Examples of vectors and relations between them

Interpretation of a vector as a translation of a rigid body

Definition of vector addition

Commutativity of vector addition

 $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$

Associativity of vector addition

$$(a + b) + c = a + (b + c)$$

Multiplication of a vector by a scalar

Distributive property

 $p(\mathbf{a} + \mathbf{b}) = p\mathbf{a} + p\mathbf{b}$

also $(p+q)\mathbf{a} = p\mathbf{a} + q\mathbf{a}$

Definition of vector difference

The usual construction of vector difference

Projection of a vector on a line

Calculating projection length

Cross product

Toward a distributive property

The distributive property

Vector in coordinates

$$\mathbf{a} = \mathbf{a}_{X}\,\hat{\boldsymbol{\imath}} + \mathbf{a}_{Y}\,\hat{\boldsymbol{\jmath}} + \mathbf{a}_{Z}\,\hat{\boldsymbol{k}}$$