Intro to Computer Graphics:
Just enough C++

Java vs C++

#1. Memory Management #3. Runtime error detection mechanism

C++ Java C++ Java

</ </>

Controlled s
Managed b : Programmer’s responsibility. '
; ; y system, does not use pointers. Supports System’s
by developers using pointers. Supports Threads and Interfaces. responsibility.

structures and union.

#2. Inheritance #4. Libraries

C++ Java C++ Java
Provide |C8Ppa rat;velyl | Provide
available with low-leve : :
single and multiple inheritance Does) RibCE ORI as wide range of classes for various
both. not support multiple inheritance. : high-level services.
Uses the concept if Interface to
achieve.

Source: https://www.educba.com/c-plus-plus-vs-java/

https://www.educba.com/c-plus-plus-vs-java/

Java vs C++

#5. Program Handling #7. Portability

C++ Java C++ Java

(] [] g _— e =

F— = o _— Q=
o — o —

Methods All
; : i ’ Platform Uses
and data can reside outside classes. methods and data reside in class itself. FI
; ; dependent as source code must be concept of bytecode which is
Conceptscfo%gg z;lvgilleég}gmesp RS Concepyed Package isisea. recompiled for different platform. platform independent and can be
' used with platform
specific JVM.

#6. Type Semantics

#8. Polymorphism

C++ Java
Supports Different 2 L2
consistent support between primitive and for primitive and object types.
object types. Explicit Automatic,
for methods, supports mixed hierarchies. uses static and dynamic binding.

Source: https://www.educba.com/c-plus-plus-vs-java/

https://www.educba.com/c-plus-plus-vs-java/

Hello World!

For C++ For Java

#include <iostream:

public class HelloWorld {
public static vold main{String[] args) {
System.out.println{"Hello, World™);

int maind)

1

std::cout <=« "Hello, world!";
return @;

}

P B =S % T S T e

Preprocessors

* Separate programs that manipulate the text in each code file

#include <iostream-

// The contents of iostream are inserted here
#define MY_NAME "Alex”

int main()
int main() i
3 std: :cout <= "My name is: "

<< "Alex";
std::cout =< "My name is: " << MY_NAME;

return @;
return 9; I3

Namespace

* An area code for identifier to be unique

namespace Foo

{
// This doSomething() belongs to namespace Foo
int doSomething(int x, int y)
i
return x + vy; int main{)
k3]
L std: :cout =« Foo::doSomething(4, 3) =« "\n’7;
std: :cout =« Goo::doSomething(4, 3) =« "\n’7;
namespace (oo y return 0:
] £
/7 This doSomething() belongs to namespace Goo
int doSomething{int x, int y)
1
return x - y;
k3
£

Source: https://www.learncpp.com/cpp-tutorial/4-3b-namespaces/

https://www.learncpp.com/cpp-tutorial/4-3b-namespaces/

Namespace

* An area code for identifier to be unique

namespace Foo

{
// This doSomething() belongs to namespace Foo
int doSomething(int x, int y)
i
return x + vy; int main{)
k3]
L std: :cout =« Foo::doSomething(4, 3) =« "\n"; 7
std: :cout =« Goo::doSomething(4, 3) =« "\n"; 1
namespace (oo y return 0:
] £
/7 This doSomething() belongs to namespace Goo
int doSomething{int x, int y)
1
return x - y;
k3
£

Source: https://www.learncpp.com/cpp-tutorial/4-3b-namespaces/

https://www.learncpp.com/cpp-tutorial/4-3b-namespaces/

Overloading Operators

* Operation = mathematical calculation involving one or more inputs
that produces a new value (output)

e Operator = symbol(s) that specify an operation

Source: https://www.learncpp.com/cpp-tutorial/introduction-to-literals-and-operators/

https://www.learncpp.com/cpp-tutorial/introduction-to-literals-and-operators/

Struct and Classes

* By Default:
e Struct = Public members
e Class = Private members

Triangle {

Vec2f m_verts[3];

Triangle() =

Triangle(Vec2f
m_verts[@]
m _verts[1]
m_verts[2]

Values and Pointers

* Pointer = memory address to a value
* & = address-of operator
» * = dereference operator

int value = 5;
std: :cout << &value; // prints address of wvalue
std: :cout << wvalue; // prints contents of wvalue

int *ptr = &value; // ptr points to wvalue

std: :cout << ptr; // prints address held in ptr, which 1s &value
std: :cout << *ptr; // dereference ptr (get the wvalue that ptr is pointing to)

Source: https://www.learncpp.com/cpp-tutorial/67-introduction-to-pointers/

https://www.learncpp.com/cpp-tutorial/67-introduction-to-pointers/

Values and Pointers

* Pointer = memory address to a value
* & = address-of operator
» * = dereference operator

int value = 5;
std: :cout <« &value; Q012FF7C
std: :cout << wvalue; ., 5

int *ptr = &value; /.

std::cout << ptr; // O012FF7C
std: :cout << *ptr; /. 5

Source: https://www.learncpp.com/cpp-tutorial/67-introduction-to-pointers/

https://www.learncpp.com/cpp-tutorial/67-introduction-to-pointers/

Example Code

Exercises

* Create a pattern of nested squares and diamonds, and print out the
vertices of each level

* Create the Sierpinski triangle using triangles, and print out the
vertices of each iteration

@

Level 1 Level 2 Level 3 Base Triangle 1 lteration 2 Iterations

Image Credit: CPSC 453 (Fall 2018) Assignment 1: Points, Lines and Triangles by Sonny Chan

