
Virtual Laboratory:
an Interactive Software Environment for Computer Graphics

Pavol Federl and Przemyslaw Prusinkiewicz
Department of Computer Science

The University of Calgary
Calgary, Alberta, Canada T2N 1N4

federl@cpsc.ucalgary.ca pwp@cpsc.ucalgary.ca

Abstract

Many activities in computer graphics can be regarded as
experiments on virtual objects or models. In the process of
experimentation the existing models are gradually improved
and new model categories emerge. The Virtual Laboratory
(vlab) is a software environment designed to support model
development by facilitating the manipulation of models
and providing mechanisms for storing and retrieving large
numbers (e.g., thousands) of them. The models can be
shared between users who work at different geographical
locations over the Internet. In the paper we first clarify the
essential concept of the Virtual Laboratory by describing
its operation from a user’s perspective. The modeling of
plants serves as a sample application. We then present the
key elements ofvlabdesign and implementation, discuss the
obtained results, and present their possible ramifications in
the context of related ideas.

Keywords: interactive graphics environment, software
design, graphical browser, object, inheritance, hyperobject,
link, modeling, simulation.

1. Introduction

The Virtual Laboratory (vlab) is a software environment
that originated from the need to organize and facilitate
simulated experiments in computer graphics. The experi-
mentation with visual models of natural phenomena is the
focal application, butvlab has also been used to support
experiments in fractal geometry and in physically-based
modeling. In spite of differences in content, these activities
share many common characteristics:

� An individual model can be conceptualized as a
logically connected set of data files and programs that
operate on these files.

� Model development and refinement is an incremental
process in which small changes are made and
programs are rerun many times. Differences between
models are often small.

� The set (data base) of models grows continuously as
new models are being created. The number of files
included in this data base tends to be large (of the order
of one thousand in our data base to date).

� Programs associated with the models may exist in
many versions, and be invoked with a wide range
of options. Only some versions and options are
appropriate in the context of a specific object.

These characteristics make it difficult to organize work.
At the level of individual models, experimentation is a
tedious process, in which potentially useful modifications
and improvements may be easily left unnoticed, or optimal
parameters found and lost. Once the number of files
produced during the experimentation increases, it is difficult
to keep track of which files belong together, which
programs and program versions are to be applied to them,
and how to retrieve specific files among hundreds of similar
ones. These problems are aggravated when models are
revisited after some time, or when they are shared by many
people (for example, in the context of collaborative work or
computer-assisted instruction). The objective of the Virtual
Laboratory is to help organize the work better by extending
the rudimentary support offered by the underlying operating
system (UNIX and its versions, IRIX, SunOS and Linux, in
our current implementations).

The key to the organization ofvlab is the observation that
a model can be conceptualized as an object in the object-
oriented programming sense, with files representing data
and programs representing methods. In this context,vlab
provides the following functionality:



File system organization

� Files constituting an object are grouped together for
easy retrieval and access.

� The information about programs, program versions,
and options applicable to specific objects is stored with
the objects. Consequently, it is easy to experiment
further on older objects or objects developed by others.

� New objects are easily created by the user and added to
the data base. To save storage space, objects are saved
incrementally, (i.e., only the files that differ from the
previous version are saved explicitly).

� Alternative arrangements of the same set of objects can
be created by the user as structures of hyperobjects
with pointers to the actual objects.

� Objects and hyperobjects may incorporate textual de-
scriptions, presenting features inherent in an object or
characterizing its occurrence in a particular hyperob-
ject structure.

Support for interaction

� For the purpose of experimentation, the objects are
automatically transferred to a temporary location,
where they can be manipulated without fear that the
original objects will be inadvertently changed or lost.

� Any program associated with an object can be added
by the user to the object’s menu. This menu provides
a convenient method for initiating various tasks
that constitute an experiment, facilitates re-running
programs during incremental object development, and
makes it possible to call programs quickly and without
mistakes during interactive presentations.

� User-configurable control panels are included in the
vlab environment to facilitate the manipulation of
object parameters.

� A graphical browser makes it possible to visualize and
manipulate the data base of objects, navigate through
it, and access the objects.

� A hyperbrowser is provided to create and access
structures of hyperobjects.

� The browser and hyperbrowser can be used to access
remotevlabdata bases across the Internet.

In the next section we describe previous work that
provided the foundation for the Virtual Laboratory system
presented in this paper. We then clarify the concept of
vlab by describing its operation from a user’s perspective
(Section 3), and complement this description with a

presentation ofvlab design aspects less visible to the end-
user (Section 4). The obtained results are discussed in
Section 5, followed with conclusions in Section 6.

2. Previous work

Work on the Virtual Laboratory began in 1989, motivated
by the need to organize a fast-growing data base of
experiments related to plant modeling and fractal generation
using L-systems [10]. The original concept and design
were introduced and related to previous research results
by Mercer, Prusinkiewicz and Hanan [7], and detailed in
Mercer’s M.Sc. thesis [6]. This work introduced several
key elements ofvlab design that remained essential to the
subsequent implementations and extensions:

� Related data files were grouped intoobjects, complete
with a specification filedetailing which tools (pro-
grams with options and argument files) apply to this
object.

� The objects were organized into a hierarchical data
base called theobject-oriented file system(oofs),
governed by theprototype-extensionrelation between
objects introduced by Lieberman [4].

� To prevent unwanted modifications, the objects were
fetched from the data base to a temporary location
called thelab tablefor experimentation.

� The user could configure virtualcontrol panelsto
manipulate chosen model parameters.

Mercer’s implementation included the first versions of
thebrowserfor navigating through the data base, theobject
managerfor applying tools to objects, and thecontrol panel
managerfor creating control panels. The browser displayed
only a limited view of the data base (current object and its
immediate extensions) and did not provide adequate support
for moving objects within the hierarchy. A prototype
graphical browser that addressed these limitations was
developed in Tcl/Tk [9] by Lowe [5], using the tree widget
implemented by Brighton (see [3]) as the point of departure.
The underlying algorithm for visualizing tree structures was
described by Moen [8]. Direct experience and a usability
study performed by Lowe confirmed the convenience of
browsing and reorganizing thevlab data base using its
tree representation. Subsequently, Federl extendedvlab
with the capabilities for creating and presenting alternative
views of the data base using thehyperbrowser, and for
accessing remote data bases over the Internet [1]. We find
the resulting system very useful in practical applications,
which motivates our presentation of its present version in
this paper.



3. A user’s perspective of vlab

A sample screen of a Silicon Graphics workstation
runingvlab is shown in Color Plate 1. The windows on the
left side belong to the browser and the hyperbrowser. The
small windows along the top edge of the screen belong to
the object manager processes, and represent objects copied
to the lab table. The menu pulled down shows tools
associated with the objectcongo.demo. The central part of
the screen contains a window created by one of the tools, an
L-system-based plant modeling program. Another tool is a
control panel for manipulating model parameters, shown on
the right side of the screen.

3.1. The browser

Typically, the user entersvlab by invoking the browser,
which makes it possible to navigate through the objects
in the lab by following the hierarchy induced by the
prototype-extension relation (Section 4.1). Each object is
represented in the browser’s window by a folder symbol,
an object name, and an optional icon. Multiple folders
represent objects that have extensions, whereas single
folders represent terminal nodes (leaves) of the hierarchy.
Prototypes and extensions are connected by lines (Color
Plate 1).

Since the number of objects in the data base may be
large, the user can focus on its parts by dynamically
expanding or contracting the tree representation of the
hierarchy. Initially, the browser presents the root and the
first level of objects. By clicking the name of an object the
user causes the browser to display its immediate extensions.
This makes it possible to expand a tree branch level-by-
level. Alternatively, the user can apply a menu option to
expand an entire subtree of extensions that originates from
a selected object. In a similar manner, parts of the tree that
are no longer of interest can be hidden from view.

In order to provide additional information about the
objects, the user can display their icons, either individually
(toggle action of a mouse button) or for an entire subtree
(using a menu option).

In addition to browsing, the user can search for an object
given its name. When the matched object is found, the
hierarchy is automatically expanded and the browser’s view
is adjusted to include the object in the window.

The browser also makes it possible to reorganize the
hierarchy of objects by renaming and deleting them, as
well as cutting, copying and pasting to another location.
Individual objects can be dragged from the source location
to a destination with the mouse. Operations on entire
subtrees require proper menu selections. To facilitate
transfers between distant locations in the graphical view of
the data base, the user may open several instances of the

browser and copy and paste objects between them.
Once an object of interest has been located, the user can

invoke it by clicking its file folder symbol or using a menu.
This calls the object manager program, discussed next.

3.2. The object manager

The first task of the object manager is to copy the
files constituting the chosen object from the data base to
a temporary location for the purpose of experimentation.
Maintaining the laboratory metaphor, we say that the object
is copied from thestorage shelfto thelab table. Next, the
object manager creates a window with the object name and
icon. By clicking this icon, the user pulls down a menu of
tools, or programs associated with the object.

Let us consider the refinement of the plant model shown
in Color Plate 1 as a typical example of the user’s interaction
with avlabobject. The user calls a simulation program from
the object’s menu. Another menu item is used to invoke a
control panel manager. The panel acts as an editor of the
object’s data files [7]. Consequently, the current state of
the model is always reflected in these files (in addition to
the internal state of the active programs) and can be easily
saved. Once the modifications have been completed, the
user may apply an icon-making tool to capture a part of
the screen as the new object icon. The object on the lab
table can be saved either by overwriting the original object
in the data base, or by creating an extension to it. The new
extension is automatically added to the data base of objects
and appears in the browser’s window.

To serve as a general-purpose environment for simulated
graphics experiments, the tools associated with an object
and the files they operate on must be easily definable by the
user. To this end, each object contains aspecification file
that lists the available menu items and defines the action
resulting from each item’s selection. For example, the
specification file for thecongo.demoobject in Color Plate
1 includes the following lines:

generate:
cpfg -s 300000 lilac.l lilac.v lilac.a

L-system:
panel:

panel panel.l | ped lilac.l
EDIT lilac.l

Menu items end with a colon and may be nested to
create a hierarchy of menus. The associated actions are
specified using the syntax of UNIX commands. For
instance, the menu itemgeneratewill invoke the simulation
programcpfg with options-s 300000 and three input
files lilac.l , lilac.v and lilac.a . Similarly, the
menu sub-itempanelassociated with the itemL-systemwill
invoke thepanel program. Its appearance on the screen



will be defined by the input filepanel.l . The results of
control manipulation will be passed to the programped ,
which will edit the corresponding parameters in the file
lilac.l . The user can easily define or redefine the menu
items or the operations associated with them by editing the
specification file and rereading the modified file into the
object manager.

The specification file may also include references to
generic tools, illustrated in the example by the lineEDIT
lilac.l . The (sub)menu and the associated action are
then defined in a system-wide filetools. For instance,EDIT
may be defined there as follows:

EDIT
edit:

jot

This indirect tool specification makes it possible to avoid
repetitive definition of frequently used menu items and
makes it easy to globally replace one tool by another (for
example,emacs or vi by jot ) in all objects.

In addition to the user-definable items, the menu
displayed by the object manager always includes a
predefined set of utilities, needed to:

� edit the specification file,

� save a portion of the screen as the object’s icon,

� save the object by overwriting its storage location or
by creating an extension to it,

� request the browser to highlight an object’s position
in the hierarchy (useful when there are several objects
on the lab table, and the user needs to verify their
positions),

� open a UNIX shell on the object’s storage or lab table
location to facilitate operations not supported byvlab
(for example, construction of a new object prototype
from scratch).

� quit the object manager.

3.3. The hyperbrowser

An object in the data base may be of interest in several
contexts. For instance, the model shown in Color Plate
1 was developed as a part of a comparative study of
lilac flowers for horticultural purposes, but it may also
serve as an example of a particular branching architecture,
an illustration of model construction according to field
data, an instructional example of programming using
L-systems, a realistic model available for incorporation
in complex scenes, and the source of an image for a
paper. A vlab program called thehyperbrowserallows

the user to create alternative views of the object data
base, reflecting conceptual associations between the objects
rather than the default prototype-extension relationships.
The hyperbrowser is manifested on the screen in a manner
similar to the browser: as a window displaying a hierarchy
of objects. (To avoid confusion, the user may customize
the hyperbrowser differently than the browser, for example
by changing background color and the icon size.) The
objects are not added to this hierarchy automatically each
time a new extension is created. Instead, they must be
positioned explicitly by dragging from the browser window,
or from a another location in the hyperbrowser window. To
highlight the role of a particular object occurrence, the user
may associate with it a textual file, which can be edited or
displayed using the hyperbrowser’s menu. Thus, an object
occurrence in the hyperbrowser hierarchy can be thought of
as ahyperobjectconsisting of a link to a real object and a
text file.

The hyperbrowser also makes it possible to sequentially
access objects with a common parent. This option is
particularly useful when the Virtual Laboratory is used for
interactive presentations.

3.4. Access to remote data bases

The Virtual Laboratory is not confined to individual
machines and local file systems. The user may also
invoke browsers or hyperbrowsers on different data base
hierarchies, on the same local area network or over the
Internet. Most operations available locally can be also
performed on remote data bases, provided that proper
permissions are given by their owners. For example, the
user may browse a remote data base of objects, experiment
with a remote object (which is transferred to thelocal lab
table for fast experimentation), or copy objects and object
hierarchies between various data bases. These transfer
operations are performed by dragging and dropping, or
copying and pasting, between browsers open on different
data bases.

4. System design

In the previous section, we presented Virtual Laboratory
components from the end-user’s perspective. We will now
describe the design that combines these components into a
coherent system.

In order to see the reasoning behind some of the design
decisions, let us complement the general objectives ofvlab
given in Section 1 with the additional requirements that
guided the design.

� Individualvlab components should have clearly spec-
ified functions, so that they can be easily replaced by



improved or redesigned components without requiring
fundamental changes to the underlying data bases. An
analogy can be made with World Wide Web browsers,
which are being improved and extended without re-
quiring changes to the Web.

� To allow for incremental development ofvlab, users
should be able to perform functions directly from
UNIX if they are not (yet) supported byvlab.

� The Virtual Laboratory should provide a convenient
framework for the use of a wide range of application
programs. Consequently, as few assumptions as
possible should be made regarding the operation of
these programs.

The essential elements ofvlab design are described
below.

4.1. The object-oriented file system

object1/

object1.1/

object 
specification 
file

data
file 1

data
file 2

data
file 3 ext/

object 
specification 
file

data
file 1

data
file 2

data
file 3 ext/

Figure 1. Structure of the object-oriented file system.

From [7].

A laboratoryobject is defined as a directory (with the
name corresponding to the object’s name) that contains:

� thedata filesthat comprise a particular model,

� thespecification file(Section 3.2),

� the object’sicon,

� the identification file, which holds the object’siden-
tification number(id) for linking with hyperobjects
(Section 4.2),

� an optional subdirectory of objectextensions.

8888888888888
8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

specifications

tree.l

tree.v

panel.v

tree.ras

tree.map

ext/

888888888888
888888888888
888888888888

888888888888
888888888888
888888888888
888888888888

888888888888
888888888888
888888888888

888888888888
888888888888
888888888888

888888888888
888888888888
888888888888

888888888888
888888888888
888888888888
888888888888

888888888888
888888888888
888888888888

specifications

tree.l

tree.v

panel.v

tree.ras

tree.map

ext/

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888

8888888888888
8888888888888
8888888888888
8888888888888

specifications

tree.l

tree.v

panel.v

tree.ras

tree.map

ext/

888888888
888888888
888888888

object2/

8888888888
8888888888
8888888888
8888888888

object2.1/

8888888888
8888888888
8888888888
8888888888

object2.1.1/

Figure 2. A prototype with a sequence of extensions.

Shaded areas indicate links. From [7].

The objects are organized into anobject oriented file
system(oofs ), which constitutes the main data base of
objects or experiments. Its definition is compatible with
the UNIX file system to facilitate operations not supported
directly by vlab, such as construction of new prototypes
from scratch and construction of objects that share files with
several other objects. This data base can be represented
by a hierarchy of UNIX directories and files, as shown in
Figure 1.

The path of subdirectories leading to an object estab-
lishes the inheritance structure of the lab. Inheritance is
based on the notion of specifying a new object in relation to
an existing parent object [4]. The old object is theprototype
and the new one is itsextension. The extension contains
only those files that are different from the corresponding
files in the prototype. Files that remain the same are in-
herited from the prototype using symbolic links. In other
words, an object in the data base contains those files that
are unique to the object, and links to files that are inherited
from its prototype (Figure 2). This approach saves space
and allows a single change in the prototype to propagate
through all extensions.

An object on the lab table differs from its data base
counterpart in two respects: the symbolic links are replaced
by actual files, and the extensions directory is not present.
When a new extension is created, the files on the lab table
are compared with those in the prototype object; those files
that differ from the prototype are saved, and links to the
remaining files are established automatically.

A similar process is observed when an object is copied
from one location to another. The object is first copied to
a temporary location, then pasted to the new one. During
the paste operation, the browser compares the object’s files
with those in the new prototype, and replaces repeated files
by symbolic links. Thus, objects can be relocated without
introducing inconsistencies into the data base.



The browser supports two modes of the copy-and-paste
operation, calledlinks stayandlinks move. In the first case,
the objects being copied retain theirid numbers, and the
objects being pasted are assigned new numbers. In the
second case the situation is reversed: the original objects
are assigned newid numbers, while the old numbers are
transferred to the pasted objects. The role of these modes
will be explained in the next section.

4.2. The hyperobject file system

Conceptual relations between objects are represented by
the structure of ahyperobject file system(hofs). Similarly
to the oofs, the hofs is a hierarchy of UNIX directories
and files grouped into fundamental units,hyperobjects. A
hyperobject directory includes:

� The nodefile, containing theid of the corresponding
object and a list of hyperobject extensions. This
list specifies the order in which the extensions
will be displayed by the hyperbrowser, which is
important when the objects are accessed sequentially
(Section 3.3).

� A text file intended to contain a description of object
features pertinent to its specific occurrence in thehofs;

� A subdirectory of hyperobject extensions.

The node numbers introduce a level of indirection to
object references, which simplifies the maintenance of
links when the location of target objects in theoofs is
changed. Specifically, the two modes of copy-and-paste
operation allow the users to decide whether links from the
hyperobjects should remain with the original objects, or
transfer to the pasted ones. Quick access to objects from
hyperobjects is made possible by anobject reference table,
which specifies the path to each object given itsid. This
table is updated by the browser in response to the user’s
actions affecting the object data base.

4.3. The vlab daemon

In order to operate in concert and present the user with
a consistent view of thevlab state,vlab processes must
communicate with each other. For example, the creation
of a new object extension or the deletion of an object
cause all active browsers that display the affected part of
the data base to update their windows. The interprocess
communication is implemented using thevlab daemon
(Figure 3). Each process has a separate communication
channel to the daemon, implemented using sockets. A
new process registers with the daemon and indicates which
message types it is interested in receiving. The daemon
transparently forwards any message sent by an active

vlab
daemon

browser 1 object 1

hbrowser object 3

browser 2 object 2

Figure 3. Communication between vlab system compo-

nents.

vlab component to all interested receivers. The resulting
star configuration simplifies message routing compared to
direct bilateral communication between pairs of processes.
In addition to support for communication, the daemon
launches selected objects (i.e. invokes the object manager)
upon requests from a browser or a hyperbrowser. The
daemon is invoked automatically and thus remains invisible
to the user.

4.4. The remote access server

Access to remote data bases is accomplished using
the remote access server, which runs as a daemon on
a remote machine, and performs operations on behalf of
the client browser. The underlying mechanism can be
viewed as a simplification of UNIX Remote Procedure
Calls (RPC) [11]. The format of messages exchanged
between the browser and the remote access server has been
optimized to reduce response times. For example, the
browser can ask the server for information regarding an
entire subhierarchy of objects in a single message, and this
information is also returned in a single message.

4.5. Vlab maintenance

In addition to the programs described so far,vlab
includes utilities that check the integrity of the data base
(oofs, hofs, and the object reference table), and assist in
its repairs. Possible inconsistencies include symbolic links
to nonexisting files in theoofs, incorrectly specified object
location in the object reference table, and reference to a
nonexisting object from a hyperobject. Typical sources of
errors are system or network connection failure during an
operation, and incorrect object manipulation by the user at
the UNIX shell level.



Table 1. Time needed to perform selected vlaboperations

on a 150MHz/32MB SGI Indy R5000 workstation, using

local disk.

Operation Number of objects Timea [s]
Expand subtree 10 instantaneous

100 1
Show all icons 10 1
(60� 60 pixels) 100 7
Copyb 10 3

100 21
Pasteb 10 6

100 56
Drag and dropc 1 1
Get objectc 1 1
New extensionc 1 1
New linkd 1 instantaneous

aAverage from 5 measurements
bAverage object size: 25 KB
cObject size: 100 KB
dAny object size

5. Implementation and results

The Virtual Laboratory has been developed on SGI
machines using OpenGL and Motif libraries. It has been
ported to SUN workstations (under SunOS), and Linux.
The source (in C and C++) has approximately 45,000 lines
of code. Our local data base has approximately 1,000
objects comprising 10,000 files.

The speed ofvlab operation is determined primarily by
the access time to theoofs, thus it depends on whether
oofs is mounted locally or accessed over a network, and
the network’s speed. For orientation purposes, some
measurements describingvlab performance have been
collected in Table 1.

Vlab has been used to support an ongoing collaborative
research program in plant modeling and visualization,
which has now branched to several locations in North
America, Australia, and Europe. Approximately 15 people,
both computer scientists and biologists, have used versions
of vlab for up to eight years. Our collective experience is
summarized below.

5.1. Advantages

Vlab is an essential element of our software environment.
It makes it easy to experiment with the models, retrieve and
resume work initiated in the past, and organize the results
for publications and presentations.

The possibility of modifying objects without fear of

losing the original data, menu-driven access to the object
tools, and object manipulation with virtual control panels
are the keys to successful experimentation by novice and
experienced users alike. The flexible association of objects
into structures accessed using the hyperbrowser makes it
possible to usevlab as an attractive vehicle for interactive
presentations. We also found hyperobject structures useful
in the conceptualization of the relationships between the
objects, although we do not yet have long-term experience
with this aspect. The remote-access capabilities have been
essential in collaborative work involving researchers at
different locations. Remote access is also important to
users who operate on the same data base from different
locations, for example at work and at home. Finally,
we have developed objects belonging to various domains,
from the visualization of algorithms to fractals and tilings
and from cellular automata to physically-based models
of mechanical systems, which supports the claim to the
versatility of vlab applications. For example, Color Plate
2 shows a physically-based cloth model that was organized
as avlab object. In this case, none of the domain-specific
files or programs (the simulation program, its data files,
even the control panel) is the same as for the plant models.
Nevertheless, the general functions provided byvlab— the
access to the object using the browser or the hyperbrowser,
and the possibility of manipulating it using the object
manager — remain the same.

The first implementation ofvlab was created in 1990.
Since then, the original programs have been redesigned
and reimplemented, and new components and features
have been introduced. In spite of these changes, we
were able to maintain continuity of our data base over
the past eight years. This attests to the viability of the
foundations of thevlab design, in particular the concept of
objects with associated specification files, organized into
an object-oriented file system with inheritance based on
the prototype-extensions relation. In summary, the Virtual
Laboratory meets the objectives stated in Section 1.

5.2. Limitations

Experience withvlab also brought to attention some
limitations of the present design. The most important is
the lack of support for hierarchical model construction.
For example, the user should be able to assemble a forest
scene from objects representing individual plants, which in
turn would be constructed from objects representing organs:
leaves, flowers, or fruits. Unfortunately,vlab does not
currently provide a mechanism for constructing objects that
include other objects as components, or inherit files from
several prototypes.

Vlab also does not produce visual cues indicating which
application program has been spawned by which object



manager. This may lead to confusion when the same tool
is applied to several objects lying on the lab table at the
same time.

Objects may contain files that differ drastically in
size. When objects are accessed remotely over a slow
communication link, it would be convenient to exclude
large files that can be easily reconstructed locally, such as
image files representing the results of short simulations. At
present,vlab does not allow for a selective transfer of parts
of objects.

In the case of a long simulation, it would be convenient
for the user to exitvlab with the simulation running in the
background, and resumevlab operation after some time,
with the object manager reopen automatically on the object
left on the lab table. This features is not yet provided.

5.3. Design alternatives

Our implementation of the object oriented file system
was significantly affected by the requirement that the
objects should be easily accessible by the user directly
from the UNIX. As our confidence invlab increases, this
requirement is becoming less important, which opens the
way for alternative implementations of theoofsdata base.
Minor modifications are:

� Inclusion of the object extension directories into
the prototype objects, without the intermediateext
directories shown in Figures 1 and 2. This would
reduce the length of object pathnames, whereas object
directories would contain a mixture of object files and
extension directories.

� Removal of all symbolic links. A file listed in a
specification file but absent in the object directory
would be automatically inherited from the closest
prototype that has it. This would eliminate the
proliferation of symbolic links inherent in the current
design of theoofs. On the other hand, the user would
be practically unable to access files making up an
object without the assistance ofvlab.

A more drastic change stems from the realization that a
hierarchy of hyperobjects is similar to the UNIX directory
structure. Pursuing this analogy, we could design avlab
data base in which all objects are placed in one UNIX
directory, and are accessed exclusively through links from
the “directory structures” maintained by the browser and the
hyperbrowser. This would offer the following benefits:

� The browser and the hyperbrowser would access
objects in a unified manner, which would simplify their
design.

� Changes in the inheritance structure would be imple-
mented by rearranging links to objects, and inserting

or deleting selected files as required by changes in
object prototypes. The positions of objects in the
underlying UNIX file system would remain intact. The
objects could be therefore identified directly by their
UNIX pathnames, eliminating the need for the object
identification numbers and the object reference table.

6. A concluding remark

Our long experience with the consecutive incarnations
of vlab shows that it provides an effective and pleasant
environment for organizing and conducting interactive
experiments with visual simulation models. Gentner and
Nielson [2] envisioned that future computer users will focus
on manipulating huge numbers of complex information
objects while being connected to a network shared by other
users and computers. This is exactly whatvlab makes it
possible to do.

7. Acknowledgments

We would like to thank Lynn Mercer for continuing
discussions of the design directions being embedded in
the vlab, and for her comments on this paper. We would
also like to thank dedicated vlab users, Mark Hammel, Jim
Hanan and Radom´ır Měch, for comments that led to the
refinement of its design, and merciless testing.

This work has been sponsored by research, equipment,
and infrastructure grants as well as postgraduate fellowships
from the Natural Sciences and Engineering Research
Council of Canada, and a Killam Resident Fellowship.

References

[1] P. Federl. Design and implementation of Global Virtual Lab-
oratory — a network-accessible simulation environment.
Master’s thesis, University of Calgary, 1997.

[2] D. Gentner and J. Nielson. The Anti-Mac interface.
Communications of the ACM, 39(8):70–82, 1996.

[3] M. Harrison. Tcl/Tk tools. O’Reilly and Associates, 1997.
[4] H. Lieberman. Using prototypical objects to implement

shared behavior in object oriented systems. InProceedings
of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 214–223, New
York, 1986. Association for Computing Machinery.

[5] E. M. Lowe. Extensions to the Virtual Laboratory. Master’s
thesis, University of Calgary, 1995.

[6] L. Mercer. The virtual laboratory. Master’s thesis,
University of Regina, 1991.

[7] L. Mercer, P. Prusinkiewicz, and J. Hanan. The concept and
design of a virtual laboratory. InProceedings of Graphics
Interface ’90, pages 149–155. CIPS, 1990.

[8] S. Moen. Drawing dynamic trees.IEEE Software, pages
21–28, July 1990.



[9] J. K. Ousterhout.Tcl and the Tk toolkit. Addison-Wesley,
1994.

[10] P. Prusinkiewicz and A. Lindenmayer.The algorithmic
beauty of plants. Springer-Verlag, New York, 1990. With
J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer,
and L. Mercer.

[11] W. R. Stevens.UNIX network programming. Prentice-Hall,
Englewood Cliffs, 1990.



Figure 4. A sample vlab screen

Figure 5. A physically-based experiment carried out in the vlab environment


