Shading (introduction to rendering)

Rendering: simulation of light transport

- ✤ Diffuse scattering
 - o matt surfaces
- Specular reflection
 - o shiny surfaces
 - o highlight
- ✤ Transparency
 - o glass, water
 - o penetrate the surface
- ✤ Global light transport
 - o realism

Global illumination

No multiple diffuse reflections

Multiple diffuse reflections

Local illumination

A (modest) example of shading

- ✤ Input:
 - o a 3D object
 - Material and color of the object
 - Position and structure of the light source
 - o "Intensity" of the light source
- Output:
 - o Color and intensity of points of the given object

Dealing with color

- Three component intensity (red, green, blue)
- Luminance (intensity) of the source
 - Red component of source red component of image
 - Green component of source \longrightarrow green component of image
 - Blue component of source _____ blue component of image
- Three similar but independent calculations
- We focus on one scalar value only

Diffuse reflection

- A perfect diffuse reflector (Lambertian surfacee) scatters the light equally in all directions
- ✤ Same appearance to all viewers
 - o Material of the surface
 - o The position of the light
- ✤ Same appearance to all viewers

Diffuse: Two important vectors

\bullet To compute the intensity at *P*, we need

- The unit normal vector N,
- The unit vector **L**, from *P* to the light

• What direction is the surface facing?

CrossProduct

<mark>a×b</mark> ĥ θ a b×a =-a×b

Normals

o A = V2 - V1
o B = V0 - V1
o N = A x B

Lambert's cosine law

- ✤ I: diffuse reflection at P
- $\bullet I = I_p k_d \cos(\vec{L}, \vec{N}) = I_p k_d \vec{L} \bullet \vec{N}$
- I_p : intensity of the light from source
- ♦ 0 $\leq k_d \leq 1$: coefficient of diffuse reflection

Coefficient of diffuse reflection

- * k_d is usually determined by a trial and error
- ✤ Examples:

Component	Gold	Black plastic	Silver
Red	0.75	0.01	0.5
Green	0.6	0.01	0.5
Blue	0.22	0.01	0.5

<i>k</i> _{<i>d</i>} =0.05	<i>k</i> _ =0.25	<i>k</i> _{<i>d</i>} =0.5	<i>k</i> _{<i>d</i>} =0.75	<i>k_d</i> =1
				VÖ

Specular reflection

- Diffusive reflection: no highlights, rough surface
- Specular reflection: highlights, shiny and smooth surfaces
- ✤ View dependent reflection

Specular: Three important vectors

\clubsuit To compute the intensity at *P*, we need

- The unit normal vector N,
- The unit vector **L**, from *P* to the light
- The unit vector \mathbf{V} , from P to the viewer

The Phong model for specular reflection

✤ I: specular reflection at P

•
$$I = I_p k_s \cos^n = I_p k_s (\vec{R} \cdot \vec{V})^n$$

• I_p : intensity of the light from source

♦ $0 \le k_s \le 1$: coefficient of specular reflection

✤ n: controls "shininess"

The shininess coefficient

n=1 n=2 n=4 n=6

Ambient light

"Physical rules" are too simplified

No indirect or global interaction of light

✤ A hack to overcome the problem: use "ambient light"

Ambient light specification

- Not situated at any particular point
- Spreads uniformly in all directions
- $I = k_a I_a$
- I_a : intensity of ambient light in the environment
- ✤ I : ambient light at a given point
- ✤ 0 ≤ k_a ≤ 1 : coefficient of ambient light reflection

A combined model (The Phong local illumination model)

The final model = diffuse + specular + ambient

 $I = I_p k_d (\vec{L} \bullet \vec{N}) + I_p k_s (\vec{R} \bullet \vec{V})^n + I_a k_a$ ••••

Example: two light sources

- Right Light=(1.0,0.0,0.0)
- ✤ Left Light=(1.0,1.0,1.0)

Multiple light sources

- The total reflection at p is the sum of all contributed intensities from all sources
- "Standard" OpenGL supports up to 8 light sources

Shading polygon meshes

Brute-force idea:

for each face in the mesh for each point on the face find normal at this point use Phong model to find the color

- These two steps require large a (relatively) amount of computations
- Interpolated polygon shading is a computationally efficient alternative

Scan-converting polygons

- Polygon- fill routine
- Convex polygons can be filled particularly efficiently
- Convex object definition

In which space should polygons be filled?

Scan-converting convex polygons: Flat shading

for each face in the mesh {
 find color c for the pixel at (x,y)
 for (y=y_{bottom}; y<=y_{top}; y++) {
 find x_{left} and x_{right}
 for (x=x_{left}; x<= x_{right}; x++)
 set the color of fragment at (x,y) to c
 }
}

Flat shading

- o Individual facets are visualized
- o Same color for any point of the face
- OpenGL: glShadeModel(GL_FLAT)

Flat versus smooth shading

- Flat shading is particularly efficient
- Not suitable for smooth objects (Mach band effect)

Face vs. "vertex" normals

- For each triangle we can define a normal for the face
- For each vertex we an define a normal by interpolating normals of attached faces

Smooth shading (Gouraud)

◆ Gouraud shading: interpolates values of c
◆ Bilinear interpolation
◆ c_l = (1 − β)c₁ + βc₃
c_r = (1 − γ)c₁ + γc₂
c = (1 − α)c_l + αc_r
◆ More expensive than flat shading

 C_1

Gouraud shading

Toward the Phong interpolation: interpolating vertex normals

- Polygonal meshes don't have normal at the vertices
- But they (often) approximate a smooth underlying surface
- A simple estimate for vertex normal:

the nomalized average of the normals of the faces

$$m = n_1 + n_2 + n_3 + n_4$$
$$n = \frac{m}{|m|}$$

Phong shading (interpolation)

- Better realism for highlights
- Use normal of vertices to interpolate normal of interior points
- ♦ Linear interpolation of n_1 and $n_3 \implies n_l$
- ♦ Linear interpolation of n_1 and $n_2 \implies n_r$
- ♦ Linear interpolation of n_l and $n_r \implies n$
- ✤ Normalize n
- Drawback: relatively slow

A comparison

Flat shading

Gouraud shading

Phong shading

Shading: local illumination mode vs. interpolation

Hidden surface/line removal

- Visible surface
 - Parts of scene that are visible from a chosen viewpoint
- Hidden surface
 - Parts of scene that are not visible from a chosen viewpoint

Back-face removal

- Also called back-face culling
- We see a polygon if its normal is pointed toward the viewer
- * Condition: $\cos \theta \ge 0$ or $n.v \ge 0$

Digression: Silhouette (contour) extraction

- Silhouette lines are very important for visualizing objects(very useful in the traditional art)
- Any edge shared by a front-facing polygon and a back-facing polygon is a silhouette edge (but may be hidden)
- Sample application: NPR

Is back-face removal enough?

- ✤ It fails for a non-convex surface
- It can't recognize partly obscured faces

Hidden-surface algorithms

Object-space

- o Comparison within real 3D scene
- Works best for scenes that contain few polygons
- ✤ Image-space
 - o Decide on visibility at each pixel's position

Z-buffer (depth-buffer)

- A commonly used image-space approach to hidden-surface removal
- Each location in the z-buffer contains the distance of the closest 3D point.
- ✤ Use the intensity (color) of the nearest 3D point for each pixel

Recall polygon fill algorithm

for each face in the mesh
for (y=y_{bottom}; y<=y_{top}; y++) {
 find x_{left} and x_{right}
 for (x=x_{left}; x<= x_{right}; x++)
 find color c for the pixel at (x,y)
}

Screen space

The Z-buffer algorithm

```
for all positions (x,y) on the screen
```

```
frame(x,y) = background
```

depth(x,y) = max_distance

end

```
for each polygon in the mesh
```

```
for each point(x,y) in the polygon-fill algorithm
```

```
★ compute z, the distance of the corresponding 3D-point from COP
if depth(x,y) > z // current point is closer
depth(x,y) = z
frame(x,y) = I(p) //shading
```

endif

endfor

endfor

Some facts about the z-buffer algorithm

✤ After the algorithm

- Frame buffer contains intensity values of the visible surface
- o z-buffer contains depth values for all visible points

For the step * in algorithm

- $\circ~$ We know $d_1,\,d_2,\,d_3$ and d_4 from vertices of the mesh
- o Use linear interpolation for other points

Beyond what we just learned...

Traslucency

Subsurface scattering

Subsurface scattering

<u>68 %</u>

-

010

