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Abstract

Previous work in the animation of plant development and expansion
has centered on the botom-up approach, whereby models are spec-
ified in terms of developmental ruls. These models are inherently
difficult to use for goal oriented modeling as the final structure and
development of these models are emergent properties. Top-down
modeling has previously been introduced to remedy this problem
by allowing interactive control of local characterists based on global
positional information. We explore methods of extending top-down
modeling to the field of animation. The ideas of keyframe anima-
tion are used in conjunction with L-systems to create goal oriented
models of plant growth in preformed branching structures.

Keywords: animation, modeling, plant development, L-systems,
Pellaea falcata,Syringa vulgarisCV Congo,Syringa reticulata

1 Introduction

Previous work in the animation of plant development has resulted
in visually appealing animations using models specified in terms of
developmental rules of individual plant components. We refer to
such models as bottom-up models. One well documented method
of bottom-up modeling makes use of the formalism of L-systems
[LIND68a][LIND68b][PRUS LIND90]. The final structure and de-
velopment of bottom-up models are emergent properties of the de-
velopmental rules that specify these models. Consequently control
of local properties is difficult, and a trial and error process is of-
ten needed to acheive desired results. This is not a problem when
studying the processes that cause plants to grow, but if an animator
wishes to exercise direct control over a developmental sequence and
final structure for artistic purposes, a more intuitive and controlable
method is needed.

To provide a more direct and intuitive control over plant struc-
ture, [PRUS et al.99] proposed the idea of top-down modeling. The
key idea is to use global positional information of individual plant
components to determine their local characteristics. This inverses
the procedure of bottom-up modeling.

In this paper we explore methods of using global attributes of
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individual plant components to control their individual local charc-
teristics during development, which we refer to as top-down ani-
mation. The animation is produced by defining an initial model and
a final model of the plant. User-specified interpolation functions
are applied to compute the inbetween frames of the animation, in a
similar manner to computer-aided keyframe animation techniques.
Interpolation between keyframes has already been used to animate
the growth of plants [LINT DEUS96] in the software systemxfrog
[LINT DEUS98], we explore this idea in the environment of L-
systems. The interpolation of each individual organ is controled by
the value of global attributes, such as its relative position within the
plant. The process of creating an arbitrary development sequence
for animation purposes is much improved using top-down anima-
tion. A much narrower range of knowledge is needed to proceed, in
particular knowledge of biological processes of plant development
is less critical in producing realistic animations of growth.

In Section 2 we outline previous work. An important part of this
previous work is the method of top-down modeling which we out-
line in Section 3. Section 4 introduces top-down animation, which
is an extension to top-down modeling. Three applications of top-
down animation are presented, the growth of aPellaea falcataleaf
(Section 4.1), the growth ofSyringa vulgarisCV Congo (Section
4.2) and the growth ofSyringa reticulata(Section 4.3). We present
a brief discussion of our results in Section 5.

2 Background

In this paper we use parametric L-systems [PRUS LIND90] as a
framework for animation of plant development. L-Systems were
formulated to describe the development of simple multi-cellular or-
ganisms [LIND68a][LIND68b], and were later extended to simu-
late the development of branching structures based on processes
taking place at the level of plant modules [FRIJ LIND74]. Plant
modules are a biological conception of separate entities within a
plant such as flowers, leaves, internodes and apices. Parametric
L-systems operate onparametric wordswhich are strings ofmod-
ules. All plant modules may be represented by parametric L-system
modules. But it is not the case that all parametric L-system modules
are plant modules, therefore we consider plant modules to be a sub-
class of parametric L-system modules. In this paper when we refer
to modules we are discussing the more general class of parametric
L-system modules, unless otherwise stated.

Each module consists ofletters which belong to some alpha-
betV , with associatedparameterswhich belong to the set of real
numbers<. For example the module with letterA 2 V and cor-
responding parametersa1; a2; :::; an 2 < is written as shown in
Module 1. The parametersa1; a2; :::; an characterize attributes of
the module. We can apply mathematical expressions called pro-
ductions or rewriting rules to modules. Each production describes
daughter modules which are created by a parent module. For exam-
ple, Production 1 may be applied to Module 1 provided thatn = m
andp1 < p2. If the production is applied then daughter modulesB
andC are created with one and two parameters respectively. Mod-
ules may optionally be specified without parameters, thus the mod-
uleD which has no parameters is written in a parametric word as



Axiom                           A

2nd step             I[L][L]  I[L][L]A

1st step                   I[L][L]A

3rd step         I[L][L]  I[L][L]  I[L][L]A

Figure 1: Derivation tree for axiomA and productionA �!

I[L][L]A for the first three derivation steps.

D, without any brackets.

Module 1
A(a1; a2; :::; an)

Production 1
A(p1; p2; :::; pm) : p1 < p2 �! B(p1)C(p1; p2)

Modules may represent plant modules, which may themselves
represent plant organs. Modules may also represent some local
characteristic of the branching structure. Examples of modules
which represent plant modules areA for apex which is a generative
module within a plant,I for internode which is a branch or stem,
andL for leaf. I(n) can be used to specify an internode of lengthn.
Examples of modules which do not represent plant modules are+
which indicates a branching angle, and! which represents increas-
ing the current width of branches.!(n) can be used to set current
width ton. A branching structure is encoded as a parametric word
where subbranches are specified within square brackets. Models
of branching structures are specified by a set of productions which
simulate the growth processes occuring within a plant, and a para-
metric word called the axiom, which specifies the initial branching
structure. The development of a branching structure is captured in
a simulation by applying in parallel any productions which apply
to the current parametric word, producing a new parametric word.
Each application of the productions to the current parametric word
is called a derivation step. Production 2 states that an apexA (the
predecessor on the left side of the arrow) creates an internodeI sub-
tending a pair of leavesL and new apexA and produces a simple
branching structure. Starting with the axiomA, successive deriva-
tion steps produce the parametric words shown in figure 1.

Production 2
A �! I[L][L]A

This describes consectutive stages in the development of a sim-
ple monopodial branching structure, such as the one shown in fig-
ure 3. A monopodial branching structure is defined as one where
the main apex exhibits continuous production of new apices, and
all lateral apices exhibit terminal growth [PRUS LIND90]. In this
paper we will also consider polypodial branching structures, such
as the one shown in figure 15. A polypodial branching structure is
defined as one where both the main apex and all lower order apices
exhibit continuous production of new apices [PRUS LIND90].

To allow for easy construction of complex productions,
we extend the production format as shown in Production 3
[HANN92][M ĚCH98], wherepred is the predecessor, an initial
module, andsucc is the successor or resulting modules. The op-
tional fieldcond is a logical conditional statement which may in-
clude parameters from the predecessor, the production will only
be applied when this condition holds true. The remaining fields
blockA and blockB are composed of C-like statements, with

Figure 2: Interactive function editor window.

blockA being evaluated before the condition andblockB being
evaluated only if the condition is true condition.

Production 3
pred : fblockAg condfblockBg �! succ

To allow for even greater flexibility we use four additional blocks
of C-like code which the user may specify. These blocks are
[HANN92][M ĚCH98]:

Start:fblock1g
End:fblock2g
StartEach:fblock3g
EndEach:fblock4g

and use global variables, accessible throughout the L-system. They
are evaluated at the following times:block1 is evaluated before
the derivation begins;block2 is evaluated after the derivation con-
cludes;block3 is evaluated before each derivation step;block4 is
evaluated at the end of each derivation step.

Expressions may also include generic function calls of the form
func(id,x) [PRUS et al.99]. Parameterid is an integer function
identifier, and the real numberx is the argument to that function.
Generic functions are defined graphically using an interactive func-
tion editor (figure 2). B-spline curves are used to define function
plots, and the curves are constrained so that eachx value is mapped
to exactly oney value.

Branching structures are visualized by graphically interpreting
L-system generated parametric words [SZIL QUIN79][PRUS86]
using turtle geometry [ABEL DISE82]. Some examples of mod-
ules and there graphical interpretations are:

F Move forward one unit and draw a line of current line width.

F(x) Move forward ’x’ units and draw a line of current line width.

! Decrease line width by the current decrement amount.

!(x) Set current line width to ’x’.

+,- Turn left or right by current angle increment.

+(x),-(x) Turn left or right by ’x’ degrees.

[,] Push or pop the current turtle state from a stack of such states.



The software environment used for the work described
in theis paper is a modified version of the program
cpfg[PRUS LIND90][HANN92][MĚCH98], that incorporates
all of the features mentioned above.

Previous animations of plant growth have been founded on
bottom-up modeling of plants. In these models, productions cap-
ture the essence of the development of the plant at a local level.
Early models were only capable of capturing discrete changes in the
branching structure such as the creation of new plant modules, and
discrete steps in the expansion of existing plant modules. Two sub-
sequently devised methods to create smoothly growing branching
structures using L-systems were timed L-systems [PRUS LIND90]
and differential L-systems [PRUS et al.93], both of which are part
of the bottom-up modeling methodology. Both continuous and dis-
crete aspects of the development of branching structures could then
be captured using biologically motivated local rules.

These formalisms are well suited for biologically motivated sim-
ulations of plant development. Growth and form are emerging prop-
erties of the rules that define development of the brancing structure
and growth of individual plant modules. Effects of rules can be
conveniently explored using computer simulations. However ex-
ercising direct control over the final form is very diffucult which
makes these formalisms poorly suited for goal oriented modeling.
This inability in bottom-up modeling has given rise to top-down
modeling, which solves the problem of achieving intuitive control
over plant form.

3 Top-Down Modeling of Plants

Top-down modeling of plants is the use of global positional in-
formation to characterize the properties of local plant components
[PRUS et al.99]. Local properties may be determined analytically
or procedurally from global properties. To illustrate the basic idea,
consider the fern leaf from Figure 3, and the model of this fern
leaf shown in Figure 4. To create this model a qualitative charac-
terization of the leaf architecture was made consisting of a stem
with leaflets on either side. The final model was defined using the
top-down methodology to alter the local characteristics of the plant
based on global positional information. Functions which mapped
the global attribute position along the stem to local attributes were
used to determine the following local attributes:

� Length of leaflets.

� Width of leaflets.

� Distance between leaflets.

� Asymmetry in the distance between leaflets.

� Branching angle.

� Color of leaflets.

� Stem thickness.

� Stem curvature.

In addition some randomization was introduced to each of these
properties. And the angle between the stem and the ground was
defined. This is the essence of top-down modeling.

Top-down modeling was described by [PRUS et al.99] in terms
of Chomsky grammars [CHOM56]. Chomsky grammars define op-
erations on strings of symbols as in Production 4 which indicates
that objects represented by symbolA decompose into objects rep-
resented by symbolsB andC. Productions in Chomsky grammars
may be applied in any order, and are context free. Each application

Figure 3: Photograph of aPellaea falcataleaf.

of a production is considered to be a derivation step when dealing
with Chomsky grammars, as opposed to the L-systems definition of
a derivation step which is the parallel application of all productions
which apply to the current parametric word. In Chomsky grammars
derivations will typically occur in depth first order until the string
consists only of terminal symbols which may not be decomposed
any further.

Production 4
A �! BC

In order to use L-systems for top-down modeling, it was neces-
sary to extend them. The notions of decomposition productions
(Godin and Prusinkiewizc, personal communication)[MĚCH98]
and interpretive productions (Godin and Prusinkiewizc, personal
communication) [M̌ECH98] (called homomorphisms in the cpfg
L-system specifcation) were added to L-systems. These two new
classes of productions are specified using the same syntax as “regu-
lar” L-system productions, they differ in the way they are applied to
the parametric word. Decompositions are applied to the parametric
word after each application of the “regular” L-system productions.
They are applied until terminal modules are produced or some pre-
defined maximum level of recursion has been reached. The result-
ing parametric word is the one that will be interpreted in the next
derivation step. After the decomposition productions, interpretive
productions are applied that alter the parametric word before it is
interpreted geometrically, these alterations do not affect the para-
metric word which is passed to the next derivation step. Interpretive
productions are applied recursively as are decompositions, until ter-
minal modules are produced or some predefined maximum level of
recursion has been reached. With decomposition and interpretive
productions we redefine an L-system derivation step to be a single
parallel application of the regular productions, followed by the re-



Figure 4: Model of aPellaea falcataleaf.

cursive application of decomposition productions and the recursive
application of interpretive productions.

Branching structures which are recursively defined can be used
to represent many plants. The work described in this paper uses
top-down models specified using decomposition productions. The
parametric word specifying the final branching structure is com-
puted in a single derivation step. Each instance of a plant module
is represented by an individual module in the parametric word, as
is each instance of a change in the current value of local character-
istics such as branching angle, and color. Each module may have
parameters which characterize its attributes. For example an intern-
ode may be represented by the moduleF (m), where the parameter
m characterizes the length of line to draw. Changes in the current
value of the local characteristic line width may be represented by
the module!(n). During graphical interpretation the two modules
!(n)F (m) together specify that the local characteristic line width
should be set ton, then a line of lengthm and widthn should be
drawn.

For example, L-system 1 produces a simple monopodial branch-
ing structure using top-down modeling. The derivation of the final
parametric word is shown in figure 5, and its graphical interpreta-
tion is shown in Figure 6(a).

L-system 1
#define N 2
derivation length: 1
Axiom: !(N=20)A(0)
decomposition
A(n) : n < N �! F (N � n)[+B(n)][�B(n)]A(n+ 1)
A(n) : n >= N �! B(N � 1)
B(n) �! F (N � n)

In the resulting branching structure the parameterN controls the
number of internodes in the main stem, and the corresponding num-
ber of branch pairs that are attached to successive nodes. Figure
6(b) shows the resulting structure withN equal to20. The global
positional attribute index of elements along the stem (represented

!(0.1)F(2)[+F(2)][-F(2)][+F(1)][-F(1)]B(1)

!(0.1)F(2)[+F(2)][-F(2)][+B(1)][-B(1)]A(2)

!(0.1)F(2)[+B(0)][-B(0)]A(1)

Axiom:                               !(0.1)A

Figure 5: Derivation tree for L-system 1.

by the variablen in Lsystem 1) starting with0 at the base and reach-
ingN � 1 at the top, is used to determine the local attributelength
of internodes and leaves, both of which are represented by straight
lines (modules of the form F(x) in the parametric word).

4 Top-Down Animation of Plant Develop-
ment

The goal of top-down animation is to produce a growth sequence
that yields a predetermined form, in a predetermined way. For ex-
ample, the series of time lapse photographs in figure 15 details the
growth sequence of aS. vulgarisCV Congo inflorescense. The pho-
tographs define the growth and final state of the plant, and our goal
is to reproduce this sequence. The issue of the tradeoff between
faithfulness and complexity of plant models has been addressed in
[PRUS98] and is not considered here.

To achieve the goal, we borrow ideas from computer aided
keyframe animation. Keyframe animation in computer graphics
began as an attempt to use computers to do the job of traditional
animators [BAECKER69][BURT WEIN71][REEV81]. In com-
puter aided keyframe animation, the animator creates a series of
keyframes. Each keyframe is composed of individual elements
which may be defined and manipulated separately. The in between
frames are computed based on interpolation from one keyframe to
the next, a process which is called inbetweening. Interpolation
of each element is separately defined and includes specifying the
behavior of each of its characteristics between keyframes. Inter-
active curve editors were introduced to control the change of at-
tributes between keyframes, and the speed at which this change
occured[BAECKER69]. In early keyframe animation, keyframes
were constrained to have exactly the same number of elements.

In the method of plant animation described in this paper, the ini-
tial model and final model of the plant are considered to be key
structures which we wish to interpolate between. We use the top-
down modeling methodology to create the inital and final models.
In our work the inital and final models were designed to match the
photographs of actual plants as closely as possible. Interpolation
functions are specified for each attribute of the model, and inbe-
tweening produces the animation. As in early keyframe animation,
we restrict our models to have the same number of modules to sim-
plify the process of defining the interplolation. This means that the
initial model is a preformed and scaled down version of the final
model. This is biologically justified for many plant strucutres, as
noted in [BELL91](page 90):

“Such structures, delayed in their appearance, can be
preformed, i.e. the whole leaf develops initially but its
parts mature in sequence from base to apex.”

As in top-down modeling, the parametric word specifying the
final branching structure is computed in a single derivation step.
Each instance of a plant module is represented by an individual



(a)N = 2 (b) N = 20

Figure 6: Images generated by L-system 1. The global constantN
defines the number of internodes in the main stem.

module, as is each instance of a change in the current value of lo-
cal characteristics (such as line width, color, etc.). Module 2 shows
the basic structure of modules in the animation model. Four pa-
rameters are given for each time-varying attribute of the module.
All attributes begin at the initial value, which is defined by the ini-
tial model, and end at the final value which is defined by the final
model. Start time defines when attributes begin to change from their
initial value to their final value. Growth time defines the length of
time required for this change to occur.

Module 2
A(initial value,final value,start time,growth time)

For each module type (eg. internodes, leaves), and each class of
local characteristic (eg. branching angle, color) in the model, we
assign a function that describes the interpolation from initial value
to final value over the period of growth. We call such functions
growth rate functions. Our growth rate functions take as input the
value i = (t � ts)=tg wheret is the current time,ts is the start
time of growth from the beginning of the simulation, andtg is the
duration of growth. This function will return0 when i <= 0,
func(id; i) when0 < i < 1 and1 when1 <= i. A function
value of0 indicates that the attribute is at its initial value, and a
function value of1 indicates that the attribute is at its final value.
Intermediate function values specify a linear interpolation between
initial and final value of the attribute. Many growth rate functions

Figure 7: Standard sigmoidal growth rate function.

in nature have a sigmoidal character, meaning that growth is initally
very slow, then accelerates, and then tapers off again as the growth
of the element nears completion. Accordingly,func(id; i) should
be a sigmoidally shaped function. Most of the growth rate functions
used in the examples in this paper are defined as shown in Figure 7.

To animate the development of the branching structure, we use
time dependant interpretive productions. These productions deter-
mine the current value of each attribute in a module at a given time
t, based on the four input parameters and the appropriate growth
rate function. They then create the appropriate modules for the
graphical interpretation. The value oft is stored in a global variable
which is updated at the end of each derivation step. The change in
time between derivation steps may be arbitrarily small or large to
animate growth over any time period. A complete animation is pro-
duced by performing a graphical interpretation of the parametric
word after each derivation step.

For example, revisiting L-system 1 we rewrite it in preparation
for animation as L-system 2.

L-system 2
#define N 2
#define delay 0.2
#define MAXT 6
#define DELTAT 0.1
derivation length: MAXT / DELTAT
Start: ft = 0; g
EndEach:ft = t+DELTA T; g
Axiom: !(N=20)A(0)
decomposition
A(n) : n < N �!

I(0;N � n; n=N; 5)[+B(n)][�B(n)]A(n+ 1)
A(n) : n >= N �! B(N � 1)
B(n) �! L(0; N � n; n=N + delay; 5)

The application of the decomposition productions produces the
following parametric word in the initial derivation step which de-
scribes the preformed branching structure. The parametric word
does not change during later derivation steps.

!(0:1)I(0; 2; 0; 1)[+L(0; 2; 0:5; 1)][�L(0; 2; 0:5; 1)]
I(0; 1; 0:5; 1)[+L(0; 1; 1; 1)][�L(0; 1; 1; 1)]L(0; 1; 1; 1)

The modulesI(0; 2; 0; 1) and I(0; 1; 0:5; 1) represent the two
successive internodes in the main branch, and the modules
L(0; 2; 0:5; 1) andL(0; 1; 1; 1) represent leaflets of different final
size attached to the main branch. The number of derivation steps is
determined so that ift is incremented byDELTA T in each step



(a)
t =

1:0

(b)
t =

2:0

(c)
t =

3:0

(d)
t =

4:0

(e)
t =

5:0

(f)
t =

6:0

Figure 8: Six frames from the animation produced by L-system 2.
t indicates the time at which each frame was generated.

then its final value will beMAX T . The animation is produced by
graphically interpreting the parametric word at each derivation step
using time-dependant interpretive productions. Production 5 is the
interpretive production applied to moduleI. The local parameters
of the productionI are respectivelyinitial length, final length, start
time andgrowth time. Together with the growth rate function for
internodes, which is the function withid = 1 in Production 5, they
determine the value of length at each timet. The moduleL is inter-
preted with a similar interpretive production. Six frames from the
animation produced by L-system 2 are seen in Figure 8, Figure 8(f)
shows the fully grown branching structure.

Production 5
homomorphism
I(li; lf ; ts; tg) : �f
if(t < ts)fl = li; g
elsef

if(t < ts + tg)f
l = li + func(1; (t� ts)=tg) � (lf � li); g

elsefl = lf ; g
g

g �! F (l)

We can control any number of attributes in a similar manner.
The only remaining task is how to best determine the start time and
growth time for each individual module in the model. Preformed
plants exhibit expansion of individual plant components in a se-
quential way. The first part of the structure to begin expansion is the
base of the branching structure, and after that each part in turn will
begin its own expansion until the extremities are reached, which are
the last components to expand, creating the final form of the plant.
To control this sequential expansion, we first determine the absolute
start times from the beginning of the simulation for each internode,
so that the sequence of expansion is replicated. The start time of
other modules are specified as a time offset from the start time of
the internode which the module effects (eg. color modules), or from
the internode the module is connected to (eg. leaf modules).

We begin by examining the case of internode modules in the sim-
ple monopodial structure generated by L-system 2. In the spirit of
the top-down modeling methodology, a simple and intuitive method
of mapping a global attribute to the local characteristic start time is
desired. An interactively edited function is an intuitive method of
doing this. There are two considerations in defining and using such
a function. The first is what global attribute do we use as input
for the function, and the second is how the local characteristic start
time is affected by the resulting function value.

There are four obvious types of global positional information
which may be used as the function input. They are: the absolute
position of the internode in the branching structure measured from

the bottom of the stem; the absolute position measured from the top
of the stem; the absolute index of the internode counted from the
bottom of the stem, with the first module having index 0, the sec-
ond module having index 1 and so on; the absolute index counted
from the top of the stem. We consider two of these possibilites, the
first is the absolute position from the base of the stem, normalized
to the interval [0,1] by dividing the position by the total length of
the stem. The second is the index of each internode from the base of
the stem, normalized to the interval [0,1] by dividing the index by
the index of the last internode in the stem. By normalizing our func-
tion input to lie in the interval [0,1] we can use the same functions
for any size of branching structure. We have observed that the use
of the normalized position gives a more intuitive control than the
normalized index, as there is a one to one linear mapping between
position along the stem in the final model, and the function argu-
ment in the graphical function editor. Using the normalized index,
we do not have such a simple relationship between position along
the stem and the function input. On the other hand, if we are using
a model with an exact known number of internodes with start times
which we have measured experimentally, then using the normalized
index is more convenient.

To determine the effect the function value has on start time, we
have also considered two approaches. One is to use the function
value as the absolute start time from the beginning of the simula-
tion, and the other is to use the function value as the time difference
from the start time of the previous internode in the stem to the start
time of the current internode. For the monopodial structure we are
considering, using the function value as the absolute start time was
the easier method to use. The second method defines the absolute
start time of an internode as the sum of delay times of internodes
from index 0 to the current internode. This is similar to integrating
the function to define the absolute start time. Intuitive control is
more difficult here. Imagine we wish to delay the growth of intern-
odes near the base of the stem more than they currently are, while
leaving the start times of the internodes at the top of the stem un-
affected. Using the first method we simply alter the function in the
region of interest. Using the second method, we must increase the
delay time of the internodes of interest, and then decrease the delay
time of later internodes. Even having decreased the delay of some
later internodes, it is difficult to gauge by how much they should be
decreased to maintain the original start times of the internodes at
the top of the stem.

To determine growth time we pass the same argument we passed
to start time to another interactively edited function, whose function
value is interpreted as the amount of time required for the attribute
to go from its initial value to its final value. The start time and
growth time for all other modules in the model are determined in
a similar way. Two interactively edited functions are specified for
each type of module in the model, one for start time and one for
growth time. Both of these functions will be passed the same input
as the start time function for internodes. They are interpreted re-
spectively, as the time offset as previously described, and the time
needed to grow.

The simple monopodial structure we have considered thus far is
easy to work with as there is only one level of branching. How-
ever, many plants also have branches of higher order. We have ap-
plied the concept of top-down animation recursively to animate the
growth of higher-order branching structures. In a species which has
higher-order branches, individual plants may have different final
geometry as well as a different maximum order of branches. Nev-
ertheless, they grow in a similar way. Consequently it is possible
to have a single parameterized animation model for a given plant
species, that can then be used to animate the development of an ar-
bitrarily preformed branching structure of the species in question.
To keep these models relatively simple, we use the same functions
for determining the value of local characteristics based on global



attributes, for each order of branch in the branching structure.
As an example we consider a simple polypodial branching struc-

ture, and begin by determining the start time for internodes. In the
simple monopodial structure we found it most convenient to use the
relative position along the stem, measured from the base, as the in-
put to our function, and to assign the return value the meaning of
absolute start time. The same considerations apply to the function
input when dealing with a polypodial structure. So we can use ei-
ther the normalized position or the normalized index as the function
input depending on the situation. We specify the return value of the
start time function to be the time lapse from the start time of the pre-
vious internode, as it is more intuitive to think of start time in this
way when dealing with recursively defined multi-order branching
structures.

On the main branch indices fall in the range[0; N � 1], and are
normalized by dividing the index byN � 1. Subbranches usually
have fewer elements than their parent branch, and thus we must de-
termine how to normalize the function input when dealing with a
subbranch. In the case where we use the normalized index as the
function input, we have explored two ways of normalizing the index
to work with subbranches. Let us consider an arbitrary subbranch
with M elements, (we assume thatM <= N ). If we assign in-
dices in the range[0;M � 1] then we normalize by dividing the
index byM � 1. An alternate method is to assign indices in the
range[N �M;N �1] and then normalize by dividing the index by
N � 1. These two approaches provide drastically different results
when using the same function for branches with different numbers
of elements. We have found the second method easier to work with.
Both possibilities also exist when using the position along the stem
rather than the index.

Growth time is treated as before, passing it the same argument
as we pass to start time and interpreting the function value as the
growth time. For higher order branching structures we introduce an
additional function, delay time. Every time a branch gives rise to
a new subbranch, the growth of the subbranch may be delayed be-
yond the time when the parent branch began growing. The function
is passed the same value as start time and growth time, and the re-
turn value is the amount of time by which growth of the subbranch
will be delayed. The start time of the first internode on the sub-
branch will now be its own start time plus the delay time, plus the
absolute start time of the internode on the parent branch.

Rewriting L-system 2 as L-system 3 to include polypodial
growth we note the following changes. Instead of producing lat-
eral apices which are terminal branches, the lateral apices are also
polypodial structures. The normalized index is the global attribute
being used to control local characteristics, but in the subbranches
we use the normalizing scheme where indices are in the range
[N � M;N � 1] and are then normalized by dividing the index
by N � 1. Start time is determined using an interactively edited
function with id equal to 1 (shown in Figure 9). The same function
is used to specify start time for every order of branch in the model.
When creating the preformed branching structure we pass the cu-
mulative start time of the current module to all daughter modules
which it creates, so that absolute starting times can be computed.
If the daughter module is a subbranch then we add the delay time
to the cumulative start time. The cumulative start time is the sec-
ond parameter to productionA. Figure 10 shows six frames from
the animation produced by L-system 3, Figure 10(f) shows the fully
grown branching structure.

L-system 3
#define N 2
#define delay 0.5
#define MAXT 8
#define DELTAT 0.01
derivation length: MAXT / DELTAT
Start: ft = 0; g

Figure 9: Start time function for internodes in L-system 3.

(a)
t =

1:0

(b)
t =

2:0

(c)
t =

3:0

(d)
t =

4:0

(e)
t =

5:0

(f)
t =

6:0

Figure 10: Six frames from the animation produced by the L-system
3. t indicates the time at which each frame was generated.

EndEach:ft = t+DELTA T; g
Axiom: !(N=20)A(0; 0)
decomposition
A(n; s) : n < Nfns = func(1; n=N) + s; g �!

I(0;N � n; ns; 5)
[+A(n+ 1; ns+ delay)]
[�A(n+ 1; ns+ delay)]
A(n+ 1; ns)

A(n; s) : n >= N �! L(0; 1; func(1; n=N) + s; 5)

As before we will also need time-dependant interpretive produc-
tions to allow graphical interpretation of modulesI andL. These
productions will be specified in exactly the same way as before,
with appropriate growth rate functions for internodes and leaves.

The models presented thus far in this section are simple examples
of the underlying concepts. We now describe three fully realized
models where all of the local characteristics are controled by global
attributes via interactively edited functions.

4.1 Animating Growth of Pellaea falcata Fern Leaf

Earlier we saw a photograph and corresponding top-down model of
the sickle fern leafPellaea falcata(Figures 3 and 4). This section
describes the process of animating its growth using top-down ani-
mation. A total of nine attributes were determined using top-down
modeling, they are:

� Length of leaflets.

� Width of leaflets.

� Distance between leaflets.



(a) (b) (c) (d) (e) (f)

Figure 13: Frames from intermediate animation of growthingPellaea falcata.

Figure 11: Internode start time function for animation in Figure 13.

� Asymmetry of leaflets.

� Branching angle of leaflets.

� Color of leaflets.

� Curvature of stem.

� Thickness of stem.

� Angle between stem and ground.

Curvature of the stem was actually specified using the intrinsic def-
inition of a curve, that is its turn, pitch and roll were separately
defined along its length. All nine of these attributes were con-
trolled in the animation. The interactive function editor was used to
specify the initial and final values of all local characteristics based
on a globally derived input (with the exception of angle between
stem and ground, which is a simple scalar value), including start
and growth times, and the growth rate. The global attribute used

Figure 12: Internode start time function for animation in Figure 14.

was the normalized position from the base of the stem. Start time
and growth time were determined using the method described for a
simple monopodial structure, using the normalized position as the
function input, and using the function value as the absolute start
time from the beginning of the simulation.

Six frames from two animations are shown in figures 13 and 14.
The second animation is the final result. The only attribute altered
between these animations is the start time of various internodes, the
functions defining start times for each animation are shown in figure
11 for the first animation, and figure 12 for the second animation.
Each attribute was interactively edited using feedback from the in-
termediate animations until the desired result was achieved. The
process of interactive refinement only took about one half hour to
produce the final animation.



(a) (b) (c) (d) (e) (f)

Figure 14: Frames from final animation of growthingPellaea falcata.

4.2 Animating Growth of S. Vulgaris CV Congo

Figure 15 shows a developmental sequence of photographs of aSy-
ringa vulgarisCV Congo inflorescence, which is an example of a
preformed polypodial plant. The initial and final models were built
based on experimental data detailing the exact branching structure
for a particularS. vulgarisCV Congo inflorescence (for technical
reasons it is not the same inflorescence as seen in Figure 15). The
data was collected at the Agriculture/Agrifood Canda Research Sta-
tion in Morden, Manitoba, and describes four orders of branches.
Internodes on the main stem are of order0, internodes on the child
branches of the main stem are of order1,and so on up to branches
of order3. Each branch is composed of internodes, terminates in a
flower and may have child branches of the next order. Subbranches
are created on each branch in symmetrycal pairs, each consecutive
pair of subbranches are attached to the parent branch after rolling
on the axis of the parent branch by an angle of 85 degrees. Branches
of each order have a maximum number of internodes defined by an
array whose values are accessed using the order of the branch as an
index (table 1). If the number of internodes for a given branch is
less than the maximum number of internodes for that order branch,
we consider the branch to be a copy of the top portion of a branch
of the same order which does have the maximum number of in-
ternodes. When accessing a data table, the internodes indices on a
particular branch withM internodes are defined to be in the range
[N �M;N � 1] whereN is the maximum number of internodes
for branches of that order, and the index is used directly as an in-
dex into the data table. The number of internodes in each pair of
subbranches for each order of parent branch is defined in a 2-D ar-
ray, which is indexed with the order of the parent branch, and the
index of the internode to which the subbranches are attached (table
2). The lengths of internodes for each order of branch is defined in
another 2-D array, which is indexed with the order of the branch,
and the index of the internode (table 3).

The models interpolation was defined using the method de-
scribed for the polypodial L-system 3. The global attribute used
for input to interactively edited functions is the normalized index,
which is calculated as follows. The internode indices on a par-

ticular branch withM internodes are defined to be in the range
[N �M;N � 1] whereN is the maximum number of internodes
on the branch with order 0, and are normalized by dividing the in-
dex byN . Initial and final branching angles, and start times and
growth times for internodes, are all specified using interactively
edited functions taking as input the normalized index. Start times
are defined as a time delay from the start time of the previous in-
ternode.

Parameters for flowers are constant regardless of their position
in the branching struction. They begin to grow after the internode
they are attached to begins to grow plus a constant time delay. The
growth time and unfolding motion of the petals are also constant
throughout the model.

The results of the model can be seen in Figure 15 which includes
six photographs from the growth sequence and the corresponding
frames from the animation.

Branch Order Maximum Internodes
0 13
1 7
2 2
3 1

Table 1: Maxmimum number of internodes in branches of each
order (S. vulgarisCV Congo).

4.3 Animating Growth of S. Reticulata

A more complex example of a preformed polypodial plant isSy-
ringa reticulata. Figure 16 shows a developmental sequence of pho-
tographs of aS. reticulatainflorescence. To animate this develop-
mental sequence we will use the same methodology as we did for
S. vulgarisCV Congo. Once again we have available experimental
data detailing the length of respective internodes and number of in-
ternodes in subbranches of every order. The data is summarized as
before in tables 4, 5 and 6 and was collected at the same time as the
data forS. vulgarisCV Congo. The main difference between the



(a) May 19 (b) May29 (c) June 1

(d) June 5 (e) June 12 (f) June 15

(g) May 19 (h) May29 (i) June 1

(j) June 5 (k) June 12 (l) June 15

Figure 15: Time lapse photography of growingS. vulgarisCV Congo and corresponding animation frames. Note: images 15(h) and 15(i)
were scaled by approx. 1.5, and image 15(g) was scale by approx. 6.



(a) May 19 (b) May26 (c) June 1

(d) June 15 (e) June 22 (f) June 26

(g) May 19 (h) May26 (i) June 1

(j) June 15 (k) June 22 (l) June 26

Figure 16: Time lapse photography of growingS. reticulataand corresponding animation frames. Note: images 16(h) and 16(i) were scaled
by approx. 1.5, and image 16(g) was scale by approx. 6.



Internode Branch Order
Index 0 1 2 3

0 7 2 1 0
1 7 2 0
2 7 1
3 7 1
4 6 1
5 6 1
6 6 0
7 5
8 4
9 3
10 2
11 1
12 0

Table 2: Number of internodes in subbranches attached at different
indices of parent branches of each order (S. vulgarisCV Congo).

Internode Branch Order
Index 0 1 2 3

0 15.5 8.8 4.0 5.0
1 13.1 8.0 4.9
2 38.9 7.7
3 19.8 4.1
4 33.3 4.5
5 21.2 4.4
6 25.6 1.1
7 16.2
8 12.4
9 9.0
10 1.4
11 0.0
12 0.0

Table 3: Length of internodes in branches of each order (S. vulgaris
CV Congo).

two models is that ourS. reticulatamodel has 6 orders of branches
as opposed to four for the congo lilac.

The only other difference is that we have specified a functional
relationship between two of the attributes in the model. The pro-
gram cpfg has a built-in mechanism called tropism [MĚCH98]
which can be used to simulate the effect of gravity on branching
structures. Tropisms are defined as a vector and an elasticity ratio,
and effect the path of the turtle during graphical interpretation by
causing the turtle’s path to tend to become parallel with the tropism
vector at a rate based on the current elasticity ratio. By setting a
tropism vector in the down direction, branches will tend to first
sag, and then point straight down as we add more segments. Ex-
amination of the photographs in Figure 16 shows that over time
theS. reticulatainflorescence first grows straight up (Figure 16(a)),
then sags due to gravity as the weight of the plant increases (Fig-
ure 16(b)), and then straightens out again as the strength of the
stem increases (Figures 16(c) - 16(f)). In order to capture this be-
haviour, we have added a tropism attribute to the internode modules
within the model, with additional parameters begin given as shown
in Module 3.

Module 3
I(initial length,final length,length start time,length growth

time,initial tropism ratio,final tropism ratio,tropism ratio start
time,tropism ratio growth time)

The initial Tropism values are set very high, and the final tropism
values are set so that a slight sagging is visible. The result of this is

that initially the plant almost immediately grows straight down. To
fix this we use the following formula:

rtf = rti � (lf=lt)
3

wherelf is final length of the internode,lt is the length of the in-
ternode at timet, rti is the initial tropism elasticity ratio at timet,
andrtf is the final tropism elasticity ratio at timet which will af-
fect the direction of the turtle during graphical interpretation. The
effect of this is that when the length of the internode is small, and
the initial elasticity ratio is great, the ratio(lf=lt)3 will greatly re-
duce the final elasticity ratio that is applied. Aslt �! lf we get
the corresponding result thatrtf �! rti, so by appropriate modifi-
cations of the elasticity ratio growth rate function, we can define an
interpolation of the elasticity ratio that begins at 0 whent = 0, in-
creases as the internodes lengthen, and decreases as the internodes
achieve their final length, thus simulating the effect of gravity on
the growing plant. The power of 3 was determined experimentally
to give good results.

The results can be seen in Figure 16. Which includes both the
time lapse photographs and the corresponding frames from the ani-
mation.

Branch Order Maximum Internodes
0 20
1 12
2 9
3 5
4 2
5 1

Table 4: Maxmimum number of internodes in branches of each
order (S. reticulata).

Internode Branch Order
Index 0 1 2 3 4 5

0 12 9 5 2 1 0
1 12 7 4 1 0
2 12 7 4 1
3 11 6 2 1
4 10 5 1 0
5 10 3 1
6 9 2 1
7 8 2 1
8 6 2 0
9 5 2
10 4 1
11 4 1
12 3
13 2
14 2
15 2
16 2
17 1
18 1
19 0

Table 5: Number of internodes in subbranches attached at different
indices of parent branches of each order (S. reticulata).

5 Discussion

If we look at the results of our animations in Figures 14, 15 and 16
we can see that we have captured the overall essence of the devel-
opmental sequence, but that some details are not quite right. This is



Internode Branch Order
Index 0 1 2 3 4 5

0 1.5 16.3 15.1 3.0 2.0 3.0
1 25.3 23.6 11.3 5.0 1.0
2 46.6 15.9 9.7 5.0
3 33.2 11.6 7.8 2.0
4 28.7 8.8 3.8 1.0
5 23.7 8.1 3.9
6 23.2 4.5 1.8
7 18.4 4.4 2.1
8 13.9 3.4 1.3
9 12.7 1.8
10 11.2 1.5
11 6.5 1.4
12 10.7
13 6.5
14 5.4
15 3.9
16 3.1
17 2.2
18 2.1
19 1.5

Table 6: Length of internodes in branches of each order (S. reticu-
lata).

due to the recursive nature of our models. As the order of branching
structure increases, the level of intuitive control available decreases.
Thus we have the most direct control when animating the growth of
a single order branching structure, such as the leaf in Figure 3, and
the least control when animating plants with higher order branching
structures such as in Figure 16.

This represents a problem as the purpose of top-down animation
is to provide easy and intuitive control over such processes. The
answer would seem to be to specify different growth control func-
tions for each order of branch, however second order branches at the
base of the main stem and at the top of the main stem may behave in
qualitatively different ways, so this may not be sufficient, and even
if it is sufficient, it adds significantly to the complexity of the model.
Specifying separate functions for each individual branch would cer-
tainly give us the control we need, but would be far too complex to
deal with (consider the model ofS. reticulata, which has approx-
imately 1800 branches). In addition when working with polypo-
dial branching structures we do not know what the final branching
structure will be, unless we model each instance separately. The
use of allometric relations and domain mapping which have been
introduced in top-down modeling [PRUS et al.99] may well yield
advancements to top-down animation. Easy and intuitive control of
higher order branching structures is the largest area for improve-
ment in this work.

The model for animating growth presented in this paper works
well for preformed plants which experience a single season of
growth, but what about longer term plants, or ones which produce
new structures as they grow? The idea of modeling plants as sets
of parametric productions, graphically visualized at any timet us-
ing interpretive productions can be extended to these two areas.
Creation of new organs can be incorporated with regular L-system
productions which can produce several new parametric produc-
tions from an existing one thus modeling new growth. Additional
L-system rules could take an existing parametric production and
rewrite it with new parameters, thus allowing for multiple stages of
growth. The difficulty with these two methods are that we again
lose direct control over these processes. These two extensions form
a part of the bottom-up modeling methodology. A more intuitive
means of capturing these processes is needed for top-down anima-

tion.
Lastly, defining attributes which are functionally related, such

as the tropism elasticity ratio and internode length in the model of
S. reticulatarequires more study. The approach described in this
paper was experimental and difficult to control in an intuitive way,
and the results obtained are not as good as we would like.

6 Conclusion

Most of the previous work on animation of plant development has
centered on bottom-up modeling. Plant structures are emerging
phenomena of a set of rules which govern a derivation of the de-
velopmental process. These rules can be quite compact while cap-
turing complex physiological processes which control plant devel-
opment in nature. A simple assumption based upon this is that
bottom-up modeling of plant development is easy. In fact the op-
posite case is true. Rules must be fine tuned to correctly simulate
biological reality, and detailed biological knowledge is required for
every plant the animator wishes to create. Even with a biologically
correct model, control over the visual characteristics of such models
is difficult.

If we are presented with a predetermined final goal for the struc-
ture and visual characteristics of a plant we require a more intuitive
means of modeling to achieve our goal. Top-down modeling was
devised to allow easy and intuitive control over plant form. It in-
volves mapping global attributes, typically global positional infor-
mation, to local characteristics such as the current length of leaves
or thickness of the stem.

Top-down animation is an extension to top-down modeling
which allows us to animate the growth of a plant so that it arrives at
a predetermined structure which is our goal. Top-down animation
works by specifying an initial and final model using top-down mod-
eling, and then specifying the interpolation of local characteristics
betweeen these two models based on the value of global attributes.
The process is very similar to to computer aided keyframe anima-
tion.

Several methods were explored to map global attributes to local
characteristics. Some strengths and weaknesses were discovered
with each of the methods, but no determination was made of their
suitabiliy in different circumstances, or their general practicality in
top-down animation. Theoretical concepts of positional informa-
tion, allometry, grammars and fractals all bear on this topic, and
although these areas have been researched for many years, there
remain interesting topics for further study in this area.
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