
Chapter 2

Modeling of trees

Computer simulation of branching patterns has a relatively long history. Cellular–space
modelsThe first model was proposed by Ulam [149], (see also [138, pages 127–

131]), and employed the concept of cellular automata that had been
developed earlier by von Neumann and Ulam [156]. The branching
pattern is created iteratively, starting with a single colored cell in a
triangular grid, then coloring cells that touch one and only one vertex
of a cell colored in the previous iteration step.

This basic idea gave rise to several extensions. Meinhardt [97, Chap-
ter 15] substituted the triangular grid with a square one, and used the
resulting cellular space to examine biological hypotheses related to the
formation of net-like structures. In addition to pure branching patterns,
his models capture the effect of branch reconnection or anastomosis that
may take place between the veins of a leaf. Greene [54] extended cellu-
lar automata to three dimensions, and applied the resulting voxel space
automata to simulate growth processes that react to the environment.
For instance, Figure 2.1 presents the growth of a vine over a house.
Cohen [15] simulated the development of a branching pattern using ex-
pansion rules that operate in a continuous “density field” rather than
a discrete cellular or voxel space.

The common feature of these approaches is the emphasis on inter-
actions between various elements of a growing structure, as well as the
structure and the environment. Although interactions clearly influence
the development of real plants, they also add to the complexity of the
models. This may explain why simpler models, ignoring even such fun-
damental factors as collisions between branches, have been prevalent to
date. The first model in that category was proposed by Honda [65] who Honda’s model
studied the form of trees using the following assumptions (Figure 2.2).

• Tree segments are straight and their girth is not considered.

• A mother segment produces two daughter segments through one
branching process.
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Figure 2.1: Organic architecture by Greene [54]

• The lengths of the two daughter segments are shortened by con-
stant ratios, r1 and r2, with respect to the mother segment.

• The mother segment and its two daughter segments are contained
in the same branch plane. The daughter segments form constant
branching angles, a1 and a2, with respect to the mother branch.

• The branch plane is fixed with respect to the direction of gravity
so as to be closest to a horizontal plane.1 An exception is made
for branches attached to the main trunk. In this case, a constant
divergence angle α between consecutively issued lateral segments
is maintained (cf. Chapter 4).

By changing numerical parameters, Honda obtained a wide vari-
ety of tree-like shapes. With some improvements [38], his model was
applied to investigate branching patterns of real trees [39, 66, 67, 68].
Subsequently, different rules for branching angles were proposed to cap-
ture the structure of trees in which planes of successive bifurcations are
perpendicular to each other [69]. The results of Honda served as a basis
for the tree models proposed by Aono and Kunii [2]. They suggested

1More formally, the line perpendicular to the mother segment and lying in the
branch plane is horizontal.
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Figure 2.2: Specification of tree geometry according to Honda [65]

several extensions to his model, the most important of which was the
biasing of branch positions in a particular direction, applied to produce
the effects of wind, phototropism and gravity. A similar concept was
introduced previously by Cohen [15], while more accurate physically-
based methods for branch bending were developed by de Reffye [28]
and Armstrong [4].

The models of Honda and Aono and Kunii were rendered using Realism
straight lines of constant or varying width to represent “tree skele-
tons.” A substantial improvement in the realism of synthetic images
was achieved by Bloomenthal [11] and Oppenheimer [105], who intro-
duced curved branches, carefully modeled surfaces around branching
points, and textured bark and leaves (Figure 2.3).

The approaches stemming from the work of Honda defined branching Stochastic
modelsstructures using deterministic algorithms. In contrast, stochastic mech-

anisms are essential to the group of tree models proposed by Reeves and
Blau [119], de Reffye et al. [30], and Remphrey, Neal and Steeves [120].
Although these models were described using different terminologies,
they share the basic paradigm of specifying tree structures in terms of
probabilities with which branches are formed. The work of Reeves and
Blau aimed at producing tree-like shapes without delving into biological
details of the modeled structures (Figure 2.4). In contrast, de Reffye
et al. [29] used a stochastic approach to simulate the development of Approach of

de Reffyereal plants by modeling the activity of buds at discrete time intervals.
Given a clock signal, a bud can either:

• do nothing,

• become a flower,

• become an internode terminated by a new straight apex and one
or more lateral apices subtended by leaves, or

• die and disappear.
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Figure 2.3: Acer graphics by Bloomenthal [11]

Figure 2.4: A forest scene by Reeves [119] c©1984 Pixar
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Figure 2.5: Oil palm tree canopy from CIRAD Modelisation Laboratory

These events occur according to stochastic laws characteristic for each
variety and each species. The geometric parameters, such as the length
and diameter of an internode, as well as branching angles, are also
calculated according to stochastic laws.

The basic types of developmental rules incorporated into this method
correspond to the 23 different types of tree architectures identified by
Hallé, Oldeman and Tomlinson [58]. Detailed models of selected plant
species were developed and are described in the literature [16, 20, 26,
27, 76]. A sample tree model is shown in Figure 2.5. The approach of
Remphrey [120, 121, 122] is similar to that of de Reffye, except that
larger time steps are used (one year in the model of bearberry described
in [120]). Consequently, the stochastic rules must describe the entire
configuration of lateral shoots that can be formed over a one-year pe-
riod.

The application of L-systems to the generation of botanical trees was Application of
L-systemsfirst considered by Aono and Kunii [2]. They referred to the original

definition of L-systems [82] and found them unsuitable to model the
complex branching patterns of higher plants. However, their arguments
do not extend to parametric L-systems with turtle interpretation. For
example, the L-system in Figure 2.6 implements those tree models of
Honda [65] in which one of the branching angles is equal to 0, yielding
a monopodial structure with clearly delineated main and lateral axes
(see Section 3.2 for a formal characterization).
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n = 10
#define r1 0.9 /* contraction ratio for the trunk */
#define r2 0.6 /* contraction ratio for branches */
#define a0 45 /* branching angle from the trunk */
#define a2 45 /* branching angle for lateral axes */
#define d 137.5 /* divergence angle */
#define wr 0.707 /* width decrease rate */

ω : A(1,10)
p1: A(l,w) : *→ !(w)F(l)[&(a0)B(l*r2,w*wr)]/(d)A(l*r1,w*wr)
p2: B(l,w) : *→ !(w)F(l)[-(a2)$C(l*r2,w*wr)]C(l*r1,w*wr)
p3: C(l,w) : *→ !(w)F(l)[+(a2)$B(l*r2,w*wr)]B(l*r1,w*wr)

Figure 2.6: Examples of the monopodial tree-like structures of Honda [65],
generated using L-systems
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According to production p1, the apex of the main axis A produces Monopodial
branchingan internode F and a lateral apex B in each derivation step. Con-

stants r1 and r2 specify contraction ratios for the straight and lateral
segments, a0 and a2 are branching angles and d is the divergence angle.
Module !(w) sets the line width to w, thus production p1 decreases Branch width
the width of the daughter segments with respect to the mother seg-
ment by the factor wr = 0.707. This constant satisfies a postulate by
Leonardo da Vinci [95, page 156], according to which “all the branches
of a tree at every stage of its height when put together are equal in
thickness to the trunk below them.” In the case where a mother branch
of diameter w1 gives rise to two daughter branches of equal diameter
w2, this postulate yields the equation w2

1 = 2w2
2, which gives a value for

wr equal to w2/w1 = 1/
√

2 ≈ 0.707. A general discussion of the rela-
tionships between the diameters of the mother and daughter branches
is included in the book by Macdonald [94, pages 131–135].

Productions p2 and p3 describe subsequent development of the lat-
eral branches. In each derivation step, the straight apex (either B or C)
issues a lateral apex of the next order at angle a2 or −a2 with respect
to the mother axis. Two productions are employed to create lateral
apices alternately to the left and right. The symbol $ rolls the turtle Keeping

turtle’s
orientation

around its own axis so that vector �L pointing to the left of the turtle
(Section 1.5) is brought to a horizontal position. Consequently, the
branch plane is “closest to a horizontal plane,” as required by Honda’s
model. From a technical point of view, $ modifies the turtle orientation
in space according to the formulae

�L =
�V × �H

|�V × �H|
and �U = �H × �L,

where vectors �H, �L and �U are the heading, left and up vectors associated
with the turtle, �V is the direction opposite to gravity, and |�A| denotes
the length of vector �A. The tree-like structures shown in Figure 2.6
were generated using the values of constants listed in Table 2.1, and
coincide with the structures presented by Honda.

Figure r1 r2 a0 a2

a 0.9 0.6 45 45
b 0.9 0.9 45 45
c 0.9 0.8 45 45
d 0.9 0.7 30 -30

Table 2.1: Constants for the monopodial tree structures in Figure 2.6
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A slightly different L-system, specified in Figure 2.7, captures sym-Sympodial
branching podial structures, where both daughter segments form non-zero angles

with the mother segment. In this case the activity of the main apex is
reduced to the formation of the trunk F and a pair of lateral apices B
(production p1). The subsequent branching pattern is captured by pro-
duction p2. The sample structures in Figure 2.7 were obtained using the
constants listed in Table 2.2, and correspond to the models presented
by Aono and Kunii.

The L-systems considered so far have been designed in a manner
that emphasizes their relation to the models described in the litera-
ture. Specifically, all segments are assigned their final length at the
time of creation, and no further elongation occurs. As pointed out in
Section 1.10.3, similar structures can be obtained by creating new seg-
ments of constant length and increasing the lengths of previously cre-
ated segments by a constant factor in each derivation step. A sample
L-system constructed according to this paradigm is given in Figure 2.8.

The overall structure of the tree is defined by production p1. InTernary
branching each derivation step, apex A produces three new branches terminated

by their own apices. Parameter w and constant vr relate the width of
the mother branch w1 to that of the daughter branches w2. According
to da Vinci’s postulate w2

1 = 3w2
2, thus vr = w1/w2 =

√
3 ≈ 1.732.

Productions p2 and p3 capture the gradual elongation of branches and
the increase in their diameter over time.

The bending of branches is simulated by slightly rotating the tur-Tropism
tle in the direction of a predefined tropism vector �T after drawing each
segment (Figure 2.9). The orientation adjustment α is calculated us-
ing the formula α = e |�H × �T |, where e is a parameter capturing axis
susceptibility to bending. This heuristic formula has a physical moti-
vation; if �T is interpreted as a force applied to the endpoint of vector �H,
and �H can rotate around its starting point, the torque is equal to �H ×�T .
The parameters relevant to the generation of the tree-like structures in
Figure 2.8 are listed in Table 2.3. A more realistic rendering of the tree
in Figure 2.8d is presented in Figure 2.10.

Figure r1 r2 a1 a2

a 0.9 0.7 5 65
b 0.9 0.7 10 60
c 0.9 0.8 20 50
d 0.9 0.8 35 35

Table 2.2: Constants for the sympodial tree structures in Figure 2.7
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n = 10
#define r1 0.9 /* contraction ratio 1 */
#define r2 0.7 /* contraction ratio 2 */
#define a1 10 /* branching angle 1 */
#define a2 60 /* branching angle 2 */
#define wr 0.707 /* width decrease rate */

ω : A(1,10)
p1 : A(l,w) : *→ !(w)F(l)[&(a1)B(l*r1,w*wr)]

/(180)[&(a2)B(l*r2,w*wr)]
p2 : B(l,w) : *→ !(w)F(l)[+(a1)$B(l*r1,w*wr)]

[-(a2)$B(l*r2,w*wr)]

Figure 2.7: Examples of the sympodial tree-like structures of Aono and
Kunii [2], generated using L-systems
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#define d1 94.74 /* divergence angle 1 */
#define d2 132.63 /* divergence angle 2 */
#define a 18.95 /* branching angle */
#define lr 1.109 /* elongation rate */
#define vr 1.732 /* width increase rate */

ω : !(1)F(200)/(45)A
p1 : A : * → !(vr)F(50)[&(a)F(50)A]/(d1)

[&(a)F(50)A]/(d2)[&(a)F(50)A]
p2 : F(l) : *→ F(l*lr)
p3 : !(w) : *→ !(w*vr)

Figure 2.8: Examples of tree-like structures with ternary branching
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Figure 2.9: Correction α of segment orientation �H due to tropism �T

Figure d1 d2 a lr �T e n
a 94.74 132.63 18.95 1.109 0.00,-1.00,0.00 0.22 6
b 137.50 137.50 18.95 1.109 0.00,-1.00,0.00 0.14 8
c 112.50 157.50 22.50 1.790 -0.02,-1.00,0.00 0.27 8
d 180.00 252.00 36.00 1.070 -0.61,0.77,-0.19 0.40 6

Table 2.3: Constants for the tree structures in Figure 2.8

Figure 2.10: Medicine Lake by Musgrave et al. [101]
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Figure 2.11: A surrealistic elevator

The examples given above demonstrate that the tree models of Honda,Conclusions
as well as their derivatives studied by Aono and Kunii, can be expressed
using the formalism of L-systems. In a separate study, Shebell [130] also
showed that L-systems can be applied to generate the architectural tree
models of Hallé, Oldeman and Tomlinson [58]. These results indicate
that L-systems may play an important role as a tool for biologically-
correct simulation of tree development and synthesis of realistic tree
images. However, the tree-like shapes created so far are rather generic
(Figure 2.11), and models of particular tree species, directly based on
biological data, are yet to be developed. L-systems have found more
applications in the domain of realistic modeling of herbaceous plants,
discussed in the next chapter.


