v must be less than the plastochron of the lateral
axes n, otherwise the signal would never reach the lateral apices. Under
this assumption, the sign of the expression ∆ = un−vm determines the
overall flowering sequence, which is acropetal for ∆ > 0 (Figure 3.9)
and basipetal for ∆ < 0 (Figure 3.10). If ∆ = 0, all flowering switches
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Figure 3.9: An acropetal flowering sequence in an open dibotryoid: m = 2,
n = 3, u = v = 1, ∆ = 0.5; derivation lengths: 15−18−21−24−27−30−33

occur simultaneously. The sign of the expression m − u determines
whether the vegetative part of the shoot is more developed at the base
(m − u < 0) or near the top of the structure (m − u > 0). Figure 3.11
shows a model of a member of the mint family that exhibits a basipetal
flowering sequence.

Compound racemes (closed dibotryoids)

This inflorescence type differs from the previous one only in that each
branch, including the main axis, bears a terminal flower (Figure 3.8b).
A partial L-system can be obtained from that of equation (3.4) by
adding one more production:

p8 : B → K
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Figure 3.10: A basipetal flowering sequence in an open dibotryoid: m = 2,
n = 5, u = 1, v = 3, ∆ = −0.5; derivation lengths: 16− 20− 24− 28− 32−
36 − 40
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Figure 3.11: A mint

Compound raceme (closed tribotryoid)

Racemic inflorescences can be compounded to a higher number of lev-
els. The following is a partial L-system for a closed tribotryoid inflo-
rescence, where closed racemes occur on second-order branches as well
as on the terminal portions of first-order branches and of the main axis
(Figure 3.12). The developmental process involves six developmental
transformations.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[L][b]A
p4 : A→ I[L][b]B
p5 : b → I[L]b
p6 : b → I[L]B

p7 : B→ I[L][c]B
p8 : B→ I[L][c]C
p9 : c → I[L]c
p10 : c → I[L]C
p11 : C→ I[K]C
p12 : C→ K
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Figure 3.12: Closed tribotryoid

3.3.2 Sympodial inflorescences

Simple cymes (open)

In racemes, the apex of the main axis produces lateral branches and
continues to grow. In contrast, the apex of the main axis in cymes turns
into a flower shortly after a few lateral branches have been initiated.
Their apices turn into flowers as well, and second-order branches take
over. In time, branches of higher and higher order are produced. Thus,
the basic structure of a cymose inflorescence is captured by the partial
L-system:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[A]K

(3.5)

As in the open raceme, there is a single symbol with alternative rules
which specify that the vegetative apex a may change into a flower-
producing apex A. Any one of the previously discussed mechanisms
is available for timing this decision. Figure 3.13a shows an open cyme
with branches curving in a spiral fashion, while Figure 3.13b shows one
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a b c

Figure 3.13: Open cymes: (a) spiral form, (b) zig-zag form, (c) double

with a zig-zag branching form.

Double cymes (open)

Frequently, not one but two lateral apices are produced under each
terminal apex as in Figure 3.13c. In this case the partial L-system is:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[A][A]K

(3.6)

The two continuing lateral apices may develop at approximately
equal rates (with the same plastochron) or with different rates, giving
rise to asymmetric inflorescences. For example, the following L-system
scheme describes the development of rose campion (Lychnis coronaria) Lychnis
as analyzed by Robinson [126]:

ω : A7

p1 : A7→ I[A0][A4]IK0

p2 : Ai→ Ai+1, 0 ≤ i < 7
p3 : Ki→ Ki+1, i ≥ 0

Production p1 shows that at their creation time, the lateral apices
have different states A0 and A4. Consequently, the first apex requires
eight derivation steps to produce a flower and new branches, while the
second requires only four steps. Each flower undergoes a sequence of
changes, progressing from the bud stage to an open flower to a fruit.
This developmental sequence is illustrated in Figure 3.14. According to
production p1, the lateral apices branch at an angle of 45◦ and lie in a
plane perpendicular to that defined by the mother axis and its sibling.
Production p3 describes the linear elongation of internodes, while p4
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#include L(0),L(1),... /* leaf shapes */
#include K(0),K(1),... /* flower shapes */

ω : A(7)
p1 : A(t) : t=7→ FI(20)[&(60)∼L(0)]/(90)[&(45)A(0)]/(90)

[&(60)∼L(0)]/(90)[&(45)A(4)]FI(10)∼K(0)
p2 : A(t) : t<7→ A(t+1)
p3 : I(t) : t>0→ FFI(t-1)
p4 : L(t) : * → L(t+1)
p5 : K(t) : * → K(t+1)

Figure 3.14: Development of Lychnis coronaria
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a b c

Figure 3.15: Thyrsus: (a) spiral form, (b) zig-zag form, (c) double

and p5 capture the development of leaves and flowers over time. It is
interesting to note that at different developmental stages there are some
open flowers that have a relatively uniform distribution over the entire
plant structure. This is advantageous to the plant since it increases the
time span over which seeds will be produced.

Cymes (closed)

Sympodial inflorescences that produce a terminal flower at some point
during their development are called closed cymes. They result from the
addition of production

p4 : A → K

to the L-systems specified in (3.5) and (3.6), which define open single
and open double cymes.

Thyrsus (closed)

A thyrsus is an inflorescence with branches of cymes borne on a monopo-
dially branching axis. Thus, it represents a mixed sympodial and
monopodial organization. Depending on the orientation of the flow-
ers, a distinction between a thyrsus with cymes in a spiral form and in
a zig-zag form can be made (Figure 3.15, a and b). Both of these types
are described by the following partial L-system:
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ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[L][B]A
p4 : A→ K
p5 : B→ I[B]K
p6 : B→ K

In addition, a thyrsus may have double cymes (Figure 3.15c). In the
closed structure there are three developmental transformations. The
first represents the change from vegetative to flowering development on
the main axis (production p2). The second is necessary for the closure
of the main axis with a terminal flower (p4). Both switches are related
to the monopodial development of the main axis. The third transfor-
mation is responsible for the formation of the flowers that terminate
the development of the sympodial structures (p6).

3.3.3 Polypodial inflorescences

Panicle

The term polypodial is not used in the botanical literature but is coined
here to draw attention to the type of branching that represents con-
tinuing development of the main axis as well as of the lateral apices
of a branch. The corresponding inflorescence type is usually called a
panicle. The presence of two continuing apices at each new node is
expressed by the following production:

A → I[L][A]A

Since there can be nodes near the base of the plant that do not bear
branches, the usual initial rules are included to model the transition
from a purely vegetative to a flowering state. The resulting partial
L-system is:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[L][A]A
p4 : A→ K

An example of a paniculate structure is shown in Figure 3.16. Note
the presence of higher order branching and the lack of terminal racemes.
Due to the repetitive application of production p3 at various levels of
branching, the resulting structure is highly self-similar. The model in-
cludes only two types of developmental transformations: the switch
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Figure 3.16: Panicle (elongated form)

from purely vegetative growth to the formation of the branching struc-
ture (production p2), and the creation of terminal flowers (p4). The
timing of the last production determines the flowering sequence of the
plant. Two possible control mechanisms will be examined in detail, us-
ing developmental models of the branching part of wall lettuce (Mycelis
muralis) as examples.

The development of Mycelis is difficult to model for two reasons. Mycelis
First, the plant exhibits a basipetal flowering sequence, which means
that flowering starts at the top of the plant and proceeds downwards.
Secondly, at some developmental stages the plant has an acrotonic
structure, where the upper branches are more developed than the lower
ones. Both phenomena are in a sense counter-intuitive, since it would
seem that the older branches situated near the plant base should start
growing and producing flowers before the younger ones at the plant
top. To explain these effects, several models were proposed and for-
mally analyzed by Janssen and Lindenmayer [77]. Their model II is
restated here as parametric L-system 3.2.

The axiom consists of three components. Modules F and A(0) rep- Model II
resent the initial segment and the apex of the main axis. Module I(20)
is the source of a signal representing florigen. In nature, florigen is
sent towards the apex by leaves located at the plant base, which is not
included in this model.

The developmental process consists of two phases that take place
along the main axis and are repeated recursively in branches of higher
orders. First, the main axis is formed in a process of subapical growth
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#include O /* flower shape specification */
#ignore / + ∼ O

ω : I(20)FA(0)
p1 : S < A(t) : * → T(0)∼O
p2 : A(t) : t>0→ A(t-1)
p3 : A(t) : t=0→ [+(30)G]F/(180)A(2)
p4 : S < F : * → FS
p5 : F > T(c) : * → T(c+1)FU(c-1)
p6 : U(c) < G : * → I(c)FA(2)
p7 : I(c) : c>0→ I(c-1)
p8 : I(c) : c=0→ S
p9 : S : * → ε
p10 : T(c) : * → ε

L-system 3.2: Mycelis muralis – Model II

specified by production p3. The apex produces consecutive segments
F at the rate of one segment every three derivation steps (the delay is
controlled by production p2), and initiates branches G positioned at an
angle of 30◦ with respect to the main axis. The symbol G is interpreted
here in the same way as F . At this stage, the branches do not develop
further, which simulates the effect of apical dominance or the inhibition
of branch development during the active production of new branches
by the apex.

After a delay of 20 derivation steps, counted using production p7,
an acropetal flower-inducing signal S is sent by production p8. Produc-
tion p4 transports S across the segments at the rate of one internode
per step. Since new internodes are produced by the apex at a three
times slower rate, the signal eventually reaches the apex. At this point,
the second developmental phase begins. Production p1 transforms apex
A(t) into a bud O. Further branch production is stopped and a signal
T (c) is sent towards the base in order to enable the development of
lateral branches. Parameter c is incremented by production p5 each
time signal T (c) traverses an internode. Subsequently, production p6

introduces the value of parameter c into the corresponding branches,
using module U(c) as a carrier. The successor of production p6 has
the same format as the axiom, thus module I(c) determines the delay
between the initiation of branch development and time signal S, sent
to terminate further internode creation. This delay c is smallest for
the top branches and increases towards the plant base. Consequently,
parameter c can be interpreted as the growth potential of the branches,
allowing lower branches to grow longer than the higher ones. On the
other hand, the development of the upper branches starts sooner, thus
in some stages they will be more developed than the lower ones, and
the flowering sequence will progress downwards, corresponding to ob-



3.3. Models of inflorescences 89

#include K /* flower shape specification */
#consider M S T V

ω : I(20)FA(0)
p1 : S < A(t) : * → TV K
p2 : V < A(t) : * → TV K
p3 : A(t) : t>0 → A(t-1)
p4 : A(t) : t=0 → M[+(30)G]F/(180)A(2)
p5 : S < M : * → S
p6 : S > T : * → T
p7 : T < G : * → FA(2)
p8 : V < M : * → S
p9 : T > V : * → W
p10: W : * → V
p11: I(t) : t>0 → I(t-1)
p12: I(t) : t=0 → S

L-system 3.3: Mycelis muralis – Model III

servations of the real plant [77].
A diagrammatic developmental sequence of Mycelis muralis simu-

lated using L-system 3.2 is shown in Figure 3.17. Initially, the segments
are shown as bright green. The passage of florigen S turns them purple,
and the lifting of apical dominance changes their color to dark green.
Figure 3.18 represents a three-dimensional rendering of the same model.
The three-dimensional structure differs from the two-dimensional di-
agram only in details. The angle value associated with the module
“/” in production p3 has been changed to 137.5◦, resulting in a spiral
arrangement of lateral branches around the mother axis. The leaves
subtending branches have been included in the model, and flowers have
been assumed to undergo a series of changes from bud to open flower
to fruit.

Another developmental model of Mycelis, referred to here as model Model III
III, is given by L-system 3.3. The initial phases of development are the
same as in model II. First, apex A creates the main axis and initiates
lateral branches (productions p3 and p4). Symbol M in the successor of
production p4 marks consecutive branching points. After a delay of 20
steps (ω) counted by production p11, flowering signal S is generated at
the inflorescence base (p12) and sent up along the main axis (p5). Upon
reaching the apex, S induces its transformation into a terminal flower
K, and initiates two basipetal signals T and V (p1). The basipetal
signals also can be initiated by production p2, which is needed for the
proper timing of signals in the topmost lateral branch. Signal T prop-
agates basipetally at the rate of one internode per derivation step (p6)
and lifts apical dominance, thus allowing the lateral branches to grow
(p7). The presence of the second basipetal signal V is the distinctive
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Figure 3.17: Development of Mycelis muralis
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Figure 3.18: A three-dimensional rendering of the Mycelis model

feature of model III. Its role is to enable the formation of flowers on
the lateral branches by generating the flowering signal S at their bases
(p8). Since signal V propagates down the main axis at the rate of one
internode per two derivation steps (p9, p10), the interval between the
lifting of apical dominance by signal T and induction of flowering signal
S by signal V increases linearly towards the inflorescence base. This
allows the lower branches to grow longer than the upper ones, resulting
in a structure that is more developed near the base than near the apex
in later developmental stages.

This entire control process repeats recursively for each axis: its apex
is transformed into a flower by signal S, the growth of lateral axes is
successively enabled by signal T , and the second basipetal signal V is
sent to induce the flowering signal S in the next-order axes. Conse-
quently, a basipetal flowering sequence is observed along all axes of the
panicle.

Model II controls the flowering on lateral branches using growth Biological
relevancepotential c accumulated by signal T on its way down, while model

III employs the time interval between signals T and V for the same
purpose. Since both models produce identical developmental sequences,
it is not possible to decide which one is more faithful to nature without
gathering additional data related to plant physiology. Nevertheless, the
models clearly indicate that the flowering sequence of Mycelis cannot
be explained simply in terms of two commonly recognized mechanisms,
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n=10, δ = 60◦

#include K /* flower shape specification */

ω : A∼K
p1 : A : * → [-/∼K][+/∼K]I(0)/(90)A
p2 : I(t) : !(t=2) → FI(t+1)
p3 : I(t) : t=2 → I(t+1)[-FFA][+FFA]

Figure 3.19: Lilac inflorescences
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Figure 3.20: Geometry of a lilac inflorescence: (a) the decussate branching
pattern, (b) the inflorescence skeleton without flowers

the flowering signal and the lifting of apical dominance. Another factor,
whether it is an accumulated delay or a third signal, is needed. The
mathematical models bring forward evidence and assist in formulating
plausible hypotheses related to the control mechanisms that may be
employed by nature. The final answer will require further study of the
real plant.

The models of Mycelis employ relatively complicated control pro- Lilac
cesses to explain the developmental sequence of a plant. On the other
hand, if only a static image of a panicle in a particular developmental
stage is needed, much simpler L-systems can be used. The L-system
that generates the lilac inflorescences shown in Figure 3.19 is an ex-
ample. Production p1 describes the subapical development of an axis.
Production p2 models linear elongation of internodes in time and in-
troduces a delay before p3 creates the lateral axes. The rotation of the
apex by 90◦ (p1) results in a decussate branching pattern with consec-
utive pairs of (n + 1)-order axes lying in the planes that pass through
the n-order axis and are perpendicular to each other (Figure 3.20). A
scene including lilac inflorescences is shown in Figure 3.21.

3.3.4 Modified racemes

There are four frequently encountered types of inflorescences that are
morphological modifications of racemes. Their mature forms are of a
special kind and need to be specified separately.
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Figure 3.21: The garden of L
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a b

Figure 3.22: Umbels: (a) simple, (b) compound

Umbel

An umbel is characterized by more than two internodes attached to a
single node, resulting in a typical umbrella-like shape. In a simple um-
bel there are flowers at the ends of the lateral internodes (Figure 3.22a),
while in compound umbels the branching pattern is repeated recursively
a certain number of times (Figure 3.22b). The partial L-system for a
simple umbel is

ω : A
p1 : A → I[IK]n

and for a compound umbel of recursion depth two is

ω : A
p1 : A → I[IB]kB
p2 : B → I[IC]lC
p3 : C → I[IK]m

This type of inflorescence is commonly found in the family Umbelliferae.
For example, Figure 3.23 presents a model of a wild carrot. Note that Wild carrot
the size of leaves decreases towards the top of the plant, producing a
phase effect similar to that observed in simple racemes. In contrast, the
most developed inflorescence is placed at the top of the plant, indicating
developmental control by a hormone similar to that observed in mints
(Figure 3.11).

Spike

An elongated raceme with closely packed flowers is called a spike. Many
grasses and sedges have this kind of inflorescence (Figure 3.24a). See
Figure 4.17 (page 117) for a realistic model.
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Figure 3.23: Wild carrot

Spadix

A fleshy elongated raceme is called a spadix, and is frequently found in
the family Araceae (Figure 3.24b).

Capitulum

A fleshy spherical or disk-shaped raceme is called a capitulum or “head.”
The sunflower head is an inflorescence of this kind, the oldest flowers be-
ing at the margin and the youngest at the center (Figure 3.24c). Mem-
bers of the family Compositae commonly have this type of structure.
One characteristic feature is the spatial arrangement of components,
such as flowers or seeds, which form early discernible spiral patterns. A
detailed description of these patterns is presented in the next chapter.
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a b c

Figure 3.24: Modified racemes: (a) spike, (b) spadix, (c) capitulum




