
CPFG

Version 4.0

User’s Manual

Radomı́r Měch

based on the CPFG Version 2.7 User’s Manual by
Mark James

Mark Hammel
Jim Hanan

Radomı́r Měch
Przemyslaw Prusinkiewicz

with contributions by
Radoslaw Karwowski

Brendan Lane

Last updated: May 31, 2005

Contents

1 Introduction 5

2 Distribution 5

I Reference 6

3 Command line parameters 6
3.1 General . 6
3.2 Graphics and windowing . 7
3.3 Special working modes . 8
3.4 Output . 10
3.5 Usage examples . 11

4 User interaction 13
4.1 Main menu . 13
4.2 Animation menu . 15

5 Input files 17
5.1 L-system file . 17

5.1.1 Variables . 18
5.1.2 Programming statements 18
5.1.3 Global programming statements 20
5.1.4 Arrays . 20
5.1.5 Predefined functions . 21
5.1.6 Sub L-systems . 22
5.1.7 Homomorphism . 24
5.1.8 Decomposition . 26
5.1.9 Interpreted symbols . 27

5.2 View file . 37
5.2.1 Setting turtle’s parameters 37
5.2.2 Setting the view . 38
5.2.3 General drawing parameters 39
5.2.4 Lines, surfaces, and generalized cylinders 41
5.2.5 Color-map mode: Colors and lights 43
5.2.6 Material mode: Lights and textures 44
5.2.7 Tropisms . 46
5.2.8 User-defined functions . 47

5.3 Animation file . 48
5.4 Other input files . 50

5.4.1 Colormap file . 50
5.4.2 Material file . 50

1

5.4.3 Surface specification file 50
5.4.4 Contour specification file 51
5.4.5 Contour gallery specification file 53
5.4.6 Tsurface specification file 53
5.4.7 Function specification file 54
5.4.8 Function gallery specification file 55
5.4.9 Texture image file . 55
5.4.10 Background scene specification file 56

6 Output files 59
6.1 Rayshade output . 60

6.1.1 Materials . 61
6.1.2 View parameters and lights 61
6.1.3 Bounding box . 62
6.1.4 Predefined surfaces . 62
6.1.5 Instantiated objects . 62
6.1.6 The main object . 63

6.2 Postscript output . 63
6.3 L-system string . 64
6.4 Graphics Library Statements format 64
6.5 Inventor output . 65

7 Communication with environmental process 67
7.1 Open L-systems1 . 67
7.2 Implementation of the modeling framework 71
7.3 Visualization of the environment 74
7.4 Two process communication . 75

7.4.1 Specification of the communication 75
7.4.2 Environmental process . 77
7.4.3 Data structures . 78
7.4.4 Library functions . 79
7.4.5 Examples . 82
7.4.6 Troubleshooting . 85

7.5 Distributed system . 86
7.5.1 Communication library functions 87
7.5.2 Initialization program . 92
7.5.3 Drawing program . 95

8 Miscellaneous features 97
8.1 Rayshade instantiation . 97
8.2 Sending commands to cpfg through sockets 99

1This section is incorporated from [2].

2

9 Limitations 100
9.1 Using the hardware colormap . 100
9.2 Using cpfg on less than 24-bit screens 100
9.3 Use of symbol # in the L-system file 101
9.4 Transparent objects . 101

10 Things to do 102
10.1 Problems . 102
10.2 Fixes to the manual . 104
10.3 Suggestions for future extensions or improvements 104

II Examples 107

11 Quadratic Koch island 107
11.1 koch.l . 107
11.2 koch.v . 108

12 Koch snowflake curve 109
12.1 snowflake.l . 109
12.2 snowflake.v . 110

13 Combination of islands and lakes 111
13.1 lakes.l . 111

14 Dragon curve 111
14.1 dragon.l . 112

15 Branching structures 114
15.1 plant.l . 114

16 Stochastic L-systems 115
16.1 plants.l . 116

17 Context sensitive L-systems 116
17.1 context.l . 117

18 Parametric L-systems 118
18.1 rowoftrees.l . 119

19 Global variables in parametric L-systems 119
19.1 flake.l . 119

3

20 Incorporation of predefined surfaces 121
20.1 blossom.l . 121
20.2 blossom.v . 121
20.3 leaf.s . 122
20.4 petal.s . 123

21 More predefined surfaces 124

22 Use of sub-L-systems 124
22.1 sedge.l . 124
22.2 female.l . 127

23 L-System defined surfaces 127

24 Other examples 127

References 129

A L-system Input Grammar 130

Index 136

4

1 Introduction

The plant and fractal generator with continuous parameters (cpfg) is a program
for modeling plants and visualizing their development. It can also be used to
generate images of 2D and 3D fractals. Models are expressed using the formalism
of L-systems.

This manual assumes that the reader is familiar with the concepts of L-systems
and turtle interpretation presented in The Algorithmic Beauty of Plants [7], as
well as the elements of the C programming language.

Part I contains reference materials. It describes cpfg usage, user interaction,
and input and output file formats. Part II contains examples, from an L-system
for a simple fractal to realistic models of plants.

2 Distribution

Versions of cpfg are available for Linux and Windows. On Linux, cpfg is
distributed with the Virtual Laboratory Environment (vlab). Under Windows,
cpfg is distributed with the integrated L-system development environment L-
studio. For more information about these packages, see the Biological Modeling
and Visualization Group webpage at

http://www.cpsc.ucalgary.ca/Research/bmv/

5

Part I

Reference

3 Command line parameters

A call to cpfg takes the following form:

cpfg [-sstring size] [-v] [-V] [-d] [-P preprocessor] [-a] [-e environmentfile] [-g] [-
pipestrb] [-C communication setup string] [-S socket num] [-c mapnr] [-w xsize
ysize] [-wp xpos ypos] [-wt window title] [-m[n] colormap file] [-M[n] material file]
[-mb] [-pm] [-sb] [-o] [-homo] [-rgb rgbfile] [-ras rasfile] [-tga tgafile] [-rle rlefile]
[-ray rayfile] [-ps psfile] [-str textstringfile] [-strb binarystringfile] [-gls glsfile]
[-vv vvfile] [-iv ivfile] L-system file View file [Animation file]

The L-system file and View file arguments are mandatory; the arguments in
square brackets are optional. A call to cpfg without any arguments prints a
message with a list of options.

3.1 General

-sstring size The value of the integer string size defines the initial space
allotment for a string generated by an L-system. The default
value is 150,000. Note that there is no space between -s and
string size.

-V This option puts cpfg in verbose mode, in which a trace of
input data and execution details are printed to stdout.

-v This option puts cpfg in warning mode. A trace of input
data and execution details (significantly reduced compared
to the verbose mode) are printed to stdout.

-d This option puts cpfg in debugging mode. Selected infor-
mation pertinent to the cpfg operation is printed to stdout.
This mode is intended only for code development.

-P preprocessor Changes the C macro preprocessor applied to the L-system
file and view file. The default preprocessor is invoked by cpfg
using the cc -E call. For example -P acpp invokes the ANSI
C preprocessor.

6

-a The program starts in animate mode (with animate menu).
This option is necessary in off-screen rendering modes (-g, -
pipestrb) to create an animation according to the animate
file.

-e communication specification file specifies parameters of plant-field com-
munication and switches on environmental mode, in which
cpfg communicates with an external program simulating the
environment.

L-system file The L-system definition. By convention, this file name has
suffix .l. See Section 5.1 for details.

View file Contains viewing, rendering, and drawing parameters includ-
ing the names of surface-specification files. By convention,
this file name has suffix .v. See Section 5.2 for details.

Animation file Contains parameters controlling frame by frame production
of images for animation purposes. By convention, this file
name has suffix .a. See Section 5.3 for details.

3.2 Graphics and windowing

-cmap nr The value of the integer map nr defines the 256-entry portion
of the color or material table to be used by cpfg. A value of
0 indicates the first 256 entries, 1 the second 256, and so on
(up to 15). The background is colored using the first entry of
the selected color table or using the emissive color of the first
entry of the selected material table. The colors or materials
used by the turtle are indexed relative to this entry. The
default value of map nr is 1. Note that there is no space
between -c and map nr on the command line.

-m[map nr] mapfile Instead of the index mode, which uses hardware col-
ormap, an RGBA drawing mode is switched on. In this case,
color indices are read from a file containing 256 triplets of
bytes defining red, green, and blue. The integer map nr spec-
ifies the 256-entry portion of the color table as for option -c
(-m corresponds to -m1). Note that there is no space between
-m and map nr on the command line.

-M[map nr] matfile Instead of the the index mode, which uses hardware col-
ormap, an RGBA drawing mode with OpenGL lighting com-
putations is used. In this case, the turtle parameter color
index specifies an index to a material defined in a material
file, which can be created by program medit. The integer

7

map nr specifies the 256-entry portion of the material table
as for option -c (-M corresponds to -M1). Note that there is
no space between -M and map nr on the command line.

-w xsize ysize This option tells cpfg what should be the size of the opened
drawing window. For example, -w 1024 683 will open a win-
dow suitable for saving image files with an aspect ratio of 3:2,
appropriate for film recorders.

-wp xpos ypos Specifies the initial position of the window (of its top left
corner). The automatic positioning of windows has to be
switched on (see the IRIX windowmanager menu Desktop/Cus-
tomize/Windows).

-wt window title This option changes the title of the window (the icon name
is still cpfg).

-mb In addition to popup menus, a menu bar is created at the top
of the cpfg window.

-pm cpfg uses an X pixmap as a back buffer. The drawing is
slower but handling of expose events is very fast plus the full
24 bit per pixel resolution can be used even in double-buffered
mode.

-sb Single-buffer mode is set (this option takes precedence over
the command single buffer in Animation file). In the double-
buffered RGBA mode, a single-buffer mode may be necessary
to avoid dithering. This switch overrides switch pm and a
pixmap is not used.

-o Menus do not use SGI overlay planes, which results in pro-
ducing an expose event and redrawing the generated structure
every time they overlap the drawing window.

3.3 Special working modes

-g Performs an off-screen rendering. A colormap or a mate-
rial file must be specified (i.e. the off-screen rendering does
not work with hardware colormaps). If the switch a is not
included, cpfg will generate the string up to the last genera-
tion step (defined in L-system file) and save particular files
as specified by -rgb, -ras, etc. With switch a, all frames as
defined in the animate file are saved. It is recommended to
specify filenames as format strings, e.g. plant%03d.rgb.

8

ADD: Format strings are used in a few other places. It would
be nice to have a section explaining the general setup, along
with usage examples.

-pipestrb The program uses the off-screen mode and converts a binary
L-system string file coming on stdin into a desired format (as
specified by options -rgb, -ras, etc.), which can be output also
to stdout (except for image formats) by specifying the word
stdout as a filename for a selected format. If -a is present,
further generation (as specified by animate file) is performed.
The option pipestrb can be used, for example, to pipe stored
strings directly to rayshade and avoid keeping big rayshade
files.

-C communication setup string Specifies connections to other processes in a
distributed simulations. The communication setup string is
a single string (with no spaces). Each connection starts with
a symbol −x, where x is one of m, s, and c, followed by
several parameters, divided by commas. The three types of
connections are:

-m for a master connection — cpfg controls the data ex-
change with the given program. The switch −m is
followed by a communication specification file for the
given connection and a socket number
(-m,comm spec file,socket num). The same file and socket
number has to be specified for the slave process.

-s for a slave connection — the other program controls the
data exchange. The switch −s is followed by a commu-
nication specification file for the given connection, a
socket number, and the name of the machine on which
the master process is running
(-s,comm spec file,socket num,master machine,). The
same file and socket number has to be specified for the
master process.

-c connection to a process controlling the whole simula-
tion. The program cpfg confirms its successful execu-
tion by sending a predefined character through this con-
nection. The switch −c is followed by a socket number
and the name of the machine where the main process
is running (-c,socket num,machine).

See an example in Section 3.5 and more details on the dis-
tributed simulations in Section 7.5.

9

-S socket num The program is able to process text commands (correspond-
ing to menu items) coming through the specified socket (using
program command client — see Section 8.2).

3.4 Output

-rgb rgb file Specify name for the 24-bit SGI RGB image file. Note that
any window that appears on top of the cpfg window when
the snapshot is taken will be included in the image.

-ras ras file Specify name for the color-index SGI image file. Note that
any window that appears on top of the cpfg window when
the snapshot is taken will be included in the image.

-tga tga file Specify name for the Truevision Targa image file. Note that
any window that appears on top of the cpfg window when
the snapshot is taken will be included in the image. Available
also in sun version (unlike rgb and ras formats).

-rle rle file Specify name for the URT (Utah Raster Toolkit) run-length
encoded image file. Note that any window that appears on
top of the cpfg window when the snapshot is taken will be
included in the image. Available also in sun version (unlike
rgb and ras formats).

-ray ray file Specify name for the rayshade output file2.

-ps ps file Specify name for the Postscript output file (see Section 6.2).

-iv iv file Specify name for the Inventor output file.

-str text string file Specify the name of the file to which the string gener-
ated by cpfg will be output in text format (see Section 6.3).

-strb binary string file Specify the name of the file to which the string
generated by cpfg will be output in binary format (see Sec-
tion 6.3).

-homo strings are output after applying homomorphism.

-gls gls file Specify the name of the file to which the structure generated
by cpfg will be output in gls format (a set of OpenGL-like
commands — see Section 6.4 for detailed description). So far
only triangles of generalized cylinders and predefined surfaces
are output.

2Rayshade is a public domain ray tracer developed by Craig Kolb. Cpfg currently supports
rayshade version 4.0, which is available at
ftp://graphics.stanford.edu/pub/rayshade/rayshade4.0.tar.Z.

10

-vv vv file Specify the name of the file to which the bounding volume
information will be output. See the box entry in Section 5.2.

-f anim path format Specify the directory and the format of file names for
saving consecutive animation frames, when selecting Begin
Animate from the animation menu (see Section 4.2). This
switch is obsolete with the possibility to specify file names as
format strings, e.g. plant%03d.rgb.

A filename may be specified as a format string (e.g. plant%03d.rgb) and the
number of the generation step is automatically inserted. This can be used for
saving animations.

A filename may be specified also as “stdout” and the files are sent to a
standard output. Often used in pipe mode (-pipestrb).

In the case of string output (both in the text or binary format), the specified
filename is also used as the default name for the input of the string.

3.5 Usage examples

The most basic call to cpfg contains only an L-system and a view file:

cpfg fractal.l fractal.v

The next call includes an animation file, and specifies that Postscript output
is to be written to the file fractal.ps. The user must choose the Output
postscript item from the main menu to write to this file (Section 4.1).

cpfg -ps fractal.ps fractal.l fractal.v fractal.a

For large models, model generation can be made faster by specifying a larger
initial string size on the command line. The default initial string size is large
enough for most models. If a model is too large for the given string size,
cpfg will reallocate the string and output the message String is too long;
reallocating.

cpfg -s1000000 complexplant.l complexplant.v

In the next example cpfg uses color map number 3 and enters verbose mode.
Output file names are specified for both rayshade and Postscript formats. Note
that the options can be listed in any order, but that the L-system, view and
animation files must be specified last.

cpfg -ray plant.ray -c3 -v -ps plant.ps plant.l plant.v plant.a

11

In all previous examples, a hardware colormap was used for coloring the
surfaces. A colormap can be specified on the command line.

cpfg -m plant1.map -m2 plant2.map plant.l plant.v

Instead of a colormap a material file can be included, improving the results of
the shading calculations.

cpfg -M plant.mat plant.l plant.v

It is possible to generate output files without the drawing window, in an
off-screen mode. In the example below, for all steps specified in the animate file
a rayshade file will be output.

cpfg -g -a -ray plant%03d.ray -M plant.mat plant.l plant.v plant.a

Instead of keeping potentially big rayshade files, it is possible to output only
the L-system string and then pipe it through cpfg directly to rayshade.

cat plant015.strb | cpfg -g -pipestrb -ray stdout -M plant.mat plant.l
plant.v | rayshade -O plant015.rle

In the next example, the program monitors a specified socket and if a text
command representing a menu item comes through the socket, it performs it as
if the item was interactively chosen in the menu.

cpfg -S 1000 -M plant.mat plant.l plant.v plant.a

The following call runs an interactive simulations with the environment de-
fined by an external process (as specified in the file plant.e)

cpfg -M plant.mat -e plant.e plant.l plant.v plant.e

The plant can be also executed as a part of a distributed simulation (although it
will be very likely done by another program and not by the user). In this case,
there are two connections to two environmental processes (whose executables
are specified in files plant1.e and plant2.e).

cpfg -C -m,plant1.e,200,-m,plant2.e,300 -M plant.mat plant.l plant.v
plant.e

12

4 User interaction

The left mouse button is used to rotate the model in the cpfg window. Holding
down the left button and moving the mouse will cause the model to rotate in
the direction of mouse movement. Moving mouse up and down while holding
down the middle mouse button rescales the model in the cpfg window. Moving
the mouse while holding down the left mouse button and the Shift key will pan
the model in the direction of mouse movement.

Clicking on the model while holding the Ctrl and Shift keys, cpfg will insert
the module X into the derivation string immediately before the module that
draws the selected primitive.

A menu, activated using the right mouse button, is provided for interaction
with cpfg. The available menu items depend on command line options and
the current state of the program. The menu controls re-reading of input files,
regeneration of the image, output in a variety of formats, and the switch to and
from animate mode. Once animate mode is selected, animation items are added
to the menu. These items control the animation process.

With the menu bar present in the cpfg window (program option -mb), the
program starts in animate mode and all menu items are accessible also from the
two pulldown menus on the menu bar.

4.1 Main menu

The main menu is composed of the following items:

New Model Rereads the L-system and view files, generates a new string and
interprets it to create a new image. The model is automatically
centered in the window, or placed according to user-specified
viewing parameters as described in Section 5.2.

New L-system Rereads the L-system file, generates a new string and inter-
prets it to create a new image without modifying the view.

New homomorphism Rereads the L-system file containing homomorphism
and re-interprets the current string using the new homomor-
phism (for more details see Section 5.1.7).

New View Rereads the view file and re-interprets the existing string to cre-
ate a new image. The model is automatically centered in the
window, or placed according to user-specified viewing parame-
ters as described in Section 5.2.

New environment Restarts the process simulating the environment. This
menu item appears only if a switch -e environmentfile is in-
cluded in the command line (cpfg communicates with an envi-
ronmental program). May cause problems if the environmental
programs relies on the data from previous simulation steps.

13

Window size Allows the user to set the size of the output window.

Output Allows access to a sub-menu of output file formats:

Image Saves the image in the window in various im-
age formats:

RGB SGI rgb format
RAS SGI colormap format
TGA TrueVision Targa format
RLE Utah Raster Toolkit image format

Rayshade rayshade 4.0 scene description file

Postscript Postscript scene description file

String current string in two formats:

text simple text format
binary internal representation

GLS format graphics library statements format

View Volume bounding volume information

Inventor SGI Inventor format object.

See Section 5 and Section 6 for more detail on file formats. Each
of these entries invoke a sub-menu allowing the user to save
using a default filename (the name of the L-system file with
an appropriate extension or the file specified on the command
line) or to save under a different name. In the second case, a
special window is opened, allowing the user to browse through
the current directory and select the output file or to type in
the name. The modified filename is then stored and it appears
as the default output name next time user want to output the
structure using the same output format. In the case of string
output (both in the text or binary format), the stored filename
is also used as the default name for the input of the string.

This menu also contains the option Set output directory...,
which lets the user set the default directory to place the output
files in.

Input Inputs data from the following formats:

String current string is read from a file of type:

text simple text format
binary internal representation

14

Both entries invoke a sub-menu allowing the user to
input from a file with the default name (the name of
the L-system file with an appropriate extension or the
file specified on the command line — using -str or
-strb) or from a selected file. In the second case, a
special window is opened allowing the user to browse
through the current directory and select the input file.
The modified name is then stored and it appears as
the default input name next time user want to input
a string using the same format. The stored filename
is also used as the default name for the output of the
string.

Animate mode selects an animation mode, which has its own menu (see
Section 4.2).

Exit Exits cpfg.

4.2 Animation menu

The animation process begins with input of parameters, including first frame,
last frame and step from the animation file (see Section 5.3). If the animation
file is not specified on the command line, the animation parameters are set to
its defaults (i.e. the first frame is 1, the last frame is equal to the derivation
steps specified in the L-system file, and the step is equal to 1).

In the animation mode, an animation menu becomes available. The menu
contains all items as the main menu (except the item Animate mode). In ad-
dition, the following items become available, allowing the user to control the
animation process:

Step Displays the frame resulting from the next step derivation steps.
If this goes past the last frame, the first frame will be displayed.

Run Displays consecutive animation frames after each step deriva-
tion steps until the last frame is reached or passed.

Forever The same as Run except that when the last frame is reached,
the animation returns automatically to the first frame and con-
tinues.

Stop Pauses the animation at the current frame.

Rewind Redisplays the animation from the first frame.

Clear Removes the current image from the window.

New animate Rereads the animation parameter file.

15

Begin Recording Gives access to a sub-menu allowing the user to initiate
recording in a selected file format. The sub-menu is similar to
the Output sub-menu. After picking Run from the animate
menu, all subsequent frames are recorded, until Stop Record-
ing is selected. For an L-system “foobar.l” and selecting the
rgb output, for example, the frames are recorded by default as
foobar1.rgb, foobar2.rgb, etc., unless the default file is set
using a corresponding command line option (in this case -rgb
filename). Note that the filename can be specified as a format
string, e.g. plant%03d.rgb. Recording formats and default file
extensions are the same as for Output files.

Stop Recording Stops the recording of animation frames.

Don’t Animate leaves the animate mode and switches back to the main
menu.

These commands are also accessible through keyboard shortcuts:

Step Ctrl+F

Run Ctrl+R

Forever Ctrl+V

Stop Ctrl+S

Rewind Ctrl+W

16

5 Input files

5.1 L-system file

The essential theoretical notions of L-systems are described in The Algorithmic
Beauty of Plants [7]. The syntax is defined formally in Appendix A. Every
L-system file specifies a derivation length, a list of symbols to be ignored (or
considered) when context matching, an axiom, and a set of productions, which
may be either deterministic or stochastic. A production consists of a predecessor
and a successor with optional left and/or right contexts. The L-system can be
defined over an arbitrary alphabet which does not contain the asterisk (*) or
any separators (space, tab, etc.). Section 5.1.9 lists the symbols which have a
graphical interpretation.

The typical file has the following format in the deterministic case:

lsystem: label
derivation length: d
ignore: symbols
axiom: axiom
lcontext < predecessor > rcontext : { α } C { β } --> successor
lcontext < predecessor > rcontext : { α } C { β } --> successor
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor
endlsystem

The text in typewriter font, all spaces, and all special symbols must be
entered as shown. The derivation length d must be a positive integer or zero.
The symbols list should include all symbols to be ignored while context match-
ing. Alternatively, symbols to be considered when context matching can be
specified following a consider: keyword. The axiom, and the predecessor
string in each production must be nonempty. The successor strings in each
production may be empty, in which case it must be represented by an asterisk
(*). The lcontext and rcontext strings may be empty, in which case they can be
represented by an asterisk (*) or left out completely along with the respective
< and > symbols. A production may optionally include a condition C, which is
a boolean expression using C-like syntax. The production will be used only if
this expression evaluates to true. If a production has a condition, either {α} or
{β} or both may also be included. They represent lists of semicolon terminated
statements expressed using C-like syntax. If {α} is given, it specifies statements
to be executed before evaluating the condition C. If {β} is given, it specifies
statements to be executed after if the result of evaluating the condition is true.
For example, the following is a valid production:

A(x,y) : {z = x+y;} z>10 {n = cos(x-y);} --> A(n,z)

Note that all parameters are assumed to have real (floating point) values.

17

The end of an L-system specification is signaled by the endlsystem keyword.
For a stochastic L-system, a seed for the random number generator is also

required and the typical file has the following, slightly modified, format:

lsystem: label
seed: i
derivation length: d
ignore: symbols
axiom: axiom
lcontext < predecessor > rcontext : { α } C { β } --> successor : p1
lcontext < predecessor > rcontext : { α } C { β } --> successor : p2
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor : pn

endlsystem

The new first line specifies the integer seed i for the random number generator.
Each production has a probability factor represented by the floating point value
p associated with it. See The Algorithmic Beauty of Plants [7] page 28 for more
information.

5.1.1 Variables

Variable names are defined as in C. There are two types of variables, float
and character string, but character strings require special handling as they are
passed by reference.

The variables are defined in the whole scope of an L-system. Often, if a
variable is used in a production, it has to be defined in

There is a block structure controlling their scope. There is a special definition
section for arrays, which are indexed as in C (Section 5.1.4).

ADD (Jim?): an explanation of the ”external” statement that can now
appear in the define section of cpfg. Basic syntax is the keyword ”external”
followed by a comma-separated list of variable names and array definitions.
The arrays require their dimensions to be specified I believe.

5.1.2 Programming statements

There are three types of statements which can be included in L-system produc-
tions:

• The first type is represented by assignment statements of the form
varname = expression;

where variable names are specified as in C and expression is an arith-
metic expression. In this case the expression can also include local vari-
ables which have been assigned a value in previous assignment statements
(within the same production), as in the following production:

18

A(y): {x=y/2; s=x*x;} s<5 {z=sqrt(y);} → B(z)C(z+1).

All variables have floating point values.

In case of function printf , it is possible to omit the assignment part and
ignore the value returned by the function:

{a=a+1;printf(”a=%f\n’”,a);}.
• The second type of statement includes conditional statements

if (condition) {statmt1; ... statmtn;}
and
if (condition) {statmt1; ... statmtn;} else {statmt1; ... statmtm;}
where condition is a logical expression and statmti are statements.

• The third type of statement is represented by loop statements
while (condition) {statmt1; ... statmtn;}

and
do {statmt1; ... statmtn;} while (condition);

The meaning of condition and statmti is the same as for conditional state-
ments.

Statements α are performed every time the predecessor and left and right
contexts match, before the condition is evaluated (even if it results in not ap-
plying the production) and before the matching production is found. Thus
statements α can be applied to precompute expressions used in the condition.
The β statements are performed after a condition is evaluated as true, but before
the predecessor is replaced by the successor.

If a production does not have a condition, the empty condition ∗ has to be
used:

lcontext < predecessor > rcontext : ∗ { β } → successor

Compared to the C syntax, the syntax of L-system programming statements
has to follow these specific rules:

• Each assignment statement or a function call has to be terminated with
a semicolon, even if it is a last statement in a block of statements (just
before ’}’).

• Even if there is a single statement following the keyword if , else, while,
and do, it has to be enclosed in curly brackets.

• Operators like ++, −−, + =, − =, ∗ =, / =, etc. are not supported.

19

5.1.3 Global programming statements

Similarly to programming statements associated with productions operating on
local variables, global statements, executed at specific points of the simulation,
can be used to define global variables accessible in all productions. In the cpfg
language, it is possible to define four blocks of statements, which are defined
before the list of L-system productions, using the commands:

Start: {statements} processed at the beginning of the simulation,
End: {statements} processed at the end of the simulation,
StartEach: {statements} processed at the beginning of each step,
EndEach: {statements} processed at the end of each step.

The statements are of the same type as production statements introduced in the
previous section. Variables used on the right side of an assignment statement
in one of these four statement blocks are considered as global variables and can
be accessed in any other block or production. A conflict of two productions
accessing the same global variable at the same time is avoided because in the
modeling program cpfg, the parallel rewriting process is captured by applying
the productions sequentially, from left to right [5].

5.1.4 Arrays

The values of parameters of a plant model depend frequently on the order of
an apex, or a branch or on another value such as the apex age or vigor. It
is possible, for example, to have a separate production for each order with a
successor using different values of growth parameters. But it is more effective
to define an array of values and use only one production.

To define arrays, the cpfg language was extended by the command define
followed by a specification of all arrays used in the model:
define: { array name1[N1,1]...[N1,D1] = {v[0]...[0][0], v[0]...[1], ..., v[N1,1−1]...[N1,D1−1]},

...
namen[Nn,1]...[Nn,Dn]; }

The command can be placed anywhere before the list of productions. A single
array is specified by its name namei and sizes Ni,i...Ni,Di for each of Di array
dimensions. The array can be initialized by including a list of all array values
between a single pair of curly brackets. The first Ni,Di values initialize array
items namei[0]...[0][0], ... , namei[0]...[0][Ni,Di − 1], next Ni,Di values initialize
array items namei[0]...[1][0], ... , namei[0]...[1][Ni,Di − 1], and so on. Several
arrays can be defined, with each specification separated by a comma and the
last one terminated by a semicolon. The specification can extend over several
lines.

In the following example, three one-dimensional arrays are defined and the
first two are immediately initialized.

20

define: { array GrowthRate[5] = {1, 0.8, 0.7, 0.6, 0.5},
BranchingAngle[4] = {60, 55, 55, 50},
ReceivedNutrients[5]; }

5.1.5 Predefined functions

The following predefined functions can be included in L-system expressions:

sin(α), cos(α), tan(α) standard trigonometric functions. Argument α is in
degrees.

asin(x), acos(x), atan(x), atan2(x, y) standard inverse trigonometric func-
tions. Functions asin and atan return value of an angle between −90◦
and +90◦. Function acos returns a value between 0◦ and 90◦. Function
atan2 returns arctangent of y/x in the range −90◦ to +90◦.

exp(x), log(x), sqrt(x), fabs(x), x^y other standard functions.

floor(x), ceil(x), trunc(x) rounding functions.

sign(x) returns 0 for x = 0, 1 for positive x, and -1 for negative values of x.

srand(seed) initializes a random number generator used in all four following
functions.

ran(x) generates floating point values uniformly distributed in interval 〈0, x).
nran(mean, σ) generates random numbers with normal distribution with mean

mean and standard deviation σ.

bran(α, β) returns random values with beta distribution.

biran(n, p) generates random values with binomial distribution — how many
out of n numbers are below p;

stop(n) stops animation. When the parameter n is equal to 1 and Run or
Forever is selected from the menu, cpfg only draws the current string
and continues the simulation. Otherwise, the simulation is stopped.

printf(”format string”, var1, var2, ...) prints variables to standard output.
All variables are of type float, thus the format string should contain only
%f or %g.

fopen(”file name”, ”type”) opens a file specified by its name for input (type =
r) or output (type = w). The function returns an index of the file, used
in the functions below.

fclose(file) closes the file file.

21

fscanf(file, ”format string”,&var1,&var2, ...) allows to input data from an
external file specified by file index file.

fprintf(file, ”format string”, var1, var2, ...) outputs specified variables into
the file file, using the format string. As in the case of function printf,
the string should contain only %f or %g.

fflush(file) flushes the buffers associated with the file file.

func(id, x) returns the value at x-coordinate x of user-defined function number
id. x should be in the range [0, 1]; if x is less than 0, the value of the
function at 0 is returned, and if x is greater than 1, the value of the
function at 1 is returned.

GetDerivationLength(dummy)

SetDerivationLength(steps) The function GetDerivationLength returns the
number of derivation steps in the current L-system. The function SetDerivationLength
sets the number of derivation steps.

5.1.6 Sub L-systems

It is often convenient to apply concepts of structural programming to L-system
models and to divide bigger structures into independent parts. This allows the
modeler to first describe the development of some parts of the plant, and then
combine the pieces together in the complete model. Thus the design of a model
is more efficient and it is possible to reuse productions simulating the growth of
certain plant organs in other models.

To this purpose, Hanan, in his thesis [1], extended parametric L-systems
to include multiple sets of productions. The framework consists of a main L-
system, controlling the development of the overall structure, and additional sets
of productions, sub L-systems, which are invoked from the main L-system or
from each other in a manner similar to calling subroutines in a program. Unlike
subroutines, no values are returned to the main L-system upon a completion of
a sub L-system.

In the cpfg language, the main L-system is the first set of productions in the
L-system file. Each set of productions has assigned to it a unique index using
command Lsystem on the first line of the specification of the main L-system
(index 1) or a sub L-system. During the application of productions, module $(id)
switches the control to an L-system with index id, i.e. all following modules are
replaced by productions from this L-system. An optional second parameter can
specify the scale applied to all geometry produced by the L-system with index
id. Module $ without parameters returns the control to the original (parent)
L-system (see Figure 1).

In the following example, productions for development of the main axis and
development of lateral branches are separated.

22

. . . $(id1) . . . $. . .

applying
sub L−system id1

 applying
 main L−sys.

applying
main L−system

. . . $(id1) . . . $(1) . . . $. . . $. . . $(id2,0.5) . . . $. . .

applying
sub L−system id1

applying
main L−system

main
L−sys.

sub
L−sys. id1

main
L−system

sub
L−sys. id2

main
L−sys.

applying
main L−system

axiom

Figure 1: Example of a developmental sequence generated by an L-system with
two sub L-systems

L-system 1

Lsystem: 1 /* Main L-system simulating growth of the main axis */
ω : A(2, 1)
p1,1 : A(l, o) → !F (l) [&(86)?(2, Rb)B(l)?]/(95) [&(86)?(2, Rb)B(l)?]/(95)

[&(86)?(2, Rb)B(l)?]/(95) [&(86)?(2, Rb)B(l)?]/(95)
A(l ∗R1, o+ 1) : 6− o

p1,2 : A(l, o) : o > 1 → !F (l) [&(86)?(2, Rb)B(l)?]/(129) [&(86)?(2, Rb)B(l)?]
/(129)[&(86)?(2, Rb)B(l)?]/(129) A(l ∗R1, o+ 1) : o

endLsystem

Lsystem: 2 /* Sub L-system simulating growth of branches */
ω : B(1)
p2,1 : B(l) → !F (l) [+B(l ∗R2)][−B(l ∗R2)] : 0.7
p2,2 : B(l) → ! + (10)F (l)/(180)B(l ∗R2) : 0.3
endLsystem

Each branch apex B introduced in the main L-system by productions p1,1 or
p1,2 is enclosed by modules ? and $ (presented in bold to make them more visi-
ble). In the next simulation step, the module ?(2, Rb), inserted just before the
apex B, switches the control to the sub L-system and sets the scaling to Rb.
Thus the module B is replaced by applying either production p2,1 or p2,2. The
symbol $ behind module B returns the control to the main L-system. In the
subsequent steps, all modules of the lateral branch, enclosed between modules
$, are processed using productions of the sub L-system.

The axiom ω of the sub L-system does not affect the simulation, but it is
useful when the sub L-system is being developed and tested (without the main
L-system).

23

5.1.7 Homomorphism

An L-system homomorphism is defined as a set of productions applied only for
interpretation purposes. This allows the modeler to change the details of the
appearance without modifying the underlying logic of the model (captured by
L-system productions).

In cpfg, an L-system homomorphism is specified by productions that are
placed at the end of an L-system between keywords homomorphism and endlsystem.
During the interpretation of the L-system generated string, a matching homo-
morphism production is selected for each module in the string. The homo-
morphism image of a module is then defined by the successor of the matching
homomorphism production. If there is no matching production, the homomor-
phism image of this module is the module itself. Productions with parameters
or local programming statements operate similarly as L-system productions, i.e.
the values of formal parameters in expressions are replaced by the real values
of the module’s parameters.

The resulting overall structure of an L-system with homomorphism is shown
below:

lsystem: label
derivation length: d
ignore: symbols
axiom: axiom
lcontext < predecessor > rcontext : { α } C { β } --> successor
lcontext < predecessor > rcontext : { α } C { β } --> successor
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor

homomorphism [: [no] warnings]
seed: s
maximum depth: d
lcontext < predecessor > rcontext : { α } C { β } --> successor
lcontext < predecessor > rcontext : { α } C { β } --> successor
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor
endlsystem

It is possible to repeatedly apply the homomorphism productions to the
resulting homomorphism image of a module. To enable this operation, the
keyword maximum depth should follow the keyword homomorphism. The value d
then specifies the maximum depth of application of homomorphism productions
(to avoid an infinite recursion).

A warning is issued if the maximum depth is reached and it is possible to
further apply the homomorphism productions (only in version 3.4 and higher).
This warning can be avoided by specifying an optional keyword no warnings

24

following the keyword homomorphism:

homomorphism: no warnings

which is equivalent to:

homomorphism

(kept for backward compatibility). It is possible to use only the keyword
warnings to specify that the warnings are switched on:

homomorphism: warnings

A context for a homomorphism production is defined as the context of the
module in the L-system string, to which the homomorphism is applied, i.e. the
homomorphism image of the modules on the left and right will not affect the
context search. In the following example the context of production h1 is used
to draw only branches whose end point has y coordinate less than 3:

L-system 2

ω : A(1)
p1 : A(o) o < 6 → [+(20)F?P (0, 0)A(o+ 1)][−(20)F?P (0, 0)A(o+ 1)]
homomorphism
h1 : F > ?P (x, y) : y > 3 → f

Even if the homomorphism productions in the previous example were:
homomorphism
maximum depth: 2
h1 : F → G?P (0, 0)
h2 : G > ?P (x, y) : y > 3 → f

The context for the production h2 would be the module ?P in the L-system
string (with the properly set parameters) and not the module ?P introduced by
the homomorphism production h1.

The use of random values in a homomorphism is not recommended during an
animation of the plant development, because the values used in one simulation
step are different from values used in another step and visible discontinuities
may result. The resulting structure may change after each redraw, for example
during rotations or window expose events. To prevent this from happening, it is
possible to use a separate random number generator used only by the homomo-
prhims productions. This option is switched on by specifying the seed for this
generator, using a keyword seed: following either the keyword homomorphism
or the keyword maximum depth.

If sub L-systems are also used, each sub L-system has its own homomor-
phism, which has to be specified at the end of the sub L-system.
ADD: It would be nice to have a global homomorphism that would be shared
by the main L-systems and all sub L-systems (not implemented yet).

If a homomorphism production is specified with the delimiter -o> (an object
production) instead of -->, the operation of such a production is similar to the

25

operation of a production with delimiter -->. During outputting the geome-
try to a rayshade file the object productions specify objects which should be
instantiated. It is possible to specify (using the view file command rayshade
objects) a format string for module’s parameters that controls the precision
used for differentiating between two objects created by the same modules with
the same number of parameters. It is also possible to control whether even the
turtle is considered when comparing two objects created by the same module
with the same parameters (if the objects are different the second one is not an
instantiation of the first one).

Note that the homomorphism productions are applied also during the en-
vironmental step to be able to properly determine the turtle parameters to be
sent to the environmental program (with communication module ?E) and to
set the parameters of query modules ?P , ?H , ?L, and ?U (see Section 5.1.9).
Consequently, if you use a homomorphism production that is applied to one of
the module ?E, the module will not be sent to the environment. Similarly, a
homomorphism production with ?P , ?H , ?L, or ?U in the predecessor will cause
that the values of the parameters of this module will not be set. For example,
if there was an additional production

h3 : ?P (x, y) → @O
in the example above, the parameters of ?P would stay 0 and all branches would
be drawn.

5.1.8 Decomposition

Decomposition productions make it possible to decompose a module in the string
into several components. Thus the L-system productions can focus only on the
development of main building blocks of a plant, such as an apex, meristem,
or leaf. After each simulation step, before the string is interpreted (and a
possible homomorphism is applied), modules representing these organs can be
replaced by several other modules, representing parts of the organs. Unlike for
homomorphism productions, the result of decomposition stays in the string.

Decomposition productions have to be specified after L-system productions
and before homomorphism productions (or at the end of an L-system if no
homomorphism productions are included).

lsystem: label
derivation length: d
ignore: symbols
axiom: axiom
lcontext < predecessor > rcontext : { α } C { β } --> successor
lcontext < predecessor > rcontext : { α } C { β } --> successor
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor

26

decomposition
maximum depth: d
lcontext < predecessor > rcontext : { α } C { β } --> successor
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor

homomorphism
seed: s
maximum depth: d
lcontext < predecessor > rcontext : { α } C { β } --> successor
. . .
lcontext < predecessor > rcontext : { α } C { β } --> successor
endlsystem

The syntax of decomposition productions is similar to homomorphism pro-
ductions, in that there are decomposition productions specific for each sub L-
system and the user can specify the maximum depth or whether warnings about
reaching the maximum depth are printed (the only difference is that the pro-
ductions with delimiter -o> have no special effect on the rayshade output). The
command seed cannot be included at the beginning of decomposition, decom-
position productions use the same random number generator as the L-system
productions.

5.1.9 Interpreted symbols

During the visualization, the string of symbols is parsed from left to right and
every time a special symbol controlling the turtle is encountered the function as-
sociated with the symbol is performed. Symbols with predefined interpretations
are listed below.

Symbols with no parameters use default values specified at the beginning of
the simulation. If a symbol has more parameters than those specified below,
the additional parameters are ignored.

Changing position and drawing

F(d) Move forward a step of length d and draw a line segment from the original
position to the new position of the turtle. If the polygon flag is on (see
the symbols { and }), the final position is recorded as a vertex of the
current polygon. If no parameter is given, the default step size 1 is used.

f(d) Move forward a step of length d without drawing a line. If the polygon
flag is on, the final position is recorded as a vertex of the current polygon.
If no parameter is given, the default step size 1 is used.

27

H\
→

/
L

−+

U
→

→

^

&

Figure 2: Controlling the turtle in three dimensions

G(d) Move forward a step of length d and draw a line. If no parameter is
given, the default step size 1 is used.

g(d) Move forward a step of length d without drawing a line. If no parameter
is given, the default step size 1 is used.

@M(x, y, z) sets the turtle position to (x, y, z).

The global parameter line style specifies whether the line is drawn as a line,
polygon, or a cylinder.

Turtle rotations
The turtle can be rotated only around its heading, left, or, up vector (Figure 2):

+(θ) Turn left by angle θ◦ around the U axis.

−(θ) Turn right by angle θ◦ around the U axis.

&(θ) Pitch down by angle θ◦ around the L axis.

∧(θ) Pitch up by angle θ◦ around the L axis.

\(θ) Roll left by angle θ◦ around the H axis.

/(θ) Roll right by angle θ◦ around the H axis.

| Turn around 180◦ around the U axis. This is equivalent to +(180) or
-(180). It does not roll or pitch the turtle.

@v Roll the turtle around the H axis so that H and U lie in a common
vertical plane with U closest to up.

28

@R(hx, hy, hz,[ux, ux, uz]) Set the turtle heading to (hx, hy, hz) (if the vector
is not normalized the program will automatically do it). If only the first
three parameters are specified, the turtle up and left vectors are adjusted
minimizing their rotation with respect to their previous orientation. Oth-
erwise the next three parameters specify the turtle up vector (also this
vector does not have to be normalized). In this case, the left vector is
computed directly from the specified heading and up vectors.

Modules @v and @R adjust the turtle orientation with respect to absolute coor-
dinates (as compared to other rotations, performed with respect to the current
turtle orientation).

If no parameter is given for the symbols +, -, &, ∧, \, and /, the value of the
view file parameter angle increment (see Section 5.2) is used.

Changing turtle parameters
The following symbols change turtle parameters:

;(n) Increase the value of the current color index or material index by the
color increment, or set to n if a parameter is given.

,(n) Decrease the value of the current color index or material by the color
increment, or set to n if a parameter is given.

@;(n) Increase the value of the current color index or material index of the back
side of a surface by the second parameter of command color increment
(in the view file), or set to n if a parameter is given. Surfaces can have
different colors or materials specified for each side only if the view file
command initial color has two parameters.

@,(n) Decrease the value of the current color index or material of the back side
of a surface by the color increment, or set to n if a parameter is given.

#(n) Increase the value of the current line width by the global parameter line
width increment, or set to n if a parameter is given.

!(n) Decrease the value of the current line width by the global parameter line
width increment, or set to n if a parameter is given.

@Tx(index) Sets texture with index index (the order of the texture specifi-
cation in the view file). Index 0 switches off texturing. If a predefined
bicubic surface has associated a texture index in the view file, its texture
is fixed and cannot be changed by module @Tx.

@D(scale) Sets the current turtle scale to scale. All subsequent geometry will
be scaled by the specified value. The default value is set by the view file
command initial scale.

29

@Di(factor) Multiplies the current turtle scale by factor. If no parame-
ter is specified the default value, set by the view file command scale
multiplier, is used.

@Dd(factor) Divides the current turtle scale by factor. If no parameter is
specified the default value, set by the view file command scale multiplier,
is used.

Modeling of structures with branches (Figure 3)

[Push the current state of the turtle (all its parameters) onto a pushdown
stack.

] Pop a state from the stack and make it the current state of the turtle.

% The symbol % cuts the remainder of a branch. Whenever it is detected
in the string during the generation process, it and all following symbols
up to the closest unmatched right bracket] are ignored for derivation
purposes, and will therefore disappear from the generated string. If an
unmatched right bracket is not found, symbols are ignored until the end of
the string. The symbols is ignored, if it is introduced by a homomorphism
production.

%(par) Supports fragmentation. If the symbol % is found on the right side of
any L-system production, a special interpretation step is performed after
each generate step (if also the environmental pass is performed, these
two passes are done together).

When the module is encountered during this pass, the following sub-
string (up to the closing ’]’ at the same level or up to the next %(par))
is moved to the end of the L-system string and it is preceded by a sym-
bol %(par, turtle index), where turtle index points to a special array of
turtles. This array stores the turtle parameters as they were when the
module %(par) was encountered. After the substring is moved to the end
of the L-system string, every time a module %(par, turtle index) is en-
countered in the following interpretation steps, the turtle parameters are
set to the values stored in the array of turtles under index turtle index.

The context searches are not passing over this module (if the parameter is
present). Be careful when defining sub L-systems, because if the module
%(par) appears within a set of ?(id) and $ (see below) the result after
the cut is undefined. A production with %(par) as a predecessor will
prevent the moving of the substring. The value of parameter par can be
arbitrary.

@mc(flag) Conditional cut. Operates as the module % (with no parameter)
only if the value of flag is equal to 1. Otherwise, it has no effect.

30

F [+F][−F [−F]F]F [+F][−F]

Figure 3: Turtle interpretation of a bracketed string

Symbols used to create polygons along with F and f

{ Start a new polygon by pushing the current turtle position onto the
polygon stack and set the polygon flag on. See also module {(type) in
the section on generalized cylinders (below).

} Pop a polygon from the stack and render it. If no more polygons are
on the stack, turn the polygon flag off. See also module }(type) in the
section on generalized cylinders (below).

. Place the current state of the turtle on the polygon stack if the polygon
flag is on.

Drawing circles and spheres

@o(d) Draw a circle of diameter d in the plane of the screen. If no parameter
is given, the current line width will be used.

@c(d) Draw a circle of diameter d in the HL plane. If no parameter is given,
the current line width will be used.

@O(d) Draw a sphere of diameter d. If no parameter is given, the current
line width will be used. The spheres produced can be shaded even in
the colormap mode, since a set of polygons approximating a sphere is
generated using code from the widely available sphere.c file by Jon
Leech (leech@cs.unc.edu).

Drawing parametric bicubic surfaces

∼ Draw the predefined surface identified by the symbol immediately follow-
ing the ∼ at the turtle’s current location and orientation. The control
points, geometry and neighborhood information for surfaces are read
from surface specification files at the beginning of the simulation.

31

∼ l(s)
∼ l(sx, sy, sz) Optionally, the surface can be scaled by the L-system. If the

surface has one parameter, it is uniformly scaled by that amount. If
there are three parameters, they specify the scaling amount in the x, y,
and z directions.

@PS(i,basis) Initializes the four rows and columns of control points for an L-
system defined surface i to (0, 0, 0). The optional parameter basis speci-
fies the type of patch as:

1. Bèzier,

2. B-spline,

3. Cardinal spline.

If no basis is given, the default, Bèzier, is used.

@PC(i,r,c) Assigns the current position of the turtle to the control point of
the L-system defined surface i in row r and column c.

@PD(i,s,t) Draws the surface defined by the control points of surface i using
s lines along the rows and t lines along the columns.

Drawing generalized cylinders

@Gs Start a generalized cylinder in the current turtle position. Equivalent to
{(1) followed by ’.’ (see below).

{(type) Start a generalized cylinder. The parameter type is one of the follow-
ing:

1 an open curve consisting of Hermite spline segments (as in the
case of @Gs);

2 a closed curve consisting of Hermite spline segments;

3 an open curve consisting of B-spline segments;

4 a closed curve consisting of B-spline segments.

If the parameter type is 0 or is not specified, the points between a pair of
curly brackets { and } specify a polygon (see above). The module does
not specify the first control point.

@Gc(strips) Specifies a control point on the central line of the generalized
cylinder. The value of strips specifies how many mesh strips are drawn
between the control point and the previous one. The more strips are
drawn, the smoother the generalized cylinder looks. If no parameter is
given, one strip is drawn. Equivalent to .(strips) (see below).

32

.(strips) Equivalent to @Gc(strips), only it can be used also for specifying ver-
tices of a polygon (see the Section Symbols used to create polygons
above). If the generalized cylinder is started using symbol {, a control
point is also defined after each f or F (the same way as in the case of
polygons — the number of strips is then set to the default value of 4).

@Ge(strips) End a generalized cylinder. The parameter strips controls the
number of strips as for symbol @Gc.

}(type) Finishes a generalized cylinder started by a module {(types) The pa-
rameter type has to match the value of types. If a new generalized
cylinder is started before an old one is finished, the result is unde-
fined (unless it is defined in a branch delimited by square brackets, e.g.
{(1)f(1)[{(3)f(1)}(3)]}(1)).

@Gt(start, end) Multiplicative parameter for the length of tangents of a Her-
mite curve that specify the axis of the generalized cylinder between two
consecutive control points. The tangent lengths are equal to the distance
between the two control points multiplied by the tangent coefficients (the
default value is 1.2).

@Gr(angle1, length1, angle2, length2) Specifies the slope and length of two tan-
gents of a Hermite curve which describes the change of radius of a gen-
eralized cylinder. The command defines the angle of the tangent and its
length for a segment finishing at the next specified control point and for
the following segment starting at the same point.

The angle is defined with respect to the axis of a straight segment of a
unit length, thus the real slope of the radius may not correspond to the
set value for curved segment or segment of a different length (the second
problem can be avoided by using module @Gr(1)). In addition if you
increase the length of the tangents of the axis too much (by module @Gt)
the strips close to the control points will be wider that the strip in the
middle and the angle of radius tangents will be skewed as well.

As a default or when both lengths are equal to 0, the radius at the control
points is set so that it is linearly interpolated along the segment (if only
one length is set to 0, the tangent at the point is set as if the radius was
interpolated linearly).

@Gr(flag) Switches on (flag=1) or off (flag=0) an automatic adjustment of
radius tangents for segments of a non-unit length. If the flag is 1, the
tangents are defined for a segment of a unit length and then stretched
onto the segment of a non-unit length, thus the specified tangent an-
gles do not correspond to the real angles of the tangents. As a default,
tangents are not adjusted after the stretching.

33

@#(contour id) Sets the contour specified by contour id as the current contour
for generalized cylinders. Contours are specified in the view file (see the
command contour in Section 5.2). A contour with id 0 is the default
circle. Unlike in case of textures or tropisms, contour id is specified in
the view file for each contour separately and it does not depend on the
order of commands contour.

@!(polygons) Sets the number of polygons around a generalized cylinder or a
cylinder that is represented by F or G.

Changing tropisms parameters

@Ts(index,value) Set elasticity parameter of tropism with index index to
value. Index is given by the order of the tropism specification in the
view file (starting with 1).

@Td(index[,value]) Decrease the elasticity parameter by the default elasticity
increment specified in the view file or by the given value value.

@Ti(index[,value]) Increase the elasticity parameter by the default elasticity
increment specified in the view file or by the given value value.

@Tp Prevent twist. This command adjusts the turtle’s up and left vector to
minimize the twist [3]. This command operates locally, i.e. it adjusts
the turtle’s vectors only at the current point.

@Tf Force the twist. If the orientation of a segment following symbols / or \
is adjusted due to a tropism (which as a default adjusts the segment’s up
vector to prevent twist), the effect of the symbols / or \ is nullified. In
such cases it is necessary to add the symbol @Tf to force the twist. This
command operates localy, i.e. it prevents twist only for symbols / or \
to the left of @Tf.

Symbols for Sub-L-systems

?(id,scale) Causes the generator to save a reference to the current L-system on
a stack and to use the list of productions from the sub-L-system identified
by id during subsequent production matching and application. During
interpretation, the current scale is saved on a stack and the structure
resulting from interpretation of the generated substring is scaled by scale.

$ End the sub-L-system and return to the previous set of productions and
scale.

Query and communication symbols

34

?P(x, y[, z]) queries the current turtle position. If the module is present in any
L-system production, an interpretation step is performed after each gen-
erate step, when productions are applied. The string is thus interpreted
even if cpfg does not draw to the window. During the interpretation, the
two or three parameters of the module are set to the x, y, or x, y, and
z coordinates of the current turtle position, respectively. These param-
eters then can be accessed in the following generate step and affect the
selection of productions (see the definition of environmentally-sensitive
L-systems in [6]).

?H(x, y[, z]) queries the current turtle heading vector (similarly as ?P).

?L(x, y[, z]) queries the current turtle left vector (similarly as ?P).

?U(x, y[, z]) queries the current turtle up vector (similarly as ?P).

?E(x1, . . . , xm) module ?E (communication module) is used both to send and
receive environmental information represented by the values of parame-
ters x1, . . . , xm. Specifically, parameters x1, . . . , xm act as an interface
between the plant and the environment, simulated by an external process.
They can be set by the plant model and transferred to the environment
or set by the environment and transferred to the plant model (see the
definition of Open L-systems in [2, 4])

Miscellaneous commands

@L(”Label”) Prints the ”label” in the drawing window at the current turtle
location using the font specified in the view file. It is also possible to
specify a printf-like format string and print out values of subsequent
parameters (e.g. @L("a=%g",a)).

@S(”any system call”) Will make the system call when interpreted.

@I(”rayshade object”[, scale]) Includes a rayshade objects with a given name,
located at the current turtle location, and scaled by a given value (only
for a rayshade output). The second parameter is optional.

@J(size1, size2, size3) As a default, all objects output into a rayshade file are
enclosed in one grid. To be able to create more grids, tightly enclosing
each plant, for example, the module @J closes the current grid and starts
a new grid of a given size (in number of voxels). This module is inter-
preted only during the rayshade output. Usually, a value of 20 for the
longest object dimension is sufficient. The shorter dimensions then can
be reduced accordingly (this has to be done by the user). If the object
dimension are not known, values 20× 20× 20 would work.

35

If a module starting with a letter @ is not one of the recognized interpreted
modules, a warning message is issued during the interpretation of the string. An
exception are modules @Z and @Y, which are used for controlling the tropism
elasticities in a program for interactive editing of L-system generated strings
(currently in development).

36

5.2 View file

A view file contains drawing, viewing, and rendering parameters as well as the
names of surface specification files for any surfaces to be included in the image.
The format of the view file is given below. All text in typewriter font, special
symbols and all spaces should be entered as shown. Unless stated otherwise, the
symbols x, y, and z represent floating point numbers, i represents an integer,
id represents a single character, and other text in italics represent character
strings. Comments can be included using standard C notation: /* ... */.
Many of the parameters in this file have default values, and can be omitted, but
it is good practice to have everything in the file. This makes it easier to change
default values because the appropriate keywords are already in the file (also, it
makes it easier to change parameters with control panels).

Note that the following commands are processed in the order they are spec-
ified in the view file. Thus if there are two commands controlling the same
parameter, the second command takes precedence. This does not apply to com-
mands such as light, texture, and others that specify a new set of parameters
every time the command occurs.

5.2.1 Setting turtle’s parameters

Line Contents Comments

angle factor: x 360◦/x is the angle increment associated with the +, -, &,
^, \, / and | symbols.

angle increment: x Set the angle increment associated with the +, -, &, ^,
\, / and | symbols to x. The commands angle increment and angle
factor are alternatives and the last one appearing in the file will be
used.

initial color: i1 [i2] number between 0 and 255 specifying the initial value
of the index to the color map or a set of materials. The second num-
ber, if present, specifies the index of the color or material of the back
side of the surface. The program cpfg then considers two different
colors/materials for each surface.

color increment: i1 [i2] number specifying the color or material index in-
crement associated with the ; and , for the front index and @; and @,
for the back index.

initial line width: x [| pixels | shaded] the number x represents initial
line width in the specified line style. If no string is listed after the
number, then Fs and Gs are drawn as flat shaded polygons with a
width in world units. The width of line in this case is rescaled when
the cpfg window is resized. If pixels or just p is listed, flat shaded

37

lines are drawn with their width in pixels (or screen units). If shaded
or simply s is listed, lines are drawn as shaded cylinders in world
units. In versions 3.0 and higher, line style should be set by command
line style (see below in Section Lines, surfaces, and generalized
cylinders).

line width increment: x a number specifying the line width increment as-
sociated with the symbols # and ! with units taken from the initial
line width specification.

initial scale: x the parameter x specifies the initial scale factor associated
with the turtle (the default is 1). All geometry will be scaled by this
factor. This initial value can be modified by modules @D, @Di, and @Dd.

scale multiplier: x modifies the default value (1) of the multiplicative fac-
tor by which the turtle scale is multiplied or divided, when module @Di
or @Dd is interpreted.

5.2.2 Setting the view

viewpoint: x,y,z x, y, and z coordinates of the view point in world space3.

view reference point: x,y,z x, y, and z coordinates of the view reference
point in world space3.

twist: i tenths of degrees to rotate the image on the screen.

projection: type type identifies the desired projection, either parallel or
perspective. Perspective viewing mode is the preferred mode to use
if you intend to save a rayshade format object since rayshade also
uses perspective viewing. Auto-centering and auto-scaling work only
in parallel mode.

viewing angle: x the viewing angle of perspective projection (the default is
45◦). It is ignored in parallel projection.

front distance: x the distance from the viewer to the front clipping plane in
perspective projection or the position of the clipping plane with respect
to the viewpoint in parallel projection (thus a negative value has to
be used). Note that modifying scale factor (see below) in perspective
projection moves the viewer closer or farther from the view point and
the front distance has to be adjusted.

back distance: x the distance from the viewer to the back clipping plane
in perspective projection or the the position of the clipping plane with
respect to the viewpoint in parallel projection. Note that modifying

3As described in the SGI Graphics Library Programming Guide.

38

scale factor (see below) in perspective projection moves the viewer
closer or farther from the view point and the back distance has to be
adjusted.

scale factor: x a parameter indicating the size of the final image on the
screen. A value of 1.0 corresponds to full size. In perspective projec-
tion, the scaling amounts to moving the viewer closer or farther from
the view points, which may require adjustments in front and back dis-
tance.

box: x: xmin, xmax y: ymin, ymax z: zmin, zmax sets a bounding box for
the model. The view is adjusted so the whole bounding box is visible
(effective only in parallel projection).

5.2.3 General drawing parameters

shade mode: i an integer defining the type of rendering to be applied:

1. simple fill,

2. interpolated fill,

3. Gouraud shade,

4. B-spline,

5. closed B-spline,

6. two sided,

7. wireframe.

This command is kept only for backward compatibility. Use render
mode instead.

render mode: mode where mode defines one of the following render modes:

fast similar to mode filled (see below), only spheres and disks are
drawn in wireframe.

wireframe the wireframe of all objects is visualized. If the image is
output to a postscript pairs of neighboring triangles are visualized
as a single polygon to reduce the number of lines.

filled all polygons representing a surface have the same color associ-
ated with the surface. If materials are specified the diffuse color
is used.

interpolated similar to mode filled. If the color or material at the
beginning of a straight line or cylinder (using modules Fs and Gs) is
different from the color at the end, the two colors are interpolated
along the line. Similarly, the color of L-system defined polygons
is interpolated, if the colors at different vertices are different.

39

flat in this mode, the color of each polygon representing surfaces,
lines, or generalized cylinders is determined according to the po-
sition of the polygon with respect to the light. If materials are
specified, the color is determined according to the material spec-
ification, using a single normal for the whole polygon. Other-
wise, the colormap is used. In the case of cylinders or general-
ized cylinders, the color of the polygon is chosen from interval
[col− diff refl, col+ diff refl], where col is the color index as-
sociated with the surface and diff refl is a range defined using
command diffuse reflection (see below). The color is chosen
according to the position of the polygon with respect to the di-
rection towards the first light source (other sources are ignored).
In the case of surfaces and tsurfaces, the color selection is more
complicated (see command surface reflection below).

shaded similar to mode flat. If materials are specified, the normal
for each polygon representing a surface can be different at each
vertex of the polygon, resulting in a smooth shading. If colormap
is used, a color is computed for each vertex of the polygon (see the
commands diffuse reflection and surface diffuse below).

z buffer: flag a string identifying whether hidden surface elimination (using
z buffer) should be provided (on) or not (off).

cue range: x a number specifying the range of color indices used for depth
cueing. A value of 0 indicates no depth cueing. Usual values of n are
10 to 100. Depth cueing is not used in versions 3.0 and higher.

font: Xfont Under X, Xfont specifies the font type to be used in @L inter-
pretation using the X font specification. If the font is not found or not
specified, the default is -*-courier-bold-r-*-*-12-*-*-*-*-*-*-*.

winfont: name size flags Under Windows use this instead of font. name is
the font name. If the name contains spaces (such as Times New Roman)
it must be enclosed in quotation marks: "Times New Roman". size is
the size in pixels. flags can specify (in any order, upper and lower case
OK): i (italic) and b (bold).

interpretation past %: flag flag equal to on (default) allows the turtle to
interpret past symbol % which in subsequent step cuts a substring.
When the flag is set to off, the symbols after % are not interpreted.

interpretation step: i an integer value i specifies number of interpreted
symbols between an X event is checked. The interpretation during
rotation or after selecting New model, New L-system, New view or
New Homomorphism from the menu can be interrupted by an X server
event. This allows one, for example, to quit the program before the

40

drawing is finished, to rotate much quicker — just a part of the string
is drawn (depending on the machine speed and value of i), or to reduce
the number of redraw events when the window is resized or exposed
several times in a row. Setting i to -1 switches off this feature, i.e. all
modules are interpreted without checking for the next event.

rayshade objects: format [turtle flag] controls the output of instantiated
objects into rayshade file. If you specify a homomorphism production
with delimiter -o> instead of -->, during the rayshade output the
predecessor will be instantiated if it appears again (if it has the same
parameters and possibly also the same turtle parameters). The format
string controls the precision of object parameters (used for differen-
tiating between two objects created by the same modules with the
same number parameters). For example, if the format is set to %.2f ,
the precision of two decimal points is used in comparisons (%f or %g
results in the full precision comparisons).

The parameter flag is equal either to considered or ignored and it
controls whether even the turtle is considered when comparing two
objects created by the same module with the same parameters (if the
objects are different the second one is not an instantiation of the first
one).

rayshade scale: scale specifies a scale factor which is applied to the rayshade
objects output by cpfg. This command can be used for scaling up
and down specific plants generated by different L-systems in different
scales. Note: it is usually better to use the parameter turtle scale (see
command initial scale).

antialiasing: on|off Draws with antialiasing. Currently, this only works
with line primitives.

min zoom: zmin

max zoom: zmax These commands control how much the user can zoom in or
out on the view. They default to 0.05 and 50, respectively.

5.2.4 Lines, surfaces, and generalized cylinders

line style: style specifies how the lines (represented by modules F or G) are
drawn. Parameter style is one of the following:

pixel flat shaded lines are drawn with their width in pixels;

polygon lines are drawn as flat shaded polygons with a width in
world units;

41

cylinder lines are drawn as cylinders with the width specified in
world units.

tapered lines: flag controls whether lines or cylinders are drawn tapered or
not (flag is equal to on or off — the default is on).

polygonization level: n determines the level of detail used in generating
the polygons for spheres and cylinders. For stems, for example, there
is 2n+1 polygons around the circumference. A high value, such as 4,
will generate very smooth surfaces, but take longer to display. A lower
value, such as 1 — the lowest, produces very rough approximations to
these surfaces. If this line is not specified, the default value is 2. This
command is kept only for backward ompatibility. Use contour sides
instead.

contour: i file defines a contour with integer id i specified by a set of 2d or 3d
control points read from the file file. For more details, see Section 5.4.4.

contour sides: n determines the level of detail used in generating the poly-
gons for spheres and cylinders (this initial value can be modified by
module @!). In the case of cylinders, n (n > 3) polygons around
circumference is drawn. For spheres, the closest upper power of two
is used. If you want to have smooth connections between cylinders
and spheres for small values of n, use a power of 2. If this com-
mand or command polygonization level: is not specified, the de-
fault value is 8. Make sure this command is not followed by command
polygonization level later in the view file, because then the param-
eter could be changed by the second command.

surface: id name.s x [s t] [tex] the character used to identify the surface, a
string containing the file name of the surface specification file (see
Section 5.4.3), and a surface scaling factor. The parameters s, t, and
tex are optional. If parameters s and t are included, they specify the
level of detail used when drawing patches. Patches are drawn using s
polygons along the rows and t along the columns. If s and t are not
specified, they default to 5. Several surfaces may be specified in this
manner.

The last parameter (tex), if present, specifies a texture associated with
the surface. This value takes precedence over the texture index asso-
ciated with the turtle during the interpretation and all instances of
this surfaces will have the same texture. It is better not to include
this parameter and set the texture inside the L-system. Note that the
parameter tex can be present even if the couple of parameters s and t
is omitted.

42

line: id name.s x the character used to identify the line to be drawn, a string
containing the name of the surface specification file, and a surface
scaling factor.

tsurface: id name.ray s the character used to identify the surface, a string
containing the name of a file using rayshade-like file format, and a
surface scaling factor s. The file should contain a set of triangles with
6 or 8 values per vertex, specifying vertex point, vertex normal, and
optionally texture coordinates (see Section 5.4.6).

twist of cylinders: flag As a default, generalized cylinders are drawn in
such a way that their twist is minimalized. If the twist is desired, set
flag to on.

background scene: list list is a list of file names (separated by a space,
comma, or semicolon). Each file contains a set of OpenGL-like graphics
commands (see Section 5.4.10) which specify additional objects drawn
after the L-system generated string is interpreted.

5.2.5 Color-map mode: Colors and lights

light direction: x,y,z x, y, and z coordinates of the vector indicating the
direction of light for shading purposes. This command should be used
only if the program is running in the colormap mode. In the material
mode, use command light.

ambient light: red, green, blue the ambient light specified as red, green and
blue components. This command is effective only in version 2.7 and
lower.

diffuse reflection: i an integer number indicating the range of colors cho-
sen for lighting a shaded surface (effective only in colormapmode). The
surface color col is varied within the interval [col−i, col+i] to achieve a
color variation due to the different orientation of polygons representing
the surface with respect to the direction of the light source (only of the
first light source if more then one source is specified). The color of a
polygon representing a cylinder or generalized cylinder is chosen in the
following way. If col is the color index associated with the cylinder, i
is the diffuse refection coefficient, 1N is the normal of the polygon, and
1L is the direction towards the light source, the resulting index is:

index = col + i · 1N · 1L.

surface ambient: x a number between 0 and 1 indicating the amount of
ambient light present for shading bicubic surfaces and tsurfaces. This
command is effective only if the program is running in the colormap

43

mode. In the material mode, materials specify ambient light for sur-
faces. See the following command for the description of computing the
resulting color.

surface diffuse: x a number between 0 and 1 indicating the amount of
diffuse light present for shading bicubic surfaces and tsurfaces. This
command is effective only if the program is running in the colormap
mode. In the material mode, materials specify diffuse light for sur-
faces. The color of a polygon representing a surface is chosen in the
following way. If col is the color index associated with the surface, int
is the intensity of the color (int = (col/64) − floor(col/64)), amb is
the predefined ambient intensity, diff is the predefined diffuse inten-
sity (diff = x), 1N is the normal of the polygon, and 1L is the direction
towards the light source, the resulting index is:

index = 64 · int · (amb+ diff · abs(1N · 1L)).

background color: red, green, blue the background color specified as red,
green and blue components. In cpfg version 3.0 and above, this com-
mand is ignored. The background color is then either the colormap
color with index 0 (in the given set of 256 colors — controlled by the
command line parameter c) or the emission color of the material with
index 0.

5.2.6 Material mode: Lights and textures

light: subcommand1 subcommand2 ... sets a light source. The subcom-
mands are:

O: x y z origin of a point light source (the default light source is
a point source, located at (0,0,1));

V: x y z vector specifying a directional source;

A: r g b ambient (default 1 1 1);

D: r g b diffuse (default 1 1 1);

S: r g b specular (default 1 1 1);

P: x y z e c specified a spotlight with the direction (x, y, z), ex-
ponent e , and cutoff angle c (default 0 0 -1 0 180);

T: c l q attenuation factors (constant, linear, and quadratic) (de-
fault 1 0 0).

More than one light can be specified by including several commands
light into the view file.

44

texture: subcommand1 subcommand2 ... defines a texture mapped on sur-
faces, cylinders, conses, and generalized cylinders (not disks and spheres).
The subcommands are:

F: image specifies the image file name (a necessary subcommand).
The image width and height is clamped in such a way that the
image size is (2m × 2n).
Currently, it is possible to specify rgb, rle, and tga images (with
the proper extension).

H: filter for textures with texels bigger than image pixels. The
parameter filter is either linear or near (only l or n can be
used). When set to linear texture image is smoothed, while
setting to near makes the texture pixels visible.
The default is near.

L: filter for textures with texels smaller than image pixels The
parameter filter is either linear or near (only l or n can be
used). When set to linear more texture pixels are used to
compute the given pixel, while for near, just one texture pixel is
used to compute the given pixel (which may result in aliasing).
It is also possible to use mipmaps in which case the OpenGL
library creates a smaller version of the texture (down to a size of
1×1) and for smaller objects uses the smaller texture (resulting
in faster displaying). There are four modes of operation when
selectin a proper textel pixel:

mnn take the nearest mipmap image and the nearest pixel in
this mipmap. Produces some artefacts, visible especially
when moving object around or scaling it, but it is the
fastest.

mln take the nearest mipmap image and the linearly inter-
polate between neighboring pixels (still produces some
artefacts).

mnl take the nearest pixels in both best choices of pixmaps
and interpolate between the values.

mll linearly interpolate between neighboring pixels in both
best choices of pixmaps and interpolate between the val-
ues. Produces the best result, but may be slower.

If just m is used, the mll mode is selected.
The default is near.

E: mode controls the way the texture is combined with the surface
colors4. The parameter mode is one of the following:

4See “The OpenGL Programming Guide”, Chapter 9, Section Modulating and Blending.

45

modulate cpfg multiplies the surface color with the texel
color;

decal only the texel color is taken and the surface is not
shaded;

blend interpolates between surface and texture color us-
ing the color index value of the surface (only in
colormap mode).

The default is modulate (only m, d, or b can be specified):.
S: when present, the surface texture is mapped per surface not per

patch. The default is mapping per patch, i.e. texture coordi-
nates are derived from s and t coordinates of the Bèzier patch
representing the surface (both s, and t vary from 0 to 1). In
case of mapping per surface, first the surface boundaries are
found and then the texture is mapped into z = 0 plane with
respect to the computed boundaries.

R: ratio defines the aspect ratio of a texture mapped on cylinders
and generalized cylinders. The default is 1. A value greater
than 1 will cause the texture to be more stretched along the
cylinder.

More than one texture can be specified by including several commands
texture into the view file.

5.2.7 Tropisms

tropism direction: x,y,z x, y, and z coordinates of the vector indicating
the direction toward which branches tend to bend. This command
is kept only for backward compatibility. Use the command tropism
instead.

initial elasticity: x a value specifying the susceptibility of a branch to
bending. This command is kept only for backward compatibility. Use
the command tropism instead.

elasticity increment: x the value used to increment or decrement the
elasticity associated with the symbol. This command is kept only
for backward compatibility. Use the command tropism instead.

tropism: subcommand1 subcommand2 ... sets tropism parameters. The sub-
commands are:

T: x y z tropism vector (must be present);
A: ang angle (in degrees) with respect to the tropism vector that

segments are trying to reach (for example, the angle of 90◦

corresponds to diatropism). The default is 0◦.

46

I: int intensity (global intensity of the tropism — default is 1);

E: ela initial elasticity (default is 0);

S: step elasticity step (default is 0).

torque: subcommand1 subcommand2 ... sets parameters of a movement that
adjust rotates segments around their heading without modifying the
heading orientation. The subcommands are the same as for command
tropism, except that subcommand A: is ignored.

5.2.8 User-defined functions

function: file [n] Defines a function specified by a function file. By conven-
tion, function files have the extension .func.

If the optional parameter n is present, cpfg will precompute n values
of the function, evenly spaced in [0, 1]. Whenever the function func
is used, the returned value will be a linear interpolation of the two
closest precomputed values. If the parameter is omitted, the value of
the function will be computed exactly at each call of func.

The id of each function (the first parameter of the cpfg function func)
is based on the order in which they are specified in the view file, starting
at 1.

function set: filename Instead of storing each function in a separate .func
file, the user can specify a single function set. If cpfg finds this view file
entry, then all functions from the function set are read. The function’s
ids are based on the order in which they appear in the file, counting
from 1.

In addition, when preprocessing the L-system file, cpfg will add a num-
ber of -DFUNC=id commands to the preprocessor, where the FUNC
identifier is an all-capitals version of the function’s name in the func-
tion set, and id is its corresponding id number. This lets the user call
a function by func(FUNC,x), rather than keeping track of the separate
ids.

The number of precalculated samples is now stored in the function set
file along with each function.

47

5.3 Animation file

An animation file contains parameters controlling frame by frame display of
images for animation purposes.

Line Contents Comments

double buffer: flag specifies whether double buffering is on or off during
animation. The default is on. In cpfg version 3.0 and higher, the
command line setting of single- or double-buffering takes precedence,
because buffering has to be set at the point of execution (using com-
mand line parameters) and cannot be changed afterwards. The only
effect the command double buffer has is to set single-buffering even
if the program starts with two buffers.

clear between frames: flag specifies whether screen clearing between frames
is on or off. The default is on.

scale between frames: flag If the flag is on, the view is adjusted (in parallel
projection only) so the whole structure fits into the window (before the
scaling is applied — see command scale in the view file). The default
is off.

new view between frames: on/off If the flag is on, the view file is reread
after each simulation step. Consequently, the view, textures, and all
parameters specified in the view file are updated. Used, for example,
for updating a background scene or a texture used for visualizing the
environmental field5. The default is off.

swap interval: i minimum time (in tenth of a second) between swapping of
buffers in double buffer mode. The time is measured from the moment
cpfg begins to draw the frame to the moment it begins to draw the
next frame. If it takes longer to draw a frame, the delay between
frames is then longer. The default is 1.

first frame: i derivation step of the L-system string to be interpreted as
the first frame. The default is 1.

last frame: i derivation step of the L-system string to be interpreted as the
last frame. The default is the number of derivation steps (specified in
the L-system file).

step: i number of derivation steps between drawing (and recording) of frames.
It defaults to 1.

5The memory allocated by cpfg’s (the resident size) increases with each New View. This
increase may be significant in animations in which the new view is invoked after each animation
step. See Section 10.

48

frame intervals: frame1, frame2, from1 − to1, from2 − to2 step step1 ...
Allows the user to select frames or change the step during an anima-
tion. The command is followed by:

• a list of specific frames and/or

• by ranges of frames without specifying the step (thus step of 1 is
used) and/or

• by ranges of frames with given step,

all divided by commas.

Example:

frame intervals: 1, 3-5, 8-12 step 2, 25

In addition, every time a range is specified, it is possible to change
the scaling or rotate the given object by a certain amount after each
frame, using commands:

rotate rx ry rz rotates by angle rx (in degrees) around axis x,
angle ry around axis y, and angle rz around axis z;

scale sx sy sz scales by values sx, sy, and sz.

There can be only one command rotate or scale present for a single
range.

Examples:

frame intervals: 1-99,100-150 rotate 1.5 0 0

frame intervals: 1-99,100-150 scale 0.9 0.9 0.9

If the command frame intervals is specified in the animation file
(regardless the order), it takes precedence over the commands first
frame, last frame, and step.

The command in the file can be in an arbitrary order. The file is not prepro-
cessed, thus comments may cause problems (at least a warning will be issued).

49

5.4 Other input files

5.4.1 Colormap file

The colormap is a binary file with the extension .map. Each triple of three bytes
is the R, G, B values of a color. There must be exactly 256 colors defined in the
file; thus, the file must be exactly 768 byes long.

5.4.2 Material file

The material file is a binary file with the extension .mat. It contains one or
more 15-byte records of the form:
struct materialrecord
{
unsigned char id;
unsigned char transparency;
unsigned char ambient[3];
unsigned char diffuse[3];
unsigned char emission[3];
unsigned char specular[3];
unsigned char shininess;
};

Here, id is the material number. transparency is the transparency value
applied to all material components (where 0 is no transparency, and 255 is full
transparency). ambient, diffuse, emission, and specular are the RGB values
of the respective material components, and shininess, which must be in the
range [0, 128], is the shininess of the material.

5.4.3 Surface specification file

A surface specification file details a bicubic surface in Bèzier form composed of
an arbitrary number of patches. The file has the following format, where x, y,
and z are real values, i is an integer value and the remaining strings in italics
represent text strings.

xmin xmax ymin ymax zmin zmax

CONTACT POINT X: x Y: y Z: z
END POINT X: x Y: y Z: z
HEADING X: x Y: y Z: z
UP X: x Y: y Z: z
SIZE: x
patchname
TOP COLOR: i DIFFUSE: x
BOTTOM COLOR: i DIFFUSE: y

50

AL: patch1 A: patch2 AR: patch3
L: patch4 R: patch5
BL: patch6 B: patch7 BR: patch8
x11 y11 z11 x12 y12 z12 x13 y13 z13 x14 y14 z14
x21 y21 z21 x22 y22 z22 x23 y23 z23 x24 y24 z24
x31 y31 z31 x32 y32 z32 x33 y33 z33 x34 y34 z34
x41 y41 z41 x42 y42 z42 x43 y43 z43 x44 y44 z44

The first six lines of the file contain information about the surface as a whole.
The first line lists the minimum and maximum values of x, y, and z for the
surface. The next four lines detail geometry parameters required for integrating
the surface with the remainder of the structure generated by cpfg. The contact
point specifies where the turtle connects to the surface, the end point is where
the turtle is positioned after drawing the surface, and the heading and up vectors
are matched to the corresponding vectors of the turtle to determine the surface’s
orientation. Size is a scaling parameter giving the size in surface units to be
considered as equivalent to the default unit length associated with the F symbol
in cpfg.

The above section is followed by groups of ten lines, each describing one
component patch. As many ten-line groups as there are patches making up the
surface are specified. The first line gives the patch name. The next two lines
contain patch-specific rendering information giving colors and diffuse lighting
coefficients for either side of the surface. If the values are zero, the current
turtle parameters are used. The next three lines contain patch neighborhood
information. This information is used when rendering to determine if smooth
shading is required across a patch boundary. The adjoining patches are specified
by their patchname in the appropriate position: above left (AL), above (A), above
right (AR), left (L), right (R), below left (BL), below (B), and below right (BR).
The lack of a neighboring patch in a given direction is indicated by a ~ symbol.
The corresponding entries must match in the neighboring patch specification.
The last four lines contain patch control points, each line representing one row
of four points each with an x, y, and z coordinate.

5.4.4 Contour specification file

A contour specification file defines the cross-section (contour) of a generalized
cylinder. As a default, the contour is a disk. It is possible to use an arbi-
trary contour defined as an open or closed three dimensional parametric curve
consisting of several B-spline segments.

The contour curve is specified by a set of control points. Each control point
is defined by two coordinates (in which case the third coordinate is assigned to
be 0) or by three coordinates. The file starts with a single header line:

num_points dimension type

51

where value num points specifies the number of control points in the file, value
dimension controls the dimension of the contour (2 or 3), and word type is
either open for open contours or closed for closed contours.

An example of a contour file follows:

12 3 closed
0.16 -1.12 2.0
0.41 -1.04 1.0
0.58 -0.33 0.5
1.08 -0.04 0.2
1.08 0.49 0.0
0.49 0.54 0.0
0.33 0.91 0.1

-0.37 1.04 0.3
-0.70 0.62 0.2
-1.12 0.16 0.1
-0.87 -0.74 0.3
-0.41 -0.66 1.0

It is recommended to specify the control points in the counter-clockwise order
(with respect to the point [0,0,0]), because interpolation between clockwise and
counter-clockwise contour results in a twisted generalized cylinder.

Note that if a contour includes some singularity (e.g. a sharp edge created by
having three control points at the same location), the normals are not correct.

Version 1.01 Version 1.01 contour files include the ability to name contours
and to have control points with multiplicity greater than one. They must be
prefaced with a header specifying their version number:

cver 1 1

The name, type, and number of points are described on separate lines:
name: name
points: n1 n2

type: open | closed
Here, n1 is the number of distinct control points, while n2 is the sum of their
multiplicities. Finally, the n1 points are described, one to a line, as four numbers:
the (x, y, z) coordinate, and the multiplicity:
x1 y1 z1 m1

x2 y2 z2 m2
...
xn1 yn1 zn1 mn1

52

Version 1.02 Version 1.02 files are identical to Version 1.01 files, with the
addition of optional endpoint interpolation of the contour. Again, the header
must specify the version number:

cver 1 2

The only other difference is that the type must now be one of or, oe, cr,
or ce, for open contour with regular interpolation, open contour with endpoint
interpolation, closed contour with regular interpolation, and closed contour with
endpoint interpolation, respectively:
type: {o|c}{r|e}

Version 1.03 Version 1.03 files add in the samples field. This field describes
how many sides generalized cylinders drawn with the contour will have. The
header specifies version 1.03:

cver 1 3

The samples field comes on the line after type. Its value must be an integer:
samples: samples

5.4.5 Contour gallery specification file

Contours can be bound into galleries. A gallery is a file which contains the
definitions of several contours. The format of this file is:
contourgalleryver 1 1
items: number of items
item1

item2

item3
...
where each item is a complete definition of a contour, of any version.

Items bound in a gallery are numbered consecutively, starting from 1.

5.4.6 Tsurface specification file

It is also possible to specify a surface not as a bicubic patch, but by a set of
triangles. These triangles are input from a text file which follows a syntax of a
rayshade input file, except that the only lines that are processed are those with
the keyword triangle at the beginning of the line.

Following this keyword there are 3 lines, each containing 6 numbers, spec-
ifying the x, y, and z coordinates of triangle vertices and the normal in each
vertex. Optionally, additional two numbers, defining u, and v coordinates of a
texture at the vertex can be included on each line.

Example (without texture coordinates):

53

triangle
-0.5 1 0 0 0 1
0 2 0 0 0 1
0.5 1 0 0 0 1

triangle
0.5 1 0 0 0 1
0 0 0 0 0 1

-0.5 1 0 0 0 1

and with texture coordinates:

triangle
-0.5 1 0 0 0 1 0.5 0
0 2 0 0 0 1 1 0.5
0.5 1 0 0 0 1 0.5 1

triangle
0.5 1 0 0 0 1 0.5 1
0 0 0 0 0 1 0 0.5

-0.5 1 0 0 0 1 0.5 0

5.4.7 Function specification file

A function specification file defines a function as a spline curve which the first
control point’s x coordinate is equal to 0, and the last point’s x coordinate is
equal to 1; in addition, for any two control points pi and pi+1, xpi ≤ xpi+1 . This
last condition ensures that the spline curve defines a function.

Function specification files usually have extension .func. The format of the
files is:
range: 0.0 1.0
points: n
x1 y1
x2 y2
...
xn−1 yn−1

xn yn

Here, n is the number of control points (at least 4), where point pi is (xi, yi).

Version 1.01 The new version of the function specification adds a name, the
number of samples which should be precomputed by cpfg (rather than cal-
culated each time accessed), and an option flip, which defines whether the
independent variable is displayed horizontally or vertically by the function edi-
tor. The format is:

54

fver 1 1
name: name
samples: number of samples to precompute
flip: on | off
points: number of points
x1 y1
x2 y2
...

5.4.8 Function gallery specification file

The function gallery file is very similar to the contour gallery. Its file format is:
funcgalleryver 1 1
items: number of items
item1

item2
...

5.4.9 Texture image file

Each texture specification (in the view file) includes a file name of an image
used for the texturing. Any of the following format can be used:

• RGB — SGI RGB format;

• RAS — SGI colormap (RAS) format;

• TGA — Truevision Targa format;

• RLE—Utah raster toolkit rle format (produced, for example, by rayshade);

• BMP — Windows bitmap format.

The specific format is recognized automatically by the extension (rgb, ras, tga,
rle, and bmp).

cpfg supports textures with alpha channel information if the texture is
stored in SGI RGB(A) format.

Both the image height and width has to be a power of two. If it is not the
case, the texture image is clamped and only a part of the texture appears on
the textured surfaces. If your texture size does not meet this condition, scale
up or down your texture using command imscale infile outfile -xres x -y res y.

55

5.4.10 Background scene specification file

The background scene can be effectively used for defining additional objects
around the simulated plant, such as obstacles. It can be also used during the
simulation of plant-environment interactions, for visualizing the environmental
field together with the plant.

The name of the background scene file is specified in the view file. Often, the
scene is read only at the beginning of the simulation, but it is also possible to
update it automatically before each interpretation step (animate file command
new view between frames) or manually (from a menu) for selected steps of
the simulation.

Primitives of the background scene are defined in a text file using simple
OpenGL-like statements [8]. The commands can be divided into several groups
discussed below.

Primitives
The following statements specify basic geometric primitives similarly as in

the OpenGL graphics library [8]. The coordinates of the vertices or the size of
primitives are defined with respect to a local coordinate system. It is possible
to translate the objects or scale them by translating or scaling the coordinate
system using transformation statements (see below).

polygon x1 y1 z1 ... xn yn zn specifies a polygon with n vertices (x1, y1, z1)
to (xn, yn, zn) (n ≥ 3).

polygonuv x1 y1 z1 nx1 ny1 nz1 ... xn yn zn nxn nyn nzn specifies a polygon
with n vertices (x1, y1, z1) to (xn, yn, zn) (n ≥ 3). Each vertex i has also
associated a normal (nxi, nyi, nzi).

rectangle a b defines a rectangle with one vertex in (0, 0, 0) and edges of
length a, b along the positive axes x, y, respectively.

mesh x1 y1 z1 ... xn yn zn specifies a rectangular mesh: vertices 2k, 2k + 1,
2k + 3, and 2k + 2 define a single rectangle of the mesh (n = 4 + 2k,
k ≥ 0).

box a b c specifies a box with one vertex in (0, 0, 0) and edges of length a, b,
and c along the positive axes x, y, and z, respectively.

cone r1 r2 h specifies a cone with its axis along y axis, radius at the base
equal to r1, radius at the top equal to r2, and height h.

cylinder r h specifies a cylinder with its axis along y axis, radius r, and
height h.

sphere r specifies a sphere with center at (0, 0, 0) and radius r.

56

Material specification
There is only one statement in this group.

material n1 n2 ... n17 specifies the current material using 17 values that fol-
low the keyword material: four values for ambient color (red, green, blue,
and alpha, all in the range of 0-1), four for diffuse color, four for specular
color, four for emissive color, and one for specular exponent (a value be-
tween 0 and 128). The alpha value controls the opacity of the surface (1
for opaque, 0 for transparent). This material is applied to all subsequently
defined primitives.

Transformations
All primitives are defined with respect to a local coordinate system. The

system can be modified by transformation statements, listed below. The co-
ordinate system is expressed by a single matrix, specifying the transformation
necessary to map the world coordinate system into the current local system.
Thus every rotation, translation, or scaling modifies only the current transfor-
mation matrix. This approach is equivalent to the use of the modelview matrix
in OpenGL [8].

loadidentity sets the current transformation matrix to identity (i.e. the
current local coordinate system is equal to the world coordinate system).

loadmatrix a1 a2 ... a16 sets the current matrix. The first four values
specify the first column of the matrix, next four the second column, etc.

pushmatrix stores the current transformation matrix on a matrix stack.

popmatrix retrieves a matrix from the stack and sets it as the current trans-
formation matrix.

translate tx ty tz translates the local coordinate system by vector (tx, ty, tz)
(by modifying the current transformation matrix).

rotate angle vx vy vz rotates the coordinate system around vector (vx, vy, vz)
by angle degrees.

scale sx sy sz scales the local coordinate system by factors sx, sy, and sz in
axis x, y, and z.

multmatrix a1 a2 ... a16 multiplies the current transformation matrix by spec-
ified matrix.

Example
A sample background scene is specified below.

57

material 0.1 0.1 0.1 1 /* subsequent surfaces are grey */
0.16 0.21 0.27 1 /* with no specular reflections */
0 0 0 1 /* and no emissive color */
0 0 0 1
0

pushmatrix
translate 3 -20 -3
scale 1 0.7 0.7
sphere 15 /* ellipsoid */
popmatrix

pushmatrix
translate -14 -55.0 8
cone 15 2 14 /* cone */
popmatrix

translate -10 -65 0
box 30 5 30 /* box */

The file is preprocessed by cpfg, thus macros or comments can be part of it.
The format of the background scene file is also used in transferring the

polygons representing selected modules from the plant simulator to the model
of the environment. In addition, the same format can be used for the output
of the generated structures from the plant simulator, in which case the file also
includes statements specifying light sources and the projection (Section 6.4).

58

6 Output files

The cpfg menu allows the user to save output files in a number of different
formats. Output file names can be specified on the command line with defaults
derived by replacing the suffix .l of the L-system file with a different suffix:
.rgb, .ras, .tga, .rle, .ray, .ps, .str, .strb, .gls, .vv, or .iv depending
on the format chosen. The file name can also be modified interactively through
the menu.

The supported output formats are:

• RGB — Saves the current window in SGI RGB format. The file name
may be specified on the command line as -rgb file.rgb.

• RAS — Saves the current window in SGI colormap (RAS) format. The
file name may be specified on the command line as -ras file.ras.

• TGA — Saves the current window in Truevision Targa format. The file
name may be specified on the command line as -tga file.tga.

• RLE — Saves the current window in Utah raster toolkit rle format. The
file name may be specified on the command line as -rle file.rle.

• Rayshade — Outputs a complete file in rayshade 4.0 format. The viewing
parameters produce the same view as cpfg, provided that the perspective
view is used. Surface color is chosen according to the current color map,
using the basic color modified by the ambient light parameter (but not by
the diffuse light component). The file name may be given on the command
line as -ray file.ray.

• Postscript — Output the generated string in PostScript (see Section 6.2).
The file name may be specified on the command line as -ps file.ps.

• String — Output the generated string in a text format (see Section 6.3).
Two decimal digits of parameter values are output. The file name may be
specified on the command line as -str file.str.

• String (binary) — Output the generated string in a binary format (see
Section 6.3). The file name may be specified on the command line as
-strb file.strb.

• Graphics Library statements — Output the generated geometry in a local
text format (see Section 6.4). The file name may be specified on the
command line as -gls file.gls.

• View Volume — Output the computed bounding box into a text file. The
file format is as follows. The file consists of a single line:

box : x : xmin, xmax y : ymin, ymax z : zmin, zmax

59

The file name may be specified on the command line as -vv file.vv.

• Inventor—Output in SGI Inventor format. The file name may be specified
on the command line as -iv file.iv. This option requires the inventor
shared libraries and for some executables may not be available.

The following sections describe some of the supported output formats in more
detail.

6.1 Rayshade output

The program cpfg allows the user to output the geometry into a rayshade
format, making it possible to render the generated objects with a high de-
gree of realism. Rayshade is a public domain ray tracer developed by Craig
Kolb. Cpfg currently supports rayshade version 4.0, which is available at
ftp://graphics.stanford.edu/pub/rayshade/rayshade4.0.tar.Z. The man-
ual is also available for download from the same site.

The general structure of a file output by cpfg is as follows:

#ifndef NOSURFACES
/* material definitions */
#endif

#ifndef NOHEADERS
/* view settings */
/* screen resolution */
/* background colors */
/* lights */
#endif

#ifdef BBOX
/* defines only the bounding box */
#else
/* predefined surfaces (a set of triangles for each) */
name l grid 20 20 20
/* surface triangles */
end

/* instantiated objects */

name plant.ray grid 20 20 20
/* objects defining the plant */
end
#endif

60

/* rescale the object using specified values */

#ifndef NOHEADERS
/* define an instance of the object */
#endif

This structure allows the user to either use the rayshade file on its own or
include it in a scene comprising several plants. In the second case, the surfaces
and the view may be set by the main rayshade file that includes all plant’s files
and the local definitions can be ignored (by defining the macro NOSURFACES
or NOHEADERS). Also, only bounding box can be defined for a fast preview
of the scene (using the macro BBOX).

The following sections describe each feature of the rayshade file.

6.1.1 Materials

The rayshade file includes definitions of all materials specified in the material
file used by cpfg. In the case a colormap is defined, only colors actually used
by cpfg objects are output to the file. In rayshade, the material definition uses
keyword surface (that is why the macro mentioned above is called NOSUR-
FACES), followed by the assigned name. The name consists of the letter ’s’ and
the index of the material (or color) corresponding to the index used by cpfg,
increased by the index of the main material set or colormap multiplied by 256
(usually, the colormap index is equal to 1 and all surface indexes are increased
by 256).

If cpfg uses materials, all material components except emissive color are
included in the surface definition. The transparency parameter (only one per
surface, not like in OpenGL where each color can have its own alpha channel)
is determined from the alpha value of the emissive color.

If cpfg uses a colormap, only ambient and diffuse colors are specified, both
equal to the r, g, b color values specified by the colormap.

6.1.2 View parameters and lights

The view and lights set in the rayshade file correspond to the view and lights
set by the cpfg’s view file. (The object is rotated and scaled so it is oriented
the same way as on the screen, using a transformation matrix specified together
with the instance of the object at the end of the rayshade file.)

Only perspective projection can be defined in the rayshade file. Conse-
quently, the parallel projection used by cpfg has to be converted to perspective
projection. This process often produces views which are inconsistent with the
view on the scene. For the best results, it is advisable to use perspective pro-
jection in cpfg if the plant is to be output to rayshade.

61

6.1.3 Bounding box

To be able to preview a scene that consists of a vast number of plants, it is very
convenient to use only a box representing the bounding box of the plant. Note,
that the bounding box is incorrect, if the rayshade file is output in the off-screen
mode, during which the bounding box is not computed. It is possible, though,
to force computing of the bounding box by outputting also the view volume file
(e.g. directly to /dev/null if you do not want to keep it, using command line
parameters -vv /dev/null).

6.1.4 Predefined surfaces

All predefined surfaces specified in the cpfg’s view file are included in the
rayshade file. Each surface is named using the single letter name defined in
the view file. The surface definition consists of a grid of fixed size (20×20×20)
containg a set of triangles. The triangles are defined by their vertices, and
possible also normals and texture parameters at each vertex. The normals are
included if the smooth shading is used by cpfg. Since there are two ways of
mapping a texture on a surface, it may happen that there are two surface defi-
nitions in the file (with index 1 and 2 — as the second letter of the name), each
with different texture coordinates associated with vertices.

6.1.5 Instantiated objects

It is possible to take advantage of instantiation not only for surfaces, but also for
parts of the plant, such as complex leaves or flowers. If the user specifies a ho-
momorphism production with delimiter -o> instead of -->, during the rayshade
output the predecessor will be instantiated if it appears again (if it has the
same parameters and possibly also the same turtle parameters). The precision
of object parameters (used for differentiating between two objects created by the
same modules with the same number parameters) can be controlled by specify-
ing a format string in the view file (using the command rayshade objects —
see Section 5.2). It can be specified whether even the turtle is considered when
comparing two objects created by the same module with the same parameters
(if the objects are different the second one is not an instantiation of the first
one).

Sometimes it may happen that an empty object is defined and rayshade
would core dump on the file. Currently, a tiny transparent sphere is defined in
such cases. This could be better solved by noting which instances are empty
and not using them in other places.

ADD: It would be nice to include an example of rayshade instancing (-o>
productions) where turtle’s parameters are considered.

62

6.1.6 The main object

The name od the main object is generally equal to the name of the rayshade out-
put file (without the path). The whole object is enclosed in a grid of resolution
20× 20× 20 to speed up the rendering.

Sometimes, though, cpfg may define several plants positioned further away
from each other and it is more efficient to use a separate grid for each plant.
For this purpose, the user can use module @J in the L-system string (see Sec-
tion 5.1.9). The module @J(size1, size2, size3) closes the current grid and starts
a new grid of a given size (in number of voxels). In this case, there are several
objects defined, and the main object is defined at the end of the rayshade file
as a list of the parts specified by the @J module.

The objects use references to surfaces and instantiated parts, defined earlier
in the rayshade file. In addition, it is possible to define a reference to a rayshade
object defined in another file, by specifying the name of the object as a parameter
of the module @I (see also Section 5.1.9). In this case, an instance of the object
with the given name is created at the current position, with the orientation
given by the turtle, and the scale specified as the second parameter of module
@I.

Before the instance of the main object is defined at the end of the rayshade
file (after the #ifdef NOHEADERS statement), the object is possibly scaled
using the scale parameter defined in the cpfg’s view file (using the command
rayshade scale:). Note, it is usually better to use the parameter turtle scale
(the view file command initial scale) which affects all primitives and the
final scaling is not necessary.

Note that cylinders and cones are defined as a single primitive, thus they
always appear smoothly shaded.

Also, the rayshade format does not support double-sided surfaces, thus if a
surface has associated two different materials in cpfg, in the rayshade file, only
the top material is specified for this surface.

Rayshade reports triangles with edges shorter than 0.00001 as degenerate
triangles and cylinders or cones with length below 0.00001 as degenerate cones.
The problem is that if these primitives are degenerate they are ignored and it
may happen that there will be an object containing no primitives which will
cause rayshade to core dump. To avoid this, make sure, for example, that you
are not using generalized cylinders which starts or finish with width 0.

6.2 Postscript output

Similarly as for the rayshade output, an attempt was made to produce a PostScript
file which is essentially a snapshot of the window. Therefore, the file consists of
the L-system object in a box of the background color, positioned the same way
as on the screen (even in the case the user interactively rotates and scales the
object before the output, regardless the used projection). Care must be taken

63

if standard black and white output is desired for inclusion in text documents
(such as in LATEX). For this purpose, the background is generally made white
and the foreground black (or shades of grey).

The following caveats apply:

• Textures are not supported.
• Primitives are not drawn with interpolating colours, as cpfg draws them.
An attempt is made to guess the best colour.

• PostScript has no Z-buffer and no additional depth testing is performed
during the output, thus an object located later in the string will overlap
another object located earlier in the string even if on the screen it appears
behind the earlier specified object.

Note that if your version of cpfg supports Inventor output, it may be preferable
to output your models as Inventor objects, and then print them to PostScript
using a facility such as ivprint or SceneViewer.

6.3 L-system string

L-system generated string can be output as a text or binary file. An example
of a text file is:

A(3,0.25)F(3)[+FA(1,0.5)]
-F(4)@O(0.333333)A(2,0.75)

The numbers are output using maximum possible number of digits after the
decimal point (e.g. 1/3 is output as 0.333333) unless it is possible to output
less digits (e.g. for 3, 0.25, etc.).

The binary file starts with a text header:

L-system string: length_in_bytes generation_step_no

followed by length in bytes bytes of the string in internal representation in which
module parameters are stored as 4-byte floats.
Example:

L-system string: 47 1
A(????,????)F(????)[+FA(????,????)]-F(????)@O(????)A(????,????)

6.4 Graphics Library Statements format

The program cpfg can output the geometry in a format, similar to the format
of a background scene (Section 5.4.10). Thus the geometry produced in one
simulation can be included as a background scene in another model. In addition,
the GLS format is used by some environmental programs (e.g. soil or arvo) to
define obstacles.

64

The output file can include all commands specified in Section 5.4.10 plus the
following commands:

Lighting:

clear red green blue this command clears the window and sets the back-
ground to a given color. Usually included at the beginning of the file.

light posx posy posz posw specifies a light source by four homogeneous co-
ordinates of light position. If posw is equal to 0 the light is directional.
The color of the light source is always white.

Projection:

ortho minx maxx miny maxy front dist back dist specifies an orthographic
projection the same way as OpenGL library does.

perspective viewing angle front dist back dist specifies a perspective pro-
jection the same way as OpenGL library does.

lookat posx posy posz refx refy refz upx upy upz defines the view by spec-
ifying the camera position, the view reference point and optionally also
the up vector.

Matrices and transformations:

matrixmode 0/1 sets the current matrix (0 for modelview matrix, 1 for pro-
jection matrix).

6.5 Inventor output

Cpfg can output the generated objects into Inventor format, if the executable
was compiled on the system which has Inventor libraries installed on it. The
output consists of a main file containing the definition of all objects except
predefined surfaces, which are stored in separate files, one file per surface. (Note
that sometimes there may be two files per surface, with two different sets of
texture coordinates — see also Section 6.1.4.)

The inventor output has the following features:

• The camera is not defined in the file, thus the initial view in the inventor
viewer (e.g. ivview will not correspond to the view in the cpfg window).

• Textures are supported, although Inventor always smoothens the texture
image. Consequently, it is not possible to have a sharp chessboard texture,
for example.

• Regardless the used rendering mode (shaded, flat, wireframe, etc.), the
resulting objects are always smoothly shaded.

65

• Cpfg generated Inventor files have sometimes too big memory require-
ments (possibly related to too many items in a group).

• Directional lights do not convert properly to Inventor output (they are
defined as a very distant point source).

• If a predefined surface is not included in the view file, the created input
file cannot be viewed (the viewer does not read such a file).

ADD: Specify under what conditions which of the statements appear, as-
sumedly by reference to the view file parameters. Although currently, cpfg
outputs the viewing parameters in a single projection matrix.

66

7 Communication with environmental process

7.1 Open L-systems6

Open L-systems are a generalization of the concept of query modules ?P , ?H ,
?L, and ?U used in environmentally-sensitive L-systems [6] (see also Section 5.1.9).
Communication modules of the form ?E(x1, . . . , xm) are used both to send
and receive environmental information represented by the values of parameters
x1, . . . , xm (Figure 4). Specifically, parameters x1, . . . , xm act as an interface
between the plant and the environment. They can be set by the plant model
and transferred to the environment or set by the environment and transferred
to the plant model.

This interface is sufficient for receiving the information from the environ-
ment, but the environment also has to obtain information about the position
and orientation of plant organs affecting the environment or being affected by it.
Thus in addition to parameters of a communication module, the environment
receives the position and orientation of the communication module (retrieved
from the current turtle parameters), and a module following the communication
module (with its parameters).

To accommodate the exchange of information between the plant and its
environment each derivation step (after which the interpretation step can be
possibly performed7) is followed by an environmental step. In the environmental
step, the string resulting from a derivation step is scanned from left to right to
determine the state of the turtle associated with each symbol. This phase is
similar to the graphical interpretation of the string, except that the results
need not be visualized. Upon encountering a communication symbol, the plant
process creates and sends a message to the environment including all or a part
of the following information:

• the address (position in the string) of the communication module (mandatory
field needed to identify this module when a reply comes from the environ-
ment),

• values of parameters xi,

• the state of the turtle (coordinates of the position and orientation vector, as
well as some other attributes, such as the current line width),

• the type and parameters of the module following the communication module
in the string (module B in Figure 4). It is also possible to include the graphical
representation of this module. Specifically, a set of triangles resulting from the
interpretation of the module (or of its homomorphic image — Section 5.1.7)
is transferred to the environment.

6This section is incorporated from [2].
7It would be nice to have an option for having interpretation step both before and after

the environmental step, only before it or only after it.

67

env. step

interpret

 ... A(a1,...,ak) ?E(x1,...,xm) B(b1,...,bn) ...

... A(a1,...,ak) ?E(y1,...,ym) B(b1,...,bn) ...

environment
+turtle

derive

Figure 4: Information flow during the simulation of a plant interacting with the
environment, implemented using an open L-system

The environment processes the received information and returns the results
to the plant model using messages in the following format:

• the address of the target communication module,
• values of parameters yi carrying the output from the environment.

The plant process uses the received information to set parameter values in the
communication modules (Figure 4).

Note that by preceding every symbol in the string with a communication
module it is possible to pass complete information about the model to the
environment. Usually, however, only partial information about the state of
a plant is needed as input to the environment, as illustrated in the example
below. In addition, the use of addresses makes it possible to send replies from
the environment only to selected communication modules. Proper placement
of communication modules in the model, combined with careful selection of
the information to be exchanged, provide a means for keeping the amount of
transferred information at a manageable level.

You can use the communication modules in homomorphism productions, but
only to send information to the environment. The environment will not be able
to respond, because these modules exists only temporarily during the applica-
tion of homomorphism to a given module. It is fine to use the communication
modules in decomposition productions.

The following simple example illustrates the operation of an open L-system.
The model creates a branching structure consisting of straight line segments.

68

The structure grows by adding a pair of segments to the end of existing branches
unless a branch collides with another one. The occurrence of a collision is deter-
mined by the environment. To accomplish its task, the environment receives the
information about the position of segment’s end points and tests whether two
points occupy the same place or not. The listing of the environmental process
can be found in Section 7.4.5.

The L-system model is as follows.

L-system 3

ω : ?E(0)
p1 : ?E(c) : c == 0 → [+F/(180)?E(0)]F?E(0)

The end point of a segment is represented by a communication module ?E with
one parameter. This parameter is initialized to 0, and if the point collides with
another point, the environment sets it to 1. If the point does not collide, the
parameter stays 0. Production p1 then creates two new branch segments only
for points with parameter 0.

The communication is set up in such a way that with each communication
module, the environment obtains its identification (the address in the string)
and its position.

The first few steps of the simulation are described below.
Initialization. The simulation begins with a single point ?E. Before the first
derivation step, the environmental step is performed and the environment re-
ceives the following information:

address : 0, ?E(0), position : 0, 0, 0.

It is convenient to think of the address as the number of modules before the
communication module. The position is equivalent to the initial position of
the turtle. The point obviously does not collide with another point, thus the
environment does not reply (i.e. sends an empty message) and the parameter
of the module ?E stays 0.
Step 1. The environmental step is followed by a derivation step, in which pro-
duction p1 is applied, replacing module ?E with the string:

[+F/(180)?E(0)]F?E(0)

which is interpreted for visualization purposes (Figure 5a). Now the environ-
ment receives two modules:

address : 4, ?E(0), position : 0.5,−0.866, 0,
address : 7, ?E(0), position : −0.5,−0.866, 0.

These two points do not collide and the environment again does not reply.

69

g

a

b

c

d

e

f

Figure 5: Sierpinski triangle generated by open L-system 3 in 1, 2, ..., 6, and 32
steps

Step 2. In the next derivation step, production p1 is applied to both modules
?E resulting in the string:

[+F/(180)[+F/(180)?E(0)]F?E(0)]F [+F/(180)?E(0)]F?E(0)

visualized in Figure 5b. In the following environmental step, the environment
receives four modules:

address : 8, ?E(0), position : 0,−1.7321, 0,
address : 11, ?E(0), position : 1,−1.7321, 0,
address : 18, ?E(0), position : 0,−1.7321, 0,
address : 21, ?E(0), position : −1,−1.7321, 0.

Since the first and third module occupy the same point, the environment returns
a message in the form:

address : 8, ?E(1),
address : 18, ?E(1).

The plant simulator receives this message and updates the parameters of the
specified communication modules resulting in the string:

[+F/(180)[+F/(180)?E(1)]F?E(0)]F [+F/(180)?E(1)]F?E(0)

70

Plant
model
(L−system)

Plant
simulator

Model of
the environment

Interface
plant−
environment

Environ−
mental data

C
O
M
M
U
N
I
C
A
T
I
O
N

C
O
M
M
U
N
I
C
A
T
I
O
N

Communication
specification

Figure 6: Organization of the software for modeling plants interacting with their
environment. Shaded rectangles indicate components of the modeling frame-
work, clear rectangles indicate programs and data that must be created by a
user specifying a new model of a plant or environment. Shaded arrows indicate
information exchanged in a standardized format.

Step 3. In the next derivation step, only the second and fourth module ?E is
replaced by a pair of branches, resulting in a structure shown in Figure 5c.

The simulation then continues generating a branching structure which is
similar to the Sierpinski gasket (Figure 5g).

The implementation issues related to the incorporation of open L-systems
and the specified communication interface to the plant simulator cpfg are dis-
cussed in the following section.

7.2 Implementation of the modeling framework

In order to implement the designed modeling framework, the L-system based
plant modeling program cpfg has been extended by incorporating open L-
systems into it and by including a special purpose communication library. The
library facilitates the exchange of information between the plant model and the
environmental process. Consequently, the library also has to be included in a
program simulating the environment.

The parameters of the communication are defined in a communication spec-
ification file, shared between the programs modeling the plant and the envi-
ronment (Figure 6). The communication specification file is a text file with
commands specifying the name of the environmental program (with possible
options and input files), the format of data the plant model sends to the envi-
ronment, and the type of communication between the programs.

71

For example, the communication in the example from the previous section
(L-system 3) has been defined using the following specification file:

executable: ulam
turtle position:%.5g %.5g
communication type: pipes

The environmental program is called ulam (because it was originally used for
generating Ulam’s patterns — see [2]), the data between the two processes
are transferred using a pair of Unix pipes, and only the turtle position is sent
together with each communication module (in addition to the module’s address).

The specification of the environmental program is included mainly for the
plant simulator, which controls the communication and executes the environ-
ment at the beginning of the simulation.

To reduce the amount of transferred data, as a default, only the minimum
information is transferred from the plant simulator to the environment, namely
the address of the communication module and parameters of the module. All
additional information, such as the module following the communication module
(and its parameters), the turtle position, orientation, current line width, etc. ,
has to be specified in the communication file (see Section 7.4.1 for the list of all
commands). On the other hand, the environment responds by sending selected
communication modules with their address and parameters.

The communication between the two programs is implemented using mech-
anisms provided by the underlying operating system (Unix). Thus the data can
be exchanged using a pair of Unix pipes, a pair of sockets, a pair of files, or
shared memory. There are always two data streams, one for data going from
the plant model to the environment and the other one for data coming back.
The variety of communication mechanisms make it possible to choose one that
provides an efficient data transfer between the processes (using pipes, sockets,
or shared memory) or to choose a slower communication (using files) allowing
the user to access the exchanged data (Section 7.4.6).

In the case of pipes or sockets, the synchronization of communication is
straightforward: one of the processes waits for the input from the other pro-
cess on a designated pipe or a socket and the system suspends its operation
during that time. In the case of files or shared memory, the communication is
synchronized using a pair of semaphores which inform the processes about the
availability of data in a shared memory or a designated file.

The communication follows these steps (Figure 7):

1. Plant simulator cpfg is executed. It reads the communication specifi-
cation file, establishes data structures necessary for the communication,
starts the environmental process, and waits for the confirmation from the
environment.

2. The environmental process reads the communication specification file, con-
nects itself to data streams, confirms its initialization, and waits for the

72

executed
sending confirmation

start env.step:
begin transmission

suspended

sending data

suspended

end of transmission

process data
begin transmission

receiving response

end of transmission

simulation step

receiving data

sending responses

suspended

suspended

Plant simulator

executed

Environmental process

Figure 7: Flow of control during the simulation

first transmission from the plant simulator.

3. The plant simulator starts the simulation and performs an environmental
step to process the communication modules specified in the axiom. The
communication modules are transferred to the environment using the spec-
ified streams. The last communication module in the string is followed by
a reserved end-of-transmission message. The plant simulator then waits
for data from the environment.

4. The environment recognizes the beginning of transmission (by being able
to read from a pipe or a socket, or by checking a given semaphore) and
starts receiving the data. After encountering the end-of-transmission mes-
sage, the environment processes the queries and starts sending the re-
sponse back to the plant simulator. The environment terminates the trans-
mission by a similar end-of-transmission message. It then waits again for
the plant simulator (returning to the beginning of step 4)8.

8The organization of communication, with different channels used to send information to
and from the environment, makes it also possible to send the response immediately — this
situation is not captured in Figure 7.

73

5. The plant simulator receives the data coming from the environment and
sets the parameters of communication modules accordingly. After encoun-
tering the end-of-transmission message, it performs a simulation step and
returns to step 3.

The simulation is terminated by the plant simulator which sends a special ter-
minate message to the environment.

If you are using shared memory or files for the data exchange between cpfg
and the environmental program and one of the program crashes, the other one
will not be terminated and you have to do so manually. (You can list all your pro-
cesses using ps -u your login name and kill the process by kill process id.
The process id (PID) is listed by ps.) Also, the semaphores and the shared
memory stays allocated and after a while you may not be able to receive more
semaphores from the system. In this case, use ipcs to list all your semaphores
and shared memory and ipcrm -m id or ipcrm -s id to remove them.

Because of the great variety of environmental phenomena, there is no “uni-
versal” model of the environment. Various phenomena can be modeled by dif-
ferent environmental programs that use a specific representation of the environ-
ment suitable for particular problems.

To be able to communicate with the plant simulator, an environmental pro-
gram has to be compiled with the communication library. The library provides
a programmer with a set of functions which have to be called in a given or-
der. Section 7.4.2 provides a list of functions of the communication library and
explains how to use them in an environmental program. The section also in-
cludes the source code for the environmental program used as an example in
Section 7.1.

7.3 Visualization of the environment

Visualization is an essential part of every simulation. It is often useful to visual-
ize not only the plant model but also the environment (creating one composite
scene), in order to better understand the interaction between them. The plant
simulator cpfg provides the user with many useful graphical features [3] making
it possible to visualize both the plant and the environment.

The environment can be visualized in two ways:

1. As the background image for the visualized structure. For this purpose,
the environmental process outputs an image file which is used by the plant
simulator to define a texture on a rectangle representing the background.

2. As a set of primitives, forming a background scene which is displayed
together with the generated plant. The primitives are read from a text
file containing a list of OpenGL-like statements (Section 6.4).

74

In the case where the environment is static, it is sufficient to read the texture
image or the background scene file once at the beginning of the simulation. In
the examples in this chapter, though, the environment is changing over time,
thus it is necessary to update the image or the background scene every time the
environment changes.

Consequently, the background file is periodically updated by the environmen-
tal process and read by the plant simulator after each simulation step, before
the visualization. To limit the amount of transferred data, the environmental
process can create the background files only at specific simulation steps. The
number of the current simulation step is sent by the plant simulator together
with the message about the end of transmission (after all communication mod-
ules from the string are sent to the environment — see Section 7.4.4).

7.4 Two process communication

7.4.1 Specification of the communication

The communication between the plant simulator cpfg and an environmental
program is initiated when the simulator is executed with a command line pa-
rameter -e comm spec file. The communication specification file comm spec file
is a text file with the following commands:

communication type: pipes/sockets/memory/files Specifies the type of com-
munication between the plant simulator and the environmental process.
The default is pipes, because pipes provide the most efficient means of
communication on a single machine.

Important note: The standard input stream stdin and the standard out-
put stream stdout must not be used in an environmental process, because
during the communication, the input and output pipes are connected to
these streams.

In the case of the file communication, the plant simulator creates two files
.to fieldXXXX.0 and .from fieldXXXX.0, where XXXX is equal to cpfg’s
process id (as returned by the system).

The communication through memory or files is synchronized by a pair of
Unix semaphores, which are set automatically by the plant simulator. The
size of the shared memory (in bytes) and communication files (in number
of communication modules) as well as the name of communication files are
fixed. These values do not limit the amount of transferred data, since the
communication is done piecewise. For debugging purposes, it is possible to
specify the maximum size of communication files as a parameter following
the keyword files.

executable: binary [field params] Specifies the executable of the environmen-
tal process and its optional command line parameters.

75

following module: yes/no Defines whether the module following the commu-
nication module is sent to the environmental process. The default is no9.

turtle position: format string
turtle heading: format string
turtle left: format string
turtle up: format string
turtle line width: format string
turtle scale factor: format string

These commands define C-like format strings for those turtle parameters,
which are sent to the environment (currently, only the parameters listed
above can be transferred). Often, only the position and the heading vector
are necessary, and the rest can be omitted. Since the information is being
sent in a text format, it may be desirable to use only a few decimal places
or to omit the z axis when possible. For example, commands:

turtle position:P:%.3f %.3f
turtle heading:H:%.1f %.5f

specify that only the x and y coordinates of the turtle position and heading
vector are transferred to the environment (as floating point numbers with
the precision of 1, 3, or 5 decimal places). Letters in format strings are
helpful for debugging purposes when using files for the communication but
they are not mandatory.

interpreted modules: all or M1(n1), M2(n2), ..., Mn(nn) It is possible to
include a set of polygons representing module X (following the communi-
cation module ?E) with the data transferred to the environmental process.
The module X is interpreted when:

• only the word all is specified,
• (ni) is not present and Mi = X , or

• Mi = X and X has ni parameters (currently, it is not possible to
specify ni > 6).

If homomorphism or decomposition productions can be applied to the
module X (Section 5.1.7), all geometry created by these productions is
sent to the environment.

The geometry is transferred as a set of polygons in a text format (see the
output format of OpenGL-like commands described in Section 6.4).

verbose: on/off Switches on or off the verbose mode, which informs the user
about the details of the communication.

9In the current version of the program cpfg, the default value is yes.

76

Immediate answer Delayed answer

Update environment
Process

Output comm. module
CSSendData Output comm. module

CSSendData

Input comm. module
CSGetData, CSGetString

Input comm. module
CSGetData, CSGetString

AnswerQuery
CSBeginTransmission

CSEndTransmission

new module, simulation
step is irrelevant

after new simulation step

Figure 8: Two possible modes of operation of an environmental process

7.4.2 Environmental process

Flow of information
An environmental process communicating with the plant simulator operates

as a slave, i.e. the communication is controlled by the plant simulator (the
master). Generally, the environmental process waits for the data from the plant
simulator. The data consists of a communication module, its address, and
possibly turtle parameters or the module following the communication module.
Afterwards, the process sends back the communication modules with modified
parameters and waits for new input in a loop.

There are two possible modes of operation of an environmental process,
(Figure 8):

1. immediate answer — the parameters of a communication module obtained
from the plant simulator can be updated immediately, because the results
depend on the local properties of the environment and do not depend on
the other communication modules. This mode of operation is suitable, for
example, for simulation of static environments that are too complex to be
expressed in environmentally-sensitive L-systems.

2. delayed answer — the reply depends on the information obtained from
other communication modules in the string, due to the propagation of
information through the environment. Thus all communication modules

77

from the string have to be first input (and stored in internal data struc-
tures) before the parameters of the communication modules can be prop-
erly set. This mode of operation is usually used in the case the plant is
affecting the environment, because the response then depends on changes
in the environment, introduced by other communication modules.

The functions used to control the flow of information, to receive the data from
the plant simulator, and to send data back (shown in Figure 8) are discussed
below.

7.4.3 Data structures

Let us first overview the data structures used for the data exchange. The infor-
mation about selected turtle parameters is received in the structure CTURTLE.

struct CTURTLE {
float position[3];
int positionC; /* number of values sent for position */
float heading[3];
int headingC; /* number of values sent for heading */
float left[3];
int leftC; /* number of values sent for left */
float up[3];
int upC; /* number of values sent for up */
float line_width;
int line_widthC; /* number of values sent for width */
float scale_factor;
int scale_factorC; /* number of values sent for scale */

};
typedef struct CTURTLE CTURTLE;

It contains selected turtle parameters together with a parameter specifying how
many values have been sent for a given parameter. Thus if a particular tur-
tle parameter is not received by the environment (i.e. it is not listed in the
communication specification file), the corresponding “count” parameter is set
to 0. This allows the environmental process to check whether a required turtle
parameter is available (see the examples below).

Structure Cmodule type is used to store parameters of the communication
module and the module immediately following it:

#define CMAXPARAMS 20 /* max. number of module parameters */
#define CMAXSYMBOLLEN 4 /* max. length of a module name */
struct module_type {
char symbol[CMAXSYMBOLLEN+1];
int num_params;
struct param_type {

78

float value;
char set; /* if set=1, the value is sent back */

} params[CMAXPARAMS];
};
typedef struct module_type Cmodule_type;

The structure consists of the module name (possibly a multisymbol module,
such as @Gs, @Gc, @Tx, etc. — see Section 5.1.9), the number parameters,
and an array of parameter values. Since the same structure is also used to inform
the plant model about modified parameters of the communication module, the
flag set associated with each parameter value specifies whether the parameter
has been modified by the environment or not.

Both structures Cmodule type and CTURTLE are defined in the library
header file comm lib.h.

7.4.4 Library functions

To facilitate the writing of an environmental process, the following functions
are specified in the communication library (comm). The first two functions are
used in both modes of operation (Section 7.4.2):

void CSInitialize(int *argc, char ***argv)
Initializes the communication and parses necessary options. This call
should be made as the very first operation in the function main(). The
parameters of the function CSInitialize() are pointers to the standard
parameters of the function main(), specifying the number of command
line options of the program and an array storing these options. Since the
communication library may add some additional, internally used options
to the command line, the function CSInitialize() parses these options
and updates the values of parameters argc and argv so that the user can
process the options listed after the command executable in the communi-
cation specification file (see Section 7.4.1).

void CTerminate(void)
Ends the communication — this should be the last call in the function
main().

If the parameters of a communication module can be modified immediately,
the following function can be used.

void CSMainLoop(int (*Answer) (Cmodule type *, CTURTLE *))
The parameter of the function CSMainLoop() is a mapping function
Answer(). The mapping function modifies the parameters of the com-
munication module, stored in a two-dimensional array (pointed to by the
first function parameter), which also includes the module following the
communication module. The second parameter of the function contains
the received turtle parameters.

79

If the environmental program calls the function CSMainLoop() with a mapping
function as the parameter, the communication is fully controlled by the com-
munication part of the modeling system. The function CSMainLoop() returns
when the plant simulator sends a message to terminate the environmental pro-
gram. The environmental program can then clear its local data structures and
call CTerminate() (see the first example in Section 7.4.5).

If the incoming query cannot be answered immediately, the following func-
tions have to be called in a specific order (see Figure 8 and the code listing
below):

int CSBeginTransmission(void)
Starts transmission (of all communication modules in the string generated
by the plant simulator). The process waits for the plant simulator to
perform a simulation step and to send the first communication module.
The function always returns a value of 1.

int CSGetData(int *master, unsigned long *module id,
Cmodule type *two modules, CTURTLE *turtle)

Obtains a communication module and possibly the following module from
the plant simulator (if the second module is not present, its name is an
empty string, i.e. two modules[1].symbol[0] is equal to 0). The parameter
module id specifies a unique identification number of the communication
module, the pointer two modules points to a two-dimensional array con-
taining the communication module and the next module, and the pointer
turtle points to the turtle structure (note that only some turtle parame-
ters are sent, according to the specification file). The parameter master
is set to the index of the calling master. This value is used only in a
multiprocess environment (Section 7.5) and in the case of a two-process
communication, it is always equal to 0.

The function returns 0 when there is no other module (at the end of the
environmental pass). In this case, module id is set to the number of the
current simulation step.

int CSGetString(int *master, char *str, int length)
Reads a string str, with maximum length length, sent by the plant simula-
tor. According to the communication specification file, selected modules
can be interpreted during an environmental step and the polygons rep-
resenting the modules (or their homomorphic image) are sent as a set of
strings following the communication module. Thus the function CSGet-
String() is used in a loop after each call to CSGetData() to retrieve these
strings. It is recommended to always include a loop of calls to CSGet-
String() to receive possible strings from the incoming data (see examples
below), because if the plant simulator sends some strings, which are not

80

read by the environmental process, the communication would be inter-
rupted.

The function returns 0 when there is no string coming.

void CSSendData(int master, unsigned long module id,
Cmodule type *comm module)

Sends the modified communication module back to the plant simulator.
The original module id must be specified. In the case of two-process com-
munication, the value of master should be 0.

int CSEndTransmission(void)
Ends a transmission (after all modified communication modules are sent
back to the plant simulator). The function returns 1 when the process is
requested to terminate. In this case, the communication loop should be
exited, the process should free its data structures, and call CTerminate().

Instead of calling the library function CSMainLoop(), the user has to define
a function MainLoop(), which should have the following general form.

void MainLoop(void)
{
Cmodule_type two_modules[2];
int master, current_step;
unsigned long module_id;
CTURTLE turtle;
char str[2048];

for(;;) {
CSBeginTransmission();
while(CSGetData(&master, &module_id, two_modules, &turtle)) {

StoreQuery(master, module_id, two_modules, &turtle)
/* store all or some of the queries - do not forget

to store values of ’master’ and ’module_id’! */

while(CSGetString(&master, str, sizeof(str))) {
ProcessGraphics(master, str);
/* process the graphical representation of the

module following the communication module */
}
DetermineResponse(); /* determine the answers*/

SendBackResponse();
/* send back modified communication modules using

CSSendData(master, module_id, &two_modules[0]); */

81

if(CSEndTransmission()) break;
}

}

Functions StoreQuery(), ProcessGraphics(), DetermineResponse(), and Send-
BackResponse() have to be defined by the user depending on the data structures
chosen for storing and processing the incoming communication modules. In the
case of a two-process communication, the parameter master may be ignored
(and for function CSSendData() set to 0). To be able to use the program in
a multiprocess environment (see Section 7.5), the parameter master should be
stored as well.

The second example in the following section illustrates the use of the func-
tions listed above.

7.4.5 Examples

Two simple examples of an environmental process are presented below. The
first example illustrates the case when the parameters of the received commu-
nication module can be set immediately, thus the program uses the function
CSMainLoop().

#include <stdio.h>
#include "comm_lib.h"

int Answer(Cmodule_type *two_modules, CTURTLE *turtle)
{
static float zero[3]={0,0,0};

if(turtle->positionC < 3) {
fprintf(stderr,"Turtle position not set!\n");
return 0;

}
if(two_modules[0].num_params >= 1) {
two_modules[0].params[0].set = 1; /* parameter modified */
two_modules[0].params[0].value = Distance(turtle.position,zero)
> two_modules[0].params[0].value ? 1 : 0;

}
return 1;

}

void main(int argc, char **argv)
{
CSInitialize(&argc, &argv);
CSMainLoop(Answer);
CTerminate();

82

}

The function Answer determines the distance of the turtle position from the
point (0, 0, 0) and if it is greater than the first parameter of the communication
module, the parameter is set to 1. Otherwise it is set to 0.

The following example illustrates the second mode of operation, when the
incoming communication modules (queries) have to be stored before their pa-
rameters can be modified. The environmental program detects whether a com-
munication module collides with another one. The program has been used in
the model of Sierpinski’s gasket from Section 7.1.

The communication is defined by the following communication specification
file.

executable: point_collision
communication type: pipes
turtle position:%.5g %.5g

The environmental program is given below.

/**** Environmental process - testing point overlapping ****/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "comm_lib.h"

#define EPSILON 0.001 /* precision of comparisons */
#define MAXQUERIES 1000 /* maximum number of queries */
struct item_type {
float position[2];
float query;
unsigned long id;
int master;

} queries[MAXQUERIES]; /* queries */

int num_queries; /* actual number of stored queries */

/**/
void StoreQuery(int master, unsigned long module_id,

Cmodule_type *comm_symbol, CTURTLE *tu)
{
if(tu->positionC < 2) {
/* do not write to stdout, because it is used for pipes */
fprintf(stderr,"environment: turtle position missing.\n");
return;

83

}
if(num_queries >= MAXQUERIES) {
fprintf(stderr, "environment: too many queries!\n");
return;

}
queries[num_queries].position[0] = tu->position[0];
queries[num_queries].position[1] = tu->position[1];
queries[num_queries].query = comm_symbol->num_params >= 1;

/* answer only if ?E has one or more parameters */
queries[num_queries].master = master;
queries[num_queries].id = module_id;
num_queries++;

}

/**/
void DetermineResponse(void)
{
int i, j;
Cmodule_type comm_symbol;

comm_symbol.num_params = 1;
comm_symbol.params[0].set = 1;
comm_symbol.params[0].value = 0; /* report only collisions */

for(i=0; i< num_queries; i++) /* for all queries */
if(queries[i].query) { /* don’t answer if no parameter */
for(j=0; j< num_queries; j++)
if(i!=j)
if(fabs(queries[i].position[0]-queries[j].position[0])

< EPSILON &&
fabs(queries[i].position[1]-queries[j].position[1])

< EPSILON) {
CSSendData(queries[i].master,queries[i].id,

&comm_symbol);
break;

}
}

}

/**/
void MainLoop(void)
{ /* controls the loop of data exchange */
Cmodule_type two_modules[2];
unsigned long module_id;

84

int master;
CTURTLE turtle;

/* infinite loop - until message ’exit’ comes */
for(;;) {
CSBeginTransmission();
num_queries = 0;

while(CSGetData(&master,&module_id,two_modules,&turtle))
StoreQuery(master, module_id, two_modules, &turtle);

DetermineResponse();

/* EndTransmission returns 1 when the process is
requested to exit */

if(CSEndTransmission()) break;
}

}
/**/
int main(int argc, char **argv)
{
/* initialize the communication as the very first thing */
CSInitialize(&argc, &argv);
MainLoop();
CTerminate(); /* should be the last function called */
return 1;

}

Each incoming query is stored in a one-dimensional array of a fixed size. To
determine the response for queries with more than one parameter, the coordi-
nates of the query point are compared with the coordinates of all other points.
If there is another point with the same coordinates, the environmental process
sends the value 0 to the plant model. Otherwise, the parameter of the commu-
nication module stays unchanged and there is no reply by the environment.

7.4.6 Troubleshooting

During the design of a model, it may be necessary to find out whether proper
data are transferred between the environment and the plant simulator. To view
the exchanged data, it is possible to use the file communication and to display
the content of files .to fieldXXXX.0 and .to fieldXXXX.0.

If the amount of transferred data is too large though, the data are transferred
from one process to the other in several chunks (each stored in a file with
the same name). Thus the user can access only the last chunk of data. The

85

maximum size (in the number of modules) of the data file is predefined, but
it is possible to increase it to a value large enough so that there is only one
communication file used during the data exchange (by adding a number behind
the keyword file in the specification file).

Often it is also necessary to debug the environmental program. The debug-
ging is much easier if the program is running in a stand-alone mode, without
the plant simulator. To achieve this, it is possible to use the pipe communica-
tion and to run only the environmental program, while inputing the data to the
standard input and receiving the response on the standard output. The input
data can also be redirected from a file. This file can be either created in a text
editor or obtained from files exchanged between the processes during a regular
simulation (which uses the file communication).

Running the environmental process in the stand-alone mode then follows
these steps:

1. The simulation is first run with the plant simulator, using the file commu-
nication. Each time the simulation is stopped, it is possible to concatenate
the data file .to fieldXXXX.0 (the data sent to the environment in the last
data exchange) to a file to field, which is of zero length at the beginning
of the simulation. It is also possible to choose the data file from only one
simulation step.

2. The user may change the content of the file (e.g. edit some values) or
add a message terminating the environmental process, by including a line
containing the string “Control: 8” to the end of the file to field.

3. The environmental process can then be run separately, by setting the com-
munication type to pipes and redirecting the file to field to the standard
input:

environment -e comm spec file < to field

The program writes all modified communication modules to the standard
output in a text format.

7.5 Distributed system

In a distributed system, several plant models can communicate with different en-
vironmental processes and then send the graphical interpretation of the models
into a single drawing window.

Each program in the system has to be compiled with the provided commu-
nication library. Since the programs can be running on different machines, they
exchange data using Unix sockets. The connection to other processes is specified
in the command line of a process, following the switch –C :

-C -c,confirm_socket,start_machine;-m:spec_file1,socket1...
...;-s:spec_fileK,socketK,master_machineK

86

The single string of switches specifies:

-c the number of a socket and a machine name to which the confirmation
about a successful execution should be sent. After the confirmation, the
process monitors the socket for a possible request to terminate.

-m a master connection. The process operates as a master: it sends data
specified in the communication specification file spec file1 to the defined
socket (socket1) and expects the reply on a socket with number socket1+1.
There can be several master connections.

-s a slave connection. The process acts as a slave: it expects data (defined in
the communication specification file spec fileK) from a given socket on a
specified machine, processes the incoming data and responds back through
a socket with number socketK+1. If there are more slave connections the
data from the sockets are processed in the order given in the command
line.

The delimiters in the command string can be characters ’,’ or ’;’.
The communication specification file contains the same commands as in the

case of two-process communication with following modifications:

• command executable is ignored.
• the type of communication (communication type) is also ignored; it is
always set to sockets.

• two new commands have been added:
strings only: on/off the data exchanged between the processes contain

only text strings. No L-system modules are transferred. This switch
is used, for example, for transferring a list of primitives from plant
models to the drawing program.

binary data: on/off binary data can be exchanged between processes. The
receiving process must be aware of the coming binary data, thus often
the data are preceded by a special command string.

The following section lists the functions provided by the communication
library.

7.5.1 Communication library functions

This sections lists all functions of the communication library, which can be used
by processes communicating with each other in a distributed system.

First, there are three functions used by all processes regardless their role in
the communication (i.e. slave, master, or both):

87

void CInitialize(char *program name, char *command string)
Initializes the communication. The first parameter specifies the name of
the process, which is used to distinguish messages from different processes
displayed on the same terminal. The second parameter contains the string
following the switch -C containing the specification of all connections. The
format of the string is described above.

void CSInitialize(int *argc, char ***argv)
An optional function to the previous one. This function retrieves all the
necessary information from the process’ command line. In this case, the
switch -C has to be the first one on the command line.

void CTerminate(void)
Ends the communication — this should be the last function called.

int CShouldTerminate(void)
This function returns 1 if the process is requested to terminate — when a
special character is sent to the process’ confirmation socket by a control
process (see Section 7.5.2).

A process can operate as a slave, master or both. The latter means that
the process waits for an input from its masters and then can require some data
from its slaves. Communicating with its masters, the process can use functions
as in the case of a two-process communication:

void CSMainLoop(int (*AnswerQuery) (Cmodule type *, CTURTLE *))

int CSBeginTransmission(void)

int CSEndTransmission(void)

int CSGetString(int *master, char *str, int length)

int CSGetData(int *master, unsigned long *module id,
Cmodule type *two modules, CTURTLE *turtle)

This function is generally used only by environmental processes directly
communicating with the plant simulator (cpfg).

void CSSendData(int master, unsigned long module id,
Cmodule type *comm module)

This function is generally used only by environmental processes directly
communicating with the lant simulator (cpfg).

In addition there are few new functions:

int CSGetNumberOfMasters(void)
Returns the number of connections to a master specified on the command
line.

88

int CSSendString(int master, char *item)
Sends a string to the specified master (with index master).

int CSSendBinaryData(int master, char *item, int item size, int nitems)
Sends a binary data to the specified master. This function is used, for ex-
ample, for sending images with a depth information to a drawing program
(see Section 7.5.3). The function returns 0 if the data have not been sent.

To communicate with its slaves, a process can call functions:

int CMBeginTransmission(void)
Initializes connections to all slave processes for a single data exchange.
Currently, the function always returns 1.

int CMEndTransmission(int current step)
Terminates the data sent by the master in a single data exchange. The
parameter current step is used by cpfg to send the number of the current
simulation step to the environment. This number is returned as the mod-
ule id parameter of the function CSGetData (see above). Currently, the
function always returns 1.

int CMTerminate(void)
Terminates all slave processes. The function returns 1, if all processes are
successfully terminated.

int CMGetNumberOfSlaves(void)
Returns the number of slaves communicating with the process.

int CMSendString(int slave, char *item)
Sends a string to the specified slave.

int CMGetString(int slave, char *str, int length)
Receives a string from the specified slave. Returns 0 if there is no string
coming.

int CMSendBinaryData(int slave, char *item, int item size, int nitems)
Transfers a binary data to a given slave.

int CMGetBinaryData(int slave, char *data, int item size, int nitems)
Receives a binary data from a given slave. Returns 0 if there is no data
coming.

int CMSendCommSymbol(int slave, unsigned long module id,
Cmodule type *two modules, CTURTLE *turtle)

Sends two modules (a communication module with the following module)
with their identification number to a given slave. The function returns 1

89

if the second module should be graphically interpreted and the resulting
set of triangles transferred to the slave. This function is used mainly by
the plant simulator cpfg.

int CMGetCommunicationModule(int slave, unsigned long *module id,
Cmodule type *comm module)

Receives a communication module with its identification number from
a specified slave. The function returns 0, if there are no more modules
coming from the slave.

Unless specified, the functions return a value of 1, if they finish successfully.
Note that unlike for a slave, in the case of a master the incoming data are
fetched from a specified slave. This allows the program to process the response
from the same slave as the one to which the data from the master has been
transferred.

Example. Following example illustrates a program hub that acts as a common
interface between several plant simulators (masters of the hub) and models of
the environment (slaves of the hub). The program establishes all connections to
its masters and slaves. Then for each communication module, it receives from a
given master, it sends the module to a slave with an index specified as the first
parameter of the communication module. The index of the master is stored as
the first parameter of the symbol sent to the slave.

After each module is transferred to a specific slave, the response from a
slave is checked and if there is one, the communication modules sent by the
slave are transferred to the proper master. Just in case the slave processes are
not responding immediately, the input from all of them is again checked at the
end of a single transmission.

The full listing of the program follows.

#include "comm_lib.h"

void MainLoop(void)
{
Cmodule_type two_modules[2], comm_module;
unsigned long module_id;
CTURTLE turtle;
char string[2048];
int slave, master;

/* infinite loop - until signal ’exit’ comes */
for(;;) {
CSBeginTransmission();

90

/* begin transmission to all slaves */
for(i=0;i<CMGetNumberOfSlaves();i++)
CMBeginTransmission(i);

/* process the data */
while(CSGetData(&master, &module_id, two_modules, &turtle)) {
if(two_modules[0].num_params>0 &&

two_modules[0].params[0].value > 0 &&
two_modules[0].params[0].value <= CMGetNumberOfSlaves()) {

slave = two_modules[0].params[0].value-1;

/* store the index of the master */
two_modules[0].params[0].value = master;

if(CMSendCommSymbol(slave,
module_id, two_modules, &turtle)) {

/* send graphics */
while(CSGetString(&master, string, sizeof(string)))

CMSendString(slave, string);
}

/* check for possible response */
while(CMGetCommunicationModule(slave, &module_id,

&comm_module)) {
/* retrieve the master */
master = comm_module.params[0].value;
/* do not change the first parameter */
comm_module.params[0].set = 0;

CSSendData(master, module_id, comm_module);
}

}

CMEndTransmission(module_id);

/* process the rest */
for(slave = 0; slave < CMGetNumberOfSlaves(); slave++)
while(CMGetCommunicationModule(slave,&module_id,&comm_module)){

/* retrieve the master */
master = comm_module.params[0].value;
/* do not change the first parameter */
comm_module.params[0].set = 0;

91

CSSendData(master, module_id, comm_module);
}

if(CSEndTransmission()) break;
}

}

/**/
void main(int argc, char **argv)
{
/* establishes all connections according to -C parameter */
CSInitialize(&argc, &argv);

MainLoop();

CTerminate();
}

The two sections below describes the function of an initialization program
start and a simple drawing program draw.

7.5.2 Initialization program

Program start reads in a text specification file and executes a set of communicat-
ing processes. The program takes as a parameter the name of the specification
file and an optional switch -v to run the program in a verbose mode with detailed
report displayed in the terminal window.

The specification file contains the definition of processes and connections be-
tween couples of processes. The specification of a process starts with command
processes: followed by a group of lines, not separated by an empty line, with
commands:

name: process name Defines a unique process name.

host: machine name Defines the name of the machine on which the process is
executed. If the command is omitted, the local machine is used.

files: list of filenames Specifies files which have to be copied to the remote ma-
chine. This command can be repeated several times to specify more files.

command: binary with parameters Defines the executable of the process. The
full path does not have to be specified if the process path is set in the
system variable PATH .

display: machine Specifies the machine to which the display is redirected. If
not specified, the system variable DISPLAY is set to the local machine.

92

Since plant simulator cpfg needs the connection to an X-server, it is nec-
essary to specify a valid display variable, especially if the program is exe-
cuted on a remote machine. The X-server connection is required in order
to use calls to graphics library OpenGL. If the plant simulator is connected
to the X-server on a different machine, a lot of data have to be transferred
between these machines to create the image of the plant. Thus if it is
not possible to connect to the display on the same machine as the one of
the plant simulator, either the plant simulator should generate only a list
of primitives or L-system strings or it should be compiled using a public
domain graphics library equivalent to OpenGL10, which does not need the
connection to an X-server.

Note that command setenv used for modifying the variable DISPLAYmay
not work in every operating system. In that case it is possible to add a
corresponding variant of the command setenv to the command line of the
process.

Each command can be replaced by one or more letters, because only the first
character of a command is considered. A line starting with symbol ’#’ is ignored.
An empty line separates definitions of different processes.

Every process specified in the list has to be compiled with the same version of
the communication library and has to start with call to function CIntialize() or
CSInitialize() and finish with a call to CTerminate() (see the previous section).

All communicating processes have to be specified before defining connections.
The specification of connections follows the command connections:. Each line
defines a set of connections. For example, the line:

master1,...,masterN -> slave1,...,slaveM: spec_file common_parameters

initiatesM.N connections between each of the N masters and allM slaves using
the same type of communication (specified in the communication specification
file). In addition, common command-line parameters added to process executa-
bles (common parameters) can be defined. Processes are referred to by their
name.

In the following example, a drawing process draw server (named draw) com-
municates with two modeling programs cpfg (named tree1 and tree2). Both
modeling programs are masters to an environmental process chiba (named light)
simulating the local light environment shared by the two trees. The specification
file is listed below.

processes:
name: draw
files: specs.e

10Library MESA by Brian Paul available at http://www.ssec.wisc.edu/∼brianp/Mesa.html.

93

command: draw_server -r shaded

name: tree1
host: ik
files: specs.e tree.e tree.mat tree1.l tree.v tree.a leaf.s
command: cpfg -a -M tree.mat tree1.l tree.v tree.a
display: shere

name: tree2
host: shere
files: specs.e tree.e tree.mat tree2.l tree.v tree.a leaf.s
command: cpfg -a -M tree.mat tree2.l tree.v tree.a

name: light
host: ip
files: tree.e light.spec
command: chiba2 light.spec

connections:
draw -> tree1,tree2: specs.e -g -w 640 480
tree1,tree2 -> light: tree.e

The program start operates as follows. First, it processes the specification
file. For each process run on a remote machine, a unique directory /tmp/cpfg tmp XXXXXX
is created on the specified host and all required files are copied into it (using
system command rcp).

After all connection are read, all processes are started one by one using
system command rsh:
rsh host ”cd /tmp/cpfg tmp XXXXXX; setenv DISPLAY host:0.0;

path/binary connection params common params specified params &” &
The process path path is either specified or obtained using system command
which. The connection is specified by connection parameters connection params
described at the beginning of this section:

-C -c,confirm_socket,host_of_start;-m:spec_file1,socket1,...
...;-s:spec_fileK,socketK,master_hostK

Each process obtains a socket confirm socket to which it should confirm exe-
cution and send a character ’T’ upon termination. Each master connection is
defined by a socket and a specification file. Each slave connection in addition
needs the machine name of the master that sets up the socket. Parameters
common params are parameters shared by both processes communicating with
each other (specified with each connection, in the example above -g -w 640 480)
and specified params are these defined with the process.

94

The program start waits up to 20 seconds for the confirmation of a successful
execution of a process. If it is confirmed, the next process is spawned. Otherwise
all previously started processes are terminated by sending character ’K’ on their
confirm socket. This sockets is automatically monitored during calls to functions
of the communication library. Any ongoing communication is terminated and
the process is forced to terminate.

After all processes are successfully started the programwaits for a signal from
processes about their termination. After all signals are received, the program
removes all files and directories created in /tmp on all used hosts.

7.5.3 Drawing program

In the example from the previous section, two processes simulating two trees are
communicating with a drawing program draw server that displays both trees in
a single window.

The program draw server communicates with plant simulators by sending
text commands, such as new view or step, and receiving the graphical infor-
mation about the simulated structure. Currently, the program recognizes two
forms of graphical data. First, it is an array of values representing the color and
depth for each pixel. The depth value is necessary in case images from several
programs are combined into one window. The second format consists of a list of
primitives (a sequence of OpenGL-like commands — see Section 6.4) describing
the geometry of the modeled structure.

The program draw server is linked with the communication library comm,
thus connections between the program and plant models are defined using com-
mand line switch -C. This switch is set automatically if the distributing program
start is used (see the previous section). Other command line parameters include:

–r mode Sets the rendering mode. Currently, shaded, flat, and wireframe mode
is supported. The default is shaded.

–c num Defines the number of polygons around a cylinder.

–w xsize ysize Specifies the size of the window. Since the program is drawing
the models into an pixmap, which is then copied into the window when
necessary and it does not store the information coming from plant models,
it is not possible to resize the window.

Switches -r and -c are considered only if the interpretation of OpenGL-like
commands is performed.

Although the program draw server is designed to communicate with the
plant simulator cpfg, it is possible to use a simple process draw client that
sends all the data from its standard input to the drawing process specified by a
socket.

Let us consider an example, in which first the drawing programs is executed
with following switches:

95

draw_server -C -m:specs.e,1244 -w 640 480

setting the window size and a socket for the communication. The communication
is specified by file specs.e:

strings only: on

which allows strings being sent between the processes (not communication mod-
ules ?E).

After its execution, the drawing process is waiting for the first transfer of
data through the specified socket. If the draw server is running on machine
shere, for example, the data can be sent by calling:

draw_client -C -m:specs.e,1244,shere

and typing in following commands:

clear 1 1 1 /* background color */
material
0.5 0.5 0 1 /* ambient color (r,g,b,alpha) */
1 1 0 1 /* diffuse color */
0 0 0 1 /* specular color */
0 0 0 1 /* emissive color */
0 /* transparency */

polygon
0 0 0
0 1 0
1 0 0

When the last line is typed in and the input is terminated by pressing keys
Control and D, the data are transferred to the drawing process that draws a
yellow triangle on a white background.

Thus it is possible to add the drawing client into the distributed system and
interactively add primitives to the visualized scene.

96

8 Miscellaneous features

8.1 Rayshade instantiation

Homomorphism productions generally produce the same geometry for a given
module with a given set of parameters. It is then convenient to take advantage
of this information during the output into a rayshade file format, since this
format supports instantiation.

It is possible to mark selected homomorphism productions (using a delim-
iter -o> instead of the standard -->). During the rayshade output an object
with a name given by the predecessor of the productions and the values of its
parameters is created. Each time such a module is encountered during the inter-
pretation of the string (while creating the rayshade file), only a reference to the
given object is included in the file, not the geometry representing the module.

The output consists of three stages:

Stage 1. The string is parsed left to right with the full update of the turtle
parameters, but no output file is created yet. Each time a homomorphism
production with the delimiter -o> is applied to a module, this module with its
parameters is searched in a hash table. If the hash table does not contain the
same module with the same set of parameters, the module is added to the table
(together with selected turtle parameters — the line width, the scale factor,
the color index, the color index for the back side of a surface, and the texture
index). Otherwise the encountered module is an instance of the already stored
module and it is not necessary to add it to the hash table.

It is possible to control the precision with which the parameters of the en-
countered module are compared with parameters of stored modules. To this
end, a view file command rayshade objects: format defines the printf style
format string (e.g. %.3f), used for specifying the precision of the compared
parameters. The default value is %g (the full precision is used), but the number
of instances of a single module can be increased, and consequently the size of
the rayshade file reduced, if the precision is decreased to a few decimal points.
In this case a module can be represented by a module with slightly different
parameters, but the resulting structure may be still acceptably close to the
original.

In some instances, the same modules with the same parameters can result
in different structures, because some turtle parameters, such as the current line
width or color index are different when the second instance of the module is
interpreted. It is possible to include also turtle parameters (namely the line
width, the scale factor, the color index, the color index for the back side of a
surface, and the texture index) to the comparison between two modules with
the same parameters. To do so, words turtle considered have to be added after
the format string to the view file command rayshade object .

At the end of this stage, the hash table contains all the modules whose

97

geometry has to be specified at the beginning of the rayshade file (since rayshade
format does not allow backward referencing). Each module is also linked to the
module that previously occurred during the interpretation, to be able to process
the modules in the opposite order than the order in which they appeared (used
in the following stage).

Stage 2. The modules stored in the hash table are interpreted, in the order
given by the linked list (from right to left in the string). For each module M
or M(a1, a2, ..., an), a rayshade object with the name M or M a1 a2 ... an is
created and all the geometry resulting from the interpretation of the module is
stored within this object. If the module is not a letter, the name starts with
symbol c followed by the ascii code of the character (for example, module ’;’
would be represented as c073). In the case that also the turtle parameters are
used for the differentiating between the same instances, a symbol i followed by a
unique index of the module is added to the object name. The index differentiate
between the same modules with the same parameters.

At the beginning of interpretation of each module, the turtle position and
orientation is set to the default values (positioned at 0, and pointing upwards).
Other turtle parameters, such as the current color or material index or the
current line width are set to the values stored with the module in the hash
table. Thus if the turtle is ignored during the stage 1, all instances will use
the same turtle parameters as the ones at the first occurrence of the module
(during the stage 1). If the turtle is considered for the module comparisons,
each instance will have correct turtle parameters.

If during the interpretation of a module another module that can be found
in the hash table is encountered, the encountered module is not interpreted.
Instead, a reference to its object name is included in the rayshade file, followed
by a transformation matrix capturing the current turtle position and orientation.
Processing of the modules in the opposite order than the order in which they
appear during the interpretation guarantees that the object is already defined
in the file.

Stage 3. After all instantiated modules are output to the file, the L-system
string is interpreted again. If a module is not found in the hash table, its
geometry is output to the rayshade file. In the case, that the turtle is considered
for the comparisons, even if the turtle parameters of the interpreted and stored
module differ the module’s geometry is output to the file. If the module is
found in the hash table, only the reference to the predefined object is included
in the rayshade file. To properly position and orient the object, the reference to
the object is followed by a transformation matrix capturing the current turtle
position and orientation.

98

8.2 Sending commands to cpfg through sockets

It is possible to control the interactive operation of the plant simulator cpfg by
sending the commands through sockets. Each menu item has a corresponding
command. This functionality allows the user, for example, to modify the L-
system file, view file, or any other input file by an external program and then
send a command corresponding to the cpfg menu items New L-system or New
View. Thus the displayed model can be updated without interactive participa-
tion of the user.

Note that this functionality is available only in the interactive mode of op-
eration.

To be able to send the commands to cpfg, it is necessary to execute it with a
command line switch -S followed by an arbitrary number specifying the socket:

cpfg -M plant.mat -S 3000 plant.l plant.v.

Afterwards, the user can send an arbitrary command representing a menu
item to the plant simulator by using a program command client. The program
has two parameters, the first one specifies the network name of the machine cpfg
is running on (thus the command can be send also from a remote machine) and
the number of the corresponding socket. The first parameter can be omitted in
which case the program command client is trying to access a socket on the local
machine.

The commands sent to cpfg contain the text of the desired menu items (in
case of submenus, also the text of the upper menu is included, separated by ’—’).
The program command client reads the commands from the standard input (one
command per line), but it is often more convenient to pipe the commands to
the program. For example:

echo ”New view” | command client machine 3000.

or
echo ”Output|Image|RGB|Save as ...” | command client 3000.

The command can be all in lower case, because the matching is not case sensitive.
If the menu item with a predefined filename is to be selected, the file has to

be replaced by a dot (’.’). Thus

echo ”Input|String|binary|Inputfrom.” | command client 3000

inputs a binary string to cpfg from the default file name, unless another file
name is specified on the command line:

cpfg -M plant.mat -strb my string.strb -S 3000 plant.l plant.v.

99

9 Limitations

This section addresses some limitations of the current version of the plant sim-
ulator cpfg.

9.1 Using the hardware colormap

When using a hardware colormap, the program cpfg checks whether a colormap
of size 4096 already exists. Usually it does, as indicated by an X-root variable
SGI DEFAULT COLORMAP and cpfg uses this colormap (the id if the col-
ormap is again accessible from the X-root). Sometimes, though, the colormap
does not exists or is not big enough and an external program install map is
called.

This program creates and installs a colormap of the size 4096 (if possi-
ble), creates a new X-root variable called OPENGL INDEX COLORMAP, and
stores the colormap index there. Unfortunately, to properly install the colormap
the program has to be terminated. Thus this cannot be done by cpfg.

The program install map is located together with other utilities in the same
directory as cpfg. This directory should be included in your PATH variable,
otherwise the program will not be executed and the colormap allocation fails.

9.2 Using cpfg on less than 24-bit screens

If your hardware does not support true color visuals (i.e. it has less than 24-bits
per pixel), the index mode may not work properly. To determine the number
of bits per pixel of the screen buffer, run command ginv (on SGIs only) and
sum the number of bitplanes for a single buffered alpha, red, green, and blue
channels.

For example, on 8-bit screen you will be able to use only a colormap of size
256 (not 16× 256 as is usual on on 24-bit screen) and in the index mode, cpfg
will automatically switch to this 256 entries even if the default colormap uses
the second 256 entries in the hardware colormap of a bigger size. Unfortunately,
the current versions of utility programs loadmap and savemap do not recognize
the type of the screen and try to load or save the second 256 entries. Thus it
maybe necessary to use command line parameter -c0 both with loadmap and
savemap.

You can also use command line switch -m with a colormap file or switch
-M with a material file but in this case, the low number of bits per pixel will
significantly reduce the quality of the output (the image will be dithered). At
least use a single buffer mode (command line switch -sb) to increase the number
of bit planes allocated for each pixel (in double-buffered mode, the number is
divided by two — e.g. 4 bits per front and 4 bits per back buffer as compared
with 8 bits in a ingle-buffer mode).

100

9.3 Use of symbol # in the L-system file

Make sure that the symbol # does not appear as the first symbol on the line
in an L-system file or the first symbol after tabs or spaces. Otherwise, the
preprocessor tries to recognize it as its command and the reading of the file
fails. If you would like to use a production with # as the predecessor add an
empty left context, such as in:

∗ < #(wid) → #(wid ∗ 0.9).

Also make sure that in the case of multiple-line successors the new line does not
starts with # and move the module to the previous line.

9.4 Transparent objects

The support of transparent objects is not very strong in OpenGL. To render
transparent objects correctly, it is necessary to perform two passes through the
objects, first draw the opaque objects, then to sort all transparent or semitrans-
parent objects according to their position with respect to the viewer, and draw
them in that order (with the depth buffer switched off). This is a very time
consuming process. Consequently, all objects resulting from the interpretation
of the L-system string are drawn opaque (even if the material has transparency
set to a value above 0).

Nevertheless, it is possible to define transparent object in the background
scene (used, for example, to visualize the concentration contour in the three-
dimensional model of roots). The only limitation is that the objects are not
sorted for the second drawing pass and the resulting image may be incorrect.

Note that the transparent objects are output to rayshade or inventor even
if they are not transparent on the screen.

101

10 Things to do

10.1 Problems

• On April 21 1998, Jim discovered a problem when using new homomor-
phisms and the instance stuff; it causes a crash. He wanted to look at it.
I am not sure what is the current status.

• When using stochastic productions, cpfg requires stochastic values for
ALL productions, whether they are stochastic or deterministic. This
should not be necessary. Also, the seed is not set! This should be looked
at soon.

• you cannot have a variable with the same name as an array. It used to be
possible, but now it does not work. An error message is printed if such a
variable or array is defined, but it should be fixed so that the programs
allows both.

• There’s an error message that is given in the new subLsystem code when
a recursive call is attempted to a sub-Lsystem:

ERROR: Recursive call to Sub-L-system #

Right now it exits the program, but it should do like other errors do, and
leave the process running for future rereads.

• One thing Jim have noticed is that when running the binary on an O2
there are strange things happening with the buffers. There seems to be
a one pixel margin around the edge of the window that gets cleared ok,
but when the image is finally drawn apparently random colours appear in
that margin, giving a pulsing effect. Very disconcerting. He does not have
the O2 any more, but he should be getting his Octane early in 1998 and
he will check it again, and try compiling to see if it fixes the problem.

• The memory allocated by cpfg’s (the resident size) increases with each
New View. This increase may be significant in animations in which the
new view is invoked after each animation step. This problem has not
been traced yet, it may be something related to OpenGL or X. It is not
anything directly caused by cpfg calling malloc, strdump, or realloc, be-
cause these calls can be monitored if cpfg is compiled after running make
heapcheck. Maybe related to textures? Maybe cpfg does not call some
cleaning functions of X or OpenGL.

• The Jim’s changes related to variables local to each sub L-system do not
take account of cut strings appended at the end of the L-system string.

• Sometimes, the buffers are not switched properly, if you resize the window.

102

• The size of the rgb image output by cpfg is wrong, but ras output is fine
(on IRIX 6.2).

• The normals seem to be wrong when @Gr is set to -90.

• The bounding box is wrong for all off-screen generated rayshade outputs
(used when defined the optional object consisting of only the bounding box
— see Section6.1), unless the user includes also the view volume (using -vv
/dev/null). Since determining the view volume takes some time and the
bounding object is often not used, it would not be a good idea to compute
the bounding box as a default, but maybe some switch would be nice.

• when mapping textures on generalized cylinders, the aspect ratio of the
texture image is preserved. To do this, the length of the contour has
to be computed. Right now it is done approximately by computing the
distances between 10 · n points lying on the contour (n is the number of
control points specifying the contour). It would be better to compute the
real length of the contour.

• During instancing of homomorphism productions in rayshade output (Sec-
tion 6.1), it may happen that an empty object is defined and rayshade
would core dump on the file. Currently, a tiny transparent sphere is de-
fined in such cases. This could be better solved by noting which instances
are empty and not using them in other places.

• If a contour includes some singularity (e.g. a sharp edge created by having
three control points at the same location), the normals are not correct.

• Cpfg should start with a reasonable colormap in the index mode to avoid
a black window if the user forgets to run loadmap.

• Spheres are not textured. What mapping to use?
• Cpfg generated Inventor files have sometimes too big memory require-
ments (possibly related to too many items in a group).

• Directional lights do not convert properly to Inventor output (they are
defined as a very distant point source).

• If a predefined surface is not included in the view file, the created input
file cannot be viewed (the viewer does not read such a file). Either remove
the references to such surfaces or at least print a warning message.

• Currently, cpfg sends only recognized blackbox modules to the environ-
ment (e.g. @C is not passed to the environment but @O is). This is a
bigger problem related to multiple-symbol modules. I would suggest to
send only a single module after ?E, because a homomorphism production
can be used to replace this module with a multiple-symbol module.

103

• Cpfg displays the final image without showing the drawing process — a
departure from cpfg2.7; visible, in particular in lilacs.

• Maybe input string should not reread the view. A good question — what
should and what should not be reread?

• The materials with textures sure gives a lot more scope for making im-
ages... but its slow on old machines. It’d be nice to have textures off
during rotations or something...

• It would be nice to enhance rotation speed by allowing for a different mode
while the object is being rotated.

• Sub L-systems should have names, instead of the cryptic numbers.

10.2 Fixes to the manual

• Section 6.4 need to say under what conditions which of the statements
appear, assumedly by reference to the view file parameters. Although
currently, cpfg outputs the viewing parameters in a single projection ma-
trix.

• Format strings are used in a few places. It would be nice to have a section
explaining the general setup, along with usage examples.

• It would be nice to include an example of rayshade instancing (-o> pro-
ductions) where turtle’s parameters are considered.

• Regarding the manual describing environmental programs, it may be nice
to include an example of the environment argument file in the description
(this is optional, because an example is a part of the vlab object that you
point to an example anyway).

10.3 Suggestions for future extensions or improvements

• It would be nice to have an option for having interpretation step both
before and after the environmental step, only before it or only after it.

• Global homomorphism is not implemented. Right now, each L-system has
its own homomorphism productions (page 25).

• Extend the programming language by incorporating structures, user-defined
functions, or typed variables.

• It would be really good if the extent of labels was included in the bounding
box computed by cpfg.

104

• It would be helpful to be able to define a command that would be run for
files before input and after output (e.g. gzip).

• In case of textures, do not limit the size to power of two (e.g. some
new machines can handle a size of a multiple of 2). Include a switch or
create a bigger texture image with black boundaries and scale the texel
coordinates.

• Adding of depth test to postscript output.
• Textures in the background scene.
• It would be better if it was possible to avoid menus by pressing keys.
Especially when the menu causes expose event after it is closed. At least
to have a stop animation button.

• Create an HTML version of this manual.
• Enable user-defined functions in cpfg.

• Is there a way how to allow the user to specify a blackbox functions?
• Add antialiasing.
• For a more efficient visualization of environments add the possibility to
send the visualization information (images or GLS files) through additional
data stream or using the current communication process (at the end after
all ?Es are sent back to cpfg).

• Use the OpenGL shared display lists for a more efficient displaying of
predefined surfaces.

• Switch between sub L-systems (or tables) on a flag. (this could be done
even now by using a global variable and having a production which would
switch the sub L-system if this variable is changed).

• Switch off environmental step on a flag. (as in the previous point, modules
?E can be introduced just before they are needed, using global variables,
e.g. a step counter — although this solution would not eliminate the
environmental pass, only no data would be transferred between cpfg and
the environment).

• enable different homomorphisms, one for the environment, one for the
screen (actually there could be one for each type of output as well —
string, rayshade, postscript, etc.). Switching from one to another could
be controlled by some variable

• Add a smooth interpolation of colors, e.g. along the stems (even in the
shaded mode).

105

• Would it be possible to use shared libraries to add mathematical and
blackbox functions without recompiling?

• How about the ability to put the labels in screen space?? maybe in a
separate @L parameter 0-1 for each dimension and scaled to fit?

• Might be nice if fonts could be specified per label.
• Allow the user to change format for parameters in string output; currently
scientific notation.

• Should there be a window opened when a warning message is sent rather
than just to the console? The console is not necessarily open.

• Allow for different timing within sub L-systems.
• In perspective viewing, can the image be automatically scaled to properly
fit the window (and if this is the case, how should the parameters be
passed to rayshade)?

• How about having the light stay fixed when the object is rotated?
• How about having the system call incorporate additional variable values
using an sprintf?

• Make it possible to access view parameters from productions.

106

Part II

Examples
This section contains examples of many models created by cpfg. The input files
for these examples are included with cpfg and can be conveniently examined and
experimented with using the Virtual Laboratory framework, vlab. Instructions
for getting the Virtual Laboratory distribution are given in Section 2.

11 Quadratic Koch island

Figure 9 shows several approximations of the quadratic Koch island from The
Algorithmic Beauty of Plants [7] page 8. They were generated with the com-
mand:

cpfg koch.l koch.v

The files’ contents are detailed in the following sections.

11.1 koch.l

lsystem: 0
derivation length: 3

axiom: F-F-F-F

F --> F+F-F-FF+F+F-F

endlsystem

This L-system introduces three turtle symbols: F,+, and -. The F symbol
causes the turtle to move forward, and draw a straight line. The + and -
symbols cause the turtle to turn counter-clockwise and clockwise respectively.
The amount that the turtle turns (90◦ in this example) is specified in the viewing
file (Section 11.2).

The axiom F-F-F-F draws a square. The production:

F --> F+F-F-FF+F+F-F

replaces each line segment with a shape as shown in Figure 10. Note that there
are no productions for the + and - symbols. Symbols with no replacement
productions are replaced with themselves. In other words, cpfg treats this
L-system as if it contained these productions:

+ --> +
- --> -

107

n = 0 n = 1

n = 2 n = 3

Figure 9: Koch Islands generated in n = 0,1,2,and 3 derivation steps

11.2 koch.v

angle factor: 4
initial color: 1
color increment: 0
initial line width: 2
line width increment: 0
viewpoint: 0,0,1
view reference point: 0,0,0
twist: 0

108

−→

Figure 10: The production F −→ F+F-F-FF+F+F-F

projection:
parallel front distance: -100000.0
back distance: 100000.0
scale factor: 0.9
z buffer: off
cue range: 0
shade mode: 7
light direction: 1.0, 1.0, 1.0
diffuse reflection: 0
tropism direction: 0.0,1.0,0.0
initial elasticity: 0.0
elasticity increment: 0.0

This is a fairly typical viewing file. The most important value for this fractal is:

angle increment: 90

This tells cpfg that the angle increment used with the + and - commands is
equal to 90◦.

12 Koch snowflake curve

Figure 11 shows several derivations of the Koch snowflake. They were generated
with the command:

cpfg snowflake.l snowflake.v

The files’ contents are detailed in the following sections.

12.1 snowflake.l

lsystem: 0
derivation length: 3

axiom: F-F-F

109

n = 0 n = 1

n = 2 n = 3

Figure 11: Snowflake curves

F --> F+F--F+F
endlsystem

The axiom F-F-F draws a triangle. The production:

F --> F+F--F+F

replaces each line segment with the shape shown in Figure 12.

12.2 snowflake.v

angle increment: 60

110

−→

Figure 12: The production F −→ F+F–F+F

.

.

.

The + and - commands for this L-system rotate the turtle by 60◦. The
viewing file for the snowflake is identical to that for the Quadratic Koch island
except for the different angle increment.

13 Combination of islands and lakes

Figure 13 illustrates an application of the turtle symbol: f, which moves the
turtle forward, but does not draw a line. The L-system used to generate this
image is shown below.

13.1 lakes.l

lsystem: 0
derivation length: 2

axiom: F+F+F+F

F --> F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF
f --> ffffff

endlsystem

The axiom F+F+F+F draws a square. The production:

F --> F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

replaces each line segment with the shape shown in Figure 14.

14 Dragon curve

Figure 15 shows several generations of the dragon curve. The L-system used to
generate this image is shown below.

111

Figure 13: Islands and Lakes

−→

Figure 14: The production F −→ F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

14.1 dragon.l

lsystem: 0
derivation length: 12
axiom: FL
L --> L+RF+
R--> -FL-R
endlsystem

The dragon curve consists of two types of edges, “left” and “right”. The
L-system which generates the dragon curve is based on an L-system with two
symbols for edges Fl and Fr:

112

n = 1 n = 2

n = 8 n = 12

Figure 15: Dragon Curves

axiom: Fl

p1 : Fl → Fl + Fr+
p2 : Fr → −Fl − Fr

Figure 16 shows the replacements made by this L-system. We can convert
this L-system to one which uses only one type of edge symbol as follows.

Assume temporarily that a production predecessor can contain more than
one letter; thus an entire subword can be replaced by the successor of a single
production (a formalization of this concept is termed a pseudo-L-system and
is discussed in The Algorithmic Beauty of Plants [7]). The dragon-generating

113

Fl

Fr

F
rF l

F r
F
l

Figure 16: The productions Fl → Fl + Fr+ and Fr → −Fl − Fr

L-system can be rewritten as:

axiom : Fl
p1 : Fl → Fl + rF+
p2 : rF → −Fl − rF

where the symbols l and r are not interpreted by the turtle. Production p1
replaces the letter l by the string l+rF− while the leading letter F is left intact.
In a similar way, production p2 replaces the letter r by the string −Fl− r and
leaves the trailing F intact. Thus, the L-system can be transformed as follows:

axiom : Fl
p1 : l → l + rF+
p2 : r → −Fl − r

15 Branching structures

Branches in structures such as those shown in Figure 17 are delimited by the
turtle symbols [and]. The turtle saves its state at the start of a branch, and
restores it when the turtle reaches the end. See page 24 of The Algorithmic
Beauty of Plants [7] for more details. The following section shows the L-system
file for the first “plant”. Productions for the remaining structures are indicated
in Figure 17.

15.1 plant.l

lsystem: 0
derivation length: 5
axiom: F

F--> F[+F]F[-F]F

endlsystem

114

F −→ F[+F]F[-F]F F −→ F[+F]F[-F][F] F −→ FF-[-F+F+F]+[+F-F-F]

X −→ F[+X]F[-X]+X X −→ F[+X][-X]FX X −→ F-[[X]+X]+F[+FX]-X
F −→ FF F −→ FF F −→ FF

Figure 17: Examples of plant-like branching structures

16 Stochastic L-systems

All plants generated by the same deterministic L-system are identical. An at-
tempt to combine them in the same picture would produce a striking, artificial
regularity. Stochastic L-systems provide for random variations that preserve
the general aspects of a type of plant, but modify the details.

Figure 18 shows several plants generated with the same stochastic L-system

115

Figure 18: Stochastic branching structures

(except for different seed values)11.

16.1 plants.l

lsystem:
seed: 2454
derivation length: 3

axiom: F

F--> F[+F]F[-F]F : 1/3
F--> F[+F]F : 1/3
F--> F[-F]F : 1/3

endlsystem

This is a stochastic L-system. There are three possible successors for the
F symbol. For each F symbol in the string, cpfg randomly picks one of the
three available productions. The probabilities for each production are given as
1/3, so they are equally likely to be applied. Note that expressions can be used
for the probability. The seed keyword specifies a seed for the random number
generator.

17 Context sensitive L-systems

Figure 19 shows a plant generated with a context-sensitive L-system.
11Note that the New Model and New L-system menu options do not reset the seed

value, so a different structure will be generated each time one of these items is selected.

116

Figure 19: A plant generated with a context-sensitive L-system

17.1 context.l

lsystem: 0
derivation length: 30
ignore: +-F

axiom: F1F1F1

1 < 1 > 1 --> 0
1 < 1 > 0 --> 1
1 < 0 > 1 --> 1F1
1 < 0 > 0 --> 0
0 < 1 > 1 --> 1
0 < 1 > 0 --> 1
0 < 0 > 1 --> 1[-F1F1]
0 < 0 > 0 --> 0
* < - > * --> +
* < + > * --> -

117

Figure 20: “Row of Trees” generated using a parametric L-system

endlsystem

The productions of this L-system have the following structure:

1 < 1 > 1 --> 0
Left Context Predecessor Right Context Successor

This production will replace a given 1 with 0 only if it is preceded by 1 and
followed by 1. The command ignore: +-F tells cpfg not to consider the +,
- and F symbols when matching contexts. Other examples of context sensitive
L-systems are given in Section 1.8 of The Algorithmic Beauty of Plants [7].

The production:

* < - > * --> +

lists * for both the left and right context, and consequently, will match a -
symbol with any context. The * is not required. The following productions are
equivalent:

* < - > * --> +
- > * --> +

* < - --> +
- --> +

18 Parametric L-systems

Figure 20 shows a fractal generated with a parametric L-system.

118

18.1 rowoftrees.l

#define STEPS 7
#define a 86
#define p 0.3
#define d1 2
#define d2 1
#define d3 0

#define q (1-p)
#define h ((p*q)^0.5)

lsystem: 0
derivation length: STEPS
axiom: -(90)F(1)

F(x) : x>0.05 --> F(x*p)+(a)F(x*h)-(a+a)F(x*h)+(a)F(x*q)

endlsystem

This L-system makes use of parameters to control the distance moved by the
turtle. The initiator (production predecessor) is the hypotenuse AB of a right
triangle ABC (Figure 21). The first and the fourth edge of the generator sub-
divide AB into segments AD and DB, while the remaining two edges traverse
the altitude CD in opposite directions. From elementary geometry it follows
that the lengths of these segments satisfy the equations

q = c− p and h =
√
pq.

In the next derivation step, the four edges of the generator can be associated
with four triangles that are similar to ABC.

19 Global variables in parametric L-systems

Figure 22 shows a fractal generated with a parametric L-system.

19.1 flake.l

#define STEPS 5
#define af 1.08
#define hf 0.41

lsystem: 0
Start: {h = 20; a = 66;}
EndEach: {h = h*hf; a = a*af;}
derivation length: STEPS
axiom: -(90)F(60)

119

A B

C

D

a b

p q

c
Figure 21: Construction of the generator for the “row of trees.” The edges are
associated with triangles indicated by ticks.

Figure 22: “Snowflake” generated using a parametric L-system

F(x) --> F(x/2-h/tan(a))+(a)
F(h/sin(a))-(2*a)
F(h/sin(a))+(a)
F(x/2-h/tan(a))

endlsystem

This L-system makes use of two global variables, h and a. The line:

Start: {h = 20; a = 66;}

120

Figure 23: A stylized apple blossom

sets the initial values at the begining of the derivation, and:

EndEach: {h = h*hf; a = a*af;}

updates the values at the end of each step.

20 Incorporation of predefined surfaces

Figure 23 shows a model which uses predefined surfaces.

20.1 blossom.l

#define SIZE 100
lsystem: 0
derivation length: 3
axiom: /(154)B

B --> [&(72)#;;F(5*SIZE),,!K]
K --> [,S/(72)S/(72)S/(72)S/(72)S]
S --> [^(103)~c][^(72)~p][,^(34)F(SIZE)#,[-F(SIZE)][+F(SIZE)]]

endlsystem

20.2 blossom.v

angle factor: 21
initial color: 120
color increment: 32

121

Figure 24: Apple Leaf

initial line width: 20.0
line width increment: 3.0
projection: parallel
front distance: -26000.0
back distance: 26000.0
scale factor: 0.7
z buffer: on
cue range: 0
shade mode: 3
light direction: 1.0,0.0,0.0
diffuse reflection: 25
tropism direction: 0.0,2.0,0.0
initial elasticity: 0.02
elasticity increment: -0.02
surface ambient: .15
surface diffuse: .85
line: ~ line.s 1.0
surface: c leaf.s 350
surface: p petal.s 500

20.3 leaf.s

This section specifies the surface of a leaf such as the one shown in Figure 24. It
consists of two patches, but there is no interpolation of shading between them.

-28.72 25.68 -20.64 81.29 -7.50 21.85
CONTACT POINT X: 0.00 Y: -20.00 Z: 0.00

122

Figure 25: Apple Petal

END POINT X: 0.00 Y: -19.61 Z: 0.00
HEADING X: 0.00 Y: 0.99 Z: -0.14
UP X: 0.02 Y: -0.14 Z: -0.99
SIZE: 101.93
Patch_1
TOP COLOR: 298 DIFFUSE: 0.75 BOTTOM COLOR: 298 DIFFUSE: 0.75
AL: ~ A: ~ AR: ~
L: ~ R: ~
BL: ~ B: ~ BR: ~
-15.51 0.84 -5.00 -22.12 13.03 -5.00 -28.72 42.48 -5.00 -17.84 60.08 -2.50
-7.35 -10.67 -5.00 -20.00 10.00 -7.50 -20.00 36.05 -5.00 -8.90 75.60 0.00
-10.00 -5.00 -5.00 -10.00 15.00 -5.00 -10.00 40.00 -2.50 -1.52 71.71 2.50
0.00 -20.64 0.00 0.00 16.75 0.00 0.00 16.75 0.00 0.00 81.29 21.85
Patch_2
TOP COLOR: 298 DIFFUSE: 0.75 BOTTOM COLOR: 298 DIFFUSE: 0.75
AL: ~ A: ~ AR: ~
L: ~ R: ~
BL: ~ B: ~ BR: ~
0.00 -20.64 0.00 0.00 25.00 0.00 0.00 16.41 0.00 0.00 81.29 21.85
4.31 -5.00 -5.00 10.00 22.17 -5.00 10.00 40.00 -2.50 1.20 70.24 2.50
8.59 -7.50 -7.50 15.74 10.00 -7.50 20.00 25.00 -5.00 12.08 68.89 0.00
14.80 4.23 -5.00 25.68 28.94 -5.00 21.80 45.19 -5.00 19.08 51.62 -2.50

20.4 petal.s

This section specifies the surface of a leaf such as the one shown in Figure 25.

123

-5.93 34.60 8.43 50.90 -1.47 7.91
CONTACT POINT X: 23.63 Y: 8.49 Z: 0.13
END POINT X: 23.63 Y: 8.70 Z: 0.37
HEADING X: 0.00 Y: 1.00 Z: 0.00
UP X: 0.01 Y: 0.00 Z: 1.00
SIZE: 39.59
Petal_1
TOP COLOR: 0 DIFFUSE: 0.00 BOTTOM COLOR: 0 DIFFUSE: 0.00
AL: ~ A: ~ AR: ~
L: ~ R: ~
BL: ~ B: ~ BR: ~
22.64 8.49 0.00 20.53 15.22 4.03 13.10 30.26 5.80 15.07 40.29 4.35
22.60 8.49 0.00 19.67 15.00 1.97 19.67 30.00 2.14 16.65 49.99 4.83
23.42 8.49 0.00 26.53 15.00 1.80 26.19 30.00 1.97 28.94 50.90 -1.47
22.96 8.43 0.00 26.03 15.00 3.69 34.60 30.75 7.91 32.18 41.26 1.28

21 More predefined surfaces

Figure 26 shows a lilac inflorescence, incorporating predefined surfaces. The
specification files can be found in $VLABHOME/oofs/ext/examples/ext/lilac.

22 Use of sub-L-systems

Figure 27 shows a model of the sedge Carex laevigata. In this model, sub-L-
systems are used to generate the male and female spikes. The main L-system,
shown in Section 22.1 uses the ? symbol to incorporate the productions from
the sub-L-systems included from the files female.l, male.l and leaf.l.

22.1 sedge.l

/* internode growth rate */
#define RATE 1.02
/* For a doubling in branch length we want 1.26 times the width */
/* The exponent is equivalent to log(1.26)/log(2) approximately */
/* for 1.1 we use an exponent of .1375 */
/* for 1.2 we use an exponent of .2630 */
/* for 1.26 we use an exponent of .3334 */
/* for 1.3 we use an exponent of .3785 */
#define STEMRATE 1.06
/* width of stem at start of internode */
#define STEMWIDTH .0075
/* Sub L-systems for female spike, male spike and leaf */
#define F_SPIKE ?(2,1.25)axiom$

124

Figure 26: A lilac inflorescence

#define M_SPIKE ?(3,1.25)axiom$
/* leaf L-system parameters: starting delay, time to turn, and new elasticity */
#define LEAF ?(4,1)axiom((a-10),a,(a-13)/100)$

lsystem: 1
/* nice derivation length 90+ (95?) */
derivation length: 95
axiom: /(30)+(10)#(STEMWIDTH)A(4,4)
* < A(a,t) > * : a==30 --> F(1)/(137.5)M_SPIKE
* < A(a,t) > * : t<10 --> F(1)A(a+1,t+1)
* < A(a,t) > * : t==10 --> F(1)/(137.5)[L(a)][S(a)]#(STEMWIDTH)A(a+1,0)

125

Figure 27: Carex laevigata

* < #(d) > * : d<200 --> #(d*STEMRATE)
/* ! is used here so that width won’t be increased */
* < S(a) > * : * --> [^(25)_(0-.1)!(.3)F((30-a)/5)F((30-a)/5)_(0)F_SPIKE]
* < L(a) > * : * --> [^(60)!(.1)LEAF]
* < F(t) > * : t<2 --> F(t*RATE)
* < F(t) > * : !(t<2) --> F(t*RATE/2)F(t*RATE/2)
endlsystem

126

#include "female.l"
#include "male.l"
#include "leaf.l"

22.2 female.l

This L-system contains the line:

lsystem: 2

and generates the image shown in Figure 28. It is included into the main L-
system with the turtle symbols ?(2,1.25), specifying that L-system 2 is to be
included and scaled by a factor of 1.25.

#define I_RATE 1.01
/* internode growth rate */
#define S_RATE 1.05
/* seed growth rate */
lsystem: 2
derivation length: 76
axiom: ////F(5)axiom
* < A(t) > * : t<75 --> F(.2)[B]/(137.5)A(t+1)
* < B > * : * --> &(35)[~f(1)]/(180)[~f(1)][~c(1)#(.1)F(.5)]
* < F(t) > * : t<1 --> F(t*I_RATE)
* < &(a) > * : a<50 --> &(a*S_RATE)
* < ~f(t) > * : t<2 --> ~f(t*S_RATE)
* < ~c(t) > * : t<2 --> ~c(t*S_RATE)
* < axiom > * : * --> [&(30)/(180)~f(2.25)#(.1)F(.5)]F(.1)/(180)

[&(30)/(180)~f(2.25)#(.1)F(.5)]/(137.5)A(0)
endlsystem

23 L-System defined surfaces

Figure 29 shows several stages in the development of a Lychnis coronaria flower.
The specification files can be found in:

$VLABHOME/oofs/ext/examples/ext/lychnis
This model uses Bezier surfaces specified by the L-system using the @PD(i,s,t)

symbols. The file lychnis.l contains many parameters controlling both the
timing of the development, and the angles and sizes of various components.

24 Other examples

Other examples, imllustrating homomorphism, decomposition, the use of gen-
eralized cylinders, and various other features can be found either on the system

127

Figure 28: Female spike

Figure 29: Lychnis

(see the objects noted at the margins in places where various features are de-
scribed) or in [2, 3].

128

References

[1] Hanan, J. S. Parametric L-systems. PhD thesis, University of Regina,
Regina, Saskatchewan, Canada, 1992.

[2] Měch, R. Modeling and Simulation of the Interaction of Plants with the
Environment using L-systems and their Extensions. PhD thesis, The Uni-
versity of Calgary, Calgary, Canada, November 1997.

[3] Měch, R., Prusinkiewics, P., and Hanan, J. Extensions to the graph-
ical interpretation of L-systems based on turtle geometry. Tech. Rep.
97/599/01, Dept. of Computer Science, The University of Calgary, Calgary,
Canada, 1997.

[4] Měch, R., and Prusinkiewicz, P. Visual models of plants interacting
with their environment. Computer Graphics (SIGGRAPH ’96 Conference
Proceedings) (August 1996), 397–410.

[5] Prusinkiewicz, P., and Hanan, J. L-systems: From formalism to pro-
gramming languages. In Lindenmayer systems: Impact on theoretical com-
puter science, computer graphics, and developmental biology, G. Rozenberg
and A. Salomaa, Eds. Springer-Verlag, Berlin, 1992, pp. 193–211.

[6] Prusinkiewicz, P., James, M., and Měch, R. Synthetic topiary. Com-
puter Graphics (SIGGRAPH ’94 Conference Proceedings) 38 (July 1994),
351–358.

[7] Prusinkiewicz, P., and Lindenmayer, A. The algorithmic beauty of
plants. Springer-Verlag, New York, 1990 (second printing 1996). With J. S.
Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[8] Woo, M., Neider, J., and Davis, T. The OpenGL Programming Guide,
Second Edition. Addison-Wesley.

129

A L-system Input Grammar

Lfile → Lsystems BlankLines

Lsystems → Lsystems Lsystem
| /* empty */

Lsystem → Header Productions Decomposition Homomorphism endlsystem
<newline>

Homomorphism → homomorphism HomoWarning < newline > HomoItems
Productions

| /* empty */

HomoItems → HomoItems HomoItem
| /* empty */

HomoItem → HomoSeed
| ProdDepth

HomoWarning → : warnings
| : no warnings
|

HomoSeed → seed Expression < newline >

Decomposition → decomposition DecompWarning < newline > DecompItems
Productions

| /* empty */

DecompWarning → : warnings
| : no warnings
|

DecompItems → ProdDepth
| /* empty */

ProdDepth → depth Expression < newline >

Header → BlankLines Label Items Axiom

BlankLines → {BlankLine}
BlankLine → <newline>

Label → lsystem: Characters <newline>

Items → {Item}

130

Item → Seed
| Dlength
| Ignore
| Consider
| BlankLine
| Defines
| Startblock
| Endblock
| Starteach
| Endeach

Seed → seed: Characters <newline>

Dlength → derivation length: Expression <newline>

Consider → consider: Characters <newline>

Ignore → ignore: Characters <newline>

Characters → {<character>}
Startblock → start: Block <newline>

Endblock → end: Block <newline>

Starteach → start each: Block <newline>

Endeach → end each: Block <newline>

Block → { Statements }
Statements → {Statement}
Statement → Assignment

| Procedure
| IfStatement
| WhileStatement
| DoStatement

Assignment → LHS = Expression ; BlankLines

LHS → <identifier>
| <identifier> ArrayRef

ArrayRefs → { ArrayRef }
ArrayRef → [Expression]

131

Procedure → Expression ; BlankLines

IfStatement → if (Expression) BlankLines Block BlankLines
| if (Expression) BlankLines Block else BlankLines

Block BlankLines

WhileStatement → while (Expression) BlankLines Block BlankLines

DoStatement → do BlankLines Block while (Expression) ; BlankLines

Defines → define DefineBlock < newline >

DefineBlock → { BlankLines DefStatements }
DefStatements → {DefStatement}
DefStatement → ArrayDefStatement

| ExternalDefStatement

ArrayDefStatement → array ArrayDefs ; BlankLines

ArrayDefs → ArrayDef { , ArrayDef }
ArrayDef → <identifier> ArrayDims

| <identifier> ArrayDims = ArrayInitBlock

ArrayDims → {ArrayDim}
ArrayDim → [Expression]

ExternalDefStatement → externalExternalDefs ; BlankLines

ExternalDefs → ExternalDef { , ExternalDef}
| ExternalDef

ExternalDef → <identifier>
| <identifier> ArrayDims

132

Axiom → axiom: Modules <newline>

Productions → {Production}
Production → BlankLine

| Predecessor [Conditional] --> Successor <newline>
| Predecessor [Conditional] -o> Successor <newline>

Predecessor → Strictpred
| Lcontext < Strictpred
| Strictpred > Rcontext
| Lcontext < Strictpred > Rcontext

Lcontext → *
| FormalModules

Strictpred → FormalModules

Rcontext → *
| FormalModules

Conditional → : Condition
| : Precondition Condition
| : Condition Postcondition
| : Precondition Condition Postcondition
|

Precondition → Block

Postcondition → Block

Condition → *
| Expression

Successor → StrictSucc
| StrictSucc Probability

StrictSucc → *
| Modules

133

Probability → : Expression

FormalModules → {FormalModule}
FormalModule → Symbol

| Symbol (FormalParameters)

Modules → {Module}
Module → Symbol

| Symbol (Parameters)

Symbol → <character>

FormalParameters → FormalParameters {, FormalParameter}
FormalParameter → <identifier>

Parameters → Expression {, Expression}
Expression → Expression || Expression

| Expression && Expression
| Expression == Expression
| Expression != Expression
| Expression <> Expression
| Expression < Expression
| Expression <= Expression
| Expression > Expression
| Expression >= Expression
| Expression + Expression
| Expression - Expression
| Expression * Expression
| Expression / Expression
| Expression % Expression
| Expression ^ Expression
| - Expression
| ! Expression
| (Expression)
| Function
| Name
| Value

| LValue

| String

134

Function → FunctionName (Expression)

FunctionName → tan
| sin
| cos
| atan
| asin
| acos
| ran
| nran
| bran
| biran
| srand
| exp
| log
| floor
| ceil
| trunc
| fabs
| sign
| stop
| sqrt
| printf
| fprintf
| fopen
| fclose
| fflush
| fscanf

Value → <number>

Name → <identifier>

LV alue → & <identifier>
| & <identifier> ArrayRefs

String → " <string> "

135

Index

animate mode, 7
animation file, 7, 46
array, 20

background scene, 41, 51
buffering, 8, 46

color, 42
colormap, 7
command

define, 20
end, 20
endeach, 20
lsystem, 22
start, 20
starteach, 20

command line parameters, 6
communication

library, 66, 74
module, 34, 62
multiple processes, 9
specification file, 66, 70
type, 70

contour, 41, 49

debugging mode, 6
decomposition, 26
drawing parameters, 38

environmental process, 72
debugging, 80
example, 77

environmental step, 62

functions, 21

generalized cylinder
specification, 32
twist, 41

homomorphism, 10, 23
instantiation, 25

maximum depth, 24
warnings, 24

inventor output, 10

L-system
environmentally-sensitive, 34
main, 22
open, 34, 62
sub L-system, 22

L-system file, 7
light, 42
line, 40

material table, 7, 8
menu

animation, 15
main, 13
menu bar, 8
overlay menu, 8

module
communication, 34, 62

off-screen rendering, 8

pixmap, 8
polygon specification, 30
postscript output, 10
preprocessor, 6
production

multiple sets, 22
programming statement, 18
projection, 37

rayshade, 40
rayshade output, 10

string
input from stdin, 9
output, 10, 59

surface, 41
drawing, 31

136

specification file, 48

texture, 43
tropism, 45

changing parameters, 33
tsurface, 41

specification file, 49
turtle

parameters
changing, 28
setting, 36

rotations, 27
scale, 29, 37

variable
global, 20

verbose mode, 6
view file, 7, 36
view parameters, 37

warning mode, 6
window

position, 8
size, 8, 13
title, 8

137

