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Introduction

Growing biological systems can be described as dynamical systems with a dynamical
structure. In such systems not only the values of variables characterizing system components,
but also the number of components and the connections between them, may change over time.
For example, in a developing plant, the numbers of branches, leaves and flowers change as
the plant grows, and the topology and form of the plant are gradually modified. A simulation
model of a plant must therefore be capable of dealing with the changing numbers of
components, and their varying configurations. This problem was explicitly addressed by
Lindenmayer, who introduced L−systems as a formalism for modeling structures with a
dynamically changing topology. This formalism, extended with a geometric interpretation,
has subsequently been applied to model a wide variety of plants.

...

The modeling of developing surface structures has recently been addressed from new
viewpoints by Giavitto and Michel (the MGS system), and Smith et al. (the vv system). Here
we outline this latter approach and its potential applications to the modeling of biological
structures.
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1 Introduction

Growing biological systems can be described as dynamical systems with a dynamical structure [8]. In such
systems not only the values of variables characterizing system components, but also the number of compo-
nents and the connections between them, may change over time. For example, in a developing plant, the
numbers of branches, leaves and flowers change as the plant grows, and the topology and form of the plant
are gradually modified. A simulation model of a plant must therefore be capable of dealing with the changing
numbers of components, and their varying configurations. This problem was explicitly addressed by Lin-
denmayer, who introduced L-systems as a formalism for modeling structures with a dynamically changing
topology [13]. This formalism, extended with a geometric interpretation, has subsequently been applied to
model a wide variety of plants [16].

Unfortunately, the original formalism of L-systems only captures linear and branching structures. To
overcome this limitation, Lindenmayer and Rozenberg introduced map L-systems, which operate on a class
of graphs with cycles called maps [14]. This seminal work led to several variants and extensions of map
L-systems, which were reviewed in [17, Chapter 7]. In order to visualize the modeled structures, Siero et al.

introduced a geometric interpretation of map L-systems [18]. An alternative physically-based interpretation

was proposed by Fracchia et al. [7] (see also [17]). In the latter case, cell walls were simulated as springs,
and pressure within cells was simulated using additional forces that acted in directions perpendicular to
these spring. The geometry of the resulting structure was determined as the static equilibrium state. De-
veloping fern gametophytes of Microsorium linguaeforme and Dryopteris thelypteris, as well as several other
developmental processes and structures, were successfully modeled using this approach [3, 7, 17].

In spite of these encouraging results, the modeling experience revealed several shortcomings of map L-
systems. The specification of map L-system models according to experimental data was difficult, control
over the generated topologies was insufficient, and no mechanism for interactions between cells, other than
mechanical interactions, was supported. Although these limitations were partially addressed in subsequent
works [4, 6], the resulting formalisms still did not offer sufficient control over the simulated topologies and
forms.

The modeling of developing surface structures has recently been addressed from new viewpoints by
Giavitto and Michel (the MGS system [8]), and Smith et al. (the vv system [19]). Here we outline this latter
approach and its potential applications to the modeling of biological structures.

2 Vertex-vertex systems

We developed the vertex-vertex (vv) formalism [19] to specify and implement algorithms that operate on
dynamical systems with dynamical structure in the topological space of polygon meshes. VV is inspired by the
philosophy of L-systems, in that it uses lineage information and context to identify elements of the structure.
This reliance on local information makes it possible to avoid global identifiers, such as indices, which we
consider undesirable both from the conceptual point of view (in reality, elements of a structure “know” only
their local neighborhoods) and from the implementation point of view (indices are not a convenient construct
for identifying elements of dynamically changing, irregular structures). VV also shares other characteristics
with L-systems, such as the ease with which structural components can be inserted and deleted, and the ease
of locally transporting information within the structure. In contrast to the declarative nature of L-system
programs, however, vv programs have an imperative character.

The main data structure supported by vv (a counterpart to L-system strings) is a graph rotation system

[5, 21]. A graph rotation system associates each vertex of a polygon mesh with an oriented circular list of



Name Math. notation vv statement Description Note Fig

Query operations

membership v ∈ x? is x in v true iff vertex x is in
the neighborhood of v

order x < v x < v true iff vertex x pre-
cedes vertex v in the
universe U

valence |v?| valence v returns the number of
neighbors of vertex v

Selection operations

any let x ∈ v? any in v returns a neighbor of v 1
next v? ↑ x nextto x in v returns vertex that fol-

lows x in the neighbor-
hood of v

2 b

previous v? ↓ x prevto x in v returns vertex that
precedes x in the
neighborhood of v

2 c

Editing operations

create let v ∈ U vertex v create a vertex
set neighborhood v? = {a, b, c} make {a, b, c} nb of v set the neighborhood

of v to the given circu-
lar list

3 a

erase v? = v? − x erase x from v remove x from the
neighborhood of v if
v ∈ x?

4 d

replace v? = v? − a + x replace a with x in v substitute x for a in
the neighborhood of v

5 e

splice after v? + x � a splice x after a in v insert x after a in the
neighborhood of v

5 f

splice before v? + x ≺ a splice x before a in v insert x before a in the
neighborhood of v

5 g

1) Returns the null vertex if v? is empty. 2) Returns the null vertex if x 6∈ v?.
3) Not defined (error reported) if v appears in the list, or the same vertex is listed twice.
4) No effect if v 6∈ x?. 5) No effect if v 6∈ a?; not defined (error reported) if x = v or v ∈ x?.

a) b) c) d)
v? = {a, b, c, d, e, f} b = v? ↑ a f = v? ↓ a v? = v? − a

e) f) g)
v? = v? − b + x v? = v? + x � a v? = v? + x ≺ a

Table 1: Top: definition of the topological operations of the vertex-vertex algebra. Bottom: graphical
interpretation of the selection and editing operations. a) Setting the initial neighborhood of vertex v. b-g)
The results of various operations applied to v.

its adjacent vertices. This structure is manipulated using a set of operations called the vv algebra (Tab. 1).
The vv programming language is an extension of C++ with statements of this algebra. VV programs are
executed, and the results are visualized, in the vv programming environment [19].

3 Physically-based modeling of growing tissues

As with L-systems, vv captures the topology of the modeled structures. This topology must be complemented
with geometric attributes to represent growing forms. In the previous work [19], these attributes were defined



in purely geometric terms, using affine geometry operations [9]. Here we return to the concept of defining
geometry through the intermediacy of physics. We consider the physically-based approach well suited to
biological modeling, because it captures the emergence of form as a result of tensions (stresses) introduced
into tissues by growth [1, 15].

In the examples discussed below, we treat the edges of a graph as springs that act on masses located at
the nodes (as was the case for map L-systems). At each time step, the force acting on each vertex is the
sum of the forces exerted by the springs connecting it to its neighbours. Other sources of forces may also
be considered; for example, to represent the pressure of internal tissues on the external layer of a volumetric
structure. The resulting velocities and accelerations are updated by forward Euler integration until an
equilibrium is met. Algorithm 1 shows the simple vv implementation of this relaxation process. Growth
and development are simulated by changing parameters (eg. the rest length) and configuration of selected
springs. These changes can be induced and controlled by external factors, such as the orientation of springs
and polygons with respect to gravity, and internal factors, such as the concentration of morphogens that
diffiuse and react with each other in the simulated tissue.

1 forall v in V {
2 v$acceleration.set(0.0, 0.0, 0.0);
3 forall x in v {
4 float dist = v$pos.distance(x$pos);
5 float k = (rest length - dist) / dist;
6 v$acceleration += k * (v$pos - x$pos);
7 }
8 v$velocity += (v$acceleration - v$velocity * drag) * dt;
9 v$pos += v$velocity * dt;

10 }

Algorithm 1: Sample vv code for calculating the force at each vertex in a set V when all vertices are
interpreted as masses.

4 Modeling the Korn-Spalding cell division pattern

In [12], Korn and Spalding proposed a simple algorithm to mimic cell division patterns in plant epidermal
tissues. This pattern was previously used as a test case for simulating developing tissues (e.g. [4]), and we
include it here for the same purpose.

The Korn-Spalding pattern begins with a single hexagonal cell (Figure 1a). Its division is simulated by
inserting an edge (cell wall) between two opposite sides of the cell, at one third the distance along each edge
(Figure 1b). The daughter cells then return to the regular hexagonal shape (Figure 1c). In the subsequent
iterations the process of cell division is repeated, with the dividing walls rotated each time approximately
120◦ with respect to their previous orientation.

a) b) c)

Figure 1: a) The initial cell with the top and bottom edge selected b) The insertion of an edge to divide the
cell into two c) The cells after the physical simulation

To model this process in vv, we assume that all springs of the developing mass-spring system have the
same rest length. We also assume that each cell exerts some pressure on its walls. Consequently, after
division, the cells assume approximately regular hexagonal shapes. The first steps in the simulation of a
growing tissue according to the Korn-Spaliding algorithm are shown in Figure 2.

5 Modeling a root

As a sample application of vv to the modeling of three-dimensional structures, we created a simple root model.
The root is represented as a tubular polygonized surface, growing near the tip. Unlike the Korn-Spalding



Figure 2: Development of the Korn-Spalding pattern

pattern, where polygons represented individual cells, here we treat the polygons as a formal discretization
of a conceptually continuous surface.

In order to extend the root, new vertices are inserted into the mesh uniformly around the apical vertex
(Figure. 3a and b). The arrangement of the edges around the apical vertex is then modified in a manner
similar to Kobelt’s

√
3 surface subdivision algorithm [11], so that the valence of the apical vertex returns

to 6 (Figure 3c). Algorithm 2 specifies these operations in vv. The newly created edges have the same rest
length as the older edges; thus, they expand, making the structure grow at the apex. An aditional force
normal to the polygons assures that the apical vertex grows outwards.

a) b) c)

Figure 3: Simulating root tip growth. a) The initial configuration; the apical vertex is in the center. b) The
configuration after the insertion of new vertices. c) The edges are adjusted such that the valence of the apical
vertex returns to six. In the next iteration, steps a-c will be re-applied to the new hexagon surrounding the
apical vertex.

1 forall x in ‘apex {
2 vertex y = nextto x in apex;
3 vertex n;
4 n$pos = 0.33 * (apex$pos + x$pos + y$pos);
5 make {apex, x, y} nb of n;
6 splice n after x in apex;
7 splice n after y in x;
8 splice n after apex in y;
9 }

10 forall x in ‘apex {
11 vertex a = nextto apex in x;
12 vertex b = prevto apex in x;
13 erase x from apex;
14 erase apex from x;
15 splice a after apex in b;
16 splice b after x in a;
17 }

Algorithm 2: Sample vv code for the insertion of vertices around a particular vertex apex. Lines 1–9 insert
new vertices and edges as in Figure 3b. Lines 10–17 change the topology around the apex as in Figure 3c.

A sample structure generated by this algorithm is shown in Figure 5a. A simple model of root gravitropism
is obtained by modulating the rest length of the springs as a function of the orientation of their incident
polygons with respect to gravity, as shown in Figure 5b.



a) b)
Figure 4: a) A growing root tip model, where
all springs have the same rest length b) A sim-
ple model of root response to gravity. The rest
length of springs at the top is larger than the
length of the springs at the bottom.

6 Modeling a shoot apical meristem with primordia

Our last example is a generic model of a shoot apex. The growth of the receptacle is modeled in a manner
similar to the growth of the root, described in the previous section (Figures 5a and b). Selected areas
of the apex then undergo accelerated growth, forming new primordia. In the models shown, these areas
are determined by Thornley’s model of phyllotaxis [20], in which a morphogen, produced by the existing
primordia, diffuses on the surface of the receptacle and assures proper positioning of the new primordia. Once
the location of a new primordium has been selected, the corresponding region of the receptacle is subdivided
(Figure 5c). Since the lengths of the resulting springs is smaller than the rest lengths, a tangential stress
is created, causing the subdivided regions to buckle. An additional force, normal to the modeled surface,
assures that the primordia grow outwards. (Figure 5d). As the existing primordia continue to grow and new
primordia are created, the main geometric features of a growing apex emerge (Figure 6).

a) b) c) d)

Figure 5: A model of a shoot apical meristem. a) The apex prior to the introduction of a primordium. b)
As the apex continues to grow, the phyllotaxis model selects the vertex that will become the center of a
primordium. c) The region around the selected vertex is adaptively subdivided. d) The subdivided region
grows outwards. The apex has been rotated to best show the resulting shape.

Figure 6: An apex with many primordia

7 Conclusions

We have outlined a method for modeling growing plant tissues and organs. The modeled objects (thin cellular
layers or surfaces of volumetric structures) are represented as polygon meshes. These meshes are manipulated
using a set of locally defined operators, called the vertex-vertex algebra, and acquire their form through
simulation of stresses that result from local growth. The models can couple morphogenetic mechanisms
of diffusive and reaction-diffusion type with physically-based simulations of tissue growth (for examples of
related work see [2, 10]). In this abstract, we included models of an epidermal cell division pattern, root
gravitropism, and shoot apex development. The presented methodology may serve as a computational



framework for understaning complex developmental processes in nature, and may possibly be used to link
patterns of gene expression to the development of plant form.
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