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A new algorithm for finding the contour of a set of iso

rectangles is developed. The algorithm requires O(n 2) time and 

O(n) space. This resolves the question, raised by Guting (4), of 

whether there exists an O(n) space algorithm which reports the 

pieces of the contour in the order of contour-cycles. The 

algorithm uses a data structure that facilitates a clear 

separation of the geometrical and topological aspect of  the 

contour problem. A notion of topological equivalence is 

introduced and applied for avoiding repetitive computations for 

sets of !so-rectangles belonging to the same equivalence class. 

A modified definition of a slab ls introduced for handling 

special cases (induced by colinear edges) in a consistent way. 

l. INTRODUCTION

A rectangle with two edges parallel to the x-axis and two -

to the y axis is called an iso-rectangle. The contour of a set 

of iso-rectangles is the boundary of the their union. In general 

th is is a collection of disjoint •contour-cycles•, each of which 

is a sequence of alternating horizontal and vertical 

contour-pieces, 

Iso-rectangles play an important role in several practical 

areas such as computer graphics (9,ll), VLSI design (7), and 

architectural data bases (1), They also attract considerable 

theoretical interest (see ( 2 ,3) for extensive bibliographies). 
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and Engineering Research Council of Canada. 
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The problem of findi ng the contour of a set of lso

rectangles was first mentioned by Shamos (10, p.163], and 

explicitly stated by Vitanyl and Wood (1 2 ]. Vitanyl and wood 

remarked that their algorithm for computing the perimeter could 

be modified for reporting the contour, too. However, they did 

not pursue this idea. 

The first complete solution of the contour problem ls due to 

Lipski and Preparata (61. Two other, time-optimal algorithms 

were published by Giiting (4,S]. Yet another algorithm was found 

by the authors, looking for an intuitively simple solution of the 

c ontour problem (8). Ti me and space complexity of  these 

algorithms are summarized in Table l. 

The algorithm described in this paper requires O(n 2 ) time 

and O(n) space. The space requirement is optimal. Like the 

algorithms of Lipski and Preparata (6), and Guting (4), our 

Table l. Time and space requirements of known algorithms 
for finding the contour of a set of iso-rectangles. 

-----------------------------------------------------------------

Algorithm Time Space 
-----------------------------------------------------------------

Vitanyl , Wood (2 ) 0 (n2) O(nlogn)? 

Lipski , Preparata (6] 0 (nlogn + 
plog( 2n2/p) 

0 (n+p) 

Gu ting (4) 0 (nlogn+p) O(n+p) 

Gu ting [SJ O(nlogn+p) 0 (nlogn+p) 

Prusinkiewicz ' 0 (n2) 0 (n2) 
Raghavan (8] 
-----------------------------------------------------------------

n - number of given rectangles 
p - number of edges in the contour 
-----------------------------------------------------------------

algorithm ls based on the line-sweep approach. However, instead 

of a segment tree or i�s modifications, it uses a multillnked 

list of edges «s its fundamental data structure. This data 

structure ls the key to the low space requirement. Due to the 

use of pointers, lt ls not necessary to store all edges of the 

contour before reporting them. Loosely speaking, this eliminates 

term p in the formula O(n+p), describing the space complexity of 
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some previous algorithms (Tab.l). 

The paper is organized as follows. 

In section 2 the main idea of the algorithm is given. The 

presentation is made under the assumption that no two edges of 

the input iso-rectangles are colinear. This assumption is 

removed in section 3 through modifying the notion of a slab. 

Since this modification makes the slabs lose their common 

intuitive interpretation, appropriate formal definitions are 

provided. In section 4 the notion of topological equivalence 

between sets of iso-rectangles is introduced. It is shown that 

the contour of a set of iso-cectangles can be mapped onto the 

contour of any equivalent set, thus saving computation. Finally, 

in section 5 analysis of the time and space complexity of the 

contour algorithm is given. 

2. THE I\LCORITHM

� Intuition 

The algorithm is based on the use of slabs.

Suppose that vertical lines ace drawn through vertices of

all given rectangles. Since the rectangles are iso-oriented, 

these lines can also be seen as infinite extensions of vertical 

edges. Each pair of consecutive lines defines a vertical strip, 

called a slab. Horizontal edges of rectangles which intersect 

with a slab ace said to be active. Within a slab an active edge 

will contribute to the overall contour of the union, if it 

separates an area covered by one or more rectangles from a non-

covered area. such an edge is called relevant to the slab. 

Thus, an active edge of a rectangle is relevant if and only if it 

is not contained in any other rectangle within the slab. For 

example, consider the iso-rectangles shown in Fig.la. In slab 4 

horizontal edges of rectangles 2 and 3 are active and relevant, 

while in slab 5 horizontal edges of rectangles 2,3 and 4 are 

active, but only the bottom edge of rectangle 4 and the top edge 

of rectangle 3 are relevant (Fig. lb). 

Vertical segments of the contour lie on the lines limiting 
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Fig. 1. a) An example of layout of iso-rectangles. 
b) Active (--) and relevant ( -- ) edges in slabs 4 and 5. 
c) Tying together relevant edges.

the slabs. They tie together relevant hocizontal edges of two 

consecutive slabs. As the contour line cannot self-intersect, 

the horizontal edges can be tied together in only one way: the 

lowest one with the secoild from the bottom, the third with the 

fourth, and so on. 

A vertical segment degenerates to one point if horizontal 

segments to be tied together are colinear. In particular, this 

situation arises if an edge is relev ant to two or more 

consecutive slabs. When found, a sequence of colinear contour 
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segments should be replaced by one segment of appropriate length, 

In the exa mple of slabs 4 and 5 shown in Fig.lb, vertical 

segments will connect: 

the botto m edge of rectangle 4 in slab 5 with the botto m 

edge of rectangle 2 in slab 4; 

- the top edge of rectangle 2 in slab 4 with the bottom edge

of rectangle 3 in the same slab, and 

- the pieces of the top edge of rectangle 3, lying in slabs

4 and 5. 

In the last case the connected segments are colinear and should 

be replaced by o ne longer seg ment. 

connections is shown in Fig. le. 

The result o f  these 

The final contour is a sequence of alternating horizontal 

pieces of relevant edges and vertical segments connecting the m 

pairwise. 

2.2. 

Input data consist of the descriptions of a given set of 

iso-rectangles. Each rectangle is specified as a 5-tuple: 

where: 
Rka (k, "lk• "rk• Ybk• Ytkl 

- k is an ordering number of the rectangle, 

- "lk and "ck are abscissas of its left and right edges,

- Ybk and Ytk are ordinates of the bottom and the top edge 

respectively. 

For instance, the set of rectangles shown in Fig. la is described 

as follows: 
(l, 4, 8, 1, 13) 

( 2, 2, 14, 3, 5) 

( ), 6, 13, 9, 11) 

( 4, 11, 15. 5, 2, 10) 

For the sake of clarity, in the de script ion of the algorithm 

we will assume that no two edges of different rectangles are

colinear. This restriction will be removed in section 3. 

2.3 Internal representation of edges and contour-cycles 

Edges of iso-rectangles can be specified in several ways. 

We will specify them as pairs (k,s), where k is the number of a 
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rectangle, and the tag s•(-,t ,-, 1) indicates its bottom, left, 

top and right edge , respectively. Obviously, given an edge 

(k,s), the coordinates of its endpoints can be found in a 

s t r a i g h t f o r w a r d  way b y  r e f e rri n g  t o  t he 5-t u pl e  

Rk = (k, Xlk• xrk• Ybk• Ytkl • 

Contour-cycles are represented by circular lists of pairs 

(k,s), specifying consecutive edges of iso-rectangles which 

contribute to the overall cycle. By convention, edges of each 

cycle are listed such that the figure is on the right side while 

traversing consecutive edges. In other words, a contour-cycle is 

oriented clockwise if it is an external boundary of a connected 

component, and counterclockwise - if it is the boundary of a 

hole. Foe instance, the interior contour-cycle of the set shown 

in Fig.la is specified by the circular list of elements (2,-), 

(4,f l, O,-l, (1, I). Observe that this representation is 

unambiguous - the intersections of consecutive edges define 

unambiguously consecutive vertices of the contour-cycle. 

The use of pairs in the form (k,s) instead of explicit 

coordinates helps separate the topology of the contour problem 

from its geometry. This will be discussed in more detail in 

section 4. 

2.4 Output data 

The algorithm reports the edges of the contour immediately 

after they are determined. In consequence, edges belonging to 

different cycles may interlace in the order of presentation. 

Sequences of edges form ing cycles are specified by means of 

pointers, indicating explicitly the next edge of the cycle. For 

exa mple, see the output of the algorithm for the set of 

rectangles from Fig.l, given in Table 2 and Fig.2. 
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Table 2. Output of the algorithm for the set of rectangles 
from Fig.la. Assignment of numbers to edges is 
arbitrary and depends on details of implementation 
of the algorithm (cf. Fig.5). 

-----------------------------------------------------------------
Edge Edge Next Edge Edge Next 

Number Specification Edge Number Specification Edge -----------------------------------------------------------------
l 
2 
4 
5 
3 
6 
8 
9 

12 
11 

a) 

b) 

(2,-l 2 7 11,-, 
(2,t ) 3 13 ( l, I) 
(1,-) 5 15 (4,-) 
( 1,1 ) l 16 ( 4 ,t ) 
(2,-) 6 10 (2,-, 
(l,t ) 7 17 < 4 ,I l 
(2,-) 9 14 (3,-) 
(l, I) 4 18 ( 3, ll 
( 3,-) 11 19 (4,-) 
( l, I) 10 20 ( 4, I) 

,. 
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Fig. 2. Output of the algorithm (Tab. 2) interpreted as: 
a) list of edges, and b) plot of the contour. Edge numbers
corres pond to Tab. 2. 
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!!i Preprocessing 

The purpose of preprocessing is to establish a list of 

consecutive slabs. Each slab is specified by a vertical edge of 

a rectangle, colinear with the left edge of the slab. For 

instance, slab 4 in Fig. la is specified as (1, ) and slab 5 as 

(4, ). Obviously, finding the list of consecutive slabs is 

equivalent to sorting the set of vertical edges of the given 

rectangles by their abscissas. 

!:.!.,_ rinding active edges � � slab 

In this step, the bottom-up list of active edges in a slab i 

ls computed recursively as follows: 

l) Initially, in slab O (preceding the leftmost edge of a

given set of iso-rectangles) the list of active edges is 

empty. 

2) Transition from a slab l to the slab i+l implies either

one of the actions: 

- insertion of new active edges (k,.-) and (k,-) - if the 

slab i+l is specified by the left edge of the rectangle

k: (k,I), or

- deletion of edges (k,-l and (k,-) which ace no longer

active - if the slab i+l is specified by the right edge

of the rectangle k: (k, I). 

The edges must be inserted into their proper places to keep 

the list of active edges in the bottom-up order (see. Fig.3). 
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SLAB 4 SLAB 5 

(SPECIFIED BY EDGE (4,t)) 

INSERT: 

SLAB 6 

(SPECIFIED BY EDGE (3, I)) 

DELETE: 

Fig, J, Finding active edges in slabs 5 and ·6 fro Fi 1 m g. a,

2,7. Finding relevant edges�! slab 

Consecutive active edges divide a slab into segments. The 

number of rectangles including a given segment le called the 

lnvlslblllty order [cf. 9,111 and is denoted by I. The 

lnvlalbll ity order of each segment of a slab la computed 

recursively, by scanning the slab bottom-up. 

l) Initially (i.e. below the lowest active edge) I•O, 

2) - Traversing of a bottom active edge (k,-l of a rectangle 

increases I by l; 

- Traversing of a top active edge (k,-) decreases I by l. 

After the invisibility orders are known, the relevant edges can 

be easily selected, since they separate segments with I•O from 

segments with I•l (or segments with I•l from segments with I•O). 

For example, see Fig.4. 

2,8. Forming contour-cycles 

Contour cycles a r e  represented as ci r cula r lists of 

horizontal relevant edges connected by appropriate vertical 

edges. Computation of contour-cycles poses the following 

problems: 
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Identification of pairs of relevant edges to be connected. 

Detection of situations where two edges to be connected 

are, in fact, different segments of the same edge split 

among two or more consecutive slabs. These segments 

should be replaced by one segment of the appropriate 

length. 

Creation of vertic al segments which w ill connect 

remaining pairs of relevant edges. 

12 
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,. IS X 

Fig. 4. Calculating invisibility orders and finding relevant 
edges in slab 5 from Fig. 1a-. 

Determination of the order of the edges within a contour

cycle. 

The algorithm forms contour-cycles by systematic examination 

of pairs of consecutive slabs. Given slabs i-1 a nd i, this 

involves the following steps: 

11 Find the two lowest relevant edges, not previously 

considered, in the merged slabs i-1 and i. 

21 If the two edges are colinear (i.e. they represent two 

different seg1ne.nts of the same edge (k,s)), replace them 
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by one longer segment running through two or more slabs. 

3) If the two hoc i zon tal edges to be con nee ted are not

colinear, join them by the vertical edge specifying slab 

i. Determine the order in which the three edges will be 

listed as parts of a contour-cycle using the reasoning 

below: 

An edge of a union of iso-rectangles is an edge of some 

rectangle or a segment of it. Thus, the union must lie 

on the same side of this edge as the rectangle. Suppose 

that edges of input iso-rectangles are vectors oriented 

such that given a vector, the rectangle is on its right 

side. Then the edges of each contour-cycle must be 

listed in such an order, that all edges are scanned 

conforming to their orientation.when the cycle is 

traversed (cf. section 2.3). This provides the criterion 

for edge linking. For instance, consider Fig.la and le. 

The edges: (4,-) in slab 5 and (2,-) in sla b 4 a re 

oriented from right to left, and the edge (4 ,I 

specifying slab 5 is oriented bottom-up. Hence, in a 

contour-cycle these three edges must be listed ln the 

order (4,-) - (4,1 - (2,_) and not: (2,-) - (4,1 ) -

(◄,-). Likewise, the edges (2,-1, (3,-) and (4,1 ) from

the same slabs 4 and 5 must be ordered (2,-1 - (4,1) -

(3,-1 and not (3,-1 - (4,1 I - (2,-). 

41 Repeat steps l through 3 until all relevant edges in 

slabs i-1 and i are considered. 

l.,J_ Overall structure of the algorithm 

A complete algorithm for reporting the contour of a set of 

iso-rectangles is composed of the following steps: 

l. Preprocessing: Given n iso-rectangles, establish the

ordered list of 2n+l slabs numbered fro m 0 (the leftmost

slab) to 2n (the rightmost one).

2. Set initial conditions: create the empty list of active

edges in slab 0.
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3. Main body of the algorithm: For i•l until 2n do:

- Find the list of active edges in slab i;

- Find the list of relevant edges in slab i; 

- For all pairs of relevant edges in merged slabs i-1 and

i, considered in the bottom-up order, do:

If both edges are colinear 

then replace them by one segment of appropriate length 

else 

- Co nne ct the edges with the vert ical segment

specifying slab i, Observe their order within the

contour cycle they belong to;

Report the edges to be added to the cont our along

with pointers establishing their order.

2.10. An example of implementation 

A straightforward implementation of the algorithm is based 

on the use of linked lists. The following lists are maintained: 

- consecutive vertical edges of input iso-rectangles,

- active edges in the current slab (slab i), 

- relevant edges in the current slab (slab i), 

- relevant edges in the previous slab (slab i-1).

Relevant edges are represented by atoms with two pointers. 

One pointer indicates the next relevant edge within a slab. 

Another pointer is used to link consecutive contour-edges within 

a contour-cycle. This data structure is exemplified in Fig. 5, 

3. COLINEAR EDGES 

l:..!. General discussion 

In section 2.2 we  a ssumed that no two edges of the input

iso-rectangles were colinear. Hence, it was possible to linearly 

order all vertical edges in ascending sequence,of their abscissae 
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and the horizontal edges - in ascending sequence of their 

ordinates. Both orderings are important to the algorithm. The 

ordering of vertical edges has two implications: 

s labs can be defined as str ips (of non-zero w idth) 

a) 
SLAB CONSECUTIVE RELEVANT EDGES 

OF SLAB 3 NUMBER VERT. EDGES 

3 

4 

b) 

4 

5 

RE LEVANT EDGES OF SLAB 4 

CONTOUR EDGES REPORTED IN STEP 5 

( .. · 

1

...,__�,......� , 11·,/· I 
: 41 X 41 X :: : 

:10 .................. i::::::::::::::��::::::::::::::::::::::::::::::::J � 
,. 

;�31-1x0 l ·1 TWO SEGMENTS OF THE SAME EDGE 

IARE REPLAC ED BY ONE SEGMENT 

(--- -OLD LINKS,--NEW LINK) 

Fig. 5. Finding the contour of the set of iso-rectangles of 
Fig. 1a. a) Data structure after step 1=4. b) Data structure 
after step i=5. Lists of active edges not shown - cf. Fig. J. 
x - link irrelevant. u - link not determined yet. Contour edges 
are identified by the same numbers as shown in Tab. 2 and 
Fig. 2. These numbers are assigned to edges while they are 
connected into cycles, in the order of consideration. 

between extensions of consecutive edges (cf. section 

2.1) I 

transition from a slab i to the slab i+l involves either 

inser tion or deletion of exactly two active edges (cf. 

section 2.6). 

The ordering of horizontal edges has other implications: 

consecutive active edges divide a slab into segments 
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(cf. section 2,7) i 

transition between consecutive segments of a slab either 

increments or decrements the order of invisibility I by 

exactly one (cf. section 2. 7);

relevant edges to be connected within a contour cycle 

(the two lowest edges not yet considered) c an b e  

determined unambiguously (cf. section 2.8). 

The assumption of non-colinearity of edges can be removed using 

one of two approaches: 

1) by modifying the algorithm to handle edges which are not 

linearly ordered; 

2) by replacing increasing values of abcissae or ordinates 

with another ordering relation which induces an

appropriate linear ordering of edges, even if they are

colinear. 

In this paper the second approach is employed. Intuitively, the 

main idea is that even colinear vertical edges define separate 

slabs (perhaps of zero width). Likewise, all active edges within 

a slab induce separate slab segments (perhaps of zero height), 

Colinear edges must be ordered in such a way that: 

oc) left edges (I) precede right edges (I) , and 

} ) bottom edges ( _) precede top edges (-) . 

Thls will ensure that iso-rectangles which share only an edge or 

a vertex will be correctly treated as connected components (cf. 

Fig ,6). 

The ordering of colinear edges of the same ty pe (for 

instance,! ) is less important. This ordering may affect the way 

in which the contour is represented, but does not affect the 

contour itself. One possibility is to order colinear edges of 

the same type by their rectangle's number. 

The use of relations imposing a linear order on any set of 

horizontal or vertical edges makes it possible to remove the 

restriction of non-colinearity of edges without essentially 

modifying the algorithm given in section 2. However, the notions 

of a slab, an active edge, and a relevant edge lose their 
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straightforward geometrical interpretations (cf. section 2.1) and 

require new definitions. 

3.2 Formal definitions 

An iso-rectangle in the plane is defined as a 5-tuple 

Rk E (k, x 1k, Xrk' Ybk• Ytk) , where: k is the number of the

rectangle, x1k, Xrk are abscissae of its left and right edges, 

and Ybk• Ytk are ord inates of its bottom and top edges 

respectively {cf. section 2.2). A set s of n iso-rectangles 

R1, ••• ,Rn can be alternatively specified by a function: 

'f: (1, .. ,n)X {1,1,-,-)-(-o,,+oo)

defined for all kE{l, ... ,n} as follows: 

f(k,!) 
s ><1k r(k,_) = Ybk

f(k, ll xrk f<
k,-) � Ytk

y 
a) t1 

to 
• 

• 

O 
O 1 2 ) 4 S O 1 9 II 10 11 ,c. 

y 
II 
to 
• 
• 
1 

• 

c) 

0 
0 1 2 , • s e 1 a 11 10 11 • 

J

b

�)--· L__ ----- -
e· - ----------LI-----_.. 

I I 

I 2 ) ◄ 5 e e 1 I 8 10 11 1, 0 

y d) ft 

□ 
tO 

• 
e 

e 

□ 
0 

0 , 2 , , s e 1 a • 10 11 Jl 

Fig . 6. Example of orderings of colinear edges . a) Two rectangles 
with colinear edges . b) Ordering of colinear edges following 
assumptions oc and ft • c) Contour resulting from this ordering -
the rectangles are properly interpreted as being connected. 
d) Ordering following assumptions opposite to oc and J3 results
in an improper contour - the rectangles are interpreted as
unconnected .
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In the set of vertical edges X • (1, ... ,n) ><(I, i) we define an 

ordering relations-<. as follows: 

r<k1,v1) < Y7(k2,v2) •> (k1,v1) -<. (k2,v2) 

f!k1,I I • 'f!k2,H •> (ki,1 I -<. (k2, I) 

f(k1,v) • f(k2,v) , k1<k2 •> (k1,v) -<. (k2,v) 

where k1,k2€ (1, ... ,n); v1,v2,ve (♦, I). Likewise, in the set of 

horizontal edges Y • (1, ... ,n) X (_,-) we define an ordering 

relation -<y : 

'f(k1,h1I < 'f(k2,h2I •> (k1,h1I -<y (k2,h2I 

'f(k1,-I • f(k2,-I •> (k1,-I -<y (k2,-I 

f(k1,h) • r<k2,hl , k1<k2 •> (k1,hl -<y (k2,hl 

where k1,k2 E. (1, ••• ,n); h1,h2,h e {+, -1. 

Let f: X -> {1, ... ,2n) assign an ordering number (called the slab 

number) to each element of the list X sorted by the relation -<
,.. 

•

A horizontal edge (k ,h ) i s  said to be active in sla b ie 

{ l, ... ,2n) if and only if f((k,t ))�i and f((k_, ♦))>i. A list of 

all active edges in a sla b  i is denoted by Yi. Let 9: Y1 -> 

{ l, ... , 2n1) assign an ordering number (called the segment number) 

to each element of the list Yi, sorted by the relation, -<y • The 

invisibility order I(j) of a segment j e {O, l, .•• ,2ntJ is defined 

recursively as follows: 

I ( 0) = 0 

{
I(j-l)+l if 9-l(j)•(k,-1 I(j) 

= I(j-1)-l if g-l(j}�(k,-) 
j=l, ... , 2ni 

An edge j is rele v ant if I(j-1)•0 or I(j)=O. The notions 

introduced above are illustrated in Fig.7. Notice, however, that 

although in Fig.7 b colinear edges are split (e.g. (1,-) and 

(2,-)), they should be considered as col inear while forming 

contour cycles (section 2. 8). 

264 



4. 

o) 
10 
9 
8 2 
1 

6 1 
5 

4 5 3 
3 

4 
2 

b) 
0 
0 I 2 3 4 5 6 1 8 9 10 11 l 

y 0 

1�� 

:f 7. 

:l 4. 

�� 
J

' 
' 

1 

: 
''
' ' 
' 
' ' 
' 
' 
' 

' 

' 
' 
' 
' 

2 
' ' ' ' 

' 

4 
' ' 
' ' 
' ' 
' ' 

' ' 

8 g 

' . 
. 

' 
' ' . ' 

' . 
' ' ' 

' 

' . 
' 

i ' '
' ' 

' ' 

' '' 
' ' 
' ' 

' ' 

' ' 

' ' 
I ' ' 

I 5 3 

' ' 

' ' 

' ' 

' 
' 

' 
' : ' ' 

1' 
o[_L_J ... ._, __._....,_....,__...• ... : ... .. :._,__.__.__.__ 
0 1 2 3 3 4 5 8 7 7 7 7 8 9 10 11 l 

I ' ' : ' ' ' 

c) 

Fig. 7. Using relations -<, and -<y • a) An example of layout 
of iso-rectangles with colinear edges. b) Intuition of slabs, 
active edges and slab segments. c) Invisibility orders in 
slab 6. 

TOPOLOGY� GEOMETRY OF THE CONTOUR PROBLEM 

The described algorithm refers to the coordinates of input 

rectangles twice: 

when lists of edges (e><pressed as pairs (k,s)), ordered 

by the relations -<,and -<y are established, and 

when colinearity of contour-edges is checked. 

Therefore, any two sets of !so-rectangles which: 

exhibit the same ordering of edges, and 

have the same pairs of colinear edges, 

will have identical solutions expressed in terms of lists of the 

(k,s) pairs. suc h  sets of is o-re ctangles w il l  be c alled 

topologically equivalent. The notion of topological equivalence 

can obviously be extended to situations, where corres ponding 

rectangles from the sets under consideration (denoted by rand 6) 
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have different numbers and are related to each other by a 

bijection ;e: r -,1. In this case a ci rcular list of edges 

(k1,s1), (kz,sz), ••• ,(kN,sN) is a contour-cycle of riff the list 

( 'r(k1),s1), ( a?(kz),sz), ••• ,( ;£(kN),sN) is a contour-cycle of 

Ll. Consequently , if the contour of a set of iso-rectangles 

r is known, and the set /:J is topologically equivalent to r, the 

contour of LI can be found as a mapping of the contour of r , 

without repeating all computations (Fig.8). 

y a) b) 
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Fig. s. An example of topological equivalence. a) Set of iso
rectangles topologically equivalent to the set in Fig. 1a, 
b) Correspondence between iso-rectangles in Fig. 1a and in 
Fig. Sa. c) Contour of the set in Fig. Sa is a mapping of the 
contour shown in Fig. 2. 
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5. ANALYSIS OF THE COMPLEXITY OF THE ALGORITHM 

5.1 Time complexity 

In the standard way, let us adopt the real random-access 

machine as the model of computation (cf. I 10 J). Under this 

assumption, the worst-case time required to compute the contour 

of n iso-rectan gles can be calculated as follows (cf. section 

2. 9): 

The time necessary to establish the slabs is determined 

by sorting the edges. Hence, it is of order O(nlogn). 

Let us consider computations performed by the algorithm 

in a slab i <= { l, ••• , 2n). In order to establish the list 

of active edges in slab i, two edges must be inserted to 

or deleted from the list of active edges of slab l-1. 

This requires O(n) time. Next, the list of relevant 

edges is fo und by a single scan of the active edges. 

Since the maximum number of active edges is 2n, this scan 

requires 9(n) time. Finally, relevant edges of slabs i-1 

and i are connected into fragments of contour-cycles. 

This can b e  viewed as the merging of two ordered lists of 

lengths less than or equal to 2 n, followed by a single 

scan of the merged list. The required time is of order 

O(n)+O(n)�o(n). Thus, the total time needed to process 

one slab is of order O(n)+O(n)+O(n)sO(n). 

As the numb er of slabs ls equal to 2 n�O(n) (no 

computations for slab O are required), the total time 

n e c e s s a ry to consider all slabs is of order 

O(n)· O(n)EO(n 2). 

Hence, the worst case time necessary to complete the algorithm is 

of order o0logn)+O(n2)•0(n 2). 

5.2 Space complexity 

The memory size required by the algorithm can be calculated 

as follows (cf. section 2 .10): 

- The list of consecutive vertical edges of input iso

rectangles requires 2n•O (n) space. 

- A list of active edges in the current slab (i) is at most 
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twice the total number of iso-rectangles, Hence, it can 

be stored in O(n) space. 

Given a slab, the relevant edges form a subset of its 

active edges. Thus, lists of relevant edges in the 

current (i) and the previous (i-1) slab require O(n) 

space each. 

In total, the space necessary to implement the algorithm is of 

order 4·0(n)=O(n). 

O(n) is indeed the lower bound on the space necessary to 

solve the contour problem for a set of iso-rectangles. This 

follows from the observation, that no contour edges can be 

reported before all input rectangles are considered (cf. Fig.9). 

The space required to mererly store n input rectangles is already 

of order O(n). 

6. CONCLUSIONS

The paper presents a new solution of the problem of finding 

the contour of a set of iso-rectangles. The algorithm requires 

O(n 2) time and O(n) space. This space requirement is optimal.

By the use of pointers the algorithm specifies, how contour edges 
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Fig, 9, All input iso-rectangles must be considered before any 
edge segment is reported: addition of rectangle 5 to the set in 
Fig. 1a completely changes the contour. 

are connected into cycles. Thus, although information on several 

contour-cycles may interlace at the output of the algorithm, full 
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information on the ordering of edges within contour-cycles ls 

given, In this sense, the paper provides a positive answer to 

Guting's question, whether there exists an O(n) space algorithm 

which reports the pieces of the contour in the order of contour

cycles [41. 

The algorithm employs orderings of edges of input rectangles 

rather than their coordinates. For the purpose of handling 

special cases, related to colinear edges, two order lng relations 

-<, and -< � are introduced. They replace the •natural"

orderings of edges in the sequences of increasing abscissas or 

ordinates. Abstraction from coordinates leads to the notion of 

topological equivalence of sets of iso-rectangles. Two sets are 

equivalent if they show the same orderings of corresponding 

edges. A solution of the contour problem for a set of iso-

rectangles can be directly mapped to any equivalent set, 

The paper leaves some open questions. 

1) Does there exist a solution of the contour problem which is 

both time and space optimal? 

2) Does there exist an O(n) space algorithm which reports

contour-cycles without interlacing edges from different

cycles? 

3) Several problems are related to the notion of topological

equivalence. For instance, 

Ho w difficult is it (in terms of time and space 

complexity) to find whether two sets of iso -rectarigles 

are equivalent? 

Topolo gical equivalence ls a sufficient, but not 

necessary condition for contour mapping between two sets 

of lso-re ctangles. Do es there exis t  a nontrivial 

sufficient and necessary condition? If so, how difficult 

ls it to verify whether this condition ls satisfied? 
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