Descriptive model of Arabidopsis thaliana: technical details
This is the technical description of the model presented in the paper “Quantitative modelling of Arabidopsis thaliana development” by Lars Mündermann, Yvette Erasmus, Brendan Lane, Enrico Coen, and Przemyslaw Prusinkiewicz.
The model is written in the language L+C [Karwowski and Prusinkiewicz 2003] and can be run in the L‑studio modeling environment under Windows, or the vlab modeling environment under Linux. A trial version of L‑studio can be downloaded from http://www.algorithmicbotany.org/virtual_laboratory ; to obtain vlab, send email to vlab@cpsc.ucalgary.ca . To run the model under Windows, a recent version of Microsoft Visual C++.NET is also required. For details of software installation, see the L‑studio/vlab documentation.
1 Files

This model consists of the following files:

· description.txt , description.doc - this file

· lsystem.l – the L+C code of the model
· arabidopsis.mtg – MTG file describing position-dependent architectural data

· MTGParser.H , MTGParser.C – C++ class for reading MTGs

· contours.cset – B-spline curves describing organ contours and shapes of axes
· view.v , anim.a – viewing and animation parameters

· materials.mat – parameters describing the colors and materials for the 3D model
· panel.pnl – text file describing the model’s control panel
· specifications , LSspecifications , Makefile – files characterizing the model’s structure as needed by the L‑studio/vlab software
· icon – L‑studio/vlab icon for this model

2 Data

The data used to create the model are of two kinds: (a) position-dependent architectural data, (b) global constants and position-independent data, and (c) contours of leaves, petals, and sepals. All sizes are expressed in millimeters, angles in degrees, and times in hours.
Position-dependent architectural data are specified in the MTG format [Godin and Guedon 2001] in the text file arabidopsis.mtg. These data include:
For axes:

· The number of the first metamer that supports a flower (RM);
· Delay between the appearance of the first flower on the main axis and on the given axis (RD).
For vegetative metamers:

· The divergence angle between leaves supported by the previous and current leaf (ia);
· Internode length (il).
For leaves:

· Leaf growth function (coefficients of Boltzmann function) (lw);
· Leaf width at up to four points in time (ls, Section 5);
· Index of the leaf shape (contour) corresponding to the first point in time (lc).
Position-independent data are specified at the beginning of the text file lsystem.l. All flowers at the same developmental stage are assumed to be identical, thus flower data are position-independent. The lengths of internodes in flower-supporting metamers, the divergence angles between consecutive flowers, and the functions capturing allometric relationships between the lengths and widths of all internodes are also position-independent.

Contours of leaves, petals and sepals are stored as contours in the text file contours.cset.
3 Model structure and global functions

By defining the value of TO_DISPLAY on line 39, the model can be set to show a single leaf, an array of leaves, or a single flower, in addition to the entire plant.
The age of the plant is represented by the global variable T, which has the initial value T0 = 50 HFS (line 68) and is incremented during the simulation by DT = 1 hour (line 69) until it reaches the limit simulation time TT = 600 HFS (line 67). At each time step, the entire plant structure is created “from scratch”, by hierarchically decomposing the axiom until all plant modules reach the current age T.
The model uses two types of time variables. The development of organs in the vegetative part of the plant is expressed as a function of global time T, measured in hours from seeding (hfs). In contrast, the development of organs in the flowering part is expressed in time local to each metamer, with time point 0 corresponding to the appearance of the flower associated with that metamer. The use of global and local time variables reflects a different treatment of the vegetative and flowering parts of the plant: the vegetative metamers are considered individually, according to the data measured for each metamer, while all flowering metamers are assumed to follow exactly the same developmental course, shifted in time by the plastochron. The conversion from global to local time is accomplished by the function LocalTime(n,i) (lines 233-236). This time is calculated as the global time T minus the time of initiation of the flower; the initiation time is calculated as the initiation time of the first flower (on the main plant axis, parameter RT, line 76) plus the delay to the appearance of the first flower on the current axis (RD[n]) plus the number of flowers below the current one on this axis (i - RM[n]) times a fixed plastochron (parameter PL, line 77).

Many of the functions describing organ growth have been fitted to a Boltzmann sigmoid curve: the function sigmoid (lines 35-38) evaluates the value of the Boltzmann function, given the four fitted parameters. Different dimensions of an organ often bear a logarithmic allometric relationship characterized by two parameters, A and B: the function allometry (lines 42-45) calculates one dimension from another, given these two parameters. The functions FindIndexPair, FindWeight, and InterpolateCurves assist with shape interpolation (Section 5).
The control statement Start (lines 240-344) is run at the beginning of every execution of the model. It reads the position-dependent architectural data from the MTG using the helper class MTGParser.
4 Modules

According to the modeling philosophy that underlies L‑systems, the model has a declarative character: its main part consists of productions that specify the behavior of different model components (modules). The operation of the model is thus best described in terms of the operation of these modules.
For the sake of clarity, the description of the modules in the paper abstracts from some details of the actual L+C implementation. The module called A in the paper is called Apex in the code; L is Leaf; F is Flower. The separate modules IL (for leaf-supporting internodes) and IF (for flower-supporting internodes) have been implemented as a single module Internode, with a parameter c distinguishing between them.

Another difference is in the way metamers are indexed. In the L+C code, the full {o,n,i} indexing scheme described in the paper is used only for the Apex module. Other modules are indexed using just {n,i}. In this scheme, the main axis has axis index n = 0, while the secondary axis supported by metamer mi has axis index n = i+1. Thus, the first lateral axis has axis index n = 1, the second has index n = 2, and so on. The reason for this difference is that architectural data could be stored more efficiently in a two-dimensional rather than a three-dimensional array. As the model is limited to the main axis and first-order laterals, the conversion between the {o,n,i} and {n,i} indexing schemes is straightforward.

Module Apex(o,n,i) (lines 418-436) represents an apex. The parameters have the following meanings:
· o: order of the axis (0 for main axis, 1 for first-order laterals)

· n: index of the axis (0 for main axis, i+1 for the first-order lateral axis subtended by metamer i)

· i: index of the metamer which will next be created by the apex

An Apex module, located at the tip of each axis, creates the sequence of metamers that constitute this axis. This module aborts if it is of order greater than 1 (as the model describes only the main axis and first-order laterals).
The Apex module that does not abort produces metamers that may be in the vegetative state (supporting leaves and, possibly, lateral branches) or flowering state (supporting flowers). In the vegetative case (if i < RM[n]), the apex reorients the metamer around its axis by the divergence angle IA(n,i), produces an Internode, a Leaf, and a lateral apex Apex(o+1,i+1,0), and recreates itself at the tip of the current axis as Apex(o,n,i+1) (lines 423-427). If the flowering case, the age of the metamer is determined first; if the internode of pedicel of the flower at this age are long enough, the apex reorients the metamer by the fixed divergence angle XA = 137.5 degrees, produces an Internode and a Flower, and recreates itself at the tip of the axis as Apex(o,n,i+1) (lines 430-435).
Module Internode(c,n,i) (lines 440-467) represents an internode. The parameters have the following meanings:
· c: flag indicating if the internode is part of a vegetative (c=0) or flower-bearing (c=1) metamer,

· n,i: indices of the axis and metamer (as in Apex)

The length of the internode is calculated in a manner that depends on whether the internode is vegetative or flower-bearing. If the internode is vegetative, its length is given by the Boltzmann fitting function IL(n,i,T), using the coefficients specific to the internode position read from the MTG data file. If the internode is flower-bearing, its length is given by the Boltzmann fitting function XL(t) (lines 108-113), using the local time t of the metamer returned by the LocalTime function.

Once the internode length has been determined, its width is computed according to the allometric relation characterized by coefficients IWAlloA and IWAlloB (lines 125-126). The internode is then drawn as a sequence of at least MIN_INTERNODE_SEGMENTS cylinders, each of which has the length of at most DS (line 71). This partitioning of internodes into cylinders makes it possible to capture the curving of internodes, which is attributed to gravitropism in the model. The magnitude of the gravitropic response is controlled by the Elasticity module.
Module Leaf(n,i) (lines 531-574) represents a leaf. n and i are the indices of axis and metamer (as in Apex)

Given the values of module parameters, the width of the leaf is determined first, as the value of the growth curve specified by indices n,i at global time T (line 539). This width value provides an argument to the functions FindIndexPair, FindWeight, and InterpolateCurves, which determine the shape (contour) of the modeled leaf by interpolating between two closest measured developmental stages of a leaf at position n,i (see Section 5 for details on shape interpolation). The leaf is inserted at the azimuth angle (the angle between the internode and leaf axis) LA(t), specified by a function estimated from observations (line 220). The leaf is drawn as on open generalized cylinder, composed of at least MIN_LEAF_SEGMENTS segments, with the maximum length of a segment defined by the constant DrawStep (line 550). As in the case of internodes, the partition of a leaf into segments makes it possible to better approximate its shape. In particular, leaf curving in the plane perpendicular to the leaf blade is simulated as a small downward rotation (bending) between leaf segments. The methodology of modeling leaves using generalized cylinders in the context of L‑systems is described in detail in [Prusinkiewicz 2001].
Module Flower(n,i) (lines 577-617) represents a flower. The parameters n,i are the indices of the axis and metamer (as in Apex).
The flower module produces flower components: a Pedicel, four Sepals, four Petals, six Stamens, and a Carpel. All of these components are passed the local time t, calculated with the LocalTime function. The flowers drop petals, sepals, and stamen filaments when the carpel reaches the threshold length PR (line 74).

Module Pedicel(t) (lines 619-630) represents a pedicel. t is the local time.

The length of the pedicel and the angle between the pedicel and its supporting internode are calculated for time t using the Boltzmann functions DL and DA (lines 116-121), respectively. Its width is calculated from its allometric relationship with the length, using the function allometry. The pedicel is visualized in at least MIN_PEDICEL_SEGMENTS cylindrical segments of length at most DS. An Elasticity module controls an upward bending of the pedicel caused by the simulated tropism.

Module Sepal(t) (lines 633-698) represents a single sepal. t is the local time.
The sepal’s width at time t is calculated using the Boltzmann function SW (lines 129‑133). Functions FindIndexPair, FindWeight, and InterpolateCurves are then called to trace the organ contour (Section 5). The final shape is created as a generalized cylinder of at least MIN_SEPAL_SEGMENTS steps of length at most DS.

The sepal module differs from the leaf module in that the bending of the sepal is determined by a set of curves rather than a globally defined curvature. At each step, the bending angle is calculated by interpolating this set of bending curves (Section 5).

Module Petal(t) (lines 701-764) represents a single petal; t is the local time.
The petal module is identical in its operation to the sepal module.

Module Stamen(t) (lines 768-780) represents a single stamen filament; t is the local time.
The stamen’s length is calculated using the Boltzmann function AL (lines 143-147). The width is then computed from the allometric relationship with the length. The stamen is visualized in at least MIN_STAMEN_SEGMENTS cylindrical segments of length at most DS. An Elasticity module controls bending due to tropism.

Module Carpel(t) (lines 784-813) represents the flower’s carpel; t is the local time.

The carpel’s length is calculated using the Boltzmann function CL (lines 155-159). The width is generated from the allometric relationship with length. The carpel is visualized as a generalized cylinder with a shape defined by contour number cc (lines 181-182). It is drawn in at least MIN_CARPEL_SEGMENTS segments of length no greater than DS.

5 Shape interpolation

The shapes of all plant organs change over time. In the case of internodes, pedicels, carpels and stamens, which are approximately cylindrical, these changes are captured by allometric relations between organ length and width. In the case of leaves, petals, and sepals, the shape changes are more substantial. They are captured by interpolating between measured organ shapes, recorded at different times (developmental stages). These organ shapes are represented in the model by their outlines (contours), which in turn are stored as sequences of control points for B‑spline curves with endpoints (for general information on splines see [Foley et al. 1996], for example). Up to four contours representing developmental stages of each individual leaf on the stem and first-order branches, as well as five contours representing average petal and sepal shapes, are stored in the contours.cset file (see L‑studio/vlab documentation for the format of that file). In addition, petal and sepal data contain information on the curving of organ axes in the plane perpendicular to their surface. This information is needed to simulate the opening of flowers (see below).

The contours are accessed by the L-system using indices. The index of the earliest recorded developmental stage of each leaf is stored in array lc (line 223); the subsequent stages have consecutive index values. Similarly, the indices of the earliest recorded developmental stage of the average sepal and petal are recorded in the (one-element) arrays sc (lines 167-168) and pc (lines 174-175). Furthermore, arrays ls (line 226), ss (lines 170-171), and ps (lines 177-178) store the width of each of the measured organs.

When an organ is visualized, the model first determines which pair of measured contours represents the developmental stages that are closest to the desired one, and therefore should be used in interpolation. To this end, the program finds two consecutive measured organ widths (for a given organ type and metamer index) that are respectively smaller and larger than the required width. This search is accomplished by the function FindIndexPair (lines 479-497), which scans the appropriate array of measured widths (ls, ss, or ps). The result is returned in an IndexPair structure (lines 470-474), which contains the indices of the nearest smaller and larger measured width (expressed as offsets with respect to the earliest recorded developmental stage of the same organ). If the desired width is less than that of the smallest measured width, or greater than that of the largest, the two indices are set to the same value (smaller = larger), indicating that no interpolation should be done in this case.

If the interpolation does take place, the function FindWeight (lines 502-505) calculates the linear interpolation coefficient, which is the fraction (desired - smaller) / (larger - smaller). This coefficient indicates how far between the smaller and larger shapes the simulated organ shape lies.

Finally, the function InterpolateCurves (lines 510-527) performs the actual linear interpolation. It is repeatedly called by the modules which draw leaves, petals, and sepals. The arguments to InterpolateCurves include, among others, the index pair and the weight calculated by FindWeight. The final argument is the normalized arc-length distance of the queried point, measured along the contour curve. The InterpolateCurves function linearly interpolates the positions of the points with the same arc-length distance on the measured contours, and thus finds the corresponding point on the interpolated contour.

The leaves are assumed to bend downward with a constant curvature (measured along the leaf axis) (line 568). However, the petals and sepals open as they develop. The dynamics of these movements is captured by an additional set of curves, representing snapshots of the organ axes in the planes perpendicular to the organ surfaces. These curves are stored in the file contours.cset, in positions interleaved with the organ outlines. To properly access all contours and curves, the InterpolateCurves function includes an argument step, which specifies the distance between the indices of consecutive contours of a given organ. For leaves, step = 1; for sepals and petals, step = 2. The curves representing the axes of petals and sepals are accessed by incrementing their corresponding organ contour index by 1.

In conclusion, the model of Arabidopsis shoot at a given time T is created hierarchically by first defining the branching architecture of the plant, then defining the detailed shapes of plant organs.

References

J. Foley, A. van Dam, S. Feiner, and J. Hughes [1996]: Computer Graphics: Principles and Practice. Addison-Wesley, Reading.
C. Godin and Y. Guedon [2001]: AMAPmod and Reference Manual: Section 4.2, MTG File Syntax. CIRAD / INRA, Montpellier. http://amap.cirad.fr/amapmod/refermanual15/mtgfile.html
R. Karwowski and P. Prusinkiewicz [2003]: Design and implementation of the L+C modeling language. Electronic Notes in Theoretical Computer Science 86(2).
P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane [2001]: The use of positional information in the modeling of plants. In Proceedings of SIGGRAPH 2001, ACM SIGGRAPH, New York.
