

A SIMPLE SPACE-OPTIMAL CONTOUR ALGORITHM
FOR A SET OF ISO-RECTANGLES

ABSTRACT

by

Przemyslaw Prusinkiewicz

Vijay v. Raghavan

Department of Computer Science
University of Regina

Regina , Saskatchewan S4S 0A2

CANADA

A new algorithm for finding the contour of a set of iso

rectangles is developed. The algorithm requires O(n 2) time and

O(n) space. This resolves the question, raised by Guting (4), of

whether there exists an O(n) space algorithm which reports the

pieces of the contour in the order of contour-cycles. The

algorithm uses a data structure that facilitates a clear

separation of the geometrical and topological aspect of the

contour problem. A notion of topological equivalence is

introduced and applied for avoiding repetitive computations for

sets of !so-rectangles belonging to the same equivalence class.

A modified definition of a slab ls introduced for handling

special cases (induced by colinear edges) in a consistent way.

l. INTRODUCTION

A rectangle with two edges parallel to the x-axis and two -

to the y axis is called an iso-rectangle. The contour of a set

of iso-rectangles is the boundary of the their union. In general

th is is a collection of disjoint •contour-cycles•, each of which

is a sequence of alternating horizontal and vertical

contour-pieces,

Iso-rectangles play an important role in several practical

areas such as computer graphics (9,ll), VLSI design (7), and

architectural data bases (1), They also attract considerable

theoretical interest (see (2 ,3) for extensive bibliographies).

This research is supported by a grant from Natural Sciences
and Engineering Research Council of Canada.

CONGRESSUS NUMERANTIUM, 46 (1985), pp. 249-270

The problem of findi ng the contour of a set of lso

rectangles was first mentioned by Shamos (10, p.163], and

explicitly stated by Vitanyl and Wood (1 2]. Vitanyl and wood

remarked that their algorithm for computing the perimeter could

be modified for reporting the contour, too. However, they did

not pursue this idea.

The first complete solution of the contour problem ls due to

Lipski and Preparata (61. Two other, time-optimal algorithms

were published by Giiting (4,S]. Yet another algorithm was found

by the authors, looking for an intuitively simple solution of the

c ontour problem (8). Ti me and space complexity of these

algorithms are summarized in Table l.

The algorithm described in this paper requires O(n 2) time

and O(n) space. The space requirement is optimal. Like the

algorithms of Lipski and Preparata (6), and Guting (4), our

Table l. Time and space requirements of known algorithms
for finding the contour of a set of iso-rectangles.

Algorithm Time Space

Vitanyl , Wood (2) 0 (n2) O(nlogn)?

Lipski , Preparata (6] 0 (nlogn +
plog(2n2/p)

0 (n+p)

Gu ting (4) 0 (nlogn+p) O(n+p)

Gu ting [SJ O(nlogn+p) 0 (nlogn+p)

Prusinkiewicz ' 0 (n2) 0 (n2)
Raghavan (8]

n - number of given rectangles
p - number of edges in the contour

algorithm ls based on the line-sweep approach. However, instead

of a segment tree or i�s modifications, it uses a multillnked

list of edges «s its fundamental data structure. This data

structure ls the key to the low space requirement. Due to the

use of pointers, lt ls not necessary to store all edges of the

contour before reporting them. Loosely speaking, this eliminates

term p in the formula O(n+p), describing the space complexity of

250

some previous algorithms (Tab.l).

The paper is organized as follows.

In section 2 the main idea of the algorithm is given. The

presentation is made under the assumption that no two edges of

the input iso-rectangles are colinear. This assumption is

removed in section 3 through modifying the notion of a slab.

Since this modification makes the slabs lose their common

intuitive interpretation, appropriate formal definitions are

provided. In section 4 the notion of topological equivalence

between sets of iso-rectangles is introduced. It is shown that

the contour of a set of iso-cectangles can be mapped onto the

contour of any equivalent set, thus saving computation. Finally,

in section 5 analysis of the time and space complexity of the

contour algorithm is given.

2. THE I\LCORITHM

� Intuition

The algorithm is based on the use of slabs.

Suppose that vertical lines ace drawn through vertices of

all given rectangles. Since the rectangles are iso-oriented,

these lines can also be seen as infinite extensions of vertical

edges. Each pair of consecutive lines defines a vertical strip,

called a slab. Horizontal edges of rectangles which intersect

with a slab ace said to be active. Within a slab an active edge

will contribute to the overall contour of the union, if it

separates an area covered by one or more rectangles from a non-

covered area. such an edge is called relevant to the slab.

Thus, an active edge of a rectangle is relevant if and only if it

is not contained in any other rectangle within the slab. For

example, consider the iso-rectangles shown in Fig.la. In slab 4

horizontal edges of rectangles 2 and 3 are active and relevant,

while in slab 5 horizontal edges of rectangles 2,3 and 4 are

active, but only the bottom edge of rectangle 4 and the top edge

of rectangle 3 are relevant (Fig. lb).

Vertical segments of the contour lie on the lines limiting

251

a)

b)

,.
u

,.
I)

It

"
10

0

0
0

'

4

3(

I

2(
''.
•'

2

I

I I

I I

. ! .

.

I . .'.
i . . I

I

1 I

I . I

!
I

I
I

I

I

I . I . I . I .
2 l • s •

5

,4,. '>3 ' .

)2!
'. .

w:
I .
I .

I I 10 11 12 I)

3

1 •

4

'
I

I

I

3
!

2

I

I

I 10 11

c)

5 6 7
I

I

I

I I

I '
I I

I I

!
I

I

I I

I I

I

i
'
•

4: I
I I

I ! .
I. I '

I ;

I I

I I

I

I

'
I

I

.
I

12 tl 14 15

4

8

•••

5

'3: 3(i

q i
HA I •

I

I .
• 9 10 11

'
I

I

I

12 1l

Fig. 1. a) An example of layout of iso-rectangles.
b) Active (--) and relevant (--) edges in slabs 4 and 5.
c) Tying together relevant edges.

the slabs. They tie together relevant hocizontal edges of two

consecutive slabs. As the contour line cannot self-intersect,

the horizontal edges can be tied together in only one way: the

lowest one with the secoild from the bottom, the third with the

fourth, and so on.

A vertical segment degenerates to one point if horizontal

segments to be tied together are colinear. In particular, this

situation arises if an edge is relev ant to two or more

consecutive slabs. When found, a sequence of colinear contour

252

I

segments should be replaced by one segment of appropriate length,

In the exa mple of slabs 4 and 5 shown in Fig.lb, vertical

segments will connect:

the botto m edge of rectangle 4 in slab 5 with the botto m

edge of rectangle 2 in slab 4;

- the top edge of rectangle 2 in slab 4 with the bottom edge

of rectangle 3 in the same slab, and

- the pieces of the top edge of rectangle 3, lying in slabs

4 and 5.

In the last case the connected segments are colinear and should

be replaced by o ne longer seg ment.

connections is shown in Fig. le.

The result o f these

The final contour is a sequence of alternating horizontal

pieces of relevant edges and vertical segments connecting the m

pairwise.

2.2.

Input data consist of the descriptions of a given set of

iso-rectangles. Each rectangle is specified as a 5-tuple:

where:
Rka (k, "lk• "rk• Ybk• Ytkl

- k is an ordering number of the rectangle,

- "lk and "ck are abscissas of its left and right edges,

- Ybk and Ytk are ordinates of the bottom and the top edge

respectively.

For instance, the set of rectangles shown in Fig. la is described

as follows:
(l, 4, 8, 1, 13)

(2, 2, 14, 3, 5)

(), 6, 13, 9, 11)

(4, 11, 15. 5, 2, 10)

For the sake of clarity, in the de script ion of the algorithm

we will assume that no two edges of different rectangles are

colinear. This restriction will be removed in section 3.

2.3 Internal representation of edges and contour-cycles

Edges of iso-rectangles can be specified in several ways.

We will specify them as pairs (k,s), where k is the number of a

253

Input data

- - - -- ------

rectangle, and the tag s•(-,t ,-, 1) indicates its bottom, left,

top and right edge , respectively. Obviously, given an edge

(k,s), the coordinates of its endpoints can be found in a

s t r a i g h t f o r w a r d way b y r e f e rri n g t o t he 5-t u pl e

Rk = (k, Xlk• xrk• Ybk• Ytkl •

Contour-cycles are represented by circular lists of pairs

(k,s), specifying consecutive edges of iso-rectangles which

contribute to the overall cycle. By convention, edges of each

cycle are listed such that the figure is on the right side while

traversing consecutive edges. In other words, a contour-cycle is

oriented clockwise if it is an external boundary of a connected

component, and counterclockwise - if it is the boundary of a

hole. Foe instance, the interior contour-cycle of the set shown

in Fig.la is specified by the circular list of elements (2,-),

(4,f l, O,-l, (1, I). Observe that this representation is

unambiguous - the intersections of consecutive edges define

unambiguously consecutive vertices of the contour-cycle.

The use of pairs in the form (k,s) instead of explicit

coordinates helps separate the topology of the contour problem

from its geometry. This will be discussed in more detail in

section 4.

2.4 Output data

The algorithm reports the edges of the contour immediately

after they are determined. In consequence, edges belonging to

different cycles may interlace in the order of presentation.

Sequences of edges form ing cycles are specified by means of

pointers, indicating explicitly the next edge of the cycle. For

exa mple, see the output of the algorithm for the set of

rectangles from Fig.l, given in Table 2 and Fig.2.

254

Table 2. Output of the algorithm for the set of rectangles
from Fig.la. Assignment of numbers to edges is
arbitrary and depends on details of implementation
of the algorithm (cf. Fig.5).

Edge Edge Next Edge Edge Next

Number Specification Edge Number Specification Edge ---
l
2
4
5
3
6
8
9

12
11

a)

b)

(2,-l 2 7 11,-,
(2,t) 3 13 (l, I)
(1,-) 5 15 (4,-)
(1,1) l 16 (4 ,t)
(2,-) 6 10 (2,-,
(l,t) 7 17 < 4 ,I l
(2,-) 9 14 (3,-)
(l, I) 4 18 (3, ll
(3,-) 11 19 (4,-)
(l, I) 10 20 (4, I)

,.

13

12 13 18 ,.
('" "

10

6
12

"□" 20

10

IS

•
0 L-..._..__.,__..__._,.._.'-'_.'--''--''-''---''---''---'-
0 t 2 l • 5 e 1 • 9 HI u n tl 1o1 u 1e l

13
14

16
8

17
12
18
19
2 0
15

Fig. 2. Output of the algorithm (Tab. 2) interpreted as:
a) list of edges, and b) plot of the contour. Edge numbers
corres pond to Tab. 2.

255

I

$

T

!!i Preprocessing

The purpose of preprocessing is to establish a list of

consecutive slabs. Each slab is specified by a vertical edge of

a rectangle, colinear with the left edge of the slab. For

instance, slab 4 in Fig. la is specified as (1,) and slab 5 as

(4,). Obviously, finding the list of consecutive slabs is

equivalent to sorting the set of vertical edges of the given

rectangles by their abscissas.

!:.!.,_ rinding active edges � � slab

In this step, the bottom-up list of active edges in a slab i

ls computed recursively as follows:

l) Initially, in slab O (preceding the leftmost edge of a

given set of iso-rectangles) the list of active edges is

empty.

2) Transition from a slab l to the slab i+l implies either

one of the actions:

- insertion of new active edges (k,.-) and (k,-) - if the

slab i+l is specified by the left edge of the rectangle

k: (k,I), or

- deletion of edges (k,-l and (k,-) which ace no longer

active - if the slab i+l is specified by the right edge

of the rectangle k: (k, I).

The edges must be inserted into their proper places to keep

the list of active edges in the bottom-up order (see. Fig.3).

256

SLAB 4 SLAB 5

(SPECIFIED BY EDGE (4,t))

INSERT:

SLAB 6

(SPECIFIED BY EDGE (3, I))

DELETE:

Fig, J, Finding active edges in slabs 5 and ·6 fro Fi 1 m g. a,

2,7. Finding relevant edges�! slab

Consecutive active edges divide a slab into segments. The

number of rectangles including a given segment le called the

lnvlslblllty order [cf. 9,111 and is denoted by I. The

lnvlalbll ity order of each segment of a slab la computed

recursively, by scanning the slab bottom-up.

l) Initially (i.e. below the lowest active edge) I•O,

2) - Traversing of a bottom active edge (k,-l of a rectangle

increases I by l;

- Traversing of a top active edge (k,-) decreases I by l.

After the invisibility orders are known, the relevant edges can

be easily selected, since they separate segments with I•O from

segments with I•l (or segments with I•l from segments with I•O).

For example, see Fig.4.

2,8. Forming contour-cycles

Contour cycles a r e represented as ci r cula r lists of

horizontal relevant edges connected by appropriate vertical

edges. Computation of contour-cycles poses the following

problems:

257

Identification of pairs of relevant edges to be connected.

Detection of situations where two edges to be connected

are, in fact, different segments of the same edge split

among two or more consecutive slabs. These segments

should be replaced by one segment of the appropriate

length.

Creation of vertic al segments which w ill connect

remaining pairs of relevant edges.

12

II

10

EDGE INCR/f :0ECR
: 0 I

RELEVANT
EDGES

I I
I

(3 -) � _1 � _ RELEVANT
I t I I EDGE

I 1 I
I f I

(4, -> � -,, �
: I 2 :

(3.-) h1------:
I I '
I 0
I I
I I

I I
'

'

1 :
I
I
I
I

I I

t t
I

(2 -)�-,---!
, : I :

t I

: 2 :
I I

: 1 :
(2.-) �•,1 -----:

: t 1 :
(4,-H+1-----i-

, I I
I I

: 0 :
I I

I t
I I

II 11 13

RELEVANT
EDGE

,. IS X

Fig. 4. Calculating invisibility orders and finding relevant
edges in slab 5 from Fig. 1a-.

Determination of the order of the edges within a contour

cycle.

The algorithm forms contour-cycles by systematic examination

of pairs of consecutive slabs. Given slabs i-1 a nd i, this

involves the following steps:

11 Find the two lowest relevant edges, not previously

considered, in the merged slabs i-1 and i.

21 If the two edges are colinear (i.e. they represent two

different seg1ne.nts of the same edge (k,s)), replace them

258

1 •

. . . .

by one longer segment running through two or more slabs.

3) If the two hoc i zon tal edges to be con nee ted are not

colinear, join them by the vertical edge specifying slab

i. Determine the order in which the three edges will be

listed as parts of a contour-cycle using the reasoning

below:

An edge of a union of iso-rectangles is an edge of some

rectangle or a segment of it. Thus, the union must lie

on the same side of this edge as the rectangle. Suppose

that edges of input iso-rectangles are vectors oriented

such that given a vector, the rectangle is on its right

side. Then the edges of each contour-cycle must be

listed in such an order, that all edges are scanned

conforming to their orientation.when the cycle is

traversed (cf. section 2.3). This provides the criterion

for edge linking. For instance, consider Fig.la and le.

The edges: (4,-) in slab 5 and (2,-) in sla b 4 a re

oriented from right to left, and the edge (4 ,I

specifying slab 5 is oriented bottom-up. Hence, in a

contour-cycle these three edges must be listed ln the

order (4,-) - (4,1 - (2,_) and not: (2,-) - (4,1) -

(◄,-). Likewise, the edges (2,-1, (3,-) and (4,1) from

the same slabs 4 and 5 must be ordered (2,-1 - (4,1) -

(3,-1 and not (3,-1 - (4,1 I - (2,-).

41 Repeat steps l through 3 until all relevant edges in

slabs i-1 and i are considered.

l.,J_ Overall structure of the algorithm

A complete algorithm for reporting the contour of a set of

iso-rectangles is composed of the following steps:

l. Preprocessing: Given n iso-rectangles, establish the

ordered list of 2n+l slabs numbered fro m 0 (the leftmost

slab) to 2n (the rightmost one).

2. Set initial conditions: create the empty list of active

edges in slab 0.

259

3. Main body of the algorithm: For i•l until 2n do:

- Find the list of active edges in slab i;

- Find the list of relevant edges in slab i;

- For all pairs of relevant edges in merged slabs i-1 and

i, considered in the bottom-up order, do:

If both edges are colinear

then replace them by one segment of appropriate length

else

- Co nne ct the edges with the vert ical segment

specifying slab i, Observe their order within the

contour cycle they belong to;

Report the edges to be added to the cont our along

with pointers establishing their order.

2.10. An example of implementation

A straightforward implementation of the algorithm is based

on the use of linked lists. The following lists are maintained:

- consecutive vertical edges of input iso-rectangles,

- active edges in the current slab (slab i),

- relevant edges in the current slab (slab i),

- relevant edges in the previous slab (slab i-1).

Relevant edges are represented by atoms with two pointers.

One pointer indicates the next relevant edge within a slab.

Another pointer is used to link consecutive contour-edges within

a contour-cycle. This data structure is exemplified in Fig. 5,

3. COLINEAR EDGES

l:..!. General discussion

In section 2.2 we a ssumed that no two edges of the input

iso-rectangles were colinear. Hence, it was possible to linearly

order all vertical edges in ascending sequence,of their abscissae

260

and the horizontal edges - in ascending sequence of their

ordinates. Both orderings are important to the algorithm. The

ordering of vertical edges has two implications:

s labs can be defined as str ips (of non-zero w idth)

a)
SLAB CONSECUTIVE RELEVANT EDGES

OF SLAB 3 NUMBER VERT. EDGES

3

4

b)

4

5

RE LEVANT EDGES OF SLAB 4

CONTOUR EDGES REPORTED IN STEP 5

(.. ·

1

...,__�,......� , 11·,/· I
: 41 X 41 X :: :

:10 i::::::::::::::��::::::::::::::::::::::::::::::::J �
,.

;�31-1x0 l ·1 TWO SEGMENTS OF THE SAME EDGE

IARE REPLAC ED BY ONE SEGMENT

(--- -OLD LINKS,--NEW LINK)

Fig. 5. Finding the contour of the set of iso-rectangles of
Fig. 1a. a) Data structure after step 1=4. b) Data structure
after step i=5. Lists of active edges not shown - cf. Fig. J.
x - link irrelevant. u - link not determined yet. Contour edges
are identified by the same numbers as shown in Tab. 2 and
Fig. 2. These numbers are assigned to edges while they are
connected into cycles, in the order of consideration.

between extensions of consecutive edges (cf. section

2.1) I

transition from a slab i to the slab i+l involves either

inser tion or deletion of exactly two active edges (cf.

section 2.6).

The ordering of horizontal edges has other implications:

consecutive active edges divide a slab into segments

261

CONTOUR EDGES

..................... REPORTED (IN ··· STEP .. 4•

I I rin l' I f
(~-

....,_.'-'-......,_:::,1----j41 1 l 1 3- ' - - -
···········•·•··················•···

(cf. section 2,7) i

transition between consecutive segments of a slab either

increments or decrements the order of invisibility I by

exactly one (cf. section 2. 7);

relevant edges to be connected within a contour cycle

(the two lowest edges not yet considered) c an b e

determined unambiguously (cf. section 2.8).

The assumption of non-colinearity of edges can be removed using

one of two approaches:

1) by modifying the algorithm to handle edges which are not

linearly ordered;

2) by replacing increasing values of abcissae or ordinates

with another ordering relation which induces an

appropriate linear ordering of edges, even if they are

colinear.

In this paper the second approach is employed. Intuitively, the

main idea is that even colinear vertical edges define separate

slabs (perhaps of zero width). Likewise, all active edges within

a slab induce separate slab segments (perhaps of zero height),

Colinear edges must be ordered in such a way that:

oc) left edges (I) precede right edges (I) , and

}) bottom edges (_) precede top edges (-) .

Thls will ensure that iso-rectangles which share only an edge or

a vertex will be correctly treated as connected components (cf.

Fig ,6).

The ordering of colinear edges of the same ty pe (for

instance,!) is less important. This ordering may affect the way

in which the contour is represented, but does not affect the

contour itself. One possibility is to order colinear edges of

the same type by their rectangle's number.

The use of relations imposing a linear order on any set of

horizontal or vertical edges makes it possible to remove the

restriction of non-colinearity of edges without essentially

modifying the algorithm given in section 2. However, the notions

of a slab, an active edge, and a relevant edge lose their

262

straightforward geometrical interpretations (cf. section 2.1) and

require new definitions.

3.2 Formal definitions

An iso-rectangle in the plane is defined as a 5-tuple

Rk E (k, x 1k, Xrk' Ybk• Ytk) , where: k is the number of the

rectangle, x1k, Xrk are abscissae of its left and right edges,

and Ybk• Ytk are ord inates of its bottom and top edges

respectively {cf. section 2.2). A set s of n iso-rectangles

R1, ••• ,Rn can be alternatively specified by a function:

'f: (1, .. ,n)X {1,1,-,-)-(-o,,+oo)

defined for all kE{l, ... ,n} as follows:

f(k,!)
s ><1k r(k,_) = Ybk

f(k, ll xrk f<
k,-) � Ytk

y
a) t1

to
•

•

O
O 1 2) 4 S O 1 9 II 10 11 ,c.

y
II
to
•
•
1

•

c)

0
0 1 2 , • s e 1 a 11 10 11 •

J

b

�)--· L__ ----- -
e· - ----------LI-----_..

I I

I 2) ◄ 5 e e 1 I 8 10 11 1, 0

y d) ft

□
tO

•
e

e

□
0

0 , 2 , , s e 1 a • 10 11 Jl

Fig . 6. Example of orderings of colinear edges . a) Two rectangles
with colinear edges . b) Ordering of colinear edges following
assumptions oc and ft • c) Contour resulting from this ordering -
the rectangles are properly interpreted as being connected.
d) Ordering following assumptions opposite to oc and J3 results
in an improper contour - the rectangles are interpreted as
unconnected .

263

In the set of vertical edges X • (1, ... ,n) ><(I, i) we define an

ordering relations-<. as follows:

r<k1,v1) < Y7(k2,v2) •> (k1,v1) -<. (k2,v2)

f!k1,I I • 'f!k2,H •> (ki,1 I -<. (k2, I)

f(k1,v) • f(k2,v) , k1<k2 •> (k1,v) -<. (k2,v)

where k1,k2€ (1, ... ,n); v1,v2,ve (♦, I). Likewise, in the set of

horizontal edges Y • (1, ... ,n) X (_,-) we define an ordering

relation -<y :

'f(k1,h1I < 'f(k2,h2I •> (k1,h1I -<y (k2,h2I

'f(k1,-I • f(k2,-I •> (k1,-I -<y (k2,-I

f(k1,h) • r<k2,hl , k1<k2 •> (k1,hl -<y (k2,hl

where k1,k2 E. (1, ••• ,n); h1,h2,h e {+, -1.

Let f: X -> {1, ... ,2n) assign an ordering number (called the slab

number) to each element of the list X sorted by the relation -<
,..

•

A horizontal edge (k ,h) i s said to be active in sla b ie

{ l, ... ,2n) if and only if f((k,t))�i and f((k_, ♦))>i. A list of

all active edges in a sla b i is denoted by Yi. Let 9: Y1 ->

{ l, ... , 2n1) assign an ordering number (called the segment number)

to each element of the list Yi, sorted by the relation, -<y • The

invisibility order I(j) of a segment j e {O, l, .•• ,2ntJ is defined

recursively as follows:

I (0) = 0

{
I(j-l)+l if 9-l(j)•(k,-1 I(j)

= I(j-1)-l if g-l(j}�(k,-)
j=l, ... , 2ni

An edge j is rele v ant if I(j-1)•0 or I(j)=O. The notions

introduced above are illustrated in Fig.7. Notice, however, that

although in Fig.7 b colinear edges are split (e.g. (1,-) and

(2,-)), they should be considered as col inear while forming

contour cycles (section 2. 8).

264

4.

o)
10
9
8 2
1

6 1
5

4 5 3
3

4
2

b)
0
0 I 2 3 4 5 6 1 8 9 10 11 l

y 0

1��

:f 7.

:l 4.

��
J

'
'

1

:
''
' '
'
' '
'
'
'

'

'
'
'
'

2
' ' ' '

'

4
' '
' '
' '
' '

' '

8 g

' .
.

'
' ' . '

' .
' ' '

'

' .
'

i ' '
' '

' '

' ''
' '
' '

' '

' '

' '
I ' '

I 5 3

' '

' '

' '

'
'

'
' : ' '

1'
o[_L_J_, __._....,_....,__...• ... : :._,__.__.__.__
0 1 2 3 3 4 5 8 7 7 7 7 8 9 10 11 l

I ' ' : ' ' '

c)

Fig. 7. Using relations -<, and -<y • a) An example of layout
of iso-rectangles with colinear edges. b) Intuition of slabs,
active edges and slab segments. c) Invisibility orders in
slab 6.

TOPOLOGY� GEOMETRY OF THE CONTOUR PROBLEM

The described algorithm refers to the coordinates of input

rectangles twice:

when lists of edges (e><pressed as pairs (k,s)), ordered

by the relations -<,and -<y are established, and

when colinearity of contour-edges is checked.

Therefore, any two sets of !so-rectangles which:

exhibit the same ordering of edges, and

have the same pairs of colinear edges,

will have identical solutions expressed in terms of lists of the

(k,s) pairs. suc h sets of is o-re ctangles w il l be c alled

topologically equivalent. The notion of topological equivalence

can obviously be extended to situations, where corres ponding

rectangles from the sets under consideration (denoted by rand 6)

265

l !
I I ! ! l '

I

I

'

2 3 4 5 6 7

:
'

I
I

have different numbers and are related to each other by a

bijection ;e: r -,1. In this case a ci rcular list of edges

(k1,s1), (kz,sz), ••• ,(kN,sN) is a contour-cycle of riff the list

('r(k1),s1), (a?(kz),sz), ••• ,(;£(kN),sN) is a contour-cycle of

Ll. Consequently , if the contour of a set of iso-rectangles

r is known, and the set /:J is topologically equivalent to r, the

contour of LI can be found as a mapping of the contour of r ,

without repeating all computations (Fig.8).

y a) b)
14

13

12

2
11

k • (k)

(Fig. lo) (Fig. Sol
10

II

3 4
8

1 3

7

8
2 1

5 1
4

3 2

3
4 4

0
o 1 2 3 4 5 6 7 8 9 1011 1213 14 •

c)

Fig. s. An example of topological equivalence. a) Set of iso
rectangles topologically equivalent to the set in Fig. 1a,
b) Correspondence between iso-rectangles in Fig. 1a and in
Fig. Sa. c) Contour of the set in Fig. Sa is a mapping of the
contour shown in Fig. 2.

266

5. ANALYSIS OF THE COMPLEXITY OF THE ALGORITHM

5.1 Time complexity

In the standard way, let us adopt the real random-access

machine as the model of computation (cf. I 10 J). Under this

assumption, the worst-case time required to compute the contour

of n iso-rectan gles can be calculated as follows (cf. section

2. 9):

The time necessary to establish the slabs is determined

by sorting the edges. Hence, it is of order O(nlogn).

Let us consider computations performed by the algorithm

in a slab i <= { l, ••• , 2n). In order to establish the list

of active edges in slab i, two edges must be inserted to

or deleted from the list of active edges of slab l-1.

This requires O(n) time. Next, the list of relevant

edges is fo und by a single scan of the active edges.

Since the maximum number of active edges is 2n, this scan

requires 9(n) time. Finally, relevant edges of slabs i-1

and i are connected into fragments of contour-cycles.

This can b e viewed as the merging of two ordered lists of

lengths less than or equal to 2 n, followed by a single

scan of the merged list. The required time is of order

O(n)+O(n)�o(n). Thus, the total time needed to process

one slab is of order O(n)+O(n)+O(n)sO(n).

As the numb er of slabs ls equal to 2 n�O(n) (no

computations for slab O are required), the total time

n e c e s s a ry to consider all slabs is of order

O(n)· O(n)EO(n 2).

Hence, the worst case time necessary to complete the algorithm is

of order o0logn)+O(n2)•0(n 2).

5.2 Space complexity

The memory size required by the algorithm can be calculated

as follows (cf. section 2 .10):

- The list of consecutive vertical edges of input iso

rectangles requires 2n•O (n) space.

- A list of active edges in the current slab (i) is at most

267

twice the total number of iso-rectangles, Hence, it can

be stored in O(n) space.

Given a slab, the relevant edges form a subset of its

active edges. Thus, lists of relevant edges in the

current (i) and the previous (i-1) slab require O(n)

space each.

In total, the space necessary to implement the algorithm is of

order 4·0(n)=O(n).

O(n) is indeed the lower bound on the space necessary to

solve the contour problem for a set of iso-rectangles. This

follows from the observation, that no contour edges can be

reported before all input rectangles are considered (cf. Fig.9).

The space required to mererly store n input rectangles is already

of order O(n).

6. CONCLUSIONS

The paper presents a new solution of the problem of finding

the contour of a set of iso-rectangles. The algorithm requires

O(n 2) time and O(n) space. This space requirement is optimal.

By the use of pointers the algorithm specifies, how contour edges

y

15

14

13

5 12

ti

to I 3
•

•

•

s

• I 2 I

: L!:::::.:::::;:::::;::::;:::;::::;::::::;:::::;:::::;::::;:::;::::;::::::;:::;::::;:_,.,_
o , z 3 , s e 1 e a 10 u 12 13 t• u ts 11 x

Fig, 9, All input iso-rectangles must be considered before any
edge segment is reported: addition of rectangle 5 to the set in
Fig. 1a completely changes the contour.

are connected into cycles. Thus, although information on several

contour-cycles may interlace at the output of the algorithm, full

268

I
I

1 4

information on the ordering of edges within contour-cycles ls

given, In this sense, the paper provides a positive answer to

Guting's question, whether there exists an O(n) space algorithm

which reports the pieces of the contour in the order of contour

cycles [41.

The algorithm employs orderings of edges of input rectangles

rather than their coordinates. For the purpose of handling

special cases, related to colinear edges, two order lng relations

-<, and -< � are introduced. They replace the •natural"

orderings of edges in the sequences of increasing abscissas or

ordinates. Abstraction from coordinates leads to the notion of

topological equivalence of sets of iso-rectangles. Two sets are

equivalent if they show the same orderings of corresponding

edges. A solution of the contour problem for a set of iso-

rectangles can be directly mapped to any equivalent set,

The paper leaves some open questions.

1) Does there exist a solution of the contour problem which is

both time and space optimal?

2) Does there exist an O(n) space algorithm which reports

contour-cycles without interlacing edges from different

cycles?

3) Several problems are related to the notion of topological

equivalence. For instance,

Ho w difficult is it (in terms of time and space

complexity) to find whether two sets of iso -rectarigles

are equivalent?

Topolo gical equivalence ls a sufficient, but not

necessary condition for contour mapping between two sets

of lso-re ctangles. Do es there exis t a nontrivial

sufficient and necessary condition? If so, how difficult

ls it to verify whether this condition ls satisfied?

269

REFERENCES

1. Eastman, C.M., Livi dini, Y, Spatial search. Report 55,
Institute of Physical Planning, Carnegie-Mellon University,
Pittsburgh, Pa. 1975.

2. Edelsbrunner, H. Intersection problems in computational
g e o m e t r y. R e p o r t F 9 3 , I n s t i t u t e f u r
Informatlonsverarbeltung, Technical University of Graz,
Graz, Austria, 1982.

3. Edelsrunner, H., v. Leeuwen, J. Multidimensional data
structures and algorithms. A bibliography. Report F 104,
Institute fur Informationsverarbeitung, Technical University
of Graz, Graz, Austria, 1983.

4. Gueting, R.H. An optimal contour algorithm for iso-oriented
rectangles. Report 82-CS-04, Unit for Computer Science,
HcHaster University, Hamilton, Ont. , 1982.

5. Gi.iting, R.H. Optimal divide-and-conquer to compute measure
and contour for a set of iso-rectangles. Report 141,
Abtellung Informatik, University of Dortmund, Dortmund,
Germany, 1982.

6. Lipski, w ., Preparata, F.P. Finding the contour of a union
of iso-oriented rectangles. Journal of Algorithms l (1980),
235-246.

7. Head, c., Conway, L. Introduction to VLSI systems. Addlson
wesley, Reading, Hass ., 1980.

8. Prusinkiewlcz, P., Raghavan, v. V. A simple solution of the
contour problem for a set of !so-rectangles. Report CS- 83-
02, Department of Computer Science, University of Regina,
Regina, Sask., 1983.

9. Prusinkiewicz, P., Stepien, c. Selected topics in computer
graphics. Technical University of Warsaw Press, Warsaw,
Poland, 1982.

10. Shamos, M.I. Computational geometry. Ph.D. Thesis, Yale
University, 1977,

11. Sutherland, T.E., Sproul l, R.F., Schumaker, R.A . A
characterization of ten hidden-surface algorithms. Computing
Surveys 6,1 (1974) 1-55.

12. Vitanyi, P.M.B,, Wood, D. Computing the perimeter of a set
of rectangles. Report 81-CS-04, Unit for Computer Science,
HcHaster University, Hamilton, Ont., 1981.

270

