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Abstract

Plants and plant organs are commonly modeled using skeletal techniques. Plant

structure is then described in terms of axes, around which limb surfaces are built us-

ing standard geometric modeling techniques, such as generalized cylinders or implicit

surfaces. In this research, an alternative, based on the use of subdivision techniques,

is described. The approach is to build a simple polygon mesh around the skeleton

and use a surface subdivision algorithm to get a smooth surface. Special attention

is given to the modeling of surfaces surrounding branching points. It is shown that

subdivision surfaces provide a useful alternative to approaches based on implicit

surfaces. The method is illustrated using models of tree branches and compound

leaves.
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Chapter 1

Introduction

1.1 Problem Statement

Branching structures have long been of interest to scientists in various fields. Visu-

alization of branching structures has ranged from simple line drawings to sophisti-

cated, realistic renderings. Scientific studies often only require schematic renderings

to describe the branching topology in question. On the other hand, image synthe-

sis applications, such as in the entertainment industry, often require more realistic

renderings. In these applications, details such as surface topology and texture are im-

portant. Modeling of branching topologies for botanical structures is a well-studied

problem. However, generating a smoothly connected surface around a branching

skeleton remains difficult.

1.2 Contributions

In this research, a solution is proposed for generating smooth surfaces for a variety

of branching structures. The method bridges two well-studied computer graphics

techniques: skeletons and subdivision surfaces. An L-system is used to generate a

string that encodes a skeletal branching structure. The string is used to generate a

coarse polygonal mesh surrounding the skeleton. A subdivision scheme is applied to

the coarse mesh. The final mesh retains the overall structure of the model described

1
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by the L-system, but is designed with limbs that blend smoothly at branching points.

A coarse mesh can be generated as either a closed volume or an open surface. For

trunks and stems, a closed cross-section is used (Figure 1.1, top row). For compound

leaves, an open cross-section is used (Figure 1.1, bottom row). Several techniques

are proposed for applying texture to the meshes. Finally, the method is shown to

perform favourably compared to an implicit surface method.

1.3 Thesis Overview

In Chapter 2, the application of various surface modeling techniques to the creation

of smoothly blended branching structures is examined. Chapter 3 contains a brief

review of subdivision surfaces. Chapter 4 contains a review of L-systems and turtle

geometry. In Chapter 5, the proposed method is described in detail, with attention

paid to generating geometric structures of leaves and stems. In Chapter 6, the

generation of texture coordinates for the meshes generated in Chapter 5 is described.

Chapter 7 contains images that demonstrate the proposed method applied to

several plant models. In Chapter 8, the performance of the proposed subdivision-

based method for modeling trees is compared to an implicit surface-based method,

revealing that subdivision is up to thirty times faster. Finally, Chapter 9 contains

an evaluation of the results, with respect to both the initial goals and to related

research, and includes suggestions for further work.
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(a) (b) (c) (d) (e)

Figure 1.1: Generating a branching tree structure (top) and a compound leaf struc-
ture (bottom): (a) initial skeleton; (b) coarse mesh for the unbranched portions of
the skeleton; (c) complete coarse mesh, highlighting structures inserted at branching
points; (d) mesh resulting from a twofold Loop subdivision of the coarse mesh (e)
shaded rendering of the subdivided mesh.



Chapter 2

Background

2.1 Overview

The problem of generating smooth surfaces for tree branching junctions is not a new

one. After defining surface smoothness (Section 2.2), the three key computer graphics

techniques that have been applied to tree models are reviewed: parametric surfaces

(Section 2.3), implicit surfaces (Section 2.4), and subdivision surfaces (Section 2.5).

2.2 Quantifying smoothness

Derivative continuity is a traditional measure of smoothness, characterizing change

in the directions and magnitudes of derivative vectors across vertices. The set of

curves and surfaces denoted by Cn are those where n is the highest derivative that is

changing smoothly across any given point. C0 is used to denote connected curves and

surfaces. C1 refers to the set of curves and surfaces possessing tangent continuity, in

both direction and magnitude. For surfaces, C1 implies both tangent plane continuity

(G1) and a one-to-one projection of the surface onto the tangent plane [ZS00]. C2

is the set of curves and surfaces whose second derivative is continuous across all

interior points. As second derivative continuity implies first derivative continuity, all

C2 curves and surfaces are also C1. Since the converse is not true, C1 is a subset of

C2.

4
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Geometric continuity [Bar88, FvD82] characterizes the continuity of the unit

tangent and curvature vectors at vertices. G0 is equivalent to C0. G1 denotes curves

and surfaces where the tangent directions are equal on opposite sides of a vertex. G1

continuity does not require the magnitudes of the tangents to be equal across a vertex.

G2 refers to continuous curvature vector directions. Gn thus denotes continuity in

the direction of the nth derivative, but orders greater than two are seldom (if ever)

used in practice.

Some surfaces, such as those generated using Loop subdivision (Section 3.3), are

C2 in the regular case and G1 elsewhere. Subdivision surface researchers generally

consider derivative continuity to be stronger than tangent-plane continuity [Rei95,

Zor98, Zor00b, Zor00a]. By convention, a subdivision algorithm that generates a

surface that is C2-continuous everywhere is considered ideal [WW02].

2.3 Parametric surfaces

2.3.1 Generalized Cylinders

Modeling of botanical structures was initially focused on the skeletal branching struc-

ture of trees and herbaceous plants [AK84, FL74, Hon71, Smi84, VEJA89]. The sim-

plest step in the quest for realism was the representation of internodes as 3D cylin-

ders [dREF+88, PL90, PLH88]. A geometrically more advanced technique was the

use of generalized cylinders [Blo85, DL97, Hol94, Leo91, Měc97, Opp86, PMKL01,

AMZ99]. A generalized cylinder [Blo90] (Figure 2.1) is a parametric surface gener-

ated by sweeping a planar cross section along a space curve. Generalized cylinders

can produce polygons or spline patches (described below) as output. Unfortunately,
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Figure 2.1: A generalized cylinder. The red line represents a spline path along which
a circular cross section has been swept.

Figure 2.2: Photograph of an arbutus tree, showing smooth junctions between
branches.

generalized cylinders do not properly capture the smooth geometry of branching

points, such as that shown in Figure 2.2. Additionally, the resulting self-intersecting

meshes create problems for some non-photorealistic rendering methods [SP03].

Jules Bloomenthal initially addressed the problem of generating continuous sur-

faces for trees by modeling tree limbs as generalized cylinders and forming smooth

junctions using lofted surfaces to generate a bifurcating ramiform [Blo85].
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2.3.2 Spline patches

A spline ([Far02], Chapters 3-8) is a continuous piecewise polynomial curve in eu-

clidean 3-space (E3). A spline is defined by control points in E3 and has a linear

(1D) parametric domain t ∈ [0, 1]. A spline is typically drawn by evaluating each

polynomial segment for several sample values of the parameter t. The spline is ap-

proximated by connecting the resulting points with a series of lines. Cubic B-splines

are a popular spline formulation that produces C2-continuous curves which approx-

imate, rather than interpolate, their control points.

Spline patches ([Far02], Chapter 14) extend the concept of splines to a bilinear

(2D) parameter space, with parameters u, v ∈ [0, 1]. A surface is generated by

evaluating a set of curves in the u domain over a set of curves in the v domain. This

results in a rectangular configuration of control points. Any given point in the u

domain corresponds to a curve in the v domain, and vice versa. The two-dimensional

parameterisation is useful as the parameter coordinates can also be used for other

purposes, in particular as texture coordinates.

Spline patches are homomorphic to a bounded disc. Decomposing an arbitrary

surface to a continuous set of spline patches can be tricky, even when the surface is

homomorphic to a bounded disc. Decomposition of models homomorphic to other

topologies, such as spheres, into spline patches often requires degenerate patches

([Far02], Chapter 14). A tree, in particular, is homomorphic to a sphere [Fir91].
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2.4 Implicit surfaces

While parametric surfaces provide reasonable results, their application is, in some

cases, difficult. In particular, one must generate a new set of patches or loft curves

for each degree of branching, taking care to prevent discontinuities. For example, the

configuration described in [Blo85] for bifurcation cannot be automatically extended

to support trifurcation or general multifurcation. Implicit surfaces [Blo97] provide

an automatic means of smoothly blending such general branching configurations.

An implicit surface is defined by a function f : <3 → <. That is, given a point

in <3, f returns a scalar value. The surface is defined to lie wherever f returns some

particular value, known as an isovalue. While there are several varieties of implicit

surfaces, the forms best suited to tree modeling are skeletal implicit surfaces [Blo95b].

Here, f is a combination of the implicit functions for a set of primitive shapes, such

as cylinders or spheres, represented by line and point skeletons. The combination

utilizes a blending function which ensures smooth blends (for example, C1 continuity)

between parts of the implicit surface defined by nearby skeletal primitives.

The use of implicit surfaces addresses the problem of fitting a surface to a branch-

ing structure in a general way [Blo95b], but bulging, an unnatural-looking increase

in girth, especially at branching points (Figure 2.3), is a problem [Blo95a]. Bloo-

menthal addressed [Blo95b] these problems using convolution surfaces [BS91], which

reduce, but do not eliminate, this bulging problem.

In the context of plant modeling, the use of implicit surfaces leads to render-

ing problems. Direct rendering methods, such as ray-tracing [JW88], are time-

consuming. Alternatively, the surfaces can first be polygonized, but this requires
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Figure 2.3: A bulging convolution surface.

a very fine voxel grid for long, thin limbs, resulting in a large number of triangles

and long compute times. The performance of implicit and subdivision techniques is

compared in Chapter 8.

Implicit surfaces have been applied to models generated by string rewriting sys-

tems. Compound leaves were modeled by generating their structure with L-systems

and their geometry with 2D implicit surfaces [HPW92]. 3D implicit surfaces, with

texture and displacement maps, were used to generate surfaces for L-system-derived

tree models [Mar03]. Tree models were used as an example for a convolution surfaces

system that could easily be extended to support string rewriting systems [JTFP01].
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2.5 Subdivision surfaces

A different solution to the modeling of surfaces surrounding branching points is

to use subdivision surfaces. A polygon mesh subdivision algorithm (described in

more detail in Chapter 3) iteratively refines a polygonal mesh, using rules which

at the limit produce a smooth surface. Subdivision surfaces can be applied to

a wide variety of complex shapes, making them attractive for visualizing branch-

ing structures. Their application to branching structures was pioneered by Tobler

et. al. [TMW02a, Mai02, TMW02b], who procedurally grew a mesh by repetitively

adding predefined template meshes to an initial mesh and then subdivided the result-

ing coarse mesh. Subdivision surfaces have also been used for scientific visualization

of branching structures, namely the vessels of the liver [FFW01, FFKW02]. Related

techniques, using subdivision to model branches, were introduced by Weta Digital

in the film “Lord of the Rings: The Two Towers” [AP03] and, in a research setting,

by Akleman et. al. [ACS03].

Of course, a hybrid solution is also possible, with a coarsely polygonized implicit

surface used as input to a subdivision scheme [WJvOW00, MLP01], but such a

solution requires all the computational machinery of both techniques, as well as the

tree model. Furthermore, a coarsely polygonized implicit surface may miss entire

limbs of a plant model.

Proposed solution

Here, we describe a method in which the skeleton of the branching structure is

produced first, then a low-resolution mesh is built around it. This makes it possible

to use standard skeleton-building methods, in particular L-systems, to define the
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topology and skeletal geometry of the branching structure. We then apply a standard

surface subdivision algorithm, in particular Loop’s subdivision scheme [Loo87], to

construct a surface with smooth branching points around this skeleton.



Chapter 3

Subdivision surfaces

Polygon subdivision has become a popular computer graphics technique for surface

modeling. Its appeal lies in its simplicity and its applicability to a wide variety of

surfaces. Initially developed in the seventies as an arbitrary-topology alternative

to spline patches [CC78, DS78], subdivision has become popular recently [DKT98]

thanks to increased computer memory [Sab01] and the development of rigorous math-

ematical analysis of its properties [WW02].

3.1 Definition

A subdivision scheme can be expressed as a set of masks, or stencils, a schematic

representation of an affine transformation of the geometry and a transformation of

the topology. The masks are defined for vertices of arbitrary valence; that is, vertices

connected to any number of neighbouring vertices. Rather than evaluating polynomi-

als defined by control points over a parametric domain, subdivision operates directly

on the vertices of a polygon mesh. Unfortunately, this means 2D parameterizations

of the surface is not straightforwared, and may introduce significant distortions or

discontinuities.

12
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3.2 Relevant Properties

To be suitable for plant modeling, the surfaces used to dress the skeletons must

satisfy two properties: continuity and local control. Subdivision surfaces satisfy

both criteria inherently, with the degree of continuity and local control dependent

on the scheme chosen. They were introduced to create smooth surfaces on the basis

of coarse polygonal representations. Since they are based on masks, subdivision

surfaces are local in character.

3.3 Loop scheme

There are a variety of subdivision schemes, varying by the type of polygons they

use and in their masks. An accessible and thorough overview of subdivision and the

most common subdivision schemes is presented in [ZS00]. The scheme implemented

and used in the context of this research was proposed by Loop [Loo87]. His scheme

works exclusively with triangles, and is one of the simplest subdivision schemes.

Loop subdivision takes as input a set of vertices S0 and refines them, producing

a new set of vertices S1. Even vertices are those that are in S0, the input polygon

mesh. These vertices are carried forth into the new mesh, S1. Odd vertices are those

which are created during the subdivision process, and thus are unique to S1.

Interior vertices

Loop subdivision can be considered in two steps. In the first step, odd vertices are

generated, using the masks shown in Figure 3.1(a), where the red circle represents

the new vertex. The new vertices are created by splitting each edge in S0. The
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and k is the valence of the vertex being considered.

second step of Loop subdivision adjusts the position of the even vertices so that each

is closer to its limit position. This step uses the two-dimensional masks shown in

Figure 3.1(b), where vertices labeled β are neighbouring even vertices. For interior

vertices, this amounts to a weighted average of the position of the vertex in question

and the positions of the vertices in its 1-neighbourhood.

Creases and Boundaries

In Loop subdivision, creases and boundaries are handled as special cases, using one-

dimensional masks [HDD+94]. Boundaries are edges belonging to only one triangle.

If a modeler wants an internal edge, belonging to two triangles, to remain apparent

in the limit surface, it must be tagged as a crease and subdivided with the one-

dimensional masks shown in Figure 3.1. As with the interior masks, the crease and

boundary masks operate by splitting the edge in S0, then moving the even vertices
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closer to their limit positions.

Semi-sharp creases, as described in [DKT98], can be used instead of sharp ones.

A semi-sharp crease is achieved by applying the sharp crease masks for some number

of iterations, then using the usual smooth masks for the remaining iterations. This

allows an edge in the coarse mesh to have a noticeable influence on the limit surface,

without introducing a discontinuity.

Discussion

The limit surface of Loop’s scheme is C2 continuous at regular vertices; that is,

vertices with valence six and thus exactly six neighbours. At extraordinary ver-

tices (the remaining vertices), the limit surface has G1 continuity. Extensions to

Loop’s scheme, featuring larger masks for extraordinary vertices, guarantee C2 con-

tinuity at all interior points [Loo01, BLZ00]. The boundary and crease masks are

equivalent to cubic B-spline subdivision; thus, boundaries and sharp creases are C2

continuous curves along the crease. The surface will have C0 continuity across sharp

creases. Furthermore, Loop’s scheme has entirely positive coefficients in its masks

(Figure 3.1), giving it the property that the limit surface is entirely contained within

the convex hull of the coarse mesh. Loop’s scheme is based on quartic box splines, a

triangular variety of spline patch. He chose quartic splines so that his scheme would

produce an adequately smooth surface. The only disadvantage of Loop’s scheme is

that it requires the input mesh to consist entirely of triangles. From the perspec-

tive of plant modeling, where meshes are generated procedurally, it is no problem

to generate triangles. Loop’s scheme also works well with meshes triangulated from

quadrilateral meshes [ZS00].



Chapter 4

L-systems

The input to the algorithm proposed in this work is a plant model described using

an L-system. A model specification in the L-system formalism is used to generate

a string that encodes the topology and geometry of a skeletal branching structure.

This method of plant modeling is described in detail in [PHHM96], upon which the

following discussion is based. The skeleton is subsequently used as the basis for a

polygonal mesh to be subdivided.

4.1 L-systems

L-systems were originally introduced by Lindenmayer for describing simple multicel-

lular organisms [Lin68] and later adapted for modeling higher plants [FL74, FL76,

PLH88, PL90]. An L-system operates on a string of symbols taken from an alpha-

bet V , which is a finite set of symbols used to represent diverse components of the

modeled structure. The structure is represented by a string over V . An L-system

specification also includes a string over V , called the axiom, which describes the ini-

tial structure at the beginning of development, and a set of productions, or rewriting

rules, that state how to replace symbols in the string by new substrings. Productions

are intended to simulate the development of individual components of the structure

over given time intervals. They are applied in parallel, to all symbols in a string, in a

sequence of derivation steps. This parallelism simulates the simultaneous progression

16
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of time throughout the entire developing plant structure.

4.2 Bracketed String Notation

Lindenmayer introduced a bracketed string notation [Lin68, Lin71] for representing

branching structures. Skeletal segments are assigned labels from an alphabet V .

A branching structure is represented as a string α of symbols over the alphabet

VE = V ∪ {[, ]}:

α = x1[α1]x2[α2]...xn[αn]xn+1

The substrings xi do not contain brackets. Substrings αi may include bracketed

substrings, with pairs of brackets nested to arbitrary degree. The string x1x2...xnxn+1

represents the primary (zeroth-order) axis of α, which could represent the trunk of

a tree. The substrings αi represent the first-order branches, those which extend

directly from the trunk. These may in turn support second-order branches and so

on.

In parametric L-systems [Han92], one or more numeric parameters may optionally

be associated with each symbol in the string. Parameters afford continuous variation

of component characteristics, and thus greater realism, of a plant model.

4.3 Turtle Geometry

The bracketed string notation, introduced in the previous section, only defines the

topology of the branching structure. Geometric aspects can be added using turtle

geometry [Pru86, PL90]. Reserved string symbols, along with associated parameters,

are interpreted as commands for a LOGO-style turtle [Ad80]. The turtle is a drawing
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Figure 4.1: Turtle reference frame, from [PLH88].

entity which encompasses state information. It starts at a default drawing position,

which is at the origin, with a default orientation, described next.

The basic turtle information, called a reference frame, consists of a position and

three orthogonal unit-length vectors: Heading, Left, and Up (Figure 4.1). For this

work, a right-handed coordinate system is assumed. In this case, Heading is initially

defined to be aligned with the positive direction of the Y Cartesian axis, and Left

is aligned with the negative direction of the X Cartesian axis. Up is defined as the

vector perpendicular to both the Heading and Left vectors, so that ~H × ~L = ~U .

Turtle position and orientation are updated incrementally as the turtle moves.

The alphabet of an L-system using turtle interpretation is assumed to contain sev-

eral symbols that have a predefined interpretation. A complete list of such reserved

symbols, used in the L-system-based plant modeling program CPFG employed in

this research, is included in [Měc98]. For the current work, the symbols of interest

are those which are interpreted as commands to move the turtle, rotate the turtle,

and affect the radius of the branch at the current turtle position. These symbols may

be complemented by numerical parameters included within parentheses immediately

following the symbol.
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Specifically, “F”, for Forward, moves the turtle one unit, or a distance specified

in a parameter, in its current Heading direction. For example, “F(2)” means to

move the turtle two units along its current heading.

The rotation commands, “/”, “\”, “&”, ”^”, “+”, and “-”, rotate the turtle

around the Heading, Left, and Up axes, as shown in Figure 4.1. Arguments to these

commands are rotation angles in degrees.

The “[” and “]” commands respectively “push” and “pop” a stack of turtle

frames. This stack is used to create branching structures in a depth-first fashion

during string traversal by the turtle. When the turtle encounters a “[”, it pushes

the current turtle information onto the stack, thus initiating a branch. Upon encoun-

tering a “]” during interpretation, the turtle pops the top frame from the stack, and

uses it to restore the turtle’s state to the saved values, thus terminating the branch.

Commands “#” and “!” are used to respectively increase and decrease the width

of a branch. With an argument, both commands set the current width to the value

of the argument.

4.3.1 Example

As an example of an L-system derivation and turtle string, let us consider a stochastic

bifurcating system. The L-system is shown in Figure 4.2. Three derivations, along

with a visualization of the third derivation, are shown in Figure 4.3. The example

L-system consists of one axiom, ω, and three productions, p1, p2, and p3.

In this system, the symbol A refers to an apex, where new modules (branches or

apices) are added. B refers to a branch, or internode, and is where growth occurs.

Productions p1 and p2 are stochastic, meaning that at each derivation step the in-
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ω : A

p1 : A → B(1)[+(20)A][−(20)A] : 0.6

p2 : A → A : 0.4

p3 : B(x) → B(1.4× x)

Figure 4.2: L-system 1.

0 : A

1 : B(1)[+(20)A][−(20)A]

2 : B(1.4)[+(20)B(1)[+(20)A][−(20)A]][−(20)A]

3 : B(1.96)

[+(20)B(1.4)

[+(20)B(1)[+(20)A][−(20)A]]

[−(20)B(1)[+(20)A][−(20)A]]]

[−(20)B(1.4)[+(20)A][−(20)A]]

(a) Three derivations of the L-system from Figure 4.2 (b) Line drawing of
derivation 3.

Figure 4.3: Derivation of L-system 1.

terpreter makes a pseudo-random choice as to which of them to apply. Production

p1 replaces each apex by a branch and a symmetric pair of apices. p1 is assigned a

probability of 0.6, meaning that this rule should be applied in sixty percent of the

derivations. Production p2 is an identity production. It is assigned a probability of

0.4, meaning that forty percent of the time no growth occurs. This serves to intro-

duce asymmetry to the model. Production p3 elongates all existing branches by forty

percent at every derivation step; in this way, a branch’s length becomes proportional

to its age.



Chapter 5

Mesh Generation

5.1 Overview

The method proposed in this work consists of five stages, as illustrated in Figure 1.1:

1. A skeleton is generated using an L-system.

2. An initial coarse mesh is generated for the unbranched portions of the skeleton.

3. Junction structures are generated based on templates and inserted at branching

points.

4. The completed coarse mesh is subdivided, using Loop’s scheme.

5. The refined mesh is rendered, using graphics hardware or ray tracing.

Steps two through four of the algorithm are presented in this chapter. The

resulting mesh is composed of triangles and is suitable for the subsequent application

of the Loop subdivision scheme. How the segments’ lengths are adjusted to make

space for blending is described in Section 5.2. The enumeration of the branching

configurations supported by the method is set out in Section 5.3. Preprocessing

of branching junctions, to aid in distinguishing the configurations, is described in

Section 5.3. Finally, the junction structures, branching meshes derived from junction

templates, are described. These structures are specialized for open contours, suitable

21
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for generation of lobed leaves, as described in Section 5.4, and for closed contours,

suitable for stems, as described in Section 5.5.

5.2 Segment length adjustment

When directly interpreted, the turtle strings produce cylinders that intersect at

branching points. The cylinders need to be shortened along their axes so that a

mesh can be generated without intersections or overlap (Figure 5.1).

(a) (b)

Figure 5.1: Segment length adjustment: (a) Before, with cylinders intersecting; (b)
After, with the junction region clear.

Cylinder length adjustments are performed locally, at each branching point. To

compute the correct segment lengths, branches are considered in pairs. The trunk is

also treated as a branch. A pair of branches is first placed in a plane, as shown in

Figure 5.2. Given the radii r1 and r2 of the branches under consideration, and the

angle θ between the axes of the branches, the offset d1 can be calculated for the first

branch as follows:
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Branch 1

Branch 2

θ

(a)

θ

α2

α1
2d

1d

2r
1r

h

(b)

Figure 5.2: Offset computation. Figure (b) corresponds to the shaded region of
Figure (a). For each pair of branches, the offset distances d1 and d2 are computed
as a function of the branch radii (r1 and r2) and the divergence angle θ.

r1

sin α1

= h =
r2

sin(θ − α1)
,

r2 sin α1 = r1 sin(θ − α1) = r1 sin θ cos α1 − r1 cos θ sin α1 ,

r1 sin θ cos α1 = r2 sin α1 + r1 cos θ sin α1 = sin α1(r2 + r1 cos θ) ,

r1 sin θ

r2 + r1 cos θ
=

sin α1

cos α1

= tan α1 ,

d1 =
r1

tan α1

=
r2 + r1 cos θ

sin θ
. (5.1)

Similarly,

d2 =
r1 + r2 cos θ

sin θ
. (5.2)

For a given branch, we compute offsets di with respect to all branches that meet the

branch at its base. The largest such offset is applied to the branch.
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(a) (b) (c)

Figure 5.3: Supported branching configurations. (a) Trunk with lateral branch; (b)
symmetric branching; (c) distichous branching.

5.3 Supported branching configurations

The essence of the proposed method lies in enumerating the cases for different config-

urations that occur in branching structures, and creating appropriate junction struc-

tures for each case. The cases considered are: a single branch positioned laterally

with respect to the main axis (Figure 5.3(a)), symmetric bifurcation (Figure 5.3(b)),

and branches on both sides of a main axis (trifurcation) (Figure 5.3(c)). The lat-

ter case occurs in the botanically important symmetric distichous and decussate

branching patterns [Bel91].

The algorithm assumes planar branching; that is, at a given branching point,

the trunk and all the child branches lie in a common plane. This assumption limits

the number of distinct junction templates required. In fact, the method handles an

arbitrary number of coplanar branches arranged around a common branching point.

It has been observed that the configurations described above are indeed planar in

many real plants [Col65].
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H

Sort 
order

Figure 5.4: Sorting branches

Sorting Branches

The order in which branches are specified in an L-system string need not be related

to the angles between these branches. In order to create the junction structures at

the branching point using fixed templates, branches are ordered by increasing angle

with respect to the basal segment (Figure 5.4).

5.4 Junction structures for leaves

Leaves are assumed to have open cross-sections. The template for the symmetric

branching point is shown in Figure 5.5. Between each pair of branches, there will be

a pair of identical vertices at the branches’ bases (marked with a dot in Figure 5.5(a)).

These vertices are merged, to avoid singularities in the refined mesh.

To achieve shading suggesting a midrib (i.e. primary venation), a V-shaped cross-

section can be used. Edges along the midrib are tagged as creases. These creases

are preserved during the subsequent subdivision using the proper masks [HDD+94].
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(a) (b) (c)

Figure 5.5: Branching leaf structure. (a) Coarse mesh with the branching region
outlined in dark lines, with vertices to be merged indicated by the dot; (b) refined
mesh; (c) placement of triangles at the end of a leaf branch.

(a) (b)

Figure 5.6: Leaf trifurcation. (a) coarse mesh; (b) after three iterations of Loop
subdivision.
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Semi-sharp creases can also be used, as described in [DKT98], rather than sharp

ones. A semi-sharp crease is achieved by applying the sharp crease masks for some

number of iterations, then using the usual smooth masks for the remaining iterations.

Some leaves observed in nature have pointed tips. To model this, a pair of

triangles is appended to each tip (Figure 5.5(c)). The triangles are defined using

the vector from the second-last cross-section to the final cross-section. The height

of the triangles is set by the user in proportion to the width of the supporting leaf

segment. If needed, the vertex at the tip of the triangle can be considered as sharp

or semi-sharp during the subsequent subdivision.

The branching structure for leaves readily generalizes to planar branching of

arbitrary degree. An example of a trifurcated structure is shown in Figure 5.6.

5.5 Junction structures for stems

5.5.1 Stem cross-sections

While the planar cross-section of stems is often circular, it is not clear what cross-

section should be used for the coarse mesh. In looking for a simple polygon mesh,

a square cross-section was initially chosen. However, joint structures based on a

square cross-section produce poor results in the case of asymmetric branching. In

Figure 5.7, a-d, the blend region, while smooth, is much larger than the control mesh

junction. Moreover, the front view exhibits a distinct asymmetric puckered shape

centered at the junction. Several methods of constructing the junction cross-section

to reduce these effects were explored. For example, Figure 5.8 illustrates the effect

of creating an extra ring of triangles around the base of the child branch. In the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Lateral branching. Top row: square cross-section; bottom row: hexagonal
cross-section. (a),(e) Front view of coarse mesh; (b),(f) Front view of refined mesh,
comparing side concavities; (c),(g) Side view of coarse mesh; (d),(h) Side view of
refined mesh, comparing blend sizes.
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(a) (b) (c) (d)

Figure 5.8: An alternate lateral branching configuration for a square cross-section.
This configuration includes a ring of vertices around the base of the child branch.
An unnatural-looking flat region is created by the additional triangles connecting
the ring and the child branch base.

limit surface, this creates an acceptable blend but results in a flat region where the

extra triangles are added, distorting the cross section of the trunk and the large

child branch at the junction. The finer geometry generated using hexagonal cross-

sections (Figure 5.7, e-h) shrinks the zone of influence of the blend. This eliminates

the vertical concavities seen on either side of Figure 5.7(b), without introducing the

bulges seen in Figure 5.8. A hexagonal coarse mesh cross-section also produces more

circular limit surface cross-sections.
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(a) (b)

Figure 5.9: Branching junction, showing symmetric bifurcation (a) Coarse mesh (b)
Refined mesh after 3 iterations of Loop subdivision

5.5.2 Twist compensation

The method for creating a mesh for straight portions of a branching structure is re-

lated to generalized cylinders [Blo90]. The proposed method starts with the reference

frames obtained during turtle interpretation. Given a pair of consecutive reference

frames, the method involves placing hexagonal cross-sections at each, connecting

corresponding vertices from one cross-section to the next.

When choosing corresponding cross section vertices, any twist between con-

secutive frames must be taken into account. In turtle geometry, twist is rota-

tion of the turtle about the Heading axis [PL90]. If unaccounted for, twist may

produce geometric artifacts, such as self-intersecting geometry. This problem has

been solved in the domain of generalized cylinders by using the parallel transport

frame [Bis75, PMKL01], also known as the rotation-minimizing frame [Blo90].
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(a) No twist (b) 50◦ twist. (c) 50◦ twist, compen-
sated.

Figure 5.10: Twist. Two cross-sections and the edges connecting them are shown.

Parallel transport works well in this implementation. As parallel transport re-

quires storing both the parallel transport frame (for mesh construction) and the cor-

responding turtle frame (for construction of the axes), an alternative method may

also be employed. In this case, cross-sections are oriented given the turtle frame,

connecting a cross-section to the next cross-section so as to minimize twist, as shown

in Figure 5.10. Even with this technique, up to thirty degrees of twist may remain

between consecutive cross-sections. This does not affect the quality of the refined

mesh, and sometimes leads to natural-looking twisting effects when limbs are texture

mapped (Chapter 6).

Across junctions, arbitrary turning and bending of child branches can also pro-

duce twist, even with parallel transport (Figure 5.11). As with the non-branching

case described above, the goal is to connect the closest vertices from one cross-section

to the next. In particular, for a pair of child branches, each half of each child branch

cross-section must be connected to the closest half of the trunk cross-section. These

half-sections are referenced as being on the outside of the junction (Figure 5.12).
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(a) Twisted junction structure. (b) Corrected junction structure.

Figure 5.11: Junction twist with parallel transport frames.

Figure 5.12: Outside half-section. The left half-sections are drawn bold and con-
nected. The half-sections are oriented with respect to the branching plane and used
to define corresponding vertices.

The remaining, inside, child branch half-sections will be connected to each other.

Corresponding vertices are chosen to best align the outside half-sections, with re-

spect to the branching plane, defined as the plane whose normal is the cross product

of any two child branch Heading vectors.



33

0

1

2

3

4

5
L

U

(a) Vertex forward.

L

U

0 1

2

34

5

(b) Edge forward.

Figure 5.13: Cross-section vertex numbering, assuming that the branching plane is
aligned with the Left axis.

5.5.3 Junction templates

Junction templates are the core of the proposed method. Templates are decomposed

into subtemplates; this reduces the total number of templates required by allowing

the use of combinations of subtemplates. In addition, this decomposition facilitates

extension to higher-order branching nodes. In order to define the subtemplates,

vertex-forward (Figure 5.13(a)) and edge-forward (Figure 5.13(b)) configurations of

the cross-sections are distinguished when constructing junction structures. Subtem-

plates are defined based on combinations of these orientations.

For the symmetric bifurcation case, four classes of subtemplates are defined: left,

right, top, and bottom. The position of each subtemplate is shown in Figure 5.14.

These templates only add triangles to the mesh, using existing vertices. There are

four left subtemplates, four right subtemplates, four top subtemplates, and eight

bottom subtemplates (Figure 5.15). The left subtemplates are identical to the right

subtemplates except for the numbering of the vertices they connect.

The distinction between vertex-forward and edge-forward orientations is impor-
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(a) Left (b) Right

(c) Top (d) Bottom

Figure 5.14: Subtemplate placement. This figure illustrates vertex-forward orienta-
tion; the other cases are analogous.

tant. Otherwise, artifacts such as that shown in Figure 5.16 can arise.

Selecting among the templates can be accomplished using a bitmask, where each

bit corresponds to one cross-section participating in the template. The figures are

enumerated based on the bitmasks shown in Figure 5.17, with a bit value of 1 im-

plying the corresponding cross-section is edge-forward.

Trifurcation

The method easily generalizes to higher-order planar branching, thanks to the de-

composition of the junction templates.
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Figure 5.15: Junction templates. First row: right templates; second row: top tem-
plates; last two rows: symmetric bottom templates. Dashed lines represent edges of
triangles potentially excluded if there are additional branches to the right, i.e., for
trifurcation.

In the case where all the participating cross-sections are oriented vertex-forward,

trifurcation can be performed trivially, by applying a mirror image of the structure



36

(a) (b)

Figure 5.16: (a) Pinching artifact caused by the application of a vertex-forward tem-
plate to an edge-forward configuration; (b) Same configuration, with an edge-forward
template applied.
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Forward
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(a) Top bitmask

Branch 
Edge 
Forward

Trunk 
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(b) Right and left bitmask

Branch 1 
Edge 
Forward

Branch 0 
Edge 
Forward

Trunk 
Edge 
Forward

14 2

(c) Bottom bitmask

Figure 5.17: Template-labeling bitmasks.

used for bifurcation (Figure 5.18). However, when edge-forward templates are incor-

porated, the front and back cross section edges are used by both templates. There-

fore, to prevent overlapping triangles, the bottom subtemplates must be assembled

with some awareness of their neighbouring branch. To this end, four more bottom

subtemplates are added, shown in Figure 5.19. These templates are applied to the

right of centre at trifurcated and higher-order junctions. To the left of centre, the

appropriate templates from Figure 5.15 are applied, without the dashed lines. For

the centremost child branch, the appropriate template from Figure 5.15 is applied,

including, for edge-forward cases, the triangle whose rightmost edge is indicated by
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Figure 5.18: Trifurcated tree structure
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Figure 5.19: Bottom trifurcation templates. These templates are applied to branches
right of centre at branching nodes with three or more child branches.

the dashed line.

Asymmetric branching

For trees, symmetric and asymmetric branching are differentiated. Symmetric branch-

ing refers to the biological case of sympodial branching, where all outgoing branches

are of similar radius and extend from their parent limb at opposite angles. Asym-

metric branching commonly occurs in the botanical case of monopodial branching.

Here, one finds a primary branch or trunk from which smaller lateral branches ex-

tend. In this case, a simple junction template one might use for uniform branching
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(Figure 5.20(a)) can produce unwanted creases at the crotch when subdivided (Fig-

ure 5.20(b)). Creating a more complex template, which isolates the smaller branch,

somewhat solves this problem (Figures 5.20(c) and 5.20(d)). However, such a mesh

tends to be too fine for the symmetric case and thus produces tighter blends than

was intended (Figure 5.21). Therefore, an empirically-derived ratio of branch radii

is used as a threshold, at or below which the asymmetric junction template is used.

A given branch’s radius is compared to its neighbour’s radius. The threshold used

for the images presented herein is one-third. Thus, if one branch’s radius is less than

or equal to one-third of the other branch’s radius, the asymmetric template is used;

otherwise, the symmetric template is used.

The asymmetric case uses more complex left and right subtemplates (Figure 5.22(a))

that add vertices as well as triangles. An asymmetric template produces the triangles

in the topological positions that, in the symmetric case, would be produced by a top

subtemplate, a middle subtemplate, and either a left or right subtemplate. As each

side of the asymmetric case thus depends on vertex-forward versus edge-forward for

three cross sections, there are 23 templates for the left side and another eight for

the right side, resulting in a total of sixteen possible asymmetric templates. The

case with both branches vertex-forward is shown in Figure 5.22(b). These templates

create a ring of vertices near the base of the smaller-radius branch.

In many cases, the portion of the branching structure exhibiting artifacts when

a symmetric template is applied to a lateral branch is hidden from view. Therefore,

the extra effort and machinery to explicitly handle asymmetry is of minimal value,

so the remaining fourteen (of the aforementioned sixteen) asymmetric templates are

left as future work.
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(a) (b)

(c) (d)

Figure 5.20: Asymmetric branching. (a, b): Symmetric junction template applied to
asymmetric branching configuration; (c, d): Asymmetric junction structure. (a, c):
Control meshes; (b, d): Refined meshes, after three iterations of Loop subdivision.
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(a) Control mesh. (b) After three iterations of
Loop subdivision.

Figure 5.21: Asymmetric junction template applied to a symmetric branching con-
figuration.

(a) Template placement.
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(b) Right asymmetric template.

Figure 5.22: Right asymmetric template. Only the all-vertex-forward case is shown.
The left template is identical except for the indices connected.



Chapter 6

Texturing

Smooth-shaded surfaces are often an adequate approximation for a computer graph-

ics model. However, to achieve visual verisimilitude, a model must include some

surface texture detail. In particular, leaf models need veins and tree branches need

bark.

Various techniques have been applied to texturing leaves (Section 6.1) and branches

(Section 6.2). In the context of this research, three texturing methods were investi-

gated: solid texture (Section 6.3), texture mapping (Section 6.4), and fractal noise

(Section 6.5). Numerous other methods could be adapted to texturing of branching

structures, several of which are proposed as future work (Section 6.6).

6.1 Previous leaf texturing methods

Leaves are typically represented by a small number of polygons textured using tex-

ture mapping [Cat74]. The texture image may consist of acquired data, for example,

from a photograph [Blo85] or a flatbed scanner [Mar03], or be synthetically gener-

ated [THB02]. With texture mapping, the texture image may be used as both a

colour map and as a bump map [Bli77], simulating the effect of light on a rough

surface.

41
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6.2 Previous branch texturing methods

The texturing method used for branches is typically dependent on the modeling

methodology chosen. A 2D parameterization can easily be derived for generalized

cylinders, making texture mapping them an attractive option. As with leaves, a

bark texture image may be derived from photographic data [Blo85] or it can be

synthesized [Fed02, LN02]. The resulting images may be used as colour, bump, or

displacement maps [Coo84]. Recently, view-dependent displacement mapping has

been used to texture tree models in real time [WWT+03].

Texturing implicit surfaces is more complicated, as they do not have an inherent

2D parameterization. One approach is to use a support surface to parameterize

each skeletal primitive and interpolate the resulting texture coordinates across blend

regions [TW99]. Alternatively, solid texture has been applied to convolution surface

tree models [JTFP01]. Rough tree bark has also been modeled on implicit models

of branches using a particle flow approximation [HB96].

6.3 Solid texture

A simple, yet effective, approach to texturing is to use a solid texture [Pea85, Per85],

as demonstrated in Figure 7.8. Solid texture uses three-dimensional textures, elimi-

nating the need for a 2D surface parameterization. Many 3D texture patterns allow

distortion-free texturing for any arbitrary shape. A disadvantage of solid texture is

that it is difficult to handle textures with strong features that are oriented along a

surface, such as venation patterns and bark fractures. Therefore, the use of texture

mapping, for both leaves and branches, was also explored.
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6.4 Texture mapping

Texture mapping [Cat74, WD97] involves globally assigning locations on a 2D image

to vertices on a 3D surface. Typically, the effect is to wrap the 2D image around

the 3D mesh as if the 2D image was a decal or wallpaper. The 2D coordinates are

referred to as uv coordinates. During rendering, the renderer linearly interpolates

between the uv coordinates of neighbouring vertices to compute pixel colours. The

texture image may be filtered to reduce aliasing artifacts. Filtering is necessary

for the common case where the 2D image is rendered in a 3D scene at a resolution

different from its native resolution. Texture mapping allows a highly detailed texture

to be applied effectively to a low resolution mesh. The entire process is accelerated

by modern graphics hardware.

The key issue with texture mapping a surface is defining a 2D parameteriza-

tion. For a subdivision surface, this requires generating mapping coordinates for the

coarse mesh. The mapping coordinates are then subdivided along with the geometric

coordinates [DKT98].

Generating mapping coordinates for a mesh can be difficult, as there is no inherent

continuous 2D parameterization of an arbitrary surface. One approach is to project

a mapping onto the mesh from a parametric support surface [BKRS86, Tig99]. Two

common projections are sphere mapping and cylinder mapping [BKRS86]. Their

effects on a branching structure are shown in Figure 6.1. Sphere mapping (Fig-

ures 6.1(a) and 6.1(b)) entails generating texture coordinates by projecting each

vertex onto the unit sphere. Cylinder mapping (Figures 6.1(c) and 6.1(d)) similarly

projects to the uncapped unit cylinder. u is wrapped around the cross-section of the
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cylinder so that the texture’s edges touch. v is mapped linearly from the bottom to

the top of the cylinder. Both mappings can be accomplished either by projecting

the normalized position of the vertex relative to the mesh center, or projecting the

vertex normal.

As demonstrated in Figure 6.1, globally-applied projective mappings don’t tend

to follow the shape of a branching structure well. Therefore, specialized texture

mapping methods were developed for leaves and stems.

6.4.1 Leaves

For leaves, one common approach is to map a single texture image to the whole leaf,

as if the leaf geometry was cut from the texture image [Blo85, MMPP03]. Since the

leaves are 3D shapes, a correspondence between the leaf surface and the 2D image

plane needs to be defined. To this end, two interpretations of a given turtle string are

performed. The first interpretation generates a proxy mesh (Figure 6.2(b)). Bend

and twist are ignored when generating the proxy, allowing only rotations around the

Up axis. This ensures the resulting mesh is in the XY plane. The geometry of the

proxy mesh does not necessarily correspond to the texture image, so they are manu-

ally aligned (Figure 6.2(c)), using the interactive software described in Appendix A.3.

During the second interpretation of the mesh, all rotations are processed. Finally,

the x and y values of the proxy mesh’s vertices are assigned to the u and v texture

coordinates of the final mesh (Figure 6.2(d)).

Another approach investigated was mapping u across the width of a branch while

mapping the v domain to an internode, a branch and its originating junction. With

this method, the texture image corresponds to one lobe of a leaf (Figure 6.3). This
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(a) Sphere map, using positions. (b) Sphere map, using normals.

(c) Cylinder map, using positions. (d) Cylinder map, using normals.

(e) Checker texture.

Figure 6.1: Projective texture mapping.
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(a) (b) (c) (d)

Figure 6.2: Leaf texture mapping: (a) oak texture; (b) proxy mesh; (c) proxy mesh
edited to fit the texture; (d) final model, subdivided and textured.

entirely-procedural method requires vertically-tileable textures, and was used for

Figures 7.4 and 7.11.

6.4.2 Stems

For stems, an ideal texture mapping would be similar to what has been achieved us-

ing generalized cylinders [Blo85, LN02]. Unfortunately, subdivision surfaces cannot

easily be parameterized in the manner of generalized cylinders. Generalized cylin-

ders are parameterized by wrapping the texture’s u coordinate domain around the

cylinder, creating a seam where the u coordinate is 0.0 on one side and 1.0 on the

other (Figure 6.4(a)). An equivalent parameterization on a subdivision surface would

require multiple texture mapping coordinates at vertices on the seam. Instead, tex-

ture coordinates can be assigned around the cross section of a cylinder which reflect
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(0,2)

(1,2)

(1,2)

(b) (c)

Figure 6.3: Tiled leaf coordinate mapping: (a) tartan texture map; (b) coarse mesh
with (u, v) coordinates; (c): refined mesh, showing distortion at junctions but with
the flow of the texture preserved.

the parameter range [TMW02a]. This ensures a unique texture mapping coordinate

for each vertex (Figure 6.4(b)). However, applying the parameterization from Fig-

ure 6.4(b) to a hexagon results in edges with the same u coordinate on either end

(Figure 6.4(c)). For branching as described in Chapter 5, a symmetric mapping is

required. Any symmetric rotation of the mapping in Figure 6.4(c) would have the

same problem. Therefore, to prevent discontinuities, the texture’s entire u domain is

mapped to each cross-section edge, reflecting the u domain across each cross-section

vertex (Figure 6.4(d)).

Generating texture mapping coordinates for branching structures is difficult, so

an heuristic solution was developed which works well for many textures, despite

producing noticeable distortions at junctions. The u coordinate is held constant

across the junction structure itself; this distorts the texture at the branching points,

but also prevents discontinuities. The v domain is mapped from the base of the stem
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Figure 6.4: u coordinate mapping around the cross section of a cylinder: (a) standard
mapping used for cylinders; (b) reflected mapping, suitable for subdivision surfaces;
(c) reflected mapping, mapped to a hexagonal cross section; (d) the proposed method
of reflecting the u domain across each vertex of a hexagonal cross-section.

to the tip of the most distal branch (Figure 6.5). Since space is introduced between

the end of a trunk and the base of its child branches, the v coordinates for the child

branches must be incremented appropriately across the junction. The increment is

proportional to the ratio of the height of the junction structure to the length of the

trunk.

A disadvantage of this approach, as implemented, is that the texture coordinates

tend to shrink away from the edges of the texture map, much as the vertices shrink

away from the control points, causing artifacts when using tiled textures (Figure 6.6).

This could potentially be alleviated to some extent by using an interpolating scheme,

such as the Butterfly scheme [DLG90], on the texture coordinates.

6.5 Fractal Noise

Due to the distortion artifacts inherent in texture mapping of branches, a geometry-

based local approach to texture generation was briefly investigated. The hope was

that a local approach would produce a texture resembling bark without the distor-
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(a) (b)

Figure 6.5: v coordinate mapping: (a) coarse mesh with the v domain mapped to
the height of the entire plant; (b) refined mesh, showing distortion at junctions but
with the flow of the texture preserved.

(a) Coarse mesh. (b) Subdivided once. (c) Subdivided twice.

Figure 6.6: Applying Loop subdivision to texture mapping coordinates: when an
approximating subdivision scheme is applied to texture mapping coordinates, the
mapping coordinates tend to shrink away from the image’s borders.

tions at branching points seen when using texture mapping. Fractal noise is a simple

means of generating rough textures that is well suited to subdivision. Simple triangle

subdivision with fractal noise can been used to generate heightfields for terrain mod-
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eling [FFC82]. Alternatively, terrain can be generated by applying noise to a smooth

subdivision scheme. Gavin Miller [Mil86] proposed a method for terrain generation

that incorporates fractal noise into a version of Doo-Sabin subdivision [DS78], sim-

plified for use with heightfields. Specifically, Miller perturbed the Y coordinates of

a randomly-generated heightfield’s vertices between each subdivision step.

In this research, an adaptation of Miller’s technique is used to apply noise to

branches between each Loop subdivision step. Each vertex is perturbed along its

normal. As in [Mil86], the standard deviation of the perturbation’s magnitude is

generated using the formula S = kL−iH . In this case, k is a scaling factor initially

determined by the size of the mesh, L is the lacunarity [MKM89, Man94], and i is

the iteration level. Noise is not applied to the coarse mesh’s vertices, so i starts at

1. H is the desired fractal dimension, a value in the range [0, 1] that determines how

rough the resulting surface looks.

To simulate variation in bark thickness and roughness due to age, k is additionally

scaled by a feature-size factor computed for each vertex as the surface is generated. A

nonlinear rate of decrease in feature size can be achieved by using the Bias function

(Figure 6.7) proposed by Perlin in chapter 9 of [EMP+94]: β(t) = t−
ln(b)
ln2 . This

function is intended to alter the result of a one-dimensional function to favour either

its low or high values. It takes two parameters: a bias factor b which controls the

slope of the function, and the point t on the function to evaluate. Both parameters

to Bias() must be in the range [0, 1], with a bias of 0.5 resulting in a linear decrease in

noise feature size. t starts at 1.0 at the base of a tree and is reduced at each branching

point. The effect is to decrease the noise feature size for younger branches. Bias()

produces a value in the range [0, 1], with a value of 0 eliminating noise altogether
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Figure 6.7: Bias function, for b =0.05, 0.25, 0.5, 0.75, and 0.95.

and 1.0 allowing full noise.

An example branching structure with fractal noise applied is shown in Figure 6.8.

The method exhibits consistent behavior at branching points, with no noticeable

distortions or discontinuities. A downside of this approach is that good results require

five or six iterations of subdivision. This can easily produce a gigabyte of geometry

data for a modestly bifurcated model. Furthermore, this method is not appropriate

for simulating the venation patterns characteristic of leaf textures. Thus, despite

their limitations, solid texture and texture mapping are the preferred methods for

texturing plants.

6.6 Future work

Since bark texture in nature is formed by local processes, it seems a natural fit to

use a local process to generate synthetic texture. This notion is reinforced by the

distortion-free fractal texture just presented. Unfortunately, the large meshes pro-

duced by that method were prohibitive. Reaction-diffusion [Tur52, WK91, Tur91]

is another texture synthesis technique that uses local rules and could thus be ap-

plied to subdivision surfaces. However, it is based on per-face colouring, so a large

number of triangles would have to be rendered to display a detailed pattern. We
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Figure 6.8: Branching surface with six iterations of fractal noise. The L-system used
for this model was adapted from [PJM94].

need a method for local specification of texture that allows texture features with a

substantially higher frequency than the mesh.

Fortunately, recent developments in the area of procedural texturing have pre-

sented several different techniques for local specification of texture. These algorithms

are typically quite involved but produce impressive results for any mesh topology.

Texture synthesis [Tur01, WL01, LLX+01, ZZV+03] starts with a small user-supplied

texture sample and procedurally synthesizes a complete texture directly on a model’s
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surface. Pattern-based texturing [Sta97, NC99] involves judiciously selecting a few

triangular texture samples with certain boundary conditions and aperiodically plac-

ing these on the mesh.

Both of these methods require a separate mesh for placing the texture. This mesh

is usually derived from the target mesh by retiling [NC99, Tur01]. This step could be

avoided for subdivision surfaces, as subdivided meshes are already semi-regular with

locally-consistent mesh density: virtually ideal for placing or synthesizing texture

samples.

6.7 Summary

Several approaches have been presented for texturing meshes derived from the meth-

ods in Chapter 5. For leaves, a texture mapping method with an interactive phase

was proposed, with results similar to previous leaf texture mapping approaches. An

entirely procedural approach for texture mapping leaves was also briefly introduced.

For stems, solid texture, texture mapping, and fractal noise were used. As none of

these methods are entirely satisfactory, it was suggested that future work explore

the application of advanced local texture specification techniques to plant models.



Chapter 7

Implementation and Results

7.1 Implementation

The implementation of the proposed method combines the L-system simulation pro-

gram CPFG [Měc98] with the surface-creation program implementing the algorithms

discussed in this work. Given a string produced by CPFG, this latter program makes

it possible to interactively preview, subdivide, and texture the resulting meshes. It

also supports rudimentary mesh editing operations. In the case of the models pre-

sented in this paper, these operations were only applied to the proxy meshes for leaf

texture mapping purposes (Section 6.4.1). The final models are output in either OBJ

or POV-Ray format. All of the models presented in this section were rendered using

POV-Ray [pov]. An overview of the system’s architecture is presented in Figure 7.1,

and a user manual, describing both the graphical and command-line interfaces, is

presented in Appendix A.1.

String
Parser

Mesh
Generator

Turtle String Triangle Mesh
Loop

Subdivision

L-system 
Interpreter 

(CPFG)

Refined Triangle Mesh

L-system plant model

Refined 
Triangle 
Mesh

Figure 7.1: System overview
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Figure 7.2: Photograph and model of a Hawaiian fern leaf. Photo courtesy P.
Prusinkiewicz.

7.2 Results

Figures 7.2, 7.3 and 7.4 show results from the methods, as applied to the modeling

of leaves. All three models display the expected smooth blending between lobes. For

Figures 7.2 and 7.3, the models were texture mapped using the method described in

Section 6.4.1. The Elkhorn model is the most geometrically complex of the three,

yet the coarse mesh was generated in well under one second. The mesh was then

subdivided thrice, producing 48,256 triangles in 780 ms on a 733MHz Pentium III.

Figures 7.5 to 7.8 illustrate the method using models of tree branches and a young

tree. Figure 7.5 shows a twice-subdivided mesh of a model similar in structure to the

arbutus tree from Figure 2.2. Figure 7.6 shows another structure with wide branches,
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Figure 7.3: Photograph and model of Phymatosorus pustulatus.

Figure 7.4: Photograph and model of an Elkhorn fern leaf. Photo courtesy Birgit
Loch, University of Queensland.

demonstrating the basic symmetric bifuraction templates from Figure 5.9. For the

driftwood model, parsing and three iterations of subdivision each took under a sec-

ond, producing 58,496 triangles. It was rendered using texture mapping, as described

in Section 6.4.2. The model shown in Figure 7.7 combines a branching structure and
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leaf models into a whole-tree model. The tree demonstrates both bifurcation and

trifurcation templates. Finally, the poplar model shown in Figure 7.8 is the most

complex one, as the stems includes the scars from discarded branches. The scars use

the basic bifurcation templates with no special considerations necessary. Generating

the coarse mesh for the poplar took under a second, while three iterations of Loop

subdivision generated 202,240 triangles in about five seconds. The refined mesh was

rendered using POV-Ray’s implementations of solid textures and bump maps. As

with the leaves, all these figures display the expected smooth blending of branches.

Figures 7.9, 7.10, and 7.11 demonstrate the twig and leaf methods incorporated

into scenes.
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Figure 7.5: Subdivided branching mesh; compare with Figure 2.2.
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Figure 7.6: Driftwood
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Figure 7.7: Spring sapling
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Figure 7.8: Poplar twig

Figure 7.9: Oak bough
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Figure 7.10: “The Bigger They Are, The Harder They Autumn”
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Figure 7.11: “I Know What You Grew Last Summer”



Chapter 8

Comparison Between Subdivision and Implicit

Surfaces

8.1 Comparison

The key alternative to subdivision methods for creating smooth branching points

uses implicit surfaces [Blo95b, Mar03]. Therefore, the use of subdivision surfaces was

compared with the creation of implicit surfaces, given the same L-system-generated

skeletons. The models are shown in Figure 8.1. The comparisons were obtained

with a recent implementation [FGW00] of the skeletal implicit surface modeler Blob-

Tree [WGG99]. By comparing the columns in Figure 8.1, it can be observed that the

models shown have comparable surface quality, with the subdivision method having

produced somewhat smoother surfaces.

The comparison results are collected in Table 8.1. The implementation of Loop

subdivision used produces about eight times as many triangles per second as the

Model Method Time [sec] Triangles Triangles/sec
Scars Implicit 115.28 726964 6306.07

Subdiv (2 iterations) 3.05 153280 50255.74
Subdiv (3 iterations) 12.84 613120 47750.78

No scars Implicit 46.38 294528 6350.32
Subdiv (2 iterations) 1.43 73632 49088.00
Subdiv (3 iterations) 6.28 294528 46899.36

Table 8.1: Comparison of the performance of implicit and subdivision methods. Tests
were run on a dual Pentium III 733MHz.
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Figure 8.1: Surface comparison. Top: “Scars” model; bottom: “No scars” model.
Left: Polygonized implicit surface; right: surface produced by the proposed method
after two iterations of Loop subdivision. All images were rendered using OpenGL at
10242 resolution.
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BlobTree’s surface tiler. Furthermore, only two levels of subdivision were needed

to produce meshes of the same visual quality as those produced by the implicit

surface method for the given resolution (10242 pixels). Thus, the number of produced

triangles was several times smaller for the subdivision method. Taking this into

account, subdivision was over thirty times faster than the implicit method.

8.2 Discussion

Part of subdivision’s advantage likely comes from the fact that the coarse mesh is

already a topologically accurate representation of the branching structure. In fact,

this suggests another advantage: the coarse mesh is already suitable for interactive

previews and rendering models at a distance, whereas a BlobTree surface polygonized

to a similar number of triangles would likely be topologically inaccurate and fail to

capture thin limbs.

The BlobTree’s polygonizer uses a continuation method based on uniform voxel

subdivision [WMW86]. Other polygonization algorithms exist, but were not locally

available for comparison. Some of these, such as the particle-based method of Witkin

and Heckbert [WH94], are known to produce more regular triangles. Additionally,

several of the alternative methods, such as Marching Triangles [HSIW, AG01], can

be faster than uniform-voxel continuation. These methods typically exhibit two

to four times the performance of the polygonization algorithm tested by requir-

ing approximately one-quarter of the triangles to produce an equivalently accurate

approximation. This would produce triangles at half of the rate of the Loop subdi-

vision, resulting in polygonization times about eight to ten times longer than with
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subdivision, for comparable visual quality. Thus, subdivision is likely to keep much

of its performance advantage, even with the application of the highest-performance

implicit surface techniques.

Future work would be to investigate the use of adaptive subdivision [ZSS97,

AFR02] and adaptive implicit surface polygonization [VdFG99], which may reduce

the performance and triangle count discrepancies.



Chapter 9

Conclusions

In this work, a method for generating leaves and stems with smoothly blended

branches, based on the use of subdivision surfaces, has been presented. The method

produces results visually comparable to those obtained using implicit surfaces, but

yields a smaller number of triangles and is over an order of magnitude faster. A

modeling system for creating subdivision surfaces for skeletal branching structure

has also been implemented and illustrated with examples. The realism of the final

renderings was enhanced using solid textures and texture mapping.

Previous work involving generating subdivision surfaces for branching structures

includes Mesh-Based PL-systems [TMW02a, Mai02, TMW02b] and Surface Mod-

els from by-Axis-and-Radius-defined Tubes [FFW01, FFKW02]. The former authors

used growing meshes, rather than skeletons, while the latter focused only on branch-

ing tubes with square cross sections and symmetric branching. The proposed method

adds to the previous research a skeletal method for modeling compound leaves as

well as considerations for modeling asymmetric branching structures.

The current method has several limitations, which present problems open for

further research:

• In nature, many trifurcations are asymmetric, which means that one branch

is slightly offset with respect to the other branch along their supporting axis

(in other words, the trifurcation consists of two nearby bifurcations). The
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proposed template method does not support such branching configurations,

whereas implicit surfaces would.

• In many plants (e.g., in coniferous trees), branches occur in whorls, where

several branches are arranged in a tight spiral pattern around the trunk. This

is a generalization of the case described above, so the template method does

not support these configurations either.

• Ideally, leaves and stems should be integrated into one continuous mesh. The

methods presented in this work support leaves and stems separately, but do

not support a continuous connection between the two classes of objects. With

stems modeled as closed surfaces and leaves as open surfaces, as with this

research, attaching leaves to stems would result in a non-manifold surface. The

importance of non-manifold surfaces to the modeling of biological objects was

observed by Bloomenthal [Blo95b]. Non-manifold subdivision exists for Loop’s

scheme [YZ01], but has only C0 continuity at non-manifold joints, making it

equivalent to using multiple abutting meshes, as the proposed methods already

do.

• The texture mapping introduces significant distortions at the branching points,

which in some cases produce visually noticeably artifacts.



Appendix A

Software User Manual

A.1 Introduction

The methods presented in this thesis are implemented in a software environment

called Salad. The name is derived from “Sweep Application”, as the environment

was initially created as an editor for generalized cylinders and other swept surfaces.

Salad’s graphical user interface is inspired by various commercial 3D modeling pack-

ages. It provides an interactive graphical environment for visualizing and editing a

variety of interactively defined and procedurally generated objects. The objects can

be composed into scenes for rendering with POV-Ray.

Salad includes a variety of features that are unrelated to the research described in

this thesis; only features pertinent to this thesis are presented here. In Section A.2,

the graphical user interface is described, including features for visualizing, editing,

and composing scenes. Section A.3 contains a description of the interactive features

specific to the methods presented in this thesis. Most of these features can also be

accessed in batch mode via the command line, as described in Section A.4.
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Figure A.1: Salad Graphical User Interface

A.2 Salad GUI

Interface overview

At the top of the screen is the main menu, in which the vast majority of Salad’s

functionality may be found. Below this are some toolbars, which have popup tooltips

to explain their usage.

Situated on the left side of the screen, below the toolbars, is a collection of

controls for creating new objects and adjusting the displayed level of detail (such as

the number of iterations of subdivision to perform). On the right side of the screen

is an object list, which identifies all objects in the scene. By default, object names

are comprised of their type name followed by a pseudorandom number. Between the
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controls on the left and the object list on the right are the four viewports.

All features are available via either the main menu or the controls. Additionally,

right-clicking activates a context menu, through which all modeling features and

visualization options are also available.

Viewports

Viewports are activated on mouse-over, so that the current viewport is the one

which most recently had the mouse cursor in it. The current viewport’s camera

name (Front, Perspective, etc.) is drawn black; the others are drawn grey.

“Spacebar” expands the current viewport to fill the viewport area (between the

control bars and the status bar). A full-screen mode is also available from the context

menu and the View menu.

Each viewport can display a grid, which can be used to snap objects to world

coordinates that are multiples of the grid scale. Display of the grid can be toggled

via the toolbar or the G key. The size of the spaces between grid lines is set using

the Grid Scale control.

Cameras

Each viewport is assigned a camera, which has a position in world space and a

target, or focal point, that it is aimed at. The target is initially the origin, but

can be set to the center of any object by choosing Focus from the object’s context

menu, or pressing the F key when the object is selected. A viewport’s camera can

be changed via the Camera submenu on the viewport’s context menu. However,

camera-to-viewport assignments are not saved.
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Camera transformations can be initiated in two ways:

1. Maya’s camera transformation commands

Camera movement is executed by holding the Alt key while clicking and drag-

ging with the appropriate mouse button:

Alt-Left: orbit Rotate the camera about it’s target, keeping it oriented to-

wards the target.

Alt-Right: dolly For the perspective camera, translate the camera towards

and away from its target; for orthographic cameras, zoom in and out of

the scene.

Alt-Middle: pan Translate the camera’s target and position in the plane of

the screen.

Additionally, if Alt is not held down, the middle mouse button initiates orbit.

2. Context menu:

• Choose a transformation from the context menu in the appropriate view-

port.

• Move the mouse.

• Click when done.

The context menu offers one camera transformation unavailable using the Maya

commands: zoom, which adjusts the field of view.
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Objects

Individual objects can be selected in two ways: by clicking on them in the viewports,

or by clicking on their names in the object list. A selected object’s name may be

edited by clicking on the name in the object list. Multiple objects may be selected at

one time using sweep selection, a click-drag-release action which defines a rectangle

in screen space. All objects intersecting the rectangle are selected.

Most objects have a property sheet, a floating window used to edit the object’s

parameters. The property sheet can be activated by double-clicking on the object,

provided that it is the only selected object.

To translate or scale an object, first select the object, then hold the appropriate

key while dragging the mouse:

t translate selected objects

s scale selected objects

Additionally, the Transformations editor, available from an object’s context

menu, allows direct numeric specification of the transformations. The Reset button

sets all transformations to their defaults: zero translation and rotation, with unit

scale.

Rotations are specified using quaternions. As these are unintuitive to specify

numerically, object rotation is best accomplished using the Arcball rotation con-

troller [Sho94]. The arcball is activated and deactivated with the r key. Clicking

inside the arcball will initiate a 3D rotation; hold the mouse and move it to ro-

tate the object. Dragging outside the arcball will rotate the object around an axis

perpendicular to the viewport.

The arcball has the ability to constrain rotation to a specified axis. The axes
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(a) Object-local constraints (b) Viewport constraints

Figure A.2: Arcball Rotation Controller

are drawn as coloured lines (Figure A.2). When the mouse cursor is over an axis,

the axis will turn yellow, indicating that movement is constrained to that axis. By

default, the object’s local axes are displayed (Figure A.2(a)). Holding down Ctrl

before clicking will display axes in the plane of the viewport (Figure A.2(b)).

Visualization modes

The lettered icons control the visualization options:

W Wireframe

T Texture

L Vertex lighting

S Smooth shading
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B Bounding boxes. If bounding boxes are enabled, objects are hidden (except for

their bounding boxes) during camera movements. This enables quick camera

movement when working with complex scenes.

H Hidden-line mode

H (shadowed) Hidden-line mode, with hidden lines drawn stippled.

The first five options are toggles that can be combined arbitrarily. The last two

modes are exclusive.

Files

Salad provides its own native .sal scene file format, which can save most of Salad’s

features. However, viewport settings, which are not related to the scene itself, are

saved in the Windows Registry, rather than with the scene file.

Material Editor

The Material Editor (Figure A.3) sets OpenGL rendering parameters. There are

three ways to access the Material Editor:

1. From the main menu, choose Edit|Material.

2. Right-click on the object, and choose Material.

3. Double-click on the object, displaying its property sheet. Every property sheet

has a Material button.

If the editor is activated via an object’s context menu, that object’s material will be

made current in the editor.
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Figure A.3: Material Editor

In the top-left corner of the dialog is the Current Material combo box, which

lists the materials in the scene. Materials are created and edited here, and can be

applied to any object. To create a new material, use the Copy button to create a

new material with the same parameters as the current one. Use the Delete button

to delete the current material. While this will remove the material from the list of

available materials, a deleted material will only actually disappear from the scene

when all objects that reference that material are assigned a different one.

The “Default” material has a diffuse colour taken from the system’s button face

colour, a black ambient colour, a dark specular highlight, and no emission, trans-

parency, or texture.

The Ambient, Diffuse, Specular, and Emission parameter buttons launch the

standard Windows system colour selector dialog. The selected colour’s RGB values
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are normalized and placed in the edit boxes in the row of the corresponding parameter

button. The RGB values for these parameters can also be edited directly.

The Alpha parameter corresponds to the A parameter to glColour* and is thus 1

for opaque, 0 for transparent, and something in between for transmissive. Note that

Salad doesn’t sort objects or triangles front-to-back, so transparent objects may be

rendered incorrectly.

The Specular Exponent is an integer parameter in the range 0-128 (a range

imposed by OpenGL).

Texture mapping

The Texture... button launches a standard file open dialog box. From there, one

can choose a BMP or PNG image to use as a texture. Three texture mapping options

are available:

AutoWrap Uses standard per-vertex texture mapping.

Environment Map Uses OpenGL 1.0 environment mapping.

Altitude Map 1D texture mapping for use with fractal terrain (not described in

this work).

Texture images must be 24-bit RGB or 32-bit RGBA “True Colour” images in

either BMP or PNG format. Palettes are unimplemented. The Alpha channel can be

used in the 32-bit version of either file format to create transparent textures.
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Figure A.4: Global Options and their default settings

Lights

The Light button will place a point light source at the origin. Lights can be trans-

lated like any other object, and their colours can be set using the Material Editor.

Lights are particularly useful when preparing scenes for export to POV-Ray.

Global Options

Figure A.4 shows the global options dialog, accessed via the Tools menu’s Options

command. The options are as follows:

Selection toggles display of a silhouette around selected objects. An object’s silhou-

ette is generated by drawing a scaled-up instance of the object, with the actual

object masked out using the stencil buffer. As a result, displaying silhouettes

can reduce performance.

Highlight toggles display of a silhouette around objects which are under the mouse

cursor. The Highlight silhouette is a different colour from the Selection silhou-

ette. This feature is only relevant if Pick on Hover is checked.
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Culling controls OpenGL’s polygon culling feature. Back-face culling is particularly

useful when exporting closed meshes to PostScript.

Right Click Picks toggles whether right-clicking in a viewport, which activates

the context menu, also performs a pick operation.

Pick on Hover toggles whether picking is performed after each mouse movement.

This is a useful feature when choosing or editing splines, as it allows the user

interface to graphically highlight objects under the cursor. However, for com-

plex scenes, it can result in a lag between the initiation of a camera or object

transformation command and the first result. For instance, the interface may

appear to stall at the start of an Orbit operation.

Auto Wire Colour If this is checked, the colour for the wireframe visualization

(excluding the Hidden Line modes) is computed from the complement of the

object’s diffuse colour. Otherwise, the wire is drawn black.

Ask Questions toggles whether Salad should warn the user if they are about to

close a modified scene.

Open Last Doc toggles whether Salad should automatically open the last-used

scene the next time Salad starts.

Auto Focus determines whether various operations (including importing objects)

should include executing a Focus command in every viewport, centering the

view on the newly created or modified object.

Background allows the user to choose the background colour for the viewports.
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Camera Frame toggles the display of a rectangle of the specified screen-space di-

mensions, centered in each viewport. This is useful for composing a scene to

be rendered in POV-Ray at a specific resolution. The default is NTSC DVD

resolution.

All of these options are saved in the Windows registry key

HKEY CURRENT USER\Software\Pete the Dud\Salad2K.

A.3 GUI for turtle features

This section explains how to use the implementation of the methods proposed in this

work; that is, generating subdivision surfaces for plant models. There are four steps:

1. Export a string from a CPFG model.

2. Import the string into the system.

3. Process the mesh.

4. Export to POV-Ray for rendering.

For step 1, users should consult the CPFG manual [Měc98].

Importing strings

The user must decide whether they are modeling a tree or a leaf. Trees are modeled

using a closed cross section, whereas leaves are modeled with an open cross section,

with an optional crease representing the midrib.



82

To generate a tree model, choose Turtle Tree from the drop-down menu next

to the Turtle button, situated in the controls on the left of the interface. This will

bring up an Import File dialog, letting you browse to the .str file produced by

CPFG. The selected strings will be interpreted as trees, and the resulting meshes

will be displayed. For Leaf models, follow the same process, but choose Turtle Leaf

from the menu.

Processing meshes

This subsection describes how to set mesh options such as edge sharpness, material,

etc., and subdivide.

Double-click a mesh to launch its properties dialog. The dialog contains three

pages (Figure A.5), accessed via the tabs just below the title bar.

Turtle Tree tab

For tree models, the first tab is called Turtle Tree and controls parameters of the

tree interpretation, as well as leaf orientation.

Scale Noise on this tab merely determines whether the noise is uniformly dis-

tributed throughout the model (slider full right), or scaled in proportion to

branch “age” (slider full left). It is presented here rather than with the noise

controls on the SubD tab as it is specific to tree models.

Tip Size determines the height of the cone attached to the end of each terminal

branch, relative to the width of the terminal branch.

Tile V texture coordinates toggles between the two available texture mapping
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(a) Turtle Tree tab (b) Leaf tab

(c) Sweep tab (d) SubD tab

Figure A.5: Properties Dialog: A given turtle-generated object will be either a tree
or a leaf; only the appropriate tab will be shown.
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modes. Tiling maps the entire V domain to each internode; not tiling means

the V domain is mapped to the longest path in the tree.

Randomize Leaf Bend determines the magnitude by which each leaf’s actual an-

gle is randomly perturbed.

Bend Leaves Down affects the base angle from which leaves subtend the tree. The

default is horizontally. Leaves are added to trees as described in Section A.3.

Parallel Transport allows the user to choose whether to use parallel transport

frames instead of the default of directly using the frames specified by the turtle

string.

Draw Frames toggles display of local-coordinate axes at each reference frame. This

is useful for visualizing the effect of parallel transport frames.

Leaf tab

This tab (Figure A.5(b)) controls parameters of the leaf interpretation.

Use Cutout Texture Mapping toggles between cutout and tiled texture map-

pings for leaves. Cutout mapping assumes the texture represents the entire

leaf surface, whereas tiling maps the texture to an internode, as with the tiling

option for trees. The cutout mode is described in Section A.3.

Tile V texture coordinates toggles between the two available tiled texture map-

ping modes. Checking this option maps the entire V domain to each internode;

otherwise, the V domain is mapped to the longest path in the leaf.
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Simple Junction Geometry toggles between two templates for leaf branching

junctions. The Simple template creates fewer triangles and a larger blend

area than the template described in Section 5.4.

Midrib Depth controls the size of the midrib, relative to the width of each cross

section.

Tip Size determines the height of the cone attached to the end of each terminal

branch, relative to the width of the terminal branch.

Sweep tab

Most of this tab (Figure A.5(c)) is used for a generalized cylinder implementation

which is not described in this documentation. Several features are relevant to turtle

string models, however:

Material launches a dialog for manipulating objects’ material properties (Section A.2).

Cap Front: If checked (the default), this places round tips on the terminal branches,

which can be sharpened using the SubD tab, Section A.3. If unchecked, flat

caps with hard edges are applied to the terminal branches, for a pruned effect.

Cap Back: If checked, places a flat cap with hard edges at the base of the model.

If unchecked (the default), the base is open.

SubD tab

This tab (Figure A.5(d)) controls the coarse mesh and subdivision algorithm, and is

common to leaves, trees, and generalized cylinders.



86

Crease Sharpness indicates the number of subdivision iterations during which

“sharp” crease rules will be applied to edges that are marked as creases. Set-

ting this to 0 will ignore the creases, whereas setting this to 255 (the maximum

number of subdivision iterations allowed) will result in sharp creases.

Tip Sharpness is equivalent to “Crease Sharpness”, but for vertices marked as

points. This only affects the tips of leaf meshes.

Flatness Tolerance controls the adaptive subdivision algorithm’s tolerance for cur-

vature. It is based on the dihedral angle, in radians, between adjacent triangles.

A lower tolerance will result in more subdivision of curved regions of a mesh.

This also affects subdivision of triangles on boundaries or creases, where the

parameter is based on the collinearity of two edges.

Size Tolerance controls the minimum allowable world-space area for a triangle.

This prevents subdivision of sufficiently small triangles.

Show Control Points controls the display of the vertices of the coarse mesh. Only

relevant if “Show Control Mesh” is checked. Set this to Point for interactive

editing of a mesh (only available if the mesh is “Extracted” via the context

menu). The default is set to None for fastest visualization, and the Index and

Tex Coord options are for debugging.

Show Control Mesh: Toggles display of the coarse mesh when the object is se-

lected.

Show Normals: If checked, vertex normals are displayed in orange and face nor-

mals in blue. Note that for tree meshes, the true normals point inwards, but



87

they are shown facing outwards to make them visible.

Adaptive toggles adaptive subdivision.

Move to limit surface toggles a post-subdivision step which uses Hoppe’s limit

masks to move vertices to their limit positions. As the changes are indeed

applied to the vertices stored in the mesh, only use this after choosing the final

level of subdivision to render.

Apply is for the adaptive subdivision tolerances and Noise; it initiates complete

resubdivision.

Subdividing

The Detail edit control on the Settings Bar determines the level of subdivision.

Level 0 refers to the coarse mesh. For adaptive subdivision, use level 1. (Adaptive

subdivision must first be enabled, as described above.) The mesh is always stored

at the highest level of subdivision that’s been applied to it. Therefore, if the user

subdivides to level four, then reduces the detail to level three, only the third-level

vertices will be displayed, but they will be in their fourth-level positions. However,

whenever Level 0 is selected, the mesh is reset to the control vertices, so that Level

0 always corresponds to the original coarse mesh.

Leaf Texturing

As described in Section 6.4.1, one method of texture mapping leaves involves using a

proxy mesh to define a mapping from the 2D texture image to the 3D model. To use

this feature effectively, models should be created such that the topology is entirely

represented by rotations about about the Up axis, with rotations about Left and
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Figure A.6: Constraints Toolbar, with Y constrained

Figure A.7: Context Menu, with “Edit Texture Proxy Mesh” highlighted

Heading used only to bend and twist the leaf into a 3D shape. The proxy mesh is

edited as follows:

1. Import the turtle string as a leaf.

2. Double click the mesh. Check Cutout Texture Mapping on the Leaf tab.

3. Select the Sweep Tab, and click Material. Assign a texture using the Texture

button (Section A.2).
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Figure A.8: Sweep Selection while editing the proxy mesh

4. Right click on the resulting mesh and choose Edit Texture Proxy Mesh (Fig-

ure A.7). The proxy mesh will be selected and displayed in the Front view,

with the texture slightly behind it.

5. Consider using sweep selection (click and drag with the left mouse button)

(Figure A.8) and the Proportional Movement tool (the rightmost tool in Fig-

ure A.6) to allow editing of an entire lobe at once. The selection can be

appended to by Shift-dragging, and toggled using Ctrl-click.

Note that any subdivision surface can be edited in this way, provided that it is

made available using its generator’s context menu’s Extract Mesh command.

Leaves on Trees

Salad includes the ability to attach leaves to the ends of tree branches.



90

1. (optional) Create a material called “Bark” and a material called “Leaf” (case

insensitive). These will be automatically applied in the next two steps.

2. Import a Turtle Tree.

3. While the tree is selected (which it is immediately after importing), import a

Turtle Leaf. An instance of the leaf will then be attached to all the branch

tips.

Leaf scale and orientation can be controlled using the Tree Tab (Section A.3). To

edit the leaves’ properties, such as creases, right-click on the tree and choose Leaf

Properties.

Export to POV-Ray

File|Export|POV-Ray... will generate a POV-Ray scene (*.pov) corresponding

roughly to the Perspective viewport’s current contents. Each mesh will be placed

in its own include file (*.inc), whose name is generated from the corresponding

object’s name in Salad (as shown in the object list). If you have not set up a light

(Section A.2), Salad will create a sky sphere in the scene’s background colour, and

use it for radiosity-based illumination. You can launch POV-Ray directly from Salad

using Alt-G; this will generate a POV-Ray scene in the scene’s folder, or the current

working folder if the scene is unsaved, then launch POV-Ray.

A.4 Command Line usage

Salad, when built with the ReleaseConsole, ReleaseDebug, or Debug configuration,

includes a command line interface to the tree surface generation code.
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Salad takes as input string (“.str”) files, which are text files containing turtle

commands. Multiple strings may be specified in one call, and wildcards may be used

to specify groups of files (i.e., *.str)

Several switches are available to control the surface generated. Switches may

be prefixed with ‘/’, ‘-’, or ‘+’. Any numeric parameters to the switches must

immediately follow the switch, without whitespace in between.

/A<size> Apex size. The floating-point parameter indicates the proportion of the

tip length to its base width.

/C Consistent name. The exported objects are all given the same name. File names

will still be unique. Useful for animation.

/E<iter> Edge sharpness. The integer parameter must be in the range [0,255], and

represents the number of “sharp” subdivision iterations. For leaves (ignored

without /L).

/?,/H Help. Print this text.

/L Leaf. Generate an open surface, for leaf modeling.

/N[scale] Noise. Fractal noise is generated by perturbing vertex positions after

each subdivision step. The optional floating-point parameter determines the

magnitude of the perturbations.

/O OBJ. Output OBJ format (*.obj). If neither /O nor /P are specified, this is the

default format.
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/P POV-Ray. Output POV-Ray format (*.inc). Both /O and /P may be specified

to get both formats simultaneously.

/S[iter] Subdivide. If no parameter is given, adaptive subdivision is is used. The

optional integer parameter specifies the number of steps of static subdivision

to perform instead.

/T<size> Tip sharpness. The integer parameter must be in the range [0,255], and

represents the number of “sharp” subdivision iterations.

/V Vertex limit positions: vertices are moved to their limit positions after subdivision

is completed.
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models faithful to botanical structure and development. In Proceedings

of SIGGRAPH 1988, pages 151–158. ACM Press, 1988.

[DS78] D. Doo and M. Sabin. Analysis of the behaviour of recursive di-

vision surfaces near extraor-dinary points. Computer Aided Design,

10(6):356–360, 1978.

[EMP+94] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing

and Modeling: A Procedural Approach. Academic Press, San Diego,

CA, 1994.

[Far02] G. Farin. Curves and Surfaces for CAGD, A Practical Guide. Morgan

Kaufmann, San Francisco, fifth edition, 2002.

[Fed02] P. Federl. Modeling Fracture Formation on Growing Surfaces. PhD

thesis, University of Calgary, September 2002.

[FFC82] A. Fournier, D. Fussell, and L. Carpenter. Computer Rendering of

Stochastic Models. Communications of the ACM, 25(6):356–362, June

1982.

[FFKW02] P. Felkel, A. L. Fuhrmann, A. Kanitsar, and R. Wegenkittl. Surface

reconstruction of the branching vessels for augmented reality aided



97

surgery. In Biosignal 2002, 2002.

[FFW01] P. Felkel, A. L. Fuhrmann, and R. Wegenkittl. Smart

- surface models from by-axis-and-radius-defined tubes.

Technical Report TR VRVis 2001 026, VRVis Zentrum

für Virtual Reality und Visualisierung Forschungs-GmbH,

http://www.vrvis.at/TR/2001/TR VRVis 2001 026 Full.pdf, 2001.

[FGW00] M. Fox, C. Galbraith, and B. Wyvill. Efficient implementation of the

blobtree for rendering purposes. In Proceedings of the Eleventh Western

Computer Graphics Symposium. University of Alberta, April 2000.

[Fir91] P. A. Firby. Surface topology. Ellis Horwood, New York, second edi-

tion, 1991.

[FL74] D. Frijters and A. Lindenmayer. A model for the growth and flow-

ering of Aster novae-angliae on the basis of table (1,0)L-systems. In

G. Rozenberg and A. Salomaa, editors, L-systems, Lecture Notes in

Computer Science 15, pages 24–52. Springer-Verlag, Berlin, 1974.

[FL76] D. Frijters and A. Lindenmayer. Developmental descriptions of branch-

ing patterns with paracladial relationships. In A. Lindenmayer and

G. Rozenberg, editors, Automata, languages, development, pages 57–

73. North-Holland, Amsterdam, 1976.

[FvD82] J. D. Foley and A. van Dam. Fundamentals of interactive computer

graphics. Addison-Wesley, Reading, Massachusetts, 1982.



98

[Han92] J. S. Hanan. Parametric L-systems and Their Application to the Mod-

elling and Visualization of Plants. PhD thesis, University of Regina,

June 1992.

[HB96] J. C. Hart and B. Baker. Implicit modeling of tree surfaces. In Pro-

ceedings of Implicit Surfaces ’96, pages 143–152, October 1996.

[HDD+94] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,

J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruc-

tion. In Proceedings of SIGGRAPH 1994, pages 295–302. ACM Press,

July 1994.

[Hol94] M. Holton. Strands, gravity, and botanical tree imagery. Computer

Graphics Forum, 13(1):57–67, 1994.

[Hon71] H. Honda. Description of the form of trees by the parameters of the

tree-like body: Effects of the branching angle and the branch length

on the shape of the tree-like body. Journal of Theoretical Biology,

31:331–338, 1971.

[HPW92] H. Hammel., P. Prusinkiewicz, and B. Wyvill. Modelling compound

leaves using implicit contours. In Proceedings of Computer Graphics

International 1992, pages 199–212. Springer-Verlag, 1992.

[HSIW] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Marching

triangles: Range image fusion for complex object modelling. In IEEE

1996 International Conference on Image Processing.



99

[JTFP01] X. Jin, C.-L. Tai, J. Feng, and Q. Peng. Convolution surfaces for line

skeletons with polynomial weight distributions. Journal of Graphics

Tools, 6(3):17–28, 2001.

[JW88] D. Jevans and B. Wyvill. Ray Tracing Implicit Surfaces. Research

Report 88/292/04, University of Calgary, Dept. of Computer Science,

1988.

[Leo91] M. K. De Leon. Branching object generation and animation system

with cubic Hermite interpolation. Journal of Visualization and Com-

puter Animation, 2(2):60–67, 1991.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in de-

velopment, Parts I and II. Journal of Theoretical Biology, 18:280–315,

1968.

[Lin71] A. Lindenmayer. Developmental systems without cellular interaction,

their languages and grammars. Journal of Theoretical Biology, 30:455–

484, 1971.

[LLX+01] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-time texture

synthesis by patch-based sampling. ACM Transactions on Graphics

(TOG), 20(3):127–150, 2001.

[LN02] S. Lefebvre and F. Neyret. Synthesizing bark. In Proceedings of the

13th Eurographics workshop on Rendering, pages 105–116. Eurograph-

ics Association, 2002.



100

[Loo87] C. Loop. Smooth subdivision surfaces based on triangles. Master’s

thesis, University of Utah, 1987.

[Loo01] C. Loop. Triangle mesh subdivision with bounded curvature

and the convex hull property. MSR Tech Report MSR-TR-2001-

24, Microsoft Research Graphics Group. Microsoft Corporation,

http://research.microsoft.com/˜cloop/msrtr2001-24.pdf, 2001.

[Mai02] S. Maierhofer. Rule-Based Mesh Growing and Generalized Subdivision

Meshes. PhD thesis, Technischen Universität Wien, January 2002.

[Man94] B. B. Mandelbrot. Fractals in biology and medicine, chapter A Frac-

tal’s Lacunarity, and how it can be Tuned and Measured. Birkhäuser
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